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Parameter Space

THE PROBLEM: To study cubic polynomial maps f with a
marked critical point which is periodic under f .

Any cubic polynomial map with marked critical point is
affinely conjugate to one of the form

f (z) = fa,v (z) = z3 − 3a2z + (2a3 + v) ,

with critical points ±a.

Here a is the marked critical point , and f (a) = v is the
marked critical value .

The parameter space for this family consists of all
pairs (a, v) ∈ C2.

Alternative expression: f (z) = (z − a)2(z + 2a) + v .



Moduli Space

This normal form
fa,v (z) = z3 − 3a2z + (2a3 + v) is almost unique.

However, fa,v is affinely conjugate to the map

f−a,−v (z) = −fa,v (−z) ,

with Julia set (in the z-plane) rotated by 180◦.

Form the quotient of the parameter plane C2 by the involution

I : (a, v) 7→ (−a, −v) .

Definition. This quotient C2/I will be identified with the
moduli space , consisting of all affine conjugacy classes of
marked cubic maps.



The Period p Curve

Definition: the period p curve Sp ⊂ C2, consists of all pairs
(a, v) such that the marked critical point of fa,v has period
exactly p. FOUR BASIC FACTS:

1. This period p curve Sp is a smooth affine curve in the
(a, v)-coordinate space C2. Its quotient Sp/I is a smooth
curve in the moduli space C2/I.

2. Sp can be compactified by adding finitely many ideal
points , thus yielding a compact complex 1-manifold Sp .
Similarly Sp/I is a compact complex 1-manifold with finitely
many ideal points.

(CAUTION: Sp is NOT the closure of Sp in projective space.)

Definition. The connectedness locus C(Sp)
consists of all maps in Sp with connected Julia set.

3. This connectedness locus is a compact subset of Sp.



Escape Regions

4. Each connected component of the complement SprC(Sp)
is conformally isomorphic to the open unit disk, with an ideal
point at its center.

Such components will be called escape regions.

There is a one-to-one correspondence between ideal points
and escape regions.

In Sp itself, each escape region E is a punctured disc.

Thus, in each escape region, one can define equipotentials
and external rays . These provide a powerful method for
studying the dynamics for maps f ∈ ∂E .



Hyperbolic Components

A rational map is called hyperbolic if every critical orbit
converges to an attracting or superattracting cycle.
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There are 4 types of hyperbolic components in C(Sp), indicated
schematically above.

A. Adjacent critical points: in the same Fatou component.

B. Bicritical: in the same cycle of Fatou components.

C. Capture of one critical orbit by the Fatou cycle of the other.

D. Disjoint cycles of Fatou components. (Each Type D
component in Sp is contained in a copy of the Mandelbrot set.)



Example: Period 1

The curves S1 and S1/I are conformally isomorphic to C,
with one puncture point (at infinity) and one escape region.

Bifurcation locus in S1/I.
The 2-fold branched covering space S1 is branched over the
“center” point ( f0,0(z) = z3 ) of the large component.



A Picture of S1



Period 2

The curve S2/I is isomorphic to Cr{0} , with two puncture
points (at zero and infinity), and two escape regions.
The two-fold covering space S2 is branched over these two
puncture points.



Another view of S2/I

Here the inner and outer escape regions have been
interchanged by inversion in the black circle.



Period 3

The curve S3/I has genus zero, with six puncture points,
hence six escape regions.



The covering space S3

S3 is a two-fold covering of S3/I, branched over four of its six
puncture points. Hence S3 has genus one, with eight
punctures.

View of the universal covering space of this torus S3.



Boundaries of Hyperbolic Components

Assertion. Every hyperbolic component H in C(Sp)
is conformally an open disk with a preferred center
point.

Conjecturally, it is bounded by a simple closed curve.

(Pascale Roesch and Yin Yongcheng; work in progress.)
In the period one case, this was proved by Darroch Faught
(1992), and by Roesch (1999, 2006).



Regulated Paths in the Connectedness Locus

DEFINITION. A path in C(Sp) is regulated if its intersection
with the closure H of each hyperbolic component H is either:

• a single point or ∅,
• a Poincaré geodesic joining a boundary point to the center, or
• a broken geodesic joining one boundary point to another via
the center.



Regulated Paths and Curves

PROBLEM: Can any two centers be joined by at least one
regulated path?

(In particular, is Sp connected?)

We can also consider simple closed curves Γ ⊂ C(Sp) .

Definition. Such a curve is regulated if
• it satisfies the analogous restrictions on Γ ∩ H
(but with no end points allowed), and if
• it contains at least one hyperbolic point. (This second
condition is hopefully redundant.)

Assertion: A simple closed regulated curve in C(Sp) cannot
be homotopic to a point within Sp.



A Conjectural Description of Sp
The claim is that there is a canonical cell subdivision of Sp (or
of Sp/I ). For p > 1 it can be described as follows:

• The 1-skeleton of this cell subdivision is the union of all
simple closed regulated curves in the connectedness locus.

• The complement of the 1-skeleton in Sp or Sp/I is a
disjoint union of open 2-cells, one centered at each ideal point,
and hence one 2-cell containing each escape region.

Example: For S2/I there is only one simple closed regulated
curve, shown in black. It separates the 2-sphere into two
2-cells, each containing one of the two escape regions.



Example S3/I:
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showing a cartoon of the cell structure on the right.

To describe these cell structures, it is essential to have some
way to label the various escape regions!



Example S3:
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Corresponding pictures for the 2-fold covering S3 (lifted to its
universal covering plane).
The involution I corresponds to an 180◦ rotation of either of
these figures.



Embedding K (q) in Sp/I
CONJECTURAL DESCRIPTION:
Each critically periodic q(z) = z2 + c of period p determines a
corresponding 2-cell eq in Sp/I.
The filled Julia set K (q) , cut open along its minimal Hubbard
tree, embeds canonically in eq, with the cut open tree
mapping to ∂eq.



The Kneading Sequence of an Escape Region.
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Suppose that the orbit of +a under the map f = fa,v is
bounded, but the orbit of −a escapes to infinity.
Then the equipotential through −a is a figure eight curve.

Let U0 and U1 be the bounded complementary
components, with a ∈ U0. Any bounded orbit
z = z1 7→ z2 7→ · · · determines an infinite sequence
~σ(z) = (σ1, σ2, . . .) of zeros and ones, with

zj ∈ Uσj .

Definition. The sequence ~σ(v) associated with the critical
value v = f (a) will be called the kneading sequence ~σf .



The Associated Quadratic Map

Now suppose that the critical point a is periodic of period p.
In other words, suppose that f = fa,v ∈ Sp.

Evidently the kneading sequence ~σf is also periodic,
and the period of ~σf must be some divisor d of the period p
of f . In particular, σd = σp = 0.

A convenient notation: Set ~σf = σ1σ2 · · ·σp−10 .

Branner and Hubbard (1992): For each such map
f , there is a critically periodic quadratic polynomial
q(z) = z2 + c with critical period p/d, such that
every nontrivial component of the cubic Julia set J(f )
is a copy of the quadratic Julia set J(q).



Primitive Escape Regions

Example. The quadratic polynomial q(z) has critical period
p/d = 1 if and only if q(z) = z2, with a circle as Julia set.

Corollary: For f ∈ E ⊂ Sp, each non-trivial component of
J(f ) is a topological circle if and only if the kneading sequence
~σf has period d exactly equal to p.

This case p = d will be called the primitive case.



Period 2 Examples

Here the kneading sequence is 00, and the associated
quadratic map is z2 − 1.

Here the kneading sequence is 10 (primitive case).



Multiplicity

Define the multiplicity µ of an escape region E ⊂ Sp to be
the number of intersections of E with a line of the form

{ (a, v) ∈ C2 ; a = large constant} .

Then the number of escape regions, counted with multiplicity, is
equal to the degree of the affine curve Sp.

Theorem. For |a| large, the escape region E can be
parametrized by µ

√
a, where µ is its multiplicity.

In particular, every point aj = f ◦j(a) of the critical orbit can be
expressed as a holomorphic function of µ

√
a.



A Change of Variable
As |a| → ∞, we have the asymptotic estimate

aj =

{
a + O(1) if σj = 0

−2a + O(1) if σj = 1 .
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It will be convenient to replace z by the new variable
s(z) = (a− z)/3a, with s(a) = 0 and s(−2a) = 1.
In terms of this variable s, every point sj = s(aj) on the
critical orbit is very close to either s = 0 or s = 1:

sj = σj + O(1/a) as |a| → ∞ .



Puiseux Series

(See Kiwi, 2006 for a closely related exposition.)
It is convenient to set t = 1/3a, and to use t1/µ as parameter
for E+ = E ∪ (ideal point) ⊂ Sp near the ideal point t = 0.
Then we can think of sj as a holomorphic function of t1/µ for
|t | small, with sj(0) = σj ∈ {0, 1}.
Alternatively we can think of sj as a power series in C[[t1/µ]].

Let ŝj be the first non-zero term in this power series.

Assertion. For periods p ≤ 4, the power series
s1 , . . . , sp−1 are uniquely determined by the p − 1
monomials ŝ1, . . . , ŝp−1. Furthermore, if we write
these monomials as ŝj = kj tnj/µ, then each
coefficient kj is an algebraic unit.

Question: Are these statements still true for p > 4?



The “Easy” Case

Notation: If ŝj = kj tnj/µ, set ord(sj) = nj/µ ≥ 0 .

Suppose now that s1, . . . , sp−1 satisfy the condition
that ord(sj) < 2.

(For periods p ≤ 4, this condition is satisfied if and only if the
kneading sequence is primitive.)

ASSERTION. In this easy case, there is a strongly convergent
algorithm for computing the sj from the ŝj .
Futhermore the coefficient kj of each monomial ŝj is a root of
unity, k2p−1

j = 1,
and all of the coefficients for the series sj belong to the ring
generated over Z[1/2] by these roots of unity.



Example: The Period Two Case

For p = 2 there is only one primitive kneading sequence
~σf = 10, hence ŝ1 = 1, and ord(s1) = 0.

In this case, the algorithm reduces to iteration of

s1 7→ 1− t2/s1 starting with s1 = 1 .

This converges rapidly to

s1 = 1
2

(
1 +

√
1− 4t2

)
= 1− t2 − t4 − 2t6 − · · ·

∈ Z[[t ]] .



Equations to Solve
We want

aj+1 = f (aj) for 1 ≤ j < p , with ap = a .

Equivalently

aj+1 − a1 = (aj − a)2(aj + 2a) .

or
t2(sj+1 − s1) = s2

j (sj − 1) .

Algorithm: Map (s1, . . . , sp−1) to (s′1, . . . , s′p−1) ,
where

s′j = 1 + t2(sj+1 − s1)/s2
j if σj = 1 ,

s′j = ±
√

t2(sj+1 − s1)/(sj − 1) = sj

√
(t/sj)2(sj+1 − s1)/(sj − 1)

if σj = 0 .


