Cubic Polynomial Maps with periodic critical orbit

John Milnor

Stony Brook University (www.math.sunysb.edu)

ULTRAMETRIC DYNAMICS DAYS

Santiago de Chile, January 2008

Parameter Space

THE PROBLEM: To study cubic polynomial maps f with a marked critical point which is periodic under f.

Any cubic polynomial map with marked critical point is affinely conjugate to one of the form

$$f(z) = f_{a,v}(z) = z^3 - 3a^2z + (2a^3 + v),$$

with critical points $\pm a$.

Here *a* is the marked critical point, and f(a) = v is the marked critical value.

The **parameter space** for this family consists of all pairs $(a, v) \in \mathbb{C}^2$.

Alternative expression: $f(z) = (z-a)^2(z+2a) + v$.

Moduli Space

This normal form $f_{a,v}(z) = z^3 - 3a^2z + (2a^3 + v)$ is almost unique. *However,* $f_{a,v}$ *is affinely conjugate to the map*

$$f_{-a,-v}(z) = -f_{a,v}(-z),$$

with Julia set (in the z-plane) rotated by 180°.

Form the quotient of the parameter plane \mathbb{C}^2 by the involution

$$\mathcal{I}$$
: $(a, v) \mapsto (-a, -v)$.

Definition. This quotient \mathbb{C}^2/\mathcal{I} will be identified with the **moduli space**, consisting of all affine conjugacy classes of marked cubic maps.

The Period p Curve

Definition: the **period p curve** $S_p \subset \mathbb{C}^2$, consists of all pairs (a, v) such that the marked critical point of $f_{a,v}$ has period exactly *p*. FOUR BASIC FACTS:

1. This period *p* curve S_p is a smooth affine curve in the (a, v)-coordinate space \mathbb{C}^2 . Its quotient S_p/\mathcal{I} is a smooth curve in the moduli space \mathbb{C}^2/\mathcal{I} .

2. S_p can be compactified by adding finitely many **ideal points**, thus yielding a compact complex 1-manifold \overline{S}_p . Similarly $\overline{S}_p/\mathcal{I}$ is a compact complex 1-manifold with finitely many ideal points.

(CAUTION: \overline{S}_p is NOT the closure of S_p in projective space.)

Definition. The connectedness locus $C(S_p)$ consists of all maps in S_p with connected Julia set.

3. This connectedness locus is a compact subset of S_p .

Escape Regions

4. Each connected component of the complement $\overline{S}_p \smallsetminus C(S_p)$ is conformally isomorphic to the open unit disk, with an ideal point at its center.

Such components will be called escape regions.

There is a one-to-one correspondence between ideal points and escape regions.

In S_p itself, each escape region \mathcal{E} is a **punctured** disc.

Thus, in each escape region, one can define **equipotentials** and **external rays**. These provide a powerful method for studying the dynamics for maps $f \in \partial \mathcal{E}$.

Hyperbolic Components

A rational map is called **hyperbolic** if every critical orbit converges to an attracting or superattracting cycle.

There are 4 types of hyperbolic components in $C(S_p)$, indicated schematically above.

- A. Adjacent critical points: in the same Fatou component.
- **B.** Bicritical: in the same cycle of Fatou components.
- C. Capture of one critical orbit by the Fatou cycle of the other.

D. Disjoint cycles of Fatou components. (Each Type D component in S_p is contained in a copy of the Mandelbrot set.)

Example: Period 1

The curves S_1 and S_1/\mathcal{I} are conformally isomorphic to \mathbb{C} , with one puncture point (at infinity) and one escape region.

Bifurcation locus in S_1/\mathcal{I} . The 2-fold branched covering space S_1 is branched over the "center" point ($f_{0,0}(z) = z^3$) of the large component.

A Picture of S_1

Period 2

The curve S_2/\mathcal{I} is isomorphic to $\mathbb{C} \setminus \{0\}$, with two puncture points (at zero and infinity), and two escape regions. The two-fold covering space S_2 is branched over these two puncture points.

Another view of $\mathcal{S}_2/\mathcal{I}$

Here the inner and outer escape regions have been interchanged by inversion in the black circle.

Period 3

The curve $\mathcal{S}_3/\mathcal{I}$ has genus zero, with six puncture points, hence six escape regions.

The covering space S_3

 S_3 is a two-fold covering of S_3/\mathcal{I} , branched over four of its six puncture points. Hence S_3 has genus one, with eight punctures.

View of the universal covering space of this torus S_3 .

Boundaries of Hyperbolic Components

Assertion. Every hyperbolic component H in $C(S_p)$ is conformally an open disk with a preferred center point.

Conjecturally, it is bounded by a simple closed curve.

(Pascale Roesch and Yin Yongcheng; work in progress.) In the period one case, this was proved by Darroch Faught (1992), and by Roesch (1999, 2006).

Regulated Paths in the Connectedness Locus

DEFINITION. A path in $C(S_p)$ is **regulated** if its intersection with the closure \overline{H} of each hyperbolic component *H* is either:

- a single point or \emptyset ,
- a Poincaré geodesic joining a boundary point to the center, or

• a broken geodesic joining one boundary point to another via the center.

Regulated Paths and Curves

PROBLEM: Can any two centers be joined by at least one regulated path?

```
(In particular, is S_p connected?)
```

We can also consider simple closed curves $\Gamma \subset \mathcal{C}(\mathcal{S}_p)$.

Definition. Such a curve is regulated if

it satisfies the analogous restrictions on Γ∩ H
(but with no end points allowed), and if
it contains at least one hyperbolic point. (This second)

• It contains at least one hyperbolic point. (This second condition is hopefully redundant.)

Assertion: A simple closed regulated curve in $C(S_p)$ cannot be homotopic to a point within S_p .

A Conjectural Description of $\overline{\mathcal{S}}_p$

The claim is that there is a canonical cell subdivision of \overline{S}_p (or of $\overline{S}_p/\mathcal{I}$). For p > 1 it can be described as follows:

• The 1-skeleton of this cell subdivision is the union of all simple closed regulated curves in the connectedness locus.

• The complement of the 1-skeleton in \overline{S}_p or $\overline{S}_p/\mathcal{I}$ is a disjoint union of open 2-cells, one centered at each ideal point, and hence one 2-cell containing each escape region.

Example: For $\overline{S}_2/\mathcal{I}$ there is only one simple closed regulated curve, shown in black. It separates the 2-sphere into two 2-cells, each containing one of the two escape regions.

Example S_3/\mathcal{I} :

showing a cartoon of the cell structure on the right.

To describe these cell structures, it is essential to have some way to label the various escape regions!

Example S_3 :

Corresponding pictures for the 2-fold covering S_3 (lifted to its universal covering plane). The involution \mathcal{I} corresponds to an 180° rotation of either of these figures.

Embedding K(q) in S_p/\mathcal{I} CONJECTURAL DESCRIPTION:

Each critically periodic $q(z) = z^2 + c$ of period p determines a corresponding 2-cell \mathbf{e}_q in S_p/\mathcal{I} .

The filled Julia set K(q), cut open along its minimal Hubbard tree, embeds canonically in \mathbf{e}_q , with the cut open tree mapping to $\partial \mathbf{e}_q$.

The Kneading Sequence of an Escape Region.

Suppose that the orbit of +a under the map $f = f_{a,v}$ is bounded, but the orbit of -a escapes to infinity. Then the equipotential through -a is a figure eight curve.

Let U_0 and U_1 be the bounded complementary components, with $a \in U_0$. Any bounded orbit $z = z_1 \mapsto z_2 \mapsto \cdots$ determines an infinite sequence $\vec{\sigma}(z) = (\sigma_1, \sigma_2, \ldots)$ of zeros and ones, with

 $z_j \in U_{\sigma_j}$.

Definition. The sequence $\vec{\sigma}(v)$ associated with the critical value v = f(a) will be called the **kneading sequence** $\vec{\sigma}_f$.

The Associated Quadratic Map

Now suppose that the critical point *a* is periodic of period *p*. In other words, suppose that $f = f_{a,v} \in S_p$.

Evidently the kneading sequence $\vec{\sigma}_f$ is also periodic, and the period of $\vec{\sigma}_f$ must be some divisor *d* of the period *p* of *f*. In particular, $\sigma_d = \sigma_p = 0$.

A convenient notation: Set $\vec{\sigma}_f = \overline{\sigma_1 \sigma_2 \cdots \sigma_{p-1} 0}$.

Branner and Hubbard (1992): For each such map *f*, there is a critically periodic quadratic polynomial $q(z) = z^2 + c$ with critical period p/d, such that every nontrivial component of the cubic Julia set J(f) is a copy of the quadratic Julia set J(q).

Example. The quadratic polynomial q(z) has critical period p/d = 1 if and only if $q(z) = z^2$, with a circle as Julia set.

Corollary: For $f \in \mathcal{E} \subset S_p$, each non-trivial component of J(f) is a topological circle if and only if the kneading sequence $\vec{\sigma}_f$ has period d exactly equal to p.

This case p = d will be called the **primitive** case.

Period 2 Examples

Here the kneading sequence is $\overline{00}$, and the associated quadratic map is $z^2 - 1$.

Here the kneading sequence is $\overline{10}$ (primitive case).

Multiplicity

Define the **multiplicity** μ of an escape region $\mathcal{E} \subset S_p$ to be the number of intersections of \mathcal{E} with a line of the form

$$\{(a, v) \in \mathbb{C}^2 : a = \text{large constant}\}.$$

Then the number of escape regions, counted with multiplicity, is equal to the degree of the affine curve S_p .

Theorem. For |a| large, the escape region \mathcal{E} can be parametrized by $\sqrt[4]{a}$, where μ is its multiplicity.

In particular, every point $a_j = f^{\circ j}(a)$ of the critical orbit can be expressed as a holomorphic function of $\sqrt[n]{a}$.

A Change of Variable

As $|a| \to \infty$, we have the asymptotic estimate

It will be convenient to replace z by the new variable s(z) = (a - z)/3a, with s(a) = 0 and s(-2a) = 1. In terms of this variable s, every point $s_j = s(a_j)$ on the critical orbit is very close to either s = 0 or s = 1:

$$\mathbf{s}_j = \sigma_j + O(1/a)$$
 as $|\mathbf{a}| \to \infty$.

Puiseux Series

(See Kiwi, 2006 for a closely related exposition.)

It is convenient to set t = 1/3a, and to use $t^{1/\mu}$ as parameter for $\mathcal{E}^+ = \mathcal{E} \cup (\text{ideal point}) \subset \overline{\mathcal{S}}_p$ near the ideal point t = 0. Then we can think of s_j as a holomorphic function of $t^{1/\mu}$ for |t| small, with $s_j(0) = \sigma_j \in \{0, 1\}$. Alternatively we can think of s_j as a power series in $\mathbb{C}[[t^{1/\mu}]]$.

Let \hat{s}_i be the first non-zero term in this power series.

Assertion. For periods $p \le 4$, the power series s_1, \ldots, s_{p-1} are uniquely determined by the p-1 monomials $\hat{s}_1, \ldots, \hat{s}_{p-1}$. Furthermore, if we write these monomials as $\hat{s}_j = k_j t^{n_j/\mu}$, then each coefficient k_j is an algebraic unit.

Question: Are these statements still true for p > 4?

The "Easy" Case

Notation: If $\hat{s}_j = k_j t^{n_j/\mu}$, set $\operatorname{ord}(s_j) = n_j/\mu \ge 0$.

Suppose now that s_1, \ldots, s_{p-1} satisfy the condition that $\operatorname{ord}(s_j) < 2$.

(For periods $p \le 4$, this condition is satisfied if and only if the kneading sequence is primitive.)

ASSERTION. In this easy case, there is a strongly convergent algorithm for computing the s_j from the \hat{s}_j . Futhermore the coefficient k_j of each monomial \hat{s}_j is a root of unity, $k_j^{2^{p-1}} = 1$, and all of the coefficients for the series s_j belong to the ring generated over $\mathbb{Z}[1/2]$ by these roots of unity.

Example: The Period Two Case

For p = 2 there is only one primitive kneading sequence $\vec{\sigma}_f = \overline{10}$, hence $\hat{s}_1 = 1$, and $\operatorname{ord}(s_1) = 0$.

In this case, the algorithm reduces to iteration of

 $s_1 \mapsto 1 - t^2/s_1$ starting with $s_1 = 1$.

This converges rapidly to

$$s_1 = \frac{1}{2} \left(1 + \sqrt{1 - 4t^2} \right) = 1 - t^2 - t^4 - 2t^6 - \cdots$$

 $\in \mathbb{Z}[[t]].$

Equations to Solve

 $a_{j+1} = f(a_j)$ for $1 \le j < p$, with $a_p = a$. Equivalently

$$a_{j+1} - a_1 = (a_j - a)^2 (a_j + 2a).$$

or

$$t^2(s_{j+1}-s_1) = s_j^2(s_j-1).$$

Algorithm: Map (s_1, \ldots, s_{p-1}) to (s'_1, \ldots, s'_{p-1}) , where

$$s'_j = 1 + t^2(s_{j+1} - s_1)/s_j^2$$
 if $\sigma_j = 1$,

$$s'_j = \pm \sqrt{t^2(s_{j+1} - s_1)/(s_j - 1)} = s_j \sqrt{(t/s_j)^2(s_{j+1} - s_1)/(s_j - 1)}$$

if $\sigma_j = 0$.