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Dedicated to JHH:
Julia sets looked peculiar—
Unruly and often unrulier—

Till young Hubbard with glee
Shrank each one to a tree

And taught us to see them much trulier.

This will be a discussion of the dynamic plane and the pa-
rameter space for complex cubic maps which have a super-
attracting periodic orbit. It makes essential use of Hubbard
trees to describe associated Julia sets.

1 Introduction.

The parameter space for cubic polynomial maps has complex dimension 2. Its
non-hyperbolic subset is a complicated fractal locus which is difficult to visualize
or study. One helpful way of exploring this space is by means of complex
1-dimensional slices. This note will pursue such an exploration by studying
maps belonging to the complex curve Sp consisting of all cubic maps with a
superattracting orbit of period p . Here p can be any positive integer.

A preliminary draft of this paper, based on conversations with Branner,
Douady and Hubbard, was circulated in 1991 but not published. The present
version tries to stay close to the original; however, there has been a great deal
of progress in the intervening years. (See especially (Faught 92), (Branner and
Hubbard 92), (Branner 93), (Roesch 99, 06), and (Kiwi 06).) In particular, a
number of conjectures in the original have since been proved; and new ideas
have made sharper statements possible.

We begin with the period 1 case. Section 2 studies the dynamics of a cubic
polynomial map F which has a superattracting fixed point, and whose Julia
set J(F ) is connected. The filled Julia set of any such map consists of a
central Fatou component bounded bounded by a Jordan curve, together with
various limbs sprouting off at internal angles which are explicitly described.
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(See Figures 2, 3. This statement was conjectured in the original manuscript and
then proved by Faught.) Section 3 studies the parameter space S1 consisting
of all (monic, centered) cubic maps with a specified superattractive fixed point,
and provides an analogous description of the non-hyperbolic locus in S1 . (See
Figure 4.) Section 4 makes a more detailed study of hyperbolic components in
S1 . Section 5 begins the study of the period p case, describing the geometry
of the complex affine curve Sp consisting of maps with a marked critical point
of period p . This is a non-compact complex 1-manifold; but can be made into
a compact complex 1-manifold Sp by adjoing finitely many ideal points .
There is a conjectured cell subdivision of Sp with a 2-cell centered at each
ideal point, and with the union of all simple closed regulated curves as 1-
skeleton. To each quadratic map Q(z) = z2 + c with period p critical orbit,
there is associated a 2-cell eQ. Section 6 describes a conjectural canonical
embedding of the filled Julia set K(Q) , cut open along its minimal Hubbard
tree, into this 2-cell. (However, there are many other 2-cells which cannot be
described in this way.) This paper concludes with an Appendix which discusses
Hubbard trees , following (Poirier 93), and also describes the slightly modified
puffed-out Hubbard trees.

1A. Basic Concepts and Notations.

Any polynomial map F : C → C of degree d ≥ 2 is affinely conjugate to one
which is monic and centered , that is, of the form

F (z) = zd + cd−2z
d−2 + · · · + c0 .

This normal form is unique up to conjugation by a (d−1)-st root of unity, which
replaces F (z) by G(z) = ω F (z/ω) where ωd−1 = 1, and replaces the Julia set
J(F ) by the rotated Julia set J(G) = ω J(F ).

The set P(d) of all such monic, centered maps forms a complex (d − 1)-
dimensional affine space. A polynomial F ∈ P(d) belongs to the connected-
ness locus C(P(d)) if its Julia set J(F ) is connected, or equivalently if the
orbit of every critical point is bounded. This connectedness locus is always a
compact cellular subset of P(d). This was proved by (Branner and Hubbard 88)
for the cubic case, and by (Lavaurs 89) for higher degrees. (See also (Branner
86). By definition, following (Brown 60), a subset of some Euclidean space Rn

is cellular if its complement in the sphere Rn ∪∞ is an open topological cell.)
A polynomial map F is hyperbolic if the orbit of every critical point

converges to an attracting cycle. (See for example (Milnor 06, §19).) The set
H consisting of all hyperbolic maps in C(P(d)) is a disjoint union of open
topological cells, each containing a unique post-critically finite map which will
be called its center . (Compare (Milnor 92b).) Thus every critical orbit of such
a center map is either periodic or eventually lands on a periodic critical orbit.
One noteworthy special case is the principal hyperbolic component H0 ⊂
C(P(d)) , centered at the map z 7→ zd , and consisting of all F ∈ H ⊂ P(d)
such that J(F ) is a Jordan curve. (For a study of H0 in the degree 3 case, see
(Petersen and TanLei 04).)
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Figure 1: Schematic diagrams for the four classes of cubic hyperbolic

components. Each dot represents a critical point (or the Fatou component

containing it), and each arrow represents some iterate of F .

Hyperbolic components in C(P(3)) fall into four distinct types as follows.
(Compare (Milnor 92a).) For components of the first three types, the corre-
sponding maps have just one attracting periodic orbit, and hence just one cycle
of periodic Fatou components.

A. Adjacent Critical Points, with both critical points in the same peri-
odic Fatou component.

B. Bitransitive, with the two critical points in different Fatou components
belonging to the same periodic cycle.

C. “Capture”, with just one critical point in the cycle of periodic Fatou
components. The orbit of the other critical point must eventually land in (or
be “captured by”) this cycle.

D. Disjoint Attracting Orbits, with two distinct attracting periodic or-
bits, each of which necessarily attracts just one critical orbit.

Remark 1.1. Outside the Connectedness Locus. There are many
hyperbolic components in P(3) which belong to the complement of the connect-
edness locus. These will be called escape components, since they consist of
hyperbolic maps for which at least one critical orbit “escapes to infinity,” so
that the Julia set is disconnected.

One such component, called the shift locus , has an extremely complicated
topological structure. (Compare (Blanchard et al. 91).) It consists of maps for
which the Julia set is isomorphic to a one-sided shift on three symbols. (More
generally, a polynomial or rational map of degree d belongs to the shift locus
if its Julia set is isomorphic to the one-sided shift on d symbols. A completely
equivalent condition is that all of its critical points on the Riemann sphere
belong to the immediate basin of a common attracting fixed point, which must
be the point at infinity in the polynomial case.)

For maps in the remaining escape components in P(3)rC(P(3)), there is
only one critical point in the basin of infinity, while the other critical point
belongs to the immediate basin of a bounded attracting periodic orbit. We will
give a rough classification of these components in Section5.

Here is a rough picture of the complement P(3)rC(P(3)). (See (Branner
93).) Take a large sphere centered at the origin in the space P(3) ∼= C2. Then
each escape hyperbolic component with an attracting orbit intersects this 3-
sphere in an embedded solid torus, which forms one interior component of a
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“Mandelbrot torus”, that is, a product of the form (Mandelbrot set)×(circle).
There are countably many such Mandelbrot-tori, and also many connected com-
ponents without interior, for example solenoids or circles, corresponding to poly-
nomials whose Julia set is a Cantor set which contains one critical point. If we
remove all of these Mandelbrot-tori, solenoids, etc., from the 3-sphere, then
what is left are points of the shift locus. (Compare Remark 4.1 and Figure 15.)

Remark 1.2. Quadratic Rational Maps. (Compare (Rees 90, 92, 95),
(Milnor 93).) In a suitable parameter space for quadratic rational maps, there
are again four different types of hyperbolic components. One of these is the
shift locus as described above. (In the terminology of Rees, this is of Type
I.) The remaining three are precise analogues of Types B, C, D (or in Rees’s
terminology, Types II, III, IV).

Caution: I have used the term “capture component” for components of
Type C, even for quadratic rational maps. However, extreme care is needed,
since the term “capture” is often used with a completely different meaning.
See for example (Wittner 88), (Rees 92), and (Luo 95), where this word refers
instead to a procedure for modifying the dynamics of a quadratic polynomial to
yield a quadratic rational map.

Definition 1.3. The Moduli Space P̂(3)/I. We are interested in cubic
maps for which one of the two critical points has a periodic orbit. Hence it
is convenient to work with the space P̂(3) consisting of monic centered cubic
maps together with a marked critical point a . Since there are two possible
choices for the marked point, this space P̂(3) is a 2-fold ramified covering of
P(3) . Each F ∈ P̂(3) can be written in Branner-Hubbard normal form as

F (z) = z3 − 3a2z + b , (1)

with critical points a and −a . Thus P̂(3) could be identified with the complex
coordinate space C2 , using a, b as coordinates. However, for the purposed of
this paper, it will be more convenient to use coordinates (a, v) where a is the
marked critical point and

v = F (a) = b − 2a3

is the corresponding critical value. We will write

F (z) = Fa,v(z) = z3 − 3a2z + (2a3 + v) , (2)

and will use the notations Ĥ0 ⊂ C(P̂(3)) ⊂ P̂(3) for the corresponding principal
hyperbolic component and connectedness locus in the complex (a, v)-plane.

It is not hard to check that two distinct maps Fa,v and Fa′, v′ in P̂(3) are
affinely conjugate, in a conjugacy which carries the marked critical point a
to the marked critical point a′, if and only if a′ = −a and v′ = −v, with
conjugacy z 7→ −z. Thus we define the canonical involution I of P̂(3) to be
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the correspondence F (z) 7→ −F (−z), taking Fa,v to F−a,−v and rotating the

associated Julia set by 180◦ degrees. The quotient P̂(3)/I can be described as
the moduli space, consisting of all affine conjugacy classes of cubic polynomials
with marked critical point. (Thus I distinguish between a “parameter space,”
whose elements are actual maps, and a “moduli space” made up of conjugacy
classes of maps.) A complete set of conjugacy class invariants for a polynomial
F with marked critical point is provided by the numbers a2 and v2, together
with a choice of square root av = ±

√
a2v2 which is needed to specify the choice

of marking. Thus P̂(3)/I can be identified with an algebraic variety in C3,
with coordinates a2, v2, av satisfying a homogeneous quadratic equation. This
variety has a mild singularity at the origin.

One special feature of cubic maps is that for each critical point there is a
uniquely defined co-critical point which has the same image under F . Using
the normal form of Equation (1) or (2), the marked point a has co-critical point
−2a, while −a has co-critical point +2a. (Even if we don’t use this normal
form, the critical points, co-critical points, and their center of gravity will still
lie in arithmetic progression along a straight line in the z-plane.)

2 Maps with critical fixed point: the Julia set.

Before trying to understand configurations in parameter space, it is important
to study the z-plane. We first consider the case of a superattracting orbit of
period one. That is, using the normal form F (z) = z3 − 3a2z + 2a3 + v , we
consider maps satisfying F (a) = a , or in other words1

v = a , F (z) = Fa,a(z) = z3 − 3a2z + (2a3 + a) . (3)

The locus of all such maps is denoted by S1. Let Ua be the immediate at-
tracting basin of the superattracting point a under this map F . Thus Ua is
a simply connected bounded open neighborhood of a .

Let C(S1) = S1 ∩ C(P̂(3)) be the connectedness locus within S1. If F ∈
C(S1) , then the filled Julia set K(F ) (the complement of the attracting basin of
infinity) is a compact connected subset of the z-plane. We divide the discussion
into two cases, according as the free critical point −a does or does not belong
to the immediate basin Ua ⊂ K(F ).

Case 1 (Hyperbolic of Type A): Suppose that F ∈ S1 ∩ Ĥ0 . In
other words, suppose that F belongs to the unique hyperbolic component of
Type A within S1, so that the other critical point −a also belongs to the
immediate basin Ua of the superattracting point a . In this case, the dynamics
is quite well understood. The Julia set J(F ) = ∂K(F ) is a Jordan curve.
The bounded component of its complement is the attractive basin Ua , and
the unbounded component is the attractive basin of infinity. Furthermore, the

1An extra motive for studying this particular family of maps is the close relationship
between this family of cubic maps and the family of rational maps which arise from cubic
polynomial equations via Newton’s method. See (TanLei 97).
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map F restricted to Ua is conformally conjugate to a Blaschke product of the
form Ψ(w) = e2πitw2(r − w)/(1 − rw) , with t ∈ R/Z and 0 ≤ r < 1 ;
and this conformal conjugacy extends homeomorphically over the closure Ua.
The map F is uniquely determined, up to affine conjugacy, by the parameter
e2πitr , which varies over the open unit disk D ; however, F does not depend
holomorphically on this parameter. (A holomorphic parametrization will be
described in Lemma 3.6.)

Case 2 (Everything Else): For the rest of this section we will concentrate
on the more difficult case where F ∈ C(S1)rĤ0 . In other words, we will assume
that both critical points have bounded orbits, and that the free critical point −a
lies outside the immediate basin Ua of the superattracting critical point a . Then
there is a unique Böttcher isomorphism from the basin Ua onto the open
unit disk which conjugates F to the squaring map w 7→ w2 , that is

β : Ua

∼=−→ D with β(F (z)) = β(z)2 . (4)

(See for example (Blanchard 84) or (Milnor 06).) According to (Faught 92) (see
also (Roesch 99, 06), the boundary ∂Ua is locally connected, and in fact is a
simple closed curve. By a well known theorem of Carathéodory, this implies
that the Böttcher map extends uniquely to a homeomorphism

β : Ua → D

from the closure of Ua to the closed unit disk. (See for example (Milnor 06,
§17.16).) In particular, each point z of the boundary ∂Ua can be uniquely
labeled by its internal angle t ∈ R/Z, where z = β(e2πit). (Angles are
always measured in fractions of a full turn.)

Making use of Faught’s result, we will prove the following.

Theorem 2.1. If F ∈ C(S1) with −a 6∈ Ua, then the filled Julia set K(F )
is equal to the union of the topological disk Ua with a collection of compact
connected sets Kt, where t ranges over a countably subset Λ of the circle R/Z.
Furthermore

(i) The Kt are pairwise disjoint, and each Kt intersects Ua in the single
boundary point β(e2πit).

(ii) There is a preferred element t0 ∈ Λ such that the free critical point −a
belongs to Kt0 .

(iii) The angle t belongs to this index set Λ ⊂ R/Z if and only if 2nt ≡
t0 (mod Z) for some integer n ≥ 0.

(iv) For t 6≡ t0 (mod Z), the map F carries Kt homeomorphically onto K2t.
However, F carries Kt0 onto the entire filled Julia set K(F ).

By definition, Kt is the limb which is attached to Ua at the point β(e2πit)
with internal angle t, and Kt0 is the critical limb.
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Figure 2: Julia set for an F ∈ S1 on the boundary of Ĥ0 with non-periodic

internal angle. Note that there is no limb at the critical value. The two rays

which land at the critical point fold together to a single ray. (In this particular

example, the critical internal angle is t0 = .34326 · · · , and the external angle

at the co-critical point is ξ0 = .95884 · · · .)

Figure 3: Julia set for a map F ∈ S1 on the boundary of Ĥ0 with

periodic internal angle t0 = 1/3 .
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In fact, there are two rather different cases. In the simplest case (Figure 2),
the critical angle t0 is not periodic under angle doubling. In other words, t0 is
either irrational, or rational with even denominator. The critical limb Kt0 then
maps homeomorphically onto the entire filled Julia set, and the free critical point
−a is precisely equal to the boundary point β(e2πit0) ∈ ∂Ua. Furthermore, the
map F itself, considered as a point in parameter space, belongs to the boundary
∂Ĥ0 of the principal hyperbolic component.

On the other hand, if the critical angle t0 is periodic under angle doubling,
then −a lies strictly outside of Ua. In this case, the critical limb Kt0 is the
union of an “inner” part which maps onto the critical value limb K2t0 by a 2-
fold branched covering, and an “outer” part which maps homeomorphically onto
K(F )rK2t0 . The map F may belong to the boundary ∂Ĥ0 (compare Figure
3), or it may lie completely outside the closure of Ĥ0.

The proof of Theorem 2.1 will be based on a comparison between internal
angles, measured at the critical fixed point a, and external angles, measured
at infinity. Note that internal angles multiply by two under the map F , while
external angles multiply by three. Equality between angles will be denoted by
the symbol ≡ with (mod Z) understood.

Definition 2.2. Angles t1, . . . , tk are in positive cyclic order if it is
possible to choose representatives t̂j ∈ R so that t̂1 < · · · < t̂k < t̂1 + 1 . For
any t1 6≡ t2 in R/Z, the open interval (t1, t2) will mean the set of all angles
t ∈ R/Z for which t1, t, t2 are in positive cyclic order. The corresponding closed
interval [t1, t2] is defined to be the closure of (t1, t2). Note that these intervals
have length equal to frac(t2 − t1), where frac : R/Z → [0, 1) maps each
point of the circle R/Z to its unique representative in the half-open interval.

Basic Construction. For each rational angle τ ∈ Q/Z, the internal ray of
angle τ lands at a point

β(e2πiτ ) ∈ ∂Ua ⊂ J(F )

which is periodic or preperiodic under F . It follows that β(e2πiτ ) is also the
landing point of at least one external ray Rξ ⊂ CrK(F ) which is periodic or
preperiodic. (See for example (Milnor 06, §18.11 and §18.12).) There can be
at most finitely many such rays, so we can make an explicit choice ξ = ξ(τ ) by
choosing the largest one in cyclic order, measured from the internal ray which
lands at this same point. The identity

ξ(2 τ ) ≡ 3 ξ(τ ) (5)

then follows easily.

Definition 2.3. Let G : C → [0, ∞) be the Green’s function (= canonical
potential function) which vanishes precisely on K(F ). Given two rational in-
ternal angles τ0 6≡ τ1 in Q/Z, and given some equipotential curve G = G0 > 0,
define the quadrilateral Q = Q(τ0, τ1, G0) to be the compact simply con-
nected region in CrUa which is bounded by three edges in the Fatou set and
one edge in the Julia set, as follows.
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Q
Ua

G = G0
τ1

τ0

Figure 4: Sketch of the quadrilateral Q = Q(τ0, τ1, G0).

(a) The segments of the external rays Rξ(τ0) and Rξ(τ1) defined by the poten-
tial inequality G ≤ G0.

(b) The segment of the equipotential curve G = G0 which lies between these
two external rays so that the external angle lies in the closed interval
[ ξ(τ0), ξ(τ1) ].

(c) The segment of the boundary ∂Ua consisting of all β(e2πit) with t ∈
[ τ0, τ1 ].

Note that this quadrilateral Q contains all limbs which are attached to Ua at
internal angles strictly between τ0 and τ1 in cyclic order.

Lemma 2.4. Now suppose that the length frac(τ1−τ0) of the interval (τ0, τ1)
of internal angles is less than 1/2, and also that the length of the corresponding
interval (ξ(τ0), ξ(τ1)) of external angles satisfies

frac
(
ξ(τ1) − ξ(τ0)

)
< 1/3 . (6)

Then the quadrilateral Q = Q(τ0, τ1, G0) contains no critical point, and maps
biholomorphically onto the quadrilateral Q′ = Q(2 τ0, 2 τ1, 3 G0). But if

frac
(
ξ(τ1) − ξ(τ0)

)
> 1/3 , (7)

with frac(τ1 − τ0) < 1/2 as above, then Q contains the free critical point
−a, and maps onto the entire region {G ≤ 3 G0}. In this case, points in Q′

have two preimages in Q, counted with multiplicity, while the remaining points
in the region {G ≤ 3 G0} have only one preimage.

Proof. Let z0 be any point of C which does not belong to the image F (∂Q)
of the boundary of Q. By the Argument Principle, the number of solutions to
the equation F (z) = z0 with z ∈ Q, counted with multiplicity, is equal to the
winding number of F (∂Q) around z0 . If we are in the case of Equation (6),
then it is not hard to check that F maps this boundary homeomorphically onto
the boundary ∂Q′. Hence this winding number is +1 for z0 in the interior of Q′,

9



and zero for z0 outside. For the case of Equation (7), the argument is similar,
but now the image F (∂Q) consists of a circuit around ∂Q′ , together with a
circuit around the entire equipotential G = 3 G0.

To check for the presence of critical points, we use a form of the Riemann-
Hurwitz formula. Choose a cell subdivision of F (Q), with Q′ as subcomplex (if
it is not the entire image), and with F (−a) as vertex if −a ∈ Q. Then each cell
in F (Q) lifts up to either a single cell in Q if it lies outside of Q′, or if it is equal
to the vertex F (−a), or to two cells in Q. Computing the Euler characteristic,

χ =
2∑

n=0

(−1)n(number of n cells) = + 1

for both Q and F (Q), we find easily that −a ∈ Q if and only if we are in the
second case (7). (Furthermore, the critical value F (−a) then belongs to Q′. A
similar argument shows that the third case ξ(τ1) ∈ ( ξ(τ0) + 2

3 , ξ(τ0) + 1 )
cannot occur.) ⊔⊓

Proof of Theorem 2.1. For each internal angle t ∈ R/Z, define Kt to be
the intersection of all quadrilaterals Q(τ0, τ1, G0) for which t ∈ ( τ0, τ1 ) and
G0 > 0. Then Kt can be described as the intersection of a nested sequence of
compact, connected, non-vacuous sets, and hence is itself compact, connected,
and non-vacuous.

For every t, it is easy to check that the intersection Kt ∩ Ua consists of the
single point β(e2πit). For countably many choices of t, we will see that Kt is
much larger than this single intersection point. The following statement follows
immediately from Lemma 2.4.

For each t 6≡ t0, the map F carries Kt homeomorphically onto K2t.
However, F carries Kt0 onto the entire filled Julia set K(F ).

In particular, if 2nt ≡ t0, then it follows that F ◦(n+1) maps Kt onto K(F ), so
that Kt contains infinitely many points. To complete the proof of Theorem 2.1,
we need only prove a converse statement:

If 2nt 6≡ t0 for all n 6= 0, then Kt consists of the single point β(e2πit).

Define the angular width ∆ξ(Q) of a quadrilateral Q = Q(τ0, τ1, G0), to
be the length of the interval ( ξ(τ0), ξ(τ1) ) ⊂ R/Z; and define the angular
width ∆ξ(Kt) of the set Kt to be the infimum of ∆ξ(Q) over all quadrilaterals
Q which contain Kt. In other words, this angular width

0 ≤ ∆ξ(Kt) < 1

is the infimum, over all open intervals ( τ0, τ1 ) which contain t, of the length of
the interval ( ξ(τ0), ξ(τ1) ). (Intuitively, this is just the infimum of ξ(τ1)−ξ(τ0).)
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Lemma 2.5. This angular width satisfies

∆ξ(K2 t) = 3∆ξ(Kt) for t 6≡ t0 ,

but

∆ξ(K2 t0) = 3 ∆ξ(Kt0) − 1 .

Proof. The congruence ∆ξ(K2 t0) ≡ 3 ∆ξ(Kt0) (mod Z) follows immediately
from Equation (5), and the more precise statement then follows from Lemma
2.4. ⊔⊓

To complete the proof of Theorem 2.1, consider any angle t such that Kt

contains more than one point. Since the boundary of the connected set Kt is
contained in the Julia set, and since repelling periodic points are dense in the
Julia set, it follows that Kt contains many repelling periodic points. Each of
these must be the landing point of an external ray, and it follows easily that
∆ξ(Kt) > 0.

But if this were true with 2nt 6≡ t0 for all n ≥ 0, then it would follow
inductively from Lemma 2.5 that

∆ξ(K2nt) = 3n∆ξ(Kt) → ∞ as n → ∞ .

which is clearly impossible. This shows that Kt contains more than one point
if and only if some forward image is equal to the critical limb Kt0 , which proves
Theorem 2.1. ⊔⊓

Next we will show that each limb is separated from the rest of K(F ) by
two external rays. Recall that Λ ⊂ R/Z is the countable set consisting of
all t such that 2nt ≡ t0 for some n ≥ 0. For each internal angle t, consider
the closed intervals [ ξ(τ0), ξ(τ1) ] of external angles which are associated with
quadrilaterals Q(τ0, τ1, G0) such that t ∈ ( τ0, τ1 ). If t ∈ Λ, then evidently
these closed intervals intersect in an interval, to be called [ ξ−(t), ξ+(t) ], with
length equal to the angular width ∆ξ(Kt) > 0. On the other hand, if t 6∈ Λ, so
that ∆ξ(Kt) = 0, then a similar argument show that the intervals [ ξ(τ0), ξ(τ1) ]
intersect in a single point ξ(t).

Theorem 2.6. For each t ∈ Λ, the two external rays Rξ±(t) both land at the
point of attachment β(e2πit) for the limb Kt, and these rays together with their
landing point, separate Kt from the rest of K(F ). For t 6∈ Λ, the external ray
Rξ(t) lands at β(e2πit), and no other ray accumulates at this point.

Proof. First suppose that t 6∈ Λ. Then it follows from the proof of Theorem 2.1
that Kt consists of the single point β(e2πit), and that ∆ξ(Kt) = 0. This means
that we can find quadrilaterals Q(τ0, τ1, G0) such that the open interval ( τ0, τ1 )
is arbitrarily small, and contains t, and such that the interval [ ξ(τ0), ξ(τ1) ] of
exterior angles is also arbitrarily small. Taking the intersection of [ ξ(τ0), ξ(τ1)]
over all such quadrilaterals, we clearly obtain a single exterior angle ξ(t). Let
Xt ⊂ J(F ) be the set of all accumulation points for the corresponding external
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ray Rξ(t). For every t′ 6≡ t, the set Xt is separated from Kt′ by some rational
external ray. Hence Xt must consist of the singleton Kt, as required. Similarly,
for any ξ′ 6≡ ξ(t), the ray Rξ′ is separated from Kt by some rational external
ray, and hence cannot accumulate on Kt.

Now suppose that t ∈ Λ. If t0 is not periodic under angle doubling, then
2t0 6∈ Λ, so that there is a single ray Rξ(2t0) landing at the critical value F (−a).
Since F carries a neighborhood of −a to a neighborhood of F (−a) by a 2-fold
branched covering, it follows that exactly two rays land at −a = β(e2πit0).

On the other hand, if t0 is periodic, then the point of attachment β(e2πit0) is
a periodic point of rotation number zero in the Julia set, and there are exactly
two ways of accessing β(e2πit0) from CrK(F ), or in other words, exactly two
prime ends of CrK(F ) which map to β(e2πit0). Hence, again there must be
exactly two external rays which land on β(e2πit0). (See for example (Milnor
06, §§17, 18).) In either case, these two rays, together with their common
landing point, must separate at least one limb from Ua. Since no other limb
can have this property, it follows that these two rays must separate Kt0 from
the rest of K(F ). It is then easy to check that the two rays must be precisely
Rξ±(t0). The corresponding statement for an arbitrary limb Kt then follows,

since F ◦n : Kt

∼=−→ Kt0 for some n ≥ 0. ⊔⊓

Remark 2.7. It follows easily that there is a canonical retraction from
Cr{a} to the circle ∂Ua which carries each limb to its point of attachment, and
which takes a constant value on each internal or external ray. In particular,
there is a canonical map T : R/Z → R/Z from external angles to internal angles
with the following two properties:

• For any limb Kt this map ξ 7→ T (ξ) takes the constant value T (ξ) = t for
ξ in the interval [ξ−(t), ξ+(t)] of length ∆ξ(Kt).

• Furthermore, T is monotone of degree one, in the sense that it lifts to a
monotone map ξ̂ 7→ T̂ (ξ̂) from R to R, with T̂ (ξ̂ + 1) = T̂ (ξ̂) + 1.

It is not difficult to compute the lengths ∆ξ(Kt) of these intervals of constancy.

Lemma 2.8. If 2nt ≡ t0 with n ≥ 0 minimal, then

∆ξ(Kt) = ∆ξ(Kt0)/3n , where (8)

∆ξ(Kt0) =

{
1/3 if t0 is not periodic under angle doubling,

3p−1/(3p − 1) if 2pt0 ≡ t0 (mod Z) with p ≥ 1 minimal.

In both cases, the sum of ∆ξ(Kt) over all t ∈ R/Z is precisely equal to +1.
In other words, almost every external angle ξ belongs to such an interval of
constancy.

Thus the set of ξ such that the external ray Rξ lands on the boundary ∂Ua has
measure zero.

12



Proof of Lemma 2.8. The Equation (8) follows immediately from Lemma
2.5. Suppose first that t0 is not periodic under angle doubling (Figure 2).
Then for each n ≥ 0 there are exactly 2n distinct solutions t to the congruence
2nt ≡ t0, and ∆ξ(Kt) = ∆ξ(Kt0)/3n for each one of these solutions. Summing
over all n and all solutions, we get

∑

t

∆ξ(Kt) = ∆ξ(Kt0)
∑

n≥0

2n/3n = 3 ∆ξ(Kt0) . (9)

We have ∆ξ(Kt0) ≥ 1/3 by Lemma 2.5; but the sum (9) must be ≤ 1 since the
sum of the lengths of subintervals of R/Z cannot be greater than one. Thus
∆ξ(Kt0) is exactly 1/3, and the sum is exactly one.

Now suppose that 2pt0 ≡ t0 with p ≥ 0 minimal (Figure 3). Then by
Lemma 2.5,

∆ξ(K2t0) = 3∆ξ(Kt0) − 1,

hence

∆ξ(K2nt0) = 3n−1(3∆ξ(Kt0) − 1) for 1 ≤ n ≤ p.

In particular,

∆ξ(Kt0) = ∆ξ(K2pt0) = 3p−1(3∆ξ(Kt0) − 1) ,

hence we can solve for the required expression

∆ξ(Kt0) =
3p−1

3p − 1
.

It then follows by Lemma 2.5 that

∆ξ(K2nt0) =
3n−1

3p − 1
for 1 ≤ n ≤ p . (10)

(Curiously enough, the sum of these angular widths (10) over all angles 2nt0
in the periodic orbit is always precisely 1/2.) For each t with ∆ξ(Kt) > 0, let
m ≥ 0 be the smallest integer such that 2mt ≡ 2nt0 for some angle 2nt0 in the
periodic orbit. Then ∆ξ(Kt) = 3n−m−1/(3p − 1). Summing over all such t, we
see that

∑

t

∆ξ(Kt) =

p∑

n=1

3n−1

3p − 1

(
1 + 1/3 + 2/9 + 4/27 + · · ·

)
= 1,

as required. This proves Lemma 2.8 ⊔⊓
The precise relationship between the internal argument t and the external

argument or arguments ξ at a point of ∂Ua can be described more explicitly
as follows. According to Remark 2.7, the correspondence ξ 7→ t = T (ξ) is a
well defined, continuous, and monotone map of degree one from the circle R/Z

to itself. However, it turns out to be easier to describe the inverse function

13



t 7→ ξ = T−1(t) , which is monotone, but has a jump discontinuity at t for
every limb Kt. Recall that the mapping F doubles internal arguments and
triples external arguments. Hence it is often convenient to describe t by its
base 2 expansion, but to describe ξ by its base 3 expansion, which we write as
ξ = .x1x2x3 · · · (base 3) =

∑
xi/3i with xi ∈ {0, 1, 2}.

Suppose, to fix our ideas, that the internal argument t0 of the principal
limb satisfies 0 < t0 < 1/2 . Let us start with the unique fixed point on the
circle ∂Ua , with internal argument zero. Since Ua is mapped onto itself by F ,
the corresponding external argument must be either zero or 1/2 . Applying the
involution I : (a, v) 7→ (−a, −v) if necessary, we may assume that this point
has external argument zero. (See 3.)

Lemma 2.9. With these hypotheses, the correspondence

t 7→ ξ = ξt0(t) = T−1(t) = .x1x2x3 · · ·

is obtained by setting xm equal to either 0 , 1, or 2 according as 2mt belongs
to the interval [0 , t0], [t0 , 1/2], or [1/2 , 1] modulo one.

Thus there is a jump discontinuity whenever 2mt lies exactly at the boundary
between two of these intervals. When 1/2 < t0 < 1, the statement is similar,
except that we use the intervals

[0, 1/2], [1/2, t0], and [t0, 1].

In the case where the fixed point on ∂Ua has external argument 1/2 , we must
add 1/2 to the value of ξ described above.

Proof of Lemma 2.7. Consider the three pre-images of the fixed point which
has internal and external arguments zero. One is the point itself, one must
lie in the principal limb, by Theorem 2.1, and the third must be the unique
point on ∂Ua which has internal argument 1/2 . The corresponding external
arguments must be 0 , 1/3 and 2/3 respectively. Given a completely arbitrary
internal argument t , we can now compute the corresponding external argument
ξ = T−1(t) , simply by following its orbit under F . ⊔⊓

Remark 2.10. The Non-Periodic Case. (Figure 2.) In the case of a
critical angle t0 which is not periodic under doubling, the map F is uniquely
determined by t0 (up to the involution I), and we can give a much more precise
description of K(F ). If 2nt ≡ t0, then the map F ◦(n+1) carries the limb Kt

homeomorphically onto K(F ). Let

ft : K(F )
∼=−→ Kt

be the inverse homeomorphism. Then ft carries each limb Kt′ onto a secondary
limb ft(Kt′) ⊂ Kt, to be denoted by Kt t′ . More generally, for any finite
sequence of limbs Kt1 , Kt2 , . . . , Ktm

, we can form an m-th order limb

ft1 ◦ ft2 ◦ · · · ◦ ftm
(K(F )) ,

14



which will be denoted briefly by

Kt1t2···tm
⊂ Kt1t2···tm−1

⊂ · · · ⊂ Kt1t2 ⊂ Kt1 .

Each of these higher order limbs contains an associated Fatou component

ft1 ◦ ft2 ◦ · · · ◦ ftm
(Ua) ,

and every Fatou component within K(F ) is uniquely determined by such a list
t1, t2, . . . tm with m ≥ 0. Note that

F (Kt1t2···tm
) = K2t1 t2···tm

for t1 6≡ t0

but
F (Kt0t1···tm

) = Kt1···tm
,

with similar formulas for the associated Fatou components. (Here t0 is the fixed
critical angle, but t1, . . . tm can be the internal angles for arbitrary limbs.)

It seems natural to conjecture that K(F ) is locally connected in this situa-
tion, and in particular that the diameter of the m-th order limb Kt1···tm

tends
to zero as m → ∞.

Remark 2.11. The Periodic Case. For periodic t0 the situation is much
more complicated, since there may be Cremer points or other difficulties. How-
ever, if we consider only maps F which belong to the boundary ∂Ĥ0 of the
principal hyperbolic component, as in Figure 3, then the situation is well un-
derstood. In this case, the point of attachment β(e2πit0) is parabolic, of pe-
riod p ≥ 1, with rotation number zero, and the Julia set is certainly locally
connected. (Compare (TanLei and Yin 96).) In fact, this parabolic F is the
root point of a hyperbolic component which has Hubbard tree with an easily
described topological model, consisting of the line segment between the two crit-
ical vertices 0 and e2πit0 , together with the images of this line segment under
the map z 7→ z2. (See, for example, the top three examples in Figure 35, which
represent “puffed-out” versions of three such trees.)

3 Parameter Space: The curve S1 .

Consider the set of all cubics having a critical fixed point. Using the normal
form (2), we define the superattracting period one curve S1 to be the one-
parameter subspace of P̂(3) consisting of all F = Fa,a ∈ P̂(3) for which the
critical value v = F (a) is equal to a, so that the marked critical point a is a
fixed point. (In §5 and §6, we will study the analogous curve Sp, consisting of

cubics with a marked critical point of period p.) Evidently the curve S1 ⊂ P̂(3)
is canonically biholomorphic to the complex a-plane. We will sometimes use
the abbreviated notation Fa for a point in S1.

The boundary of the intersection C(P̂(3)) ∩ S1 (considered as a subset of
the a-plane) is shown in Figure 5. Since there is only one free critical point
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in this family, much of the Douady-Hubbard theory concerning the parameter
space for quadratic polynomials carries over with minor changes. However,
there are new difficulties. (Faught 92) proved locally connectivity, modulo local
connectivity of the Mandelbrot set, and showed that all hyperbolic components
in S1 are bounded by Jordan curves. See (Roesch 06) for a simplified proof,
for a generalization of these results to higher degrees, and for a proof that the
limbs which branch off from the principal hyperbolic component have diameters
tending to zero.

Figure 5: The non-hyperbolic locus in S1 , projected into the a-plane.

The connectedness locus C(P̂(3))∩ S1 consists of this non-hyperbolic locus

together with the bounded components of its complement.

Recall that the canonical involution I of P̂(3) takes the pair (a, v)
to (−a,−v) , preserving equation (3). It corresponds to the linear conjugation
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F (z) 7→ −F (−z) ; and clearly preserves the subsets Ĥ0 ⊂ C(P̂(3)) and S1 .
Geometrically, its effect is to rotate the Julia set of F by 180◦ , and to add
1/2 to all external angles. Note that the curve S1 has uniformizing parameter
a , while the quotient curve S1/I has uniformizing parameter a2 . (Figures 5,
6.) We will sometimes use the abbreviated notation F = Fa to indicate the
dependence of F ∈ S1 on the parameter a .

Remark 3.1. Alternatively, we could equally well work with the affinely
conjugate normal form

z 7→ F (z + a) − a = z3 + 3az2 ,

with superattracting fixed point at the origin. More generally, for any fixed
constant µ , we can look at the complex curve Per(1; µ) consisting of all cubic
maps

z 7→ z3 + 3αz2 + µz ,

having a fixed point of multiplier µ at the origin. The cases where µ 6= 1 is
a root of unity are of particular importance, since these curves contain regions
which border on two different hyperbolic components within the ambient space
P̂(3). Note that the canonical involution, which maps the function F (z) to
−F (−z), sends each Per(1; µ) onto itself, changing the sign of α . In general,
the connectedness locus in Per(1; µ) varies by an isotopy as µ varies within the
open unit disk, but changes topology as µ tends to a limit on the unit circle.
However, there is one noteworthy exception:

Conjecture 3.2. The connectedness locus in the quotient Per(1; µ)/I tends
to a limit without changing topology, as µ → 1.

In fact the limiting configuration in Per(1; 1)/I , as shown in Figure 8, looks
topologically very much like the corresponding configuration in Figure 6, al-
though the geometrical shapes are different.

3A. Maps Outside of the Connectedness Locus.

We begin the analysis of the curve S1 with the following analogue of a well
known result of (Douady and Hubbard 82).

Lemma 3.3. The connectedness locus C(S1) = S1 ∩ C(P̂(3)) in S1 is a cellu-
lar set. Furthermore, there is a canonical conformal diffeomorphism from the
complement E = S1rC(S1) onto CrD.

By definition, E will be called the escape region in S1. (More generally,
when discussing the curve Sp of maps with critical orbit of period p > 1, we will
see that there are always two or more connected escape regions.)

Proof of Lemma 3.3. First consider some fixed polynomial F = Fa,a in S1 .
Then F : C → C is conjugate, throughout some neighborhood of infinity, to
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Figure 6: Non-hyperbolic locus in the quotient plane S1/I , with parameter a2 .

Figure 7: Detail of Figure 6 showing the 2/3-limb. (For labels, see §4.)

Figure 8: Configuration analogous to Figure 6 in the plane Per(1; 1)/I
of maps with a fixed point of multiplier +1.
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Figure 9: Sketch in the dynamic plane for a map with one escaping critical

orbit. The equipotential and the external rays through the escaping critical

point −a and through its co-critical point 2a are shown, with the rays labeled

by their angles.

the map w 7→ w3. In other words, there exists a Böttcher diffeomorphism
z 7→ βF (z), defined and holomorphic throughout a neighborhood of infinity,
satisfying the identity

βF (F (z)) = βF (z)3 .

(See for example (Milnor 06) In fact βF is unique up to sign, and can be normal-
ized by the requirement that βF (z) ∼ z as |z| → ∞. If we draw an equipotential
through the free critical point −a, as illustrated in Figure 9, then β is well de-
fined everywhere in the region outside this equipotential, and maps this exterior
region diffeomorphically onto the complement of a suitable disk centered at the
origin. It is not well defined at the critical point −a itself, but does extend
smoothly through a neighborhood of the co-critical point 2a. Thus (following

Branner and Hubbard) we can define the map β̂ : E → CrD by setting

β̂(F ) = βF (2a) where F = Fa,a .

(We may also use the alternate notation β̂(a) for β̂(Fa,a).)

It is not hard to check that β̂ is holomorphic and locally bijective, and that
|β̂(F )| converges to +1 as F converges towards the connectedness locus. In
order to show that it is a covering map, we must describe its behavior near
infinity. Note that the orbit of 2a under F is given by

F : 2a 7→ 4a3 + a 7→ · · · 7→ 43k−1

a3k

+ (lower order terms) 7→ · · · .

The asymptotic formula

β̂(Fa,v) ∼ 3
√

4 a as |a| → ∞ (11)

follows easily. Thus β̂ : E → CrD is proper and locally bijective. Since it
has degree one near infinity, it follows that it is a conformal isomorphism, as
required. ⊔⊓
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Using this description of the escape region E ⊂ S1, we can talk about
external rays Rξ(E) within this escape region in parameter space. The reader
should take care, since we will discuss external rays R′

ξ(F ) for the Julia set
J(F ) at the same time.

Definition 3.4. The map F = Fa,a belongs to the ray Rt(S1) in parameter
space if and only if the corresponding dynamic ray R′

t(F ) passes through the
co-critical point 2a . It then follows that the ray R′

3t(F ) passes through the
critical value F (2a) = F (−a) , and hence that two rays R′

t±1/3(F ) must crash

together at the free critical point −a (Figure 9).

Note that the intersection C(P̂(3)) ∩ S1 is not known to be locally con-
nected,2 so that we do not know that these external rays in parameter space
land at well defined points of C(3) . However, we can prove the following.

Lemma 3.5. If the number ξ ∈ Q/Z is periodic under tripling (or in other
words if its denominator is relatively prime to 3), then the two external rays
Rξ+1/3(S1) and Rξ−1/3(S1) both land at well defined points of the connected-
ness locus. Furthermore, for either one of these two landing maps F , the Julia
set J(F ) contains a parabolic periodic point, namely the landing point of the
periodic external ray R′

ξ(F ) .

Proof. (Compare (Goldberg and Milnor 93, Appendices B, C).) Let F ∈ C(3)
be any accumulation point of the ray Rξ±1/3(S1) . Then the ray R′

ξ(F ) must
land at a well defined periodic point in J(F ) , which a priori can be either
repelling or parabolic. (See for example (Milnor 06).) If it were repelling, then
for any nearby map F1 ∈ S1 the corresponding ray R′

ξ(F1) would land at a
nearby periodic point. However, as noted above, for F1 in the ray Rξ±1/3(S1)
this ray R′

ξ(F1) must crash into the critical point −a , and hence cannot land.
Thus F must have a parabolic cycle, with period dividing the period of ξ .

On the other hand, the set of all F = Fa ∈ S1 having a parabolic cycle
of bounded period forms an algebraic variety. Since it is not the whole curve
S1 , it must be finite. But the collection of all accumulation points for the ray
Rξ±1/3(S1) must be connected, so this set of accumulation points can only be
a single point. ⊔⊓

3B. Maps in Ĥ0 .

An argument quite similar to the proof of Lemma 3.3 applies to the principal
hyperbolic component Ĥ0 , intersected with S1 . In fact we will show that the
quotient (Ĥ0 ∩ S1)/I is canonically biholomorphic to the unit disk.

We suppose that F = Fa belongs to the principal hyperbolic component
Ĥ0 , or in other words we suppose that the immediate basin Ua contains both
critical points. If a 6= 0 , then as in the discussion in §2 there is a unique

2As noted at the beginning of this section, Faught showed that this set is locally connected
if and only if the Mandelbrot set is locally connected.
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Böttcher coordinate w = β(z) = βa(z) which maps some neighborhood of
z = a biholomorphically onto a neighborhood of w = 0 , and which conjugates
F to the squaring map w 7→ w2 , so that, as in Equation 4

βa(F (z)) = βa(z)2 .

Since F ∈ Ĥ0 we cannot extend this Böttcher coordinate throughout the basin
Ua . For this basin will also contain the co-critical point −2a , which satisfies
F (−2a) = F (a) = a . Evidently βa(z) = ±

√
βa(F (z)) cannot be defined as a

single valued function in a neighborhood of −2a . However an argument quite
similar to the proof of Lemma 3.3 shows the following.

Lemma 3.6. There is a canonical conformal isomorphism η from the quotient
space (Ĥ0∩S1)/I onto the open unit disk. More explicitly, if F = Fa ∈ Ĥ0∩S1 ,
then the Böttcher coordinate z 7→ w = βa(z) , which initially is defined only in
a neighborhood of z = a , can be analytically continued to a neighborhood of
the other critical point z = −a in such a way that the resulting correspondence
a 7→ βa(−a) ∈ D is well defined, holomorphic and even, as Fa varies
through the region Ĥ0∩S1 . This correspondence induces the required conformal
isomorphism η : a2 7→ βa(−a) .

Thus the dynamical behavior of the critical point −a under the map Fa is just
like that of the point wa = βa(−a) under the squaring map. Intuitively we can
say that Fa is obtained from the squaring map by “enramifying” the point wa .

Proof of Lemma 3.6. We continue to assume that a 6= 0 . Note first that the
absolute value |βa(z)| extends as a well defined function of z throughout the
basin UFa

. This extended function will be smooth except at points which map
precisely onto a under some iteration of Fa , and will have non-zero gradient
except at points which map onto −a under some iteration of Fa . For any
0 < r ≤ 1 , let Cr be that component of the open set {z ∈ UFa

: |βa(z)| < r}
which contains the superattracting point a . Evidently there is a largest value
of r so that βa extends to a conformal diffeomorphism from Cr onto the
open disk {w : |w| < r} . We claim that the boundary ∂Cr must contain
the critical point −a . For if z is any non-critical boundary point of Cr ,
then using Equation (4) there exists a unique holomorphic extension of βa to
a neighborhood of z . Hence, if |βa(−a)| 6= r there would be no obstruction
to a holomorphic extension to a larger neighborhood. In fact, we claim that
βa extends homeomorphically over the closure Cr (and holomorphically over a
neighborhood of Cr ). Here we must rule out the possibility that ∂Cr consists of
two loops, one inside the other, meeting at the point −a . But this configuration
is easily excluded by the maximum modulus principle.

In this way, we see that the map β = βa takes a well defined value at the
critical point −a . Thus we obtain a well defined point

a 7→ wa = βa(−a) ∈ D

whose dynamical properties under the squaring map are the same as those of
−a under Fa . Evidently this image point wa will not be changed if we apply
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the involution I . Hence it can be considered as a holomorphic function wa =
η(a2) . Here a ranges over all non-zero parameters for which the associated
map Fa belongs to S1 ∩ Ĥ0 . As a → 0 , a brief computation shows that
η(a2) ∼ −

√
12 a2 . Hence the apparent singularity at a = 0 is removable. Since

this correspondence η : a2 7→ βa(−a) is well defined and holomorphic, it suffices
to show that η is a proper map of degree one from a region in the a2-plane onto
the open unit disk. First consider a boundary point Fa of the region S1 ∩ Ĥ0 .
Then as noted earlier the Böttcher mapping from the immediate basin UFa

onto
the unit disk has no critical points, and in fact is a conformal diffeomorphism.
In particular, β−1

a can be defined as a single valued function on the disk of
radius 1 − ǫ , for any ǫ > 0 . This last property must be preserved under any
small perturbation of Fa , and it follows that |βb(−b)| > 1− ǫ for any Fb ∈ Ĥ0

sufficiently close to Fa . Thus η is a proper map from (Ĥ0 ∩ S1)/I onto D .
Since η−1(0) is the single point 0 , with η′(0) = −

√
12 6= 0 , it follows that η

is a conformal diffeomorphism. ⊔⊓

3C. Maps outside of Ĥ0 .

In analogy with Lemma 2.4 in the dynamic plane, we have the following result
in parameter space.

Lemma 3.7. The conformal diffeomorphism η : (S1∩Ĥ0)/I
∼=−→ D of Lemma

3.6 extends to a continuous map

η : S1/I → D

which maps each F±a ∈ S1/I outside of Ĥ0/I to the point e2πit0 , where t0
is the internal argument for the principal limb of Fa or of F−a .

Intuitively, each F±a outside of Ĥ0/I should belong to a limb which is at-
tached to the boundary of Ĥ0/I, and we want to map it to the corresponding
point of the circle ∂D.

Proof of Lemma 3.7. Fixing some F ∈ S1 ∩ (C(3)rĤ0) , choose two rational
angles tℓ < t0 < tr close to t0 . Then the critical point −a is contained in the
sector bounded by the two extended rays R̂tℓ

and R̂tr
. Without loss of gener-

ality, we may assume that these extended rays meet ∂Ua at repelling periodic
points, since there can be at most finitely many parabolic points. Evidently this
situation will be preserved under a small perturbation of F . This proves that
the correspondence F 7→ e2πit0 is continuous as F varies over C(3)rĤ0 . (It is
conjectured that this correspondence is not only continuous, but actually locally
constant away from the boundary of Ĥ0 . Compare Lemmas 3.9 and 3.10.) If
we perturb F = Fa into Ĥ0 , then a similar argument, using the construction
from Lemma 3.3, shows that η(F±a) depends continuously on a . ⊔⊓

In analogy with the discussion above, let us define the limb Ct , attached to
(S1 ∩H0)/I at internal angle t , to be the set η−1(e2πit) . In other words, F±a
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belongs to Ct if and only if the principal limb of the filled Julia set K(Fa) is
attached at internal angle t , so that −a ∈ Kt ⊂ K(Fa) . By abuse of language,
we may say that the map Fa belongs to the limb Ct , although properly speaking
it is the unordered pair {Fa , F−a} which belongs to Ct .

According to Faught, the principal hyperbolic component S1 ∩ Ĥ0 in S1 is
bounded by a Jordan curve, so that η maps (S1 ∩ H0)/I homeomorphically
onto D. (We cannot be sure that the connectedness locus C(S1) in S1 is locally
connected, since it contains many copies of the Mandelbrot set. However Faught
showed that such Mandelbrot copies are the only possible source of non-local-
connectivity.) It follows that the limb Ct ⊂ (S1 ∩ C(3))/I has more than one
point if and only if the angle t is periodic under doubling, or in other words if
and only if t is rational with odd denominator. Compare Figure 6, in which the
0-limb to the left, the 1/3-limb to the lower right, and the 2/3-limb (Figure 7)
to the upper right are clearly visible.

In analogy with Lemmas 2.8 and 2.9, let us describe the relationship between
internal and external angles in parameter space. It will be convenient to measure
internal arguments t in the a2-plane S1/I , where we identify affinely conjugate
polynomials, but to measure external arguments η in the a-plane S1 where we
make no such identification. (Compare Figures 2, 3.)

Lemma 3.8. The correspondence t 7→ η(t) between internal and external angles
in parameter space can be expressed in terms of the corresponding function t 7→
ξt0(t) in the dynamic plane (Lemma 2.9 ), by the formula η(t) = ξt(t+

1
2 ) . This

function t 7→ η(t) is strictly monotone, increasing by 1/2 as t increases by 1 ,
and has a jump discontinuity at t if and only if t is periodic under the doubling
map mod 1. In fact if t has period p under doubling then the discontinuity at
t is given by

∆η(t) = η(t+) − η(t−) = ξt(
1

2
+ t+) − ξt(

1

2
+ t−) =

1

3(3p − 1)
.

For example the jump from ξ1/3(
5
6

−
) = 11/12 to ξ1/3(

5
6

+
) = 23/24 in Figure

3 corresponds exactly to the jump from η( 1
3

−
) = 5/12 to η( 1

3

+
) = 11/24 in

Figure 6. (In fact the corresponding shapes in the Julia set and in parameter
space are very similar! It would be interesting to explore this phenomenon.)

Note that the sum of these discontinuities,

∑ { 1

3(3p − 1)
: 2pt ≡ t , 0 ≤ t < 1 , p minimal

}

is equal to 1/2 . In fact, writing (3p − 1)−1 as 3−p + 3−2p + 3−3p + · · · , we can
express this sum as

1

3

∑ {
3−p : 2pt ≡ t , 0 ≤ t < 1

}
=

1

3

∞∑

1

2p − 1

3p
=

1

3

(
2 − 1

2

)
=

1

2
.

The proof of Lemma 3.8 is not difficult, and will be omitted. ⊔⊓
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Thus the correspondence t 7→ ξt(t + 1
2 ) is discontinuous precisely when

2m(t+ 1
2 ) ≡ t (mod 1) for some m ≥ 0 , or in other words when t = t0 is rational

with odd denominator. It is natural to conjecture that these are precisely the
internal arguments at which some non-trivial limb Ct is attached to ∂Ĥ0 ∩ S1

within C(3) ∩ S1 . The points of attachment are of particular interest. These
are the maps F = Fa for which the periodic point k(t) ∈ ∂Ua is parabolic,
with multiplier equal to +1 .

Caution. Although the boundary ∂Ĥ0∩S1 is a topological circle, parame-
trized by the internal argument t0 , it definitely is not true that the correspond-
ing Julia sets vary continuously with t0 . In fact the cases where −a does or
does not belong to Ua are presumably both everywhere dense along this circle.

Now suppose that we fix some angle t0 which is periodic of order p under
doubling.

Lemma 3.9. The two angles η(t−0 ) = ξt0(
1
2 + t−0 ) and η(t+0 ) = ξt0(

1
2 + t+0 )

are consecutive angles of the form i
3(3p−1) . The corresponding external rays in

parameter space land at a common map F0 which has the following property. In
the dynamic plane CrJ(F0) , the external rays of argument η(t−0 ) and η(t+0 )
and the internal ray of argument t0 + 1

2 all land at a common pre-periodic point
z0 in the Julia set. Furthermore, the multiplier F ◦p′(F (z0)) is equal to +1 .

These two external rays Rη(t−
0

)(S1) and Rη(t+
0

)(S1) cut off an open region

W (t0) ⊂ S1 which (following (Atela 92)) we may call the wake of the t0-limb.
It can be characterized as follows.

Lemma 3.10. Every map F ∈ W (t0) has the property that the internal ray
of argument t0 + 1

2 for F , as well as the external rays of argument η(t−0 ) and

η(t+0 ), all land at a common pre-periodic point in the Julia set J(F ) . However,
for any map F 6∈ W (t0) , the two external rays of argument η(t−0 ) and η(t+0 )
for F land at distinct pre-periodic points.

Proof Outline for Lemmas 3.9 and 3.10. To simplify the discussion and
fix our ideas we will only describe the case t0 = 1/3 . The general case is
not essentially different. As a first step, we must check that there exist maps
F ∈ S1 which satisfy the condition that the internal ray R5/6(F ) and the two
external rays R′

11/12(F ) and R′
23/24(F ) all land at a common point. For ex-

ample any hyperbolic map in the 1/3-rd limb will satisfy this condition. (Com-
pare Figure 3.) Using the dynamics, it then follows that other triples such as
R2/3 , R′

3/4 , R′
7/8 and R1/3 , R′

1/4 , R′
5/8 also have a common landing point.

For a map satisfying this condition, since the two angles 1/4 and 5/8 differ by
more than 1/3 , it follows that there must be a critical point, namely −a , lying
in the region between the two rays R′

1/4(F ) and R′
5/8(F ) .

On the other hand, there are also maps, such as F (z) = z3 , for which the
two rays R′

11/12(F ) and R′
23/24(F ) land at distinct pre-periodic points. As we

deform the map F along some path in S1 , how can we pass from one type of
behavior to the other? If F is a transition point which belongs to the connected-
ness locus, then at least one of these two rays must land at a pre-parabolic point
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Figure 10: Julia set for a map which belongs to the wake W (1/3) , but

not to the connectedness locus. (Compare Figure 5.) The unlabeled rays on

the left pass close to the escaping critical point −a and that on the right

passes close to the co-critical point 2a .

(that is a pre-periodic point whose orbit falls onto a parabolic cycle). Compare
(Goldberg and Milnor 93, Appendix B). Note that there are only finitely many
maps in S1 which possess parabolic cycles of the appropriate period and mul-
tiplier. On the other hand, for a transition outside of the connectedness locus,
the critical point −a must pass out of the region bounded by R′

1/4(F ) and

R′
5/8(F ) . Hence, at the transition point, one of these two rays must crash into

the critical point −a . But this is exactly the defining property of a map F
which belongs to the external ray of angle 11/12 respectively 23/24 in param-
eter space. Thus the boundary between the two types of behavior is formed by
these two external rays, each of which lands at a well defined map by Lemma
3.5, together with a finite set. Hence these two rays must land at a common
map, as asserted in Lemma 3.9. The rest of the proof is straightforward. ⊔⊓

4 Hyperbolic components in S1 .

This section will present a more detailed, but partially conjectural, picture of
the connectedness locus intersected with S1 . Recall that a map in C(3) is
called hyperbolic if the orbits of both critical points converge to attracting
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periodic orbits. The set of hyperbolic points forms a union of components of the
interior of C(3) . Conjecturally it constitutes the entire interior. It is shown in
(Milnor 92b) that each hyperbolic component is an open topological 4-cell, which
is canonically biholomorphic to one of four standard models. Furthermore,
each hyperbolic component contains one and only one post-critically finite map,
called its center . (A map is post-critically finite if the forward orbit of
every critical point is either periodic, or eventually falls onto a periodic cycle
which may be either repelling or superattracting. However, in the hyperbolic
case, such a post-critical cycle must necessarily be superattracting.)

In the case of a hyperbolic component which intersects S1 , clearly Type B
cannot occur, and Type A occurs only for the principal hyperbolic component
Ĥ0 . However, we will see that Type C and D both occur infinitely often (and all
four types are important in studying maps with a periodic critical orbit of higher
period). It is not difficult to check that for any hyperbolic component in the
connectedness locus which intersects S1 , the intersection is an open topological
2-cell which contains the center point. (Compare Lemma 3.6.) All of these
hyperbolic components in S1 are bounded by Jordan curves. (See (Faught 92)
or (Roesch 06).)

In the case of a capture component, we can be even more explicit. The closure
Ua of the immediate basin of the fixed point +a is homeomorphic to the disk
D , using the Böttcher coordinate. There must be some first element in the
orbit of the other critical point −a which belongs to Ua . Using the Böttcher
coordinate of this point, say F ◦n(−a) , we obtain the required homeomorphism
a 7→ βa(F ◦n(−a)) from the closure of the capture component in S1 onto the
closed unit disk.

In the case of a component of type D (disjoint attracting orbits), we can make
the much sharper statement. If F0 is the center map in the component, then
by the Douady-Hubbard operation of “tuning”, we obtain a copy F0 ∗ M of the
Mandelbrot set M = C(2) which is topologically embedded into S1 . ((Douady
and Hubbard 85)). Compare the discussion in (Milnor 89).) In particular, there
are infinitely many other hyperbolic components of type D which are canonically
subordinated to the given one. When discussing such an embedded Mandelbrot
set, we will always implicitly assume that it is maximal, ie., that F0 ∗M is not
a subset of some strictly larger embedded Mandelbrot set. In other words, we
assume that F0 cannot itself be obtained by tuning some other center point of
lower period.

The “directions” in which we can proceed from one hyperbolic component
or embedded Mandelbrot set to any other, measured around the boundary of
the component or Mandelbrot set, can be described quite explicitly as follows.
(Note that Case B is excluded, since it does not occur in S1.)

Case A. From the hyperbolic component Ĥ0 in S1 , as discussed in §1,
we can proceed outward in any direction t ∈ R/Z which is rational with odd
denominator, or equivalently is periodic under doubling. Components which
are attached in this direction are said to belong to the limb Ct . In particular,
there is one copy of the Mandelbrot set which is immediately attached to Ĥ0

in each such direction. We will use the notation Ft ∗ M for this “satellite” of
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Ĥ0 in the limb Ct ⊂ S1 .
Case C. If C is a capture component in the limb Ct , then we can go out

from C in any direction α which is a preimage of t under doubling. In other
words, α must satisfy 2kα ≡ t mod 1 for some k ≥ 0 . (Compare Figure 11.)
Here the “direction” from C is measured using the Böttcher parametrization of
the boundary ∂C , as described above. One particular direction plays a special
role: namely, the direction α = 2t , which leads from the component C back
towards the principal component Ĥ0 .

Case D. From each embedded Mandelbrot set F ∗ M we can go out in
any dyadic direction δ = m/2k , measured around the Caratheodory loop δ 7→
γ(δ) ∈ ∂M which parametrizes the boundary of M . (The number δ ∈ R/Z

can be described as an external argument with respect to M , but is certainly
not an external argument with respect to the cubic connectedness locus.) Here
the case δ = 0 plays a special role, as the direction in which we must proceed
from F ∗ M in order to get back to the principal hyperbolic component Ĥ0 .

In particular, if we start out on some immediate satellite Ft∗M of the princi-
pal hyperbolic component, then at each dyadic boundary point Ft∗γ(δ) , δ 6= 0 ,
there is a capture component, which we will denote by C(t, δ) , immediately at-
tached.

Thus the principal component Ĥ0 has immediate satellites Ft ∗ M , and
these have immediate satellites C(t, δ) . According to (Roesch 06): These are
the only examples of hyperbolic components or Mandelbrot sets in S1 which
are immediately contiguous to each other. If we exclude these cases, and if we
exclude contiguous components within an embedded Mandelbrot set, then it is
conjectured that we can pass from one hyperbolic component to another only
by passing through infinitely many components, both of Type C and of Type
D.

4A. Hubbard Trees.

(Compare §6 as well as the Appendix.) In order to partially justify this pic-
ture, let us describe Hubbard trees for the various hyperbolic components. The
Hubbard tree for the center point z 7→ z3 of Ĥ0 is of course just a single
doubly-critical vertex.

The Hubbard tree T (t) for the center point Ft of the satellite Ft∗M can be
described as follows. We assume that the argument t ∈ Q/Z has period n ≥ 1
under doubling modulo 1. Then T (t) consists of n different edges radiating out
from a central vertex at angles t, 2t, 4t, . . . modulo 1, as measured from some
fixed base direction. Here the central vertex v0 and the other endpoint w0

of the edge at angle t are both critical, but all other vertices are non-critical.
The canonical mapping τ from T (t) to itself fixes the central vertex v0 and
permutes the other vertices cyclically, carrying the vertex at angle α to the
vertex at angle 2α .

Now choose some dyadic angle δ = m/2k 6≡ 0 in Q/Z . Let γ(δ) ∈ M be
the quadratic map at external argument δ in the Mandelbrot set, and let T ′(δ)
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Figure 11: Detail of Figure 7, showing the capture component C(2/3 , 1/2) .

(Here 2/3 is the internal angle in Ĥ0 at which a small Mandelbrot set is

attached, and 1/2 is the external angle with respect to this Mandelbrot set.

The interior of this component C(2/3 , 1/2) is parametrized by the Böttcher

coordinate of F ◦3(−a) .

be its Hubbard tree. Thus the (k + 1)-st forward image of the critical vertex
in T ′(δ) is a fixed vertex. If we tune Ft by γ(δ) , or equivalently if we tune
T (t) by T ′(δ) , then we obtain a new tree T (t)∗T ′(δ) for which the (nk+1)-st
forward image wnk+1 of the “outer” critical point w0 is periodic of period n ,
lying at angle 2t from the central critical point v0 . Thus for each edge of T (t)
it contains a complete copy of T ′(δ) , all of these copies being pasted together at
the post-critical fixed point, which is now critical. (However, only the primary
copy at angle t contains another critical point.)

In order to obtain the tree T (t, δ) for the center of the satellite C(t, δ) ,
we modify this construction very slightly as follows. As an angled topological
tree with two marked critical points, T (t, δ) is identical with T (t) ∗ T ′(δ) .
However, T (t, δ) has fewer post-critical points, hence fewer vertices, and the
canonical mapping from the tree to itself is changed so that the nk-th forward
image wnk of the outer critical point w0 maps to the central critical point
wnk+1 = v0 . In other words, the edge e in the t-limb which leads out to wnk

is now to be mapped to a path in the 2t-limb which leads all the way in to v0 .
(Figure 12, 13, 14.)
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*

*  w0

v0 fixed1/3

Figure 12: Tree for the center point F1/3 of the satellite F1/3 ∗ M at

internal angle 1/3. Critical points are indicated by stars, and vertices in the

Fatou set by small circles.

* fixed
0

1

2

3

4

Figure 13: Tree for the quadratic map γ(1/8) with external angle 1/8 in the

Mandelbrot set. The post-critical vertices are numbered so that 0 7→ 1 7→
2 7→ · · · .

fixed = v0*

* 0 = w0

2

4

6

1

3

5

7
1/3

Figure 14: Tree for the center of the capture component C(1/3 , 1/8) in

S1 which is attached to F1/3 ∗ M at the point F1/3 ∗ γ(1/8).
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Figure 15: A small slice of constant height b ≡ 18 through a Mandelbrot-

torus in the plane P̂(3), using coordinates (a, b). Here a varies over a box of

width .04 centered at a = 2. This slice intersects the curve S1 tranversally

at the central point of the figure.

More generally, consider the tree T for an arbitrary component of Type D
in S1 . Suppose that the outer critical point w0 has period n , and lies at angle
t from the central vertex v0 . For any dyadic angle δ as above, we can tune to
obtain a tree T ∗T ′(δ) for which the (nk+1)-st image wnk+1 of w0 is periodic
of period n , and lies in the 2t-limb. Again we can stretch this (nk+1)-st image
in towards the central vertex, and thus construct other hyperbolic components.
But in general, there does not seem to be a immediately contiguous component
which can be constructed in this way.

Similarly, we can consider a completely arbitrary capture component in S1 .
The corresponding tree T has outer critical point w0 lying in a limb which
has angle say t from the fixed central vertex v0 . If the (k + 1)-st forward
image wk+1 of w0 is equal to v0 , then it is not difficult to see that the k-th
forward image wk must lie in the t-limb. (Every other limb, at angle say α ,
maps isomorphically into the limb at angle 2α .) Thus, the edge e in the t-limb
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which leads out to wk must map to a path in the 2t-limb which leads in to
v0 . Now suppose that we choose any angle α 6≡ 2t which is a pre-image of t
under doubling modulo 1. Then we can modify this tree, adding an α-limb if
it does not already exist, so that the image of e , leading from the 2t-limb into
the center, will extend on out into the α-limb. In this new tree, the (k + 1)-st
image of w0 will lie in the α-limb, hence some further iterated image will lie
back in the t-limb. By such constructions, it is not difficult to obtain either a
tree in which w0 is periodic, or a tree in which w0 eventually maps to the fixed
point v0 . In either case, the associated hyperbolic component can be described
as one which lies in the α-direction from our initial capture component with
tree T .

Remark 4.1. What does a neighborhood of S1 look like? (Compare
Remark 1.1.) Understanding the curve S1 should be a first step towards un-
derstanding the dynamics for maps in P̂(3) which are close to S1. Perhaps the
easiest points to understand are those in the escape locus. According to (Bran-
ner and Hubbard 92) or (Branner 93), each escape point in S1 is the center of
a small Mandelbrot set in the transverse direction, with each period p center in
this Mandelbrot set corresponding to an intersection with the period p curve Sp.
A transverse section, as shown in Figure 15, illustrates such a small Mandelbrot
set. Note the small dots outside of the Mandelbrot copy. Each one seems to
represent a small Cantor set of maps. The complementary region, outside of
these Cantor sets and outside this Mandelbrot set, represents maps in the shift
locus.

5 Topology and Geometry of the Superattract-

ing Curve Sp .

For any integer p ≥ 1 , let Sp ⊂ P̂(3) be the period p superattracting curve

consisting of all F ∈ P̂(3) for which the critical point +a has period exactly p .
In other words, Sp can be identified with the affine algebraic variety consisting
of all pairs (a, v) ∈ C2 such that the critical point a has period exactly p
under the map

F (z) = z3 − 3a2z + (2a3 + v) . (12)

Remark 5.1. It is important to work with this normal form, rather than
with F (z) = z3 − 3a2z + b, since it will allow a simpler description of the curve
Sp. As examples, the equations for S1 and S2 in the (a, v)-plane take the form

v − a = 0 and v3 − 3a2v + 2a3 + v − a = 0 ,

with degrees one and three respectively. The corresponding equations in the
(a, b)-plane, obtained by substituting b − 2a3 in place of v, would have degrees
three and nine.

Theorem 5.2. Each Sp is a smooth affine algebraic curve.
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The proof will be given later in this section.

Question 5.3. Is Sp connected? It seems quite possible that all of the curves
Sp are irreducible, or equivalently that they are topologically connected. For
example, we will see that S1 and S2 are connected curves of genus zero, while
S3 is a connected curve of genus one. However, I don’t know how to attack this
question in general.

The degree of the affine curve Sp can be computed as follows. It will be
convenient to first consider the disjoint union

⋃
n|p Sn ⊂ C2 of the curves Sn

where n ranges over all divisors of p. This will be denoted by S⊎
p .

Lemma 5.4. The degree of this affine curve S⊎
p is

deg(S⊎
p ) =

∑

n|p

deg(Sn) = 3p−1 .

Furthermore, the number of hyperbolic components of Type A in S⊎
p is also equal

to 3p−1.

Remark 5.5. Given this statement, it is easy to compute the degree of Sp.
Assuming inductively that we have computed the degree deg(Sn) for all proper
divisors of p, we simply need to subtract these numbers from 3p−1 to get the
degree of Sp. More generally, it will be convenient to define numbers νd(p) by
the equation3

dp =
∑

n|p

νd(n) .

For example, νd(p) can be interpreted as the number of period p points for
a generic polynomial map of degree d, and ν2(p)/2 can be interpreted as the
number of period p centers in the Mandelbrot set. With this notation, our
conclusion is that

deg(Sp) = ν3(p)/3 .

Here is a table listing ν2(p)/2 and ν3(p)/3 for small p.

p 1 2 3 4 5 6 7 8 9 10
ν2(p)/2 1 1 3 6 15 27 63 120 252 495
ν3(p)/3 1 2 8 24 80 232 728 2160 6552 19600

Proof of Lemma 5.4. Evidently S⊎
p can be defined by the polynomial equa-

tion F ◦p(a) − a = 0 . Since F (z) = z3 − 3a2z + 2a3 + v , we can write

F (a) = v ,
F ◦2(a) = (v3 − 3a2v + 2a3) + v ,

3Equivalently, by the Möbius Inversion Formula, ν(p) =
P

n|p µ(n) dp/n, where the

Möbius function µ(n) equals (−1)k if n = p1p2 · · · pk is a product of k distinct prime
factors, with µ(1) = 1, but with µ(n) = 0 whenever n has a squared prime factor.

32



and in general

F ◦p(a) = (v3 − 3a2v + 2a3)3
p−2

+ (lower order terms) (13)

for p ≥ 2 . Thus the equation F ◦p(a) = a has degree 3p−1 in the variables
a , v , as asserted.

To count hyperbolic components of Type A, note that the center of each
such component is a polynomial of the form F (z) = z3 + v. More generally, for
any degree d we can study the family of maps

gv(z) = zd + v, (14)

counting the number of v such that the critical orbit 0 7→ v 7→ vd + v 7→ · · ·
has period p. The argument will be based on (Schleicher 04) which studies
the connectedness locus for for the family (14), known as the Multibrot set .
In particular, Schleicher studies external rays in the v parameter plane. He
shows that for each angle which has period p under multiplication by d, the
corresponding parameter ray lands on the boundary of a hyperbolic component
of period p. Furthermore, if p ≥ 2, then exactly d such rays land on the boundary
of any given period p component. In the period one case, the corresponding
statement is that all d−1 of the rays of period one land on the boundary of the
unique period one component. Since there are exactly dp − 1 rays which have
period dividing p, a straightforward argument now shows that the number of
period p components in the Multibrot set is νd(p)/d, and the conclusion follows.
⊔⊓

Remark 5.6. The centers of period dividing p in this Multibrot family are
precisely the roots of the polynomial g ◦p

c (0), which has degree dp−1. Thus an
immediate corollary of Lemma 5.4 is the purely algebraic statement that this
polynomial has dp−1 distinct roots.

These same numbers ν3(p)/3 can also be used to count hyperbolic compo-
nents of Type B and D.

Definition 5.7. Let S ′
p ⊂ P̂(3) be the dual superattractive period p

curve, consisting of all maps F (z) = z3 − 3a2z + 2a3 + v for which the critical
point −a has period exactly p .

Lemma 5.8. For each p, r ≥ 1 , the curve Sp intersects S ′
r transversally in

ν3(p)ν3(r)/3 distinct points. These intersection points comprise precisely the
center points of all hyperbolic components in C(3) which have Type A, B, or D.

(On the other hand the center point of a component of Type C lies on only
one of these curves Sp or S ′

r .) As examples, for p = 1, 2, 3 , the intersection
Sp ∩S ′

1 consists of 3, 6, and 24 points respectively, while S2∩S ′
2 has 12 points.

Representative Hubbard trees are shown in Figures 34 and 35, while Julia sets
illustrating three of these trees are shown in Figure 36.
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Proof of Lemma 5.8. We will use Bezout’s theorem, which states that if two
curves in the complex projective plane intersect transversally, then the number
of intersection points is equal to the product of the degrees of the two curves.
As noted above, the curve Sp has degree ν3(p)/3 . A similar computation
shows that the curve S ′

r has degree ν3(r) . (Note: The asymmetry between
these two formulas arises from the fact that we are using coordinates (a, v)
which are particularly adapted to studying the orbit of a rather than −a . The
polynomial

F ◦r(−a) − (−a) = (4a3 + v)3
r−1

+ (lower order terms)

has degree 3r rather than 3r−1 .) The curve Sp intersects the line at infinity
in two (highly multiple) points where the ratios (a : v : 1) take the values
(1 : 1 : 0) and (1 : −2 : 0) respectively; while S ′

r intersects the line at infinity
in the single point (0 : 1 : 0) . Thus there are no intersections at infinity, and
the conclusion follows. ⊔⊓

5A. Escape Regions.

The complement SprC(Sp) of the connectedness locus will be called the escape
locus in Sp. Each connected component E of the escape locus will be called an
escape region .

We will see that each escape region E is conformally isomorphic to a punc-
tured disk (or equivalently to the region CrD). Thus Sp can be made into
a smooth compact surface Sp by adjoining finitely many ideal points, one for
each escape region. We can then think of each connected component of Sp as
a multiply punctured Riemann surface with its connectedness locus as a sin-
gle connected “continent”, and with the escape regions as the complementary
“oceans”, each centered at one of the puncture points. Assuming that this con-
nected component of Sp is mapped to itself by the canonical involution I, it is
a 2-fold branched covering of the corresponding connected component of Sp/I.

Here is a precise statement.

Lemma 5.9. Each escape region E is canonically isomorphic to the µ-fold cyclic
covering of CrD for some integer µ ≥ 1.

By definition, this integer µ = µ(E) ≥ 1 will be called the multiplicity of
the escape region E .

Proof of Lemma 5.9. For any F = Fa,v ∈ P̂(3), the associated Böttcher
coordinate β(z) = βa,v is defined for all complex z with |z| sufficiently large. It
satisfies the equation

β(F (z)) = β(z)3 ,

with |β(z)| > 1, and with β(z)/z converging to +1 as |z| → ∞. In particular
the co-critical point 2a is just large enough so that β(2a) is well defined. Now
consider the map

β̂ : E → CrD defined by β̂(Fa,v) = βa,v(2a) .
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It is not hard to check that β̂ is holomorphic and locally bijective, and that
|β̂(F )| converges to +1 as F converges towards the connectedness locus. In
order to show that it is a covering map, we must describe its behavior near
infinity.

As in the proof of Lemma 3.3 Equation (11), we can estimate the behavior

of β̂ as |a| or |v| tends to infinity, yielding the asymptotic formula

β̂(Fa,v) ∼ 3
√

4 a as |a| → ∞ .

Thus β̂ : E → CrD is proper and locally bijective. Hence it is a covering map
of some degree µ ≥ 1, as required. ⊔⊓

In particular, it follows that we can choose a conformal isomorphism ζ : E →
Dr{0} satisfying ζ(F )µ = 1/β̂(F ). In fact ζ is uniquely defined up to multi-
plication by µ-th roots of unity. If E+ denotes the Riemann surface which is
obtained from E by adjoining a single ideal point at infinity, then ζ extends to
a conformal isomorphism from E+ onto the open unit disk D. Now a can be
expressed as a meromorphic function on E+ with a pole of order µ. Writing
this as a = φ(ζ)/ζµ where φ : E → D is holomorphic with φ(0) 6= 0, we can
choose a smooth µ-th root of φ(ζ) near the origin. Hence the formula

ξ = 1/ µ
√

a = ζ/ µ
√

φ(ζ)

provides an alternative parametrization of a neighborhood of the base point
ζ = 0 in E+, with ξµ precisely equal to 1/a.

Remark 5.10. Using Lemma 5.9, we can talk about equipotentials and
external rays within any escape region. In particular, we can study the landing
points of periodic and preperiodic rays. This provides an important tool for
understanding the dynamics associated with nearby points of the connectedness
locus.

Here is a more geometric interpretation of the multiplicity. Recall that Sp

can be described as an affine curve in the space C2 with coordinates (a, v).

Lemma 5.11. For any constant a0 with |a0| large, the number of intersections
of the line a = a0 in C2 with the escape region E ⊂ Sp is equal to the multiplicity
µ(E).

In fact, using this parameter ξ, the µ intersection points correspond precisely
to the µ possible choices for an µ-th root of a. ⊔⊓

Corollary 5.12. The number of escape regions in Sp, counted with multiplicity,
is equal to the degree ν3(p)/3.

Proof. This follows immediately, since a generic line intersects Sp exactly
ν3(p)/3 times. ⊔⊓

We can make a corresponding count of the number of escape regions in the
quotient curve Sp/I. The easiest procedure is just to define the multiplicity
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for an escape region E/I ⊂ Sp/I to be the sum of the multiplicities of its
preimages in Sp. In other words, for each escape region E in Sp we set

µ(E/I) =

{
µ(E) if E = I(E) ,

2µ(E) if E 6= I(E) .

With this definition, we clearly get the following statement.

Corollary 5.13. The number of escape regions in Sp/I, counted with
multiplicity, is also equal to ν3(p)/3.

5B. The Kneading Sequence of an Escape

Region.

Any bounded hyperbolic component of Sp can be concisely labeled by two com-
plex numbers: the a and v coordinates of its center point. (Compare §5.) How-
ever, it is not so easy to label escape components. This section will describe
a preliminary classification based on two invariants: the kneading sequence,
which is a sequence of zeros and ones with period q dividing p, and the associ-
ated quadratic map, which is a critically periodic quadratic map with period
p/q. For periods p ≤ 3, these invariants suffice to give a complete classification
of escape regions in the moduli space Sp/I, but for larger periods they provide
only a partial classification. (A complete classification, based on the Puiseux
expansion at infinity, will be described in Part 2 of this paper. Compare (Kiwi
06).)

Let F = Fa, v be any map such that the marked critical point a belongs to
the filled Julia set K(F ) while the orbit of −a escapes to infinity. Then the
orbit of any point z ∈ K(F ) can be described roughly by a symbol sequence
σ(z) ∈ {0, 1}N, as follows. There is a unique external ray, with angle say t,
which lands at the escaping co-critical point 2a, while two rays of angles t±1/3
land at the escaping critical point −a. (Compare Figure 9.) These two rays cut
the complex plane into two regions, with a on one side and −2a on the other.
In fact the equipotential through −a and 2a cuts the plane into two bounded
regions U0 and U1, numbered so that a ∈ U0 and −2a ∈ U1, together with one
unbounded region where orbits escape to infinity more rapidly. Now any orbit
z0 7→ z1 7→ · · · in K(F ) determines a symbol sequence

σ(z0) = (σ0, σ1, . . .) with σj ∈ {0, 1} and zj ∈ Uσj
for all j ≥ 0 .

In particular, any periodic point determines a periodic symbol sequence. Thus,
if F belongs to an escape region in Sp, then the critical point a determines a
periodic sequence σ(a) ∈ {0, 1}N, with σj+p(a) = σj(a), and with σ0(a) = 0.

Definition 5.14. The periodic sequence σ1(a), σ2(a), . . ., starting with the
symbol σ1(a) for the critical value, will be called the kneading sequence for
the map. It will be convenient to denote this sequence briefly as σ1 · · ·σp−10,
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where the overline indicates infinite repetition. Evidently the (minimal) period
q of this kneading sequence is always a divisor of the period p of a. In particular,
1 ≤ q ≤ p.

For each such F ∈ Sp, let K0(F ) ⊂ K(F ) be the connected component of
a in the filled Julia set. The following result (stated somewhat differently) is
due to (Branner and Hubbard 92). It makes use of hybrid equivalence in the
sense of (Douady and Hubbard 84/85)??.

Theorem 5.15. The map F restricted to a neighborhood of K0(F ) is hybrid
equivalent to a unique quadratic polynomial, which has periodic critical orbit of
period equal to the quotient p/q, where q is the period of the kneading sequence
σ(a).

In fact, Branner and Hubbard show that every connected component of
K(F ) is either a copy of K0(F ) or a point.

Outline Proof of Theorem 5.15. Consider the open set U0, as illustrated in
Figure 9. Let V0 ⊂ U0 be the connected component of F−q(U0) which contains
a, and let Vj = F ◦j(V0). Evidently Vj ⊂ Uσj

for 0 ≤ j ≤ q, with Vq = U0. Note
that the sets V1, V2, . . . , Vq−1 cannot contain any critical point. For if a ∈ Vj

then V0 ⊂ Vj , and it would follow easily that the kneading sequence has period
dividing j. By definition, this cannot happen for 0 < j < q. It then follows
that F ◦q mapping V0 onto Vq = U0 is a proper map with only one critical point.
Thus it is a degree two polynomial-like map with non-escaping critical orbit.
Therefore, according to (Douady and Hubbard 85), the filled Julia set K0 of
this polynomial-like mapping is hybrid-equivalent to K(z 7→ z2 + c) for some
unique c in the Mandelbrot set. It is not hard to see that K0 can be identified
with the connected component of a in K(F ). ⊔⊓

Here is another interpretation of the kneading sequence {σj}.

Theorem 5.16. Each point aj = F ◦j(a) in the periodic critical orbit is asymp-
totic to either a or −2a as |a| → ∞, with

aj ∼
{

a if σj = 0,

−2a if σj = 1,

or briefly aj ∼ (1 − 3σj) a. In fact the difference

aj − (1 − 3σj)a (15)

extends to a bounded holomorphic function from E+ = E ∪∞ to C.

Proof. Using the defining equation

aj+1 = a3
j − 3a2aj + 2a3 + v with a0 = a ,

this difference (15) can clearly be expressed as a meromorphic function on E∪∞,
holomorphic throughout E . Since it is clearly bounded on the intersection of E
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with any compact subset of Sp, the only problem is to prove boundedness as
|a| → ∞.

As in the proof of Lemma 5.9, we can parametrize a neighborhood of infinity
in E by a branch of µ

√
a. Hence we can expand each aj as a Puiseux series of

the form
∑

n≤n0

knan/µ = kn0
an0/µ + · · · + k1a

1/µ + k0 + k−1a
−1/µ + · · · ,

with leading coefficient kn0
6= 0. (Compare (Kiwi 06).) First consider this

expansion for a1 = v. If the leading term had degree n0/µ > 1, then the a3n0/µ

term in the series for F (a1) = a2 would dominate, and it would follow easily
that the series for the successive aj would have leading terms of degree tending
rapidly to infinity, which would contradict periodicity. On the other hand, if the
leading term of the series for v = a1 had degree n0/µ < 1, then the 2a3 term
in the series for F (a1) would dominate, and again the successive degree would
increase rapidly. Thus we must have n0 = µ. A completely analogous argument
now shows that the series for every aj has leading coefficient of degree n0/µ = 1.
Thus, for each j, this series has the form aj = kµa + (lower order terms), so
that

aj+1 = F (aj) = (k3
µ − 3kµ + 2)a3 + (lower order terms) .

But by the previous argument, the coefficient of a3 must be zero. Therefore

k3
µ − 3kµ + 2 = (kµ − 1)2(kµ + 2) = 0 .

This proves that the leading coefficient kµ for the expansion of any aj must be
either +1 or −2. That is, each aj must be asymptotic to either a or −2a.

First suppose that aj ∼ a. Let ǫ = aj − a. We must prove that ǫ remains
bounded as |a| → ∞. Otherwise the Puiseux expansion for ǫ would start with
a term of degree n′/n with 0 < n′ < µ. Using the identity

aj+1 = F (z + ǫ) = v + 3aǫ2 + ǫ3 ,

the 3aǫ2 would dominate, and would have degree > 1 which is impossible. Thus
ǫ = O(1) as required.

In the case aj ∼ −2a, a completely analogous argument using the identity

F (−2a + ǫ) = 9a2ǫ + 6aǫ2 + ǫ3

proves the even sharper statement that ǫ = O(1/a) as |a| → ∞. This completes
the proof of Theorem 5.16. ⊔⊓

We can sharpen the count in Lemma 5.11 as follows. Given a kneading
sequence {σj} of period dividing p, let n =

∑p
1(1−σj) be the number of indices

1 ≤ j ≤ p with σj = 0. Thus 1 ≤ n ≤ p.

Lemma 5.17. The number of escape regions in S⊎
p with kneading sequence

{σj}, counted with multiplicity, is equal to 2n−1.
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Proof. We can embed S⊎
p into Cp by mapping each point with periodic critical

orbit
a = a0 7→ a1 7→ · · · 7→ ap = a

to the p-tuple (a1, a2, . . . , ap−1 , a) ∈ Cp. Such p-tuples form a 1-dimensional
affine variety, characterized by the polynomial equations:

F (aj) = aj+1 for 1 ≤ j < p ,

where F (z) = z3 − 3a2z + 2a3 + a1 so that

aj+1 − a1 = (aj − a)2(aj + 2a) . (16)

Now embed Cp into the projective space CPp by identifying each (a1, . . . , ap−1 :
a) ∈ Cp with the point (1 : a1 : . . . : ap−1 : a) in projective space. Intersect
the resulting 1-dimensional projective variety with the (p − 1)-plane at infinity
consisting of all points of the form (0 : a1 : . . . : ap−1 : a). The resulting
intersection can be described by deleting all terms of lower degree from the
equations (16), leaving only the cubic equations

(aj − a)2(aj + 2a) = 0 . (17)

This yields an alternative proof that, as a tends to infinity, the ratio aj/a must
tend to either +1 or −2. In fact, according to Equation (15), we know that

lim
a→∞

aj/a = 1 − 3σj .

In other words, the resulting zero-dimensional variety at infinity consists pre-
cisely of the points

(0 : 1 − 3σ1 : · · · : 1 − 3σp−1 : 1)

associated with different possible kneading sequences. The squared factor in
equation (17) means that each point with σj = +1, 1 ≤ j < p, must be
counted double, for a total intersection multiplicity of 2n−1. Now approximating
the plane at infinity by a plane a = large constant, the number of intersections
(counted with multiplicity) remains unchanged, and the conclusion follows. ⊔⊓

5C. Examples.

Here are more explicit descriptions of Sp and Sp/I for the cases with p ≤ 4.
(For the cases with p ≤ 3 , each end of the curve Sp has multiplicity µ = 1, so
that there are exactly ν3(p)/3 ends.) In specifying periodic kneading sequences,
recall that infinite repetition is indicated by an overline so that, for example,
010 stands for 010010010 · · · .

Period 1. The curve S1
∼= C has genus zero with one puncture of multi-

plicity one, namely the point at infinity. (Compare Figure 5.) The projection
to S1/I is a 2-fold branched covering, branched at the puncture point and at
the center of the principal hyperbolic component. (Compare Figure 6.)
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Figure 16: Connectedness locus in S2/I , with coordinate δ2 = (F (a) − a)2.

Period 2. The curve S2 has genus zero, and two ends of multiplicity one.
In fact a polynomial F ∈ S2 can be uniquely specified by the “displacement”
δ = F (a) − a , which can take any value except zero and infinity. Given δ ∈
Cr{0} , we can solve for a = −(δ + δ−1)/3 and v = a + δ . The projection
S2 → S2/I is branched over the two punctures. Thus S2/I also has genus
zero and two ends, with uniformizing parameter δ2 6= 0 . (See Figures 16–19.)
This quotient surface contains one hyperbolic component of type A, one of type
B, and infinitely many of types C and D. It contains two “escape regions”,
consisting of maps for which the orbit of the free critical point −a escapes to
infinity. Figure 18 shows a representative Julia set for a point in the inner escape
region, centered at the origin, δ2 = 0. Every connected component of K(F ) is
either a point or a homeomorphic copy of the filled Julia set for the “basilica”
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 0
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1/4

3/8

1/2

3/4

5/8

 7/8

    

Figure 17: Julia set for a map F ∈ S2 which is a limit point of six different

hyperbolic components, four bounded and two unbounded, as shown in Figure

16. (This is the higher of the two such maps, with δ2 ≈ .0620 + 1.4183 i.)

Here the rays of angle 1/8, 1/4, 3/8, and 3/4 land at a common parabolic

fixed point of multiplier −1. By arbitrarily small deformations, this parabolic

point can split up in eight different ways, yielding a new map F ′ which either

belongs to one of four large bounded hyperbolic components, or one of the two

escape regions. (The Julia set for the center of the smallest of these hyperbolic

components is shown at the top of Figure 36.) Furthermore, F can be

deformed into either escape region in two essentially different ways, depending

on whether the rays of angle {1/8, 3/8} or those of angle {1/4, 3/4} continue

to land at a common fixed point.

map Q(z) = z2 − 1. Figure 19 shows a representative Julia set for the outer
escape region centered at ∞. Here each component of K(F ) is either a point or
a copy of the closed unit disk (the filled Julia set for Q(z) = z2). In both cases,
the filled Julia set is partitioned into two subsets by the two external rays which
crash together at the escaping critical point −a. These rays are shown in white.

Near either of these two puncture points, the curve S2 can be described by
a Laurent expansion of the form

v(a) =

{
a − 1/(3a) − 1/(3a)3 − 2/(3a)5 − 5/(3a)7 − · · · for δ near 0,

−2a + 1/(3a) + 1/(3a)3 + 2/(3a)5 + 5/(3a)7 + · · · for δ near ∞.

(Compare (Kiwi 06).)
However, one cannot expect that all hyperbolic Julia sets will be so easy

to understand. The interaction between the two critical orbits can lead to
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  a

v

Figure 18: Julia set for a map F in the inner escape region of S2, with

kneading sequence 0 and with associated quadratic map Q(z) = z2−1. (Here

δ = .7 + .3i .)

  a   

v

Figure 19: Julia set for a map F ∈ S2 in the outer escape region, with

kneading sequence 01 and with associated quadratic map Q(z) = z2. (Pa-

rameter value δ = 2 + .5i .) In both of these figures, the two external rays

which crash together at the escaping critical point −a are shown in white.
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Figure 20: Detail from the Julia set of a hyperbolic map of type D. The

Fatou component of the critical point −a (in the center) has period 42, while

the critical point +a (far outside to the left) has period 2. Preimages of −a

are surrounded by foliage, while preimages of +a are in the open.

Figure 21: Detail from the Julia set of a hyperbolic map of type C. The

critical point +a (far to the left) has period 2, while the Fatou component of

−a (in the center) maps to the Fatou component of +a after 85 iterations.

Preimages of −a are connected to the foliage on both sides, while the other

preimages of +a are connected on one side only.
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remarkable richness and complexity, even in the hyperbolic case. The following
two examples both represent points of the curve S2. Figure 20 shows an example
of Type D with parameter δ = 2.03614+0.05431 i. The free critical point −a lies
on one of the seven branches emanating from a repelling periodic point (below
the figure) with period two and rotation number 2/7. Figure 21 shows a nearby
example of Type C with δ = 2.03540 + 0.05316 i.

Figure 22: Connectedness locus in S3/I , with coordinate c = (F ◦2(a) −
F (a))/(F (a) − a) .

Period 3. The curve S3 has genus one, being diffeomorphic to an eight
times punctured torus. However, the quotient S3/I has genus zero, with six
ends. (Thus the involution I fixes four of the ends of S3 but permutes the
other four in pairs.) More explicitly, a map in S3 is determined up to affine con-
jugation by the “shape” of its superattracting orbit. After an affine conjugation
which moves the critical point a to zero and the critical value F (a) to one, our
map F will be replaced by something of the form w 7→ αw3 + βw2 + 1 , where
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say 0 7→ 1 7→ 1 + c 7→ 0 . Here c is a parameter which specifies the “shape” of
the critical orbit. It is not difficult to solve for

α = −c3 + 2c2 + c + 1

c(c + 1)2
, β = c − α =

c4 + 3c3 + 3c2 + c + 1

c(c + 1)2
.

Thus the coefficients α 6= 0 and β are uniquely determined by the shape
parameter c , which can take any finite value with the exception of c = 0 , −1 ,
where the denominator vanishes, and c = −0.1225 ± 0.7448 i or −1.7548 (to
four significant figures), where the numerator of the expression for α vanishes.
These five points, together with the point at infinity, represent punctures in the
Riemann surface S3/I ≈ Ĉ. The associated connectedness locus in the c-plane,
or in other words in S3/I , is shown in Figure 22. To obtain a corresponding

picture for the curve S3 itself, we would have to form the 2-fold covering of Ĉ ,
ramified at four of the six puncture points. In fact this ramified covering is a
(punctured) elliptic curve which can be identified with the Riemann surface of
the function

c 7→
√

c(c3 + 2c2 + c + 1) = c(c + 1)
√

α ,

ramified at c = 0 and at the three values of c which represent period three
centers in the Mandelbrot set.

Remark 5.18. This period three moduli space S3/I has six escape regions,
corresponding to maps for which the orbit of the free critical point escapes to
infinity. Each of these regions is canonically isomorphic to a punctured disk.
The five finite puncture points can be characterized as the five values of c for
which the quadratic map z 7→ z2+c has critical orbit of period one, two or three.
In other words, they are the center points of the five hyperbolic components in
the Mandelbrot set which have period ≤ 3 . For F in three of these escape
regions, corresponding to the period 3 centers in the Mandelbrot set, the Julia
set J(F ) contains infinitely many copies of the associated quadratic Julia set.
(This is similar to the situation in Figure 18.) For F in the other three escape
regions, the Julia set is made up out of points and circles, as in Figures 20 and
21. (Compare (Branner and Hubbard 92).)

This curve S3/I has four hyperbolic components of Type A. These are
the images of the eight Type A centers in S3, representing maps of the form
F (z) = z3 + v which have critical orbits of period three. The corresponding
shape parameters are given by c = v2 ≈ −1.598± .6666 i or .0189± .6026 i (the
four points where β(c) = 0 ). It has eight hyperbolic components of Type B,
that is four with F (a) = −a, and four with shape parameter c′ = −1 − 1/c
satisfying F (−a) = a. There are infinitely many components of Types C and
D.

Period 4. The curve S4 will be studied in (Bonifant and Milnor ) (the
continuation of this paper). Let me simply mention that the situation is more
complicated in period 4. In particular, four of the twenty ends of S4 have
multiplicity two, or in other words are ramified over the a-plane.
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Outline Proof of Theorem 5.2. To prove that the curve Sp is smooth, we

proceed as follows. For any F ∈ P̂(3) which is sufficiently close to Sp , it
follows from the implicit function theorem that there is a unique periodic point
close to a . Evidently the multiplier λ = λ(F ) of this periodic point depends
holomorphically on F ∈ P̂(3) . We must prove that the partial derivatives
∂λ/∂a and ∂λ/∂v are not simultaneously zero.

At hyperbolic points, the proof is relatively easy. For each hyperbolic com-
ponent of C(3) is canonically biholomorphic to one of four standard models.
(See (Milnor 92b).) Within each of these standard models, the locus of those
maps for which a specified one of the critical points is precisely periodic is
transparently a smooth complex submanifold.

In a neighborhood of a non-hyperbolic map, we make use of a surgery argu-
ment as follows. Evidently the critical point −a cannot belong to the attractive
basin of +a , hence the immediate basin of a is isomorphic to the open unit
disk, parametrized by its Böttcher coordinate. Using quasiconformal surgery, it
is not difficult to replace this superattractive basin by a basin with multiplier
λ .

This yields a new map Fλ , where λ varies over the open unit disk, which
depends smoothly on λ and coincides with the original map when λ = 0 . Since
the composition λ 7→ Fλ 7→ λ(Fλ) is the identity map, this proves Theorem
5.2. ⊔⊓

Some of the ends in the curve Sp can be described quite explicitly as follows.

Lemma 5.19. Each end of the cubic superattracting locus Sp can be described,
for large |a| , by a Laurent series having one of the following two forms

v − a
v + 2a

} = k0 + k1/a1/µ + k2/a2/µ + · · · ,

where µ is the multiplicity. Among these, there are ν2(p)/2 ends with trivial
kneading sequence. These correspond to the ν2(p)/2 period p centers z 7→
z2 + c0 in the Mandelbrot set, and have Laurent series of the form

v − a = c0/3a + k3/a3 + k5/a5 + · · · .

For these special ends, the non-trivial components of the corresponding filled
Julia sets K(F ) are homeomorphic to the filled Julia sets of the associated
quadratic map z 7→ z2 + c0 . These ends have the property that, for large |a| ,
the orbit of the periodic critical point a under the associated cubic map F
always stays within the 1/|a| neighborhood of a . On the other hand, if F
belongs to an end of Sp which is not of this form, with |a| large, then the orbit
of a under F must also pass close to the co-critical point −2a .

The proof is not difficult, and will be omitted. ⊔⊓
It follows easily that each of these special ends is carried into itself by the

involution I . Using the identity g(Sp) = 2g(Sp/I) + r/2 − 1 , where g is the
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rabbit

co-rabbit

airplane

Figure 23: Sketch of the cell subdivision for S2/I and the conjectured cell

subdivision for S3/I. (Compare Figures 16 and 22.) Here the centers of

components of Types A and B have been indicated by heavy and light dots

respectively. Each of the complementary 2-cells in Sp/I is labeled, either

with its kneading sequence, or with the nickname for its associated quadratic

map if the kneading sequence is 0.

genus and r the number of ramification points, this yields the crude inequality
g(Sp) ≥ r/2 − 1 ≥ ν2(p)/4 − 1 , which implies the following: The genus of Sp

is non-zero for p ≥ 3 , and tends to infinity as p → ∞ .

5D. A Conjectured Cell Subdivision of Sp.

How can we understand the topology of the curve Sp? Even if we could verify the
conjecture that Sp is connected, this would leave open the problem of computing
its genus. This is not a trivial question, since this curve in C2 has complicated
singularities when extended to a variety in the complex projective plane. Here
is one approach to understanding the topology of Sp and of its non-singular
compactification Sp. We will usually assume that p ≥ 2, since the structure of
S1 is much simpler.

Since each bounded hyperbolic component in Sp is conformally isomorphic
to the unit disk, with a preferred center point, we can define the concept of a
regulated path in the connectedness locus C(Sp). (Compare the Appendix. Of
course, since we don’t know whether C(Sp) is locally connected, there may be
real difficulties in proving the existence of such regulated paths.)

Conjecture 5.20. For each escape region Eι ⊂ Sp with p ≥ 2, there is
a unique simple closed regulated curve Γι which separates Eι from the other
escape regions. This curve Γι bounds a topological cell Uι within the compactified
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curve Sp, so that Uι contains Eι but is disjoint from the other escape regions.
Furthermore, there is a cell subdivision of Sp with the union Γ of the Γι as
1-skeleton, and with the Uι as 2-cells. In particular, the union of the closures
U ι = Uι ∪ Γι of these 2-cells is the entire curve Sp.

We can describe this 1-skeleton Γ as the “core” of Sp, since all of the most
interesting dynamics seems to be centered around it. In particular, it is conjec-
tured that the center points of all hyperbolic components of Types A and B are
contained in Γ.

For the special case p = 1, the situation is much simpler. Define the core
of S1 to be the center point of its unique hyperbolic component of Type A, so
that we obtain a cell subdivision with a single vertex (corresponding to the map
z 7→ z3), with the rest of S1 as 2-cell.

If this conjecture is true, then it follows easily that the quotient Sp/I has
a corresponding cell structure, with the quotient graph Γ/I as 1-skeleton. See
Figure 23, which illustrates the period two and three cases.

For p ≥ 2, we can divide the bounded hyperbolic components in Sp into
two classes as follows. Call V a core component if there are two or more
escape regions Eι such that the intersection V ∩ E ι contains more than one
point. (In terms of this conjectured cell structure, this means that V is cut into
two or more pieces by Γ.) Call V a peripheral component otherwise. We
can define the thick core Γ+ ⊂ Sp to be the closure of the union of all core
components. Then the complement SprΓ+ is a disjoint union of open sets E+

ι ,
one contained in each cell Uι. By a limb of the connectedness locus within Uι we
mean a connected component of C(Sp) ∩ E+

ι . Thus every peripheral hyperbolic
component must be contained in some unique limb. Conjecturally every limb L
is attached to Γ+ at a unique parabolic point F0 ∈ L∩Γ+, and is separated from
the rest of the connectedness locus by two external rays in Eι which land at F0.

Again the case p = 1 is simpler. The thick core Γ+ ⊂ S1 is defined to be the
closure of the principal hyperbolic component, and its complement is defined to
be E+.

There are completely analogous descriptions within Sp/I. The reader should
have no difficulty in distinguishing core components and limbs among the rea-
sonably large components in Figures 6, 16, and 22.

6 Quadratic Julia Sets in Cubic Parameter

Space.

Assuming that the cell subdivision of §5 exists, we can get a good idea of the
structure of the connectedness locus C(Sp) by studying its intersection with each
of the conjectured 2-cells. This section will attempt to provide an explicit de-
scription for those complementary 2-cells which have trivial kneading sequence,
and hence are associated with quadratic polynomials of critical period p.

Let g be a quadratic polynomial with period p critical point, and let Eg ⊂
Sp/I be the associated escape region. Thus, for every F ∈ Eg, the filled Julia

48



set K(F ) contains infinitely many copies of K(g). Let Ug ⊃ Eg be the 2-cell
which contains Eg in the conjectured cell subdivision of §5.

Basic Construction. Let K♯(g) be the compact set which is obtained by
cutting open4 the filled Julia set K(g) along its minimal Hubbard tree Tg. Thus
the preimage T ♯

g = η−1(Tg), under the natural projection η : K♯(g) → K(g) is

a topological circle, which can be described as the inner boundary of K♯(g).
(Compare Figure 24.) Let J♯(g) = η−1(J(g)) be the preimage of the Julia set
in K♯(g).

Conjecture 6.1. There exists a dynamically defined canonical embedding φ
from the cut-open filled Julia set K♯(g) into the parameter cell Ug which turns
K♯(g) inside-out so that the inner boundary circle T ♯

g of K♯(g) maps to the outer
boundary circle Γg = ∂Ug.

Alternatively, for periods ≤ 3, since Sp/I has genus zero, we can turn Sp/I
inside out by mapping it onto the Riemann sphere so that the puncture point in
Eg goes to the point at infinity. The resulting picture can be compared directly
with K♯(g). As an example, for the case Q(z) = z2 − 1 we can compare Figure
24 with Figure 25. Evidently there is a strong resemblance between the region
outside the white circle T ♯

g in Figure 24 and the region outside the black circle Γg

in Figure 25. The most striking difference is the presence of many copies of the
Mandelbrot set in Figure 25, and also in the right half of Figure 26. (Compare
Conjecture 6.2 below.) Figures 27 and 28 provide a similar example for period
three.

The embedding φ : K♯(g) → Ug can be described intuitively as follows.
Each point ẑ ∈ K♯(g)rJ♯(g) corresponds to a cubic map φ(ẑ) ∈ Ug which is
constructed starting with the quadratic map g by altering the dynamics so that
ẑ will be an additional critical point (or a double critical point in the special
case that ẑ is already critical). Thus:

Case A. If ẑ belongs to the Fatou component V0 containing 0 then we
will obtain a cubic map of Type A, with both critical points in
the same Fatou component.

Case B. If ẑ belongs to some forward image g◦j(V0) with 0 < j < p,
then we will obtain a component of Type B, with both critical
points in the same cycle of Fatou components.

Case C. For all other ẑ in K♯(g)rJ♯(g), we will obtain a component of
Type C.

This provides a very rough description of the map φ within the Fatou region of
K♯(g). It is conjectured that φ extends continuously over all of K♯(g).

To deal with components of Type D, the following supplementary statement
is needed. A point in the cut-open Julia set J♯(g) will be called periodic if it
is the image of a periodic point of Jg.

4In the special case p = 1, so that Q(z) = z2, no cutting is necessary, and K♯(g) should be
identified with the unit disk K(g).
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Figure 24: The cut-open filled Julia set K♯(g) for the “basilica” map

Q(z) = z2 − 1. Here the Julia set J♯(g) is colored black.

Figure 25: The curve S2 inverted so that the “basilica” escape region will

be on the outside. The black circle approximates the core Γg of S2.

Figure 26: Details near the top of Figures 24 and 25 respectively.
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Figure 27: Julia set for the Douady rabbit, with minimal Hubbard tree emphasized.

Figure 28: This is Figure 22, inverted in a small circle about the upper right

puncture point and then rotated 90◦ . Our claim is that the region outside of

the small circle is homeomorphic to the Figure 27, cut open along its minimal

tree, and with further decorations, including Mandelbrot sets or portions of

Mandelbrot sets.
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Conjecture 6.2. For every Julia periodic point ẑ ∈ J♯(g), a copy of the
Mandelbrot set is attached to φ(K♯(g)) at the point φ(ẑ) within the curve Sp/I.
More precisely, if ẑ is a periodic point with combinatorial rotation number
m/n 6= 0, then the (m/n)-limb of the Mandelbrot set is attached within Ug,
with the rest of the Mandelbrot set attached in the complementary parameter re-
gion Sp/IrUg. On the other hand, for periodic points of rotation number zero,
the entire Mandelbrot set will be attached within Ug. In all cases, this attached
Mandelbrot set intersects φ(K♯(g)) only at the point φ(ẑ) itself; and in all cases
there are further decorations added to these Mandelbrot sets.

There is a very close connection between periodic points in the Julia set
Jg and external rays which are periodic under angle doubling. The connection
becomes even closer if we pass to the cut-open Julia set J♯(g). In fact:

Lemma 6.3. Every periodic external ray lands on a periodic point in J♯(g), and
every periodic point in J♯(g) is the landing point of exactly one external ray.
Hence, if Conjecture 6.2 is correct, there is a one-to-one correspondence between
periodic external rays for K(g) and Mandelbrot copies attached to φ(K♯(g)).

Evidently this provides a simple way of labeling those Mandelbrot copies
which are attached in regions Ug.

Outline of the Construction. This conjectured embedding φ from K♯(g)
into Ug ⊂ Sp will be described in the following four subsections. §6A will
describe φ(ẑ) in the case where ẑ corresponds to the center of a Fatou component
in K(g). The image φ(ẑ) will then be the center of a hyperbolic component in
Sp/I. As in §4, a representative cubic map is most easily described by means
of its Hubbard tree. In §6, we extend to the case of an arbitrary ẑ in the Fatou
subset K♯(g)rJ♯(g). §6 will study the case where ẑ belongs to the Julia set
J♯(g) but is not periodic, and §6 will consider the case of a periodic point in the
Julia set.

6A. Enramification: The Hubbard Tree.

The rather ungainly word “enramification” will be used for the operation of
constructing a cubic polynomial map F from some given quadratic polynomial
map g by artificially introducing a new critical point (or by replacing the simple
critical point by a double critical point). Here three cautionary points should
be emphasized:

• Although the construction is known to make sense in many cases, its
existence in general is conjectural.

• The construction is not always uniquely defined. More precisely if ẑ be-
longs to the minimal tree Tg, and is not an endpoint of this tree, then
multiple choices are possible; hence the necessity of cutting-open along Tg

in the discussion above.
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• This new map F is well defined only up to affine conjugation, so that we
cannot distinguish between F and its image I(F ) : z 7→ −F (−z). For this
reason, we will work with Sp/I rather than Sp.

We first discuss enramification as an operation on abstract Hubbard trees.
Here is a brief outline to fix notations. (See the Appendix for a more detailed
presentation.) Let F be a post-critically finite polynomial of degree d ≥ 2,
and let S ⊃ F (S) be a forward invariant set containing the critical points.
The associated Hubbard tree T = T (S) is a finite acyclic simplicial complex
which has dimensional one, except in the special case where S = T (S) consist
of a single point. Its underlying topological space |T | ⊂ K(F ) is the smallest
subset of K(F ) which contains S and is connected by regulated paths. By the
valence n(z) of a point z ∈ |T | I will mean the number of connected components
of |T |r{z}. The set V of vertices of T consists of S together with the finitely
many points v of valence n(v) ≥ 3. Note that F maps vertices into vertices.
Furthermore, if e is an edge with v as one of its two boundary points and if U
is a small neighborhood of v, then F maps U ∩ e into a unique edge which will
be denoted by Fv(e). Similarly, any iterate F ◦k induces a map F ◦k

v
from edges

at v to edges at F ◦k(v). As part of the structure of T we include the following:

(1) The map F restricted to the set V of vertices.

(2) The local degree function which assigns an integer d(v) ≥ 1 to each
vertex, with ∑

v

(d(v) − 1) = d − 1 .

Here d(v) > 1 if and only if v is a critical point.

(3) The angle function ∠(e1, e2) ∈ Q/Z, where e1 and e2 are any two edges
meeting at a common vertex v. This vanishes if and only if e1 = e2. The
map F multiplies all angles at v by d(v), in the sense that

∠
(
Fv(e1), Fv(e2)

)
= d(v) ∠(e1, e2) .

Recall that any periodic point z of period p ≥ 1 in the Julia set has a well
defined rotation number in Q/Z which describes the way that the external
rays landing at z are rotated by F ◦p. (See for example (Milnor 00).) If we choose
a Hubbard tree having z as a vertex, then this rotation number also describes
the way in which the edges incident to z are rotated by the correspondence F ◦p

z .
For any critically finite polynomial F , there is a unique minimal tree

Tmin(F ) which is obtained by taking the union of critical orbits as the gen-
erating set S. Our preliminary goal can be described roughly as follows:

Given a post-critically finite quadratic polynomial Q(z) =
z2 + c, to study cubic polynomials F such that the minimal
Hubbard tree for F can be constructed by minor modifica-
tions of some Hubbard tree for g.
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*
c1 c0 c2r1 r0 r2α

Figure 29: A Hubbard tree for the “airplane” map Q(z) = z2−1.754866 · · · ,
with critical orbit {cj} of period three. The associated root points {rj} form

a period three orbit in the Julia set with rotation number zero, while the fixed

point α has rotation number 1/2.

To this end, we start with the minimal Hubbard tree Tmin = Tmin(g) for the
quadratic map. Given any periodic or pre-periodic point w0 ∈ K(F ), let T (w0)
be the Hubbard tree for g which has as its generating set S the union of the
critical orbit and the orbit of w0.

Theorem 6.4. In most cases the extended tree T = T (w0), as described above,

can be made into the Hubbard tree T̂ of a cubic polynomial simply by replacing
the local degree function d(v) by

d̂(v) =

{
d(v) if v 6= w0

d(v) + 1 if v = w0 ,

and by carefully modifying the angle function at w0 and at all vertices which are
iterated pre-images of w0. In fact, if w0 has valence n(w0) ≥ 1, then there are
precisely n(w0) distinct ways of carrying out this angle modification. However,
there is one special case where a different construction is necessary, namely the
case when w0 is a periodic point in the Julia set with rotation number zero but
with valence n(w0) = 2.

For an example of this special case, see Figure 29, and for its resolution see
Remark 6.7 and Figure 31.

Note. If n(w0) ≤ 1, then the construction is uniquely defined and no angle
modification is necessary. In particular, this will be the case whenever w0 lies
strictly outside of the minimal tree. (Compare Figure 30.)

The proof of Theorem 6.4 will be based on two lemmas. Let Q(z) = z2 + c
be a critically finite quadratic polynomial, and let

0 = c0 7→ c1 7→ · · · 7→ ck

be the distinct points in the critical orbit, with c1 = c. (We are mainly interested
in the critically periodic case where k = p − 1 and Q(cp−1) = c0; but it is no
more difficult to consider the preperiodic case at the same time.)

Lemma 6.5. Let Q(z) = z2 + c be a critically finite quadratic polynomial,
as above. If k > 0 then, in the minimal tree Tmin, we have n(c1) = 1 and
n(c0) ≤ 2. In fact, in the critically periodic case of period p we have

1 = n(c1) ≤ n(c2) ≤ · · · ≤ n(cp−1) ≤ n(c0) ≤ 2 .
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c1 c0

w1

w0

w2

Figure 30: The extended tree T (w0) for the “basilica” map Q(z) = z2 − 1,

together with the period three orbit {w0, w1, w2}. The minimal tree Tmin ⊂
T (w0) has been emphasized. Note that the edge from c0 to w0 maps to the

path from c1 through c0 to w1.

If w0 is a periodic or preperiodic point which lies strictly outside of Tmin, then
a similar argument applied to the extended tree T (w0) shows that n(w0) = 1.

Proof. Every non-degenerate tree must have at least two vertices v with n(v) =
1. For otherwise, starting with any edge we could keep finding successive edges
on one end or the other until we generate a closed loop, which is impossible.
Since every vertex outside the critical orbit has valence n(v) ≥ 3 by the defi-
nition of the minimal tree, it follows that there are at least two of the cj with
n(cj) = 1.

Therefore, since F is injective in the neighborhood of any non-critical point,
we have

1 = n(c1) = n(c2) ≤ · · · ≤ n(ck) ≤ n(Q(ck)) .

Furthermore, since F is at most 2-to-1 in a neighborhood of the critical point
c0, it follows that n(c0) ≤ 2. In the critically periodic case, since Q(cp−1) = c0,
it follows that n(ci) ≤ 2 for all points of the critical orbit.

Now consider the extended tree T (w0) in the case that w0 6∈ |Tmin|. If w0 7→
w1 7→ · · · , then a similar argument shows that n(wh) ≤ n(wh+1) provided that
wh 6= 0. On the other hand, this extended tree must have at least one endpoint
outside of |Tmin|. For otherwise, starting with any edge e outside of |Tmin| and
extending in both directions, we could either construct a closed loop outside
of Tmin, or else construct a path from |Tmin| to itself which passes through
e. Since both cases are impossible, it follows easily that w0 is an endpoint of
T (w0), as asserted. (Note that this last argument works even in the degenerate
case Q(z) = z2.) ⊔⊓

Lemma 6.6. Let w0 be periodic of period p ≥ 1 in the quadratic Julia set J(g).
If n(w0) ≥ 3, then the map g◦p

w0
permutes the n(w0) incident edges cyclically.

Proof. An analogous statement for external rays landing at w0 is proved in
(Milnor 00, Lemma 2.7); and the corresponding statement for the tree T (w0)
follows easily. ⊔⊓

Proof of Theorem 6.4. We distinguish six cases.
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Case 1. Suppose that w0 is an endpoint of the tree T (w0), in the sense
that n(w0) ≤ 1 . Then we need only replace the local degree d(w0) by

d̂(w0) = d(w0) + 1.

The given angle function is consistent without any change. Evidently this con-
struction is uniquely defined. Using Poirier’s Theorem (stated as Theorem A.3
in the Appendix), it yields a cubic map which is uniquely defined up to affine
conjugation.

By Lemma 6.5 this includes all cases where the point w0 does not belong to
|Tmin|. For the rest of the proof, it will be tacitly understood that w0 ∈ |Tmin|,
and that n(w0) ≥ 2.

Case 2. Suppose g is critically periodic, and that w0 is one of the points ch

in the critical orbit, but is not the critical point c0 = 0. Since we have assumed
that n(w0) ≥ 2, it follows by Lemma 6.5 that n(w0) = 2, and it is not hard to
check that the angle ∠(e1, e2) between the two edges which meet at w0 must
be equal to 1/2 . To make a cubic tree, we must first redefine the local degree

at w0 to be d̂(w0) = 2 . Let e′1 and e′2 be the two edges which meet at Q(w0).

Since the cubic map F̂w0
must double angles, the angles for the cubic map must

satisfy
2 ∠(e1, e2) = ∠(e′1, e′2) = 1/2 .

In other words, we must change the angle at w0 to either ∠(e1, e2) = 1
4 or

∠(e1, e2) = 3
4 . Furthermore, we must make exactly the same change at every

iterated pre-image cj , 0 < j ≤ h , for which n(cj) = 2 . Thus, in this case there
are just two essentially distinct ways of carrying out the construction.

As an example, if we start with a real quadratic map in Case 2, then the
construction will yield two different cubic maps which are complex conjugate to
each other, but are not affinely conjugate to any real map.

Case 3. Now suppose that w0 the critical point 0. Then we must replace
d(w0) = 2 by d̂(w0) = 3. Whether w0 is periodic or pre-periodic, there are
just two incident edges. Again there are two possible choices for the modified
angles, but in this case the possible choices are 1

3 and 2
3 .

Case 4. Next suppose that w0 is strictly preperiodic. (Compare (Bielefeld
89).) Then the local map from a neighborhood of w0 to a neighborhood of Q(w0)
preserves the angles between neighboring edges, say θ1, . . . , θn. The angles at
Q(w0) will not change; but we must choose new angles θ̂j at w0 satisfying

2θ̂j ≡ θj (mod Z). In order to satisfy the condition that
∑

θ̂j =
∑

θj = 1,

we must choose θ̂j = (θj + 1)/2 for one of the n angles, and θ̂j = θj/2 for the
n − 1 remaining angles. Again, any choice of angles at w0 must be propagated
backwards to any vertices which eventually map to w0; and hence again there
are exactly n allowable choices. If w0 = 0 hence n(w0) = 2, the argument is
similar, but now the allowable angles are 1

3 and 2
3 .

Case 5. Finally, suppose that w0 ∈ |Tmin| is periodic of period q ≥ 1 and
belongs to the Julia set. If n(w0) ≥ 3, then by Lemma 6.6 the first return map
g◦q permutes the n = n(w0) edges which meet at w0 cyclically. The same will
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be true for n(w0) = 2, proved that the rotation number at w0 is equal to 1/2.
Number these edges as {ej} with j ∈ Z/q so that g◦qw0 (ej) = ej+1. Since w0

is in the Julia set, the angle θj between ej and the next edge in positive cyclic
order is equal to 1/n by definition. However, in order to make T (w0) into a

cubic tree, we must choose new angles θ̂j . Since g◦n has degree two at w0, the
required condition on these new angles is that

θ̂j+1 ≡ 2θ̂j (mod Z) .

Iterating q times, this yields θ̂j ≡ 2q θ̂j (mod Z), so that each θ̂j must have
the form k/(2q − 1). The only possible solution is that these angles form some
cyclic permutation of the sequence

1/(2q − 1) , 2/(2q − 1) , 22/(2q − 1) , . . . , 2q−1/(2q − 1) .

In fact, using the requirement that 0 < θ̂j < 1 with
∑

θ̂j = 1, we can write

2θ̂j = θ̂j+1 + ǫj with ǫj ∈ {0, 1}. Summing over j, it follows that
∑

ǫj = 1;
and the conclusion follows easily. Thus there are exactly n distinct solutions.
Evidently, any choice of angles for w0 can easily be propagated backward to
any vertices of T (w0) which eventually map to w0 (including all vertices on its
periodic orbit).

Since this covers all possibilities (except the case of rotation number zero
and valence two, which has been excluded), it completes the proof of Theorem
6.4. ⊔⊓

Remark 6.7. In the exceptional case of rotation number zero and valence
two, this construction cannot work, since we would have to find a non-zero so-
lution to the equation θ ≡ 2θ (mod Z), which is impossible. However this does
not cause any real difficulty. It merely requires a somewhat different modifica-
tion in which extra branches are added to the tree. As a typical example, if we
start with the airplane tree of Figure 29 and want to enramify the point r1 of
period three, then we must add three short branches to the tree, as shown in
Figure 31. (Here, to follow the conventions of the Appendix, the angles between
consecutive edges at the periodic Julia vertices of valence three should all be
120◦.) In such examples, there are always two possible choices since we can put
new critical point to either side of the original tree.

It is interesting to ask which trees contain such a vertex of valence two
and rotation number zero. Conjecturally, the Hubbard tree for Q(z) = z2 + c
contains such an exceptional periodic orbit if and only if the induced mapping
from T to itself has positive topological entropy, or if and only if c belongs to the
central “cactus” in the Mandelbrot set. (For a study of Hubbard tree entropy,
see (LiTao 07). Following (Cvitanović and Myrheim 89), the central cactus is
the smallest compact subset of the Mandelbrot set which contains the central
cardioid component and all of its iterated satellites. )
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 a     -a

4/13

3/13
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 17/26

9/13  10/13

 23/26
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Figure 31: Above: the airplane tree of Figure 29, with a new period 3

critical orbit added. Below: the corresponding Julia set. (Here a = c0
∼=

.828 + .019 i and v = c1
∼= −.758 − .152 i, with w0 = −a.) Note that the

Fatou components containing cj and wj−1 have the repelling point rj as a

common boundary point.

6B. Components of Type A, B, C.

Now consider an arbitrary point ẑ ∈ K♯(g)rJ♯(g). The corresponding Fatou
component in K(g) contains a unique precritical point. According to Theorem
6.4 we can construct an associated cubic Hubbard tree, and hence an associated
cubic map which is postcritically finite and hyperbolic. We want to find a map
in the same hyperbolic component W which corresponds to ẑ.

Now consider the case of an interior point w ∈ K(q) . Within the component
U of w , there will always be one and only one pre-critical point w0 . As in §4,
we can make the extended Hubbard tree T ′(w0) into a cubic Hubbard tree. (In
the special case where w0 ∈ T , there are n(w0) different ways of carrying out
this construction.) Each such cubic Hubbard tree determines a post-critically
finite hyperbolic cubic polynomial F0 , and we can now obtain the required
polynomial F by “tuning” F0 .

To understand this tuning construction, first look at an arbitrary component
U of the interior of K(q) . Then some iterate q◦m maps U diffeomorphically
onto the component U0 which contains the critical point. Since the first return
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map from U0 to itself has degree two, there is a canonical Böttcher diffeo-
morphism β from U0 onto the open unit disk. Hence U itself is canonically
diffeomorphic to the open unit disk under β ◦ q◦m .

To study the corresponding open set in cubic parameter space, let W be the
component of the polynomial F0 within the open set of hyperbolic polynomials
within Sp . We will prove the following.

Lemma 6.8. This open set W in the parameter curve Sp is either a one-, two-
or three-fold branched cover of the corresponding open set U in K(q) , branched
at the central point F0 7→ w0 . More explicitly, the degree of this covering is
two if w0 coincides with the quadratic critical point, three if w0 is one of the

p − 1 post-critical points, and W
≈→U in all other cases.

Note that we have avoided this branching, in the formulation of the Period p
Conjecture, by cutting K(F ) open along its Hubbard tree.

Outline Proof. First note that each bounded Fatou component U ⊂ K(g)
of the quadratic filled Julia set is canonically biholomorphic to the open unit
disk D. To see this, let U0 = g◦n(U), n ≥ 0, be the first forward image of U
which contains the critical point. Then we can first map U biholomorphically
onto U0 by g◦n, and then map U0 biholomorphically onto D, using the Böttcher
coordinate associated with the degree two self-map g◦p : U0 → U0.

Similarly, for any bounded hyperbolic component W ⊂ Sp, there is a canon-
ical holomorphic map from W to D. The composition W → D ↔ U then yield
the required holomorphic covering map from W onto U ⊂ K(g).

For components of Type A, B or C one proceeds as follows.5

For F ∈ W , let n ≥ 0 be the smallest integer such that F ◦n(−a) belongs to
the Fatou component Ua of the periodic point +a. If W is of Type C, then the
Böttcher coordinate for the degree two map F ◦p : Ua → Ua is well defined, and
we can simply define β(F ) to be the Böttcher coordinate of F ◦n(−a). Evidently
β maps W biholomorphically onto D.

For Type A (with n = 0) or Type B (with 0 < n < p), we have to work
a little harder. For the central point F0 ∈ W , the image F ◦n

0 (−a) is precisely
equal to +a, and we set β(F0) = 0. For F 6= F0, we will see that the Böttcher
coordinate for the map F ◦p : Ua → Ua can be defined in a neighborhood of
+a which is large enough to contain F ◦n(−a). The Böttcher coordinate of
F ◦n(−a) will then be the required invariant β(F ); and it is not hard to check
that the correspondence F 7→ β(F ) from the open set W ⊂ Sp to D is proper
and holomorphic, and is locally bijective except at F0. We will prove that it has
degree two (for Type A) or degree three (for Type B) by studying local behavior
near the central point F0 . (Compare the proof of Lemma 3.6.)

First consider a component W ⊂ Sp of Type A. It will be convenient to set
z = a + w, and v = F (a) = a + δ. Using w as independent variable, we obtain
a polynomial map

Ψ(w) = δ + 3aw2 + w3

5For Type D one would use a quite different construction, mapping F ∈ W to the multiplier
of the periodic orbit associated with −a; but that will not concern us here.
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which is affinely conjugate to F , with critical points w = 0 and −2a. A brief
computation shows that the n-th iterate of Ψ has the form

Ψ◦n(w) = δn + 3acnw2 + cnw3 + O(w4) .

where δn and cn are polynomial functions of δ and a, with δn = Ψ◦n(0). In
particular, if the critical point 0 has period p, then δp = 0 so that

Ψ◦p(w) = 3acpw
2 + cpw

3 + O(w4) .

Here the coefficient cp must be non-zero, since the orbit of zero has period
exactly p.

The Böttcher coordinate associated with Ψ◦p has a power series expansion
of the form

β(w) = 3acpw + (higher order terms) ,

and converges for |w| < |2a|. Hence we have the asymptotic estimate

β(w) ∼ 3acpw as w/a → 0 .

We can apply this estimate to the critical value

Ψ◦p(−2a) = 3acp(−2a)2 + cp(−2a)3 + O(a4) = 4cpa
3 + O(a4) .

Using the identity β(Ψ◦p(w)) = β(w)2, since

β(Ψ◦p(−2a)) ∼ 3acp(4cpa
3) we obtain β(−2a) ∼

√
12c 2

p a4 = ±2
√

3 cp a2

as a → 0. This is the required asymptotic estimate, proving that β : W → D

has degree two.
For Type B components, the construction is as follows. Suppose that

F ◦m(Ua) = U−a and F ◦n(U−a) = Ua , where m + n = p.

Let F ◦m(a) = −a + ǫ, where |ǫ| is small. It will be convenient to say that two
variables have the same order as ǫ → 0 if each one is asymptotic to a constant
multiple of the other.

Since −a is a simple critical point, it follows that F (−a + ǫ) − F (−a) has
the order of ǫ2 as ǫ → 0, and that the first derivative F ′(−a + ǫ) has the order
of ǫ. It follows easily that a − F ◦n(−a) also has the order of ǫ2 as ǫ → 0.
Furthermore, the second derivative of F ◦p at a has the order of ǫ. Hence the
Böttcher coordinate of a+w has the order of ǫw as both ǫ and w/ǫ tend to zero.
Taking a + w equal to F ◦n(−a), so that w has the order of ǫ2, it follows that
the corresponding Böttcher coordinate has the order of ǫ3, as required. ⊔⊓

As an immediate consequence of Lemma 6.8, it follows that the Poincaré
geodesic joining the critical point of g to its root point, lifts to a pairs of curves
in a component of type A, or a tripod of components in a component of Type
B. One of the sectors which is cut by these Poincaré geodesics will correspond
to the intersection of this component with the conjectured cell Ug.
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6C. The Non-Periodic Julia Case.

This is perhaps the easiest case to understand. (Compare Figure 2.) If ẑ ∈ J♯(g)
is not periodic, then there is a canonical embedding ι : K(g) →֒ K(F ) which
satisfies ι ◦ g = f ◦ ι. The set K(F ) can be obtained from the embedded im-
age ι(K(g)) by adjoining a limb Lz homeomorphic to K(F ) at ι(z) for every
z ∈ K(g) which is either equal to ẑ or to some iterated preimage of ẑ. This
limb Lz maps homeomorphically onto L(Q(z)) for z 6= ẑ, while Lbz maps homeo-
morphically onto all of K(F ). There is a canonical retraction K(F ) → ι(K(g))
which maps each Lz to its attaching point ι(z). In fact we can construct a
simple topological model for K(F ) as follows: An orbit z0 7→ z1 7→ · · · in K(F )
is uniquely determined by its image

(r(z0), r(z1), . . .) ∈ ι(K(g))N .

Furthermore, a given sequence can occur if and only if r(zj) 7→ r(zj+1) for all j
such that r(zj) 6= ι(ẑ).

Thus K(F ) can be uniquely described as a topological dynamical system.
However, this analysis does not specify just how K(F ) is embedded in C. In
fact, if the image of the point ẑ under the projection K♯(g) → K(g) cuts K(g)
into n distinct components, or equivalently if there are n distinct external rays
landing at this image point in K(g), then there are n essentially distinct ways of
embedding the dynamical system K(F ) into C. In fact if we cut C open along
any one of these n rays which land on K(g), then we can paste the entire limb
Lbz into the resulting gap. These n choices correspond precisely to the n ways
of lifting the image in K(g) up to the cut-open set K♯(g).

6D. The Periodic Julia Case.

If ẑ ∈ J♯(g) corresponds to a periodic point in J(g), then the situation is similar
but more complicated, as illustrated in Figure 3. The repelling periodic point
ẑ will be replaced by a parabolic periodic point in K(F ), on the boundary
of a new parabolic Fatou component. Perhaps the easiest construction is to
use the Hubbard tree argument of Theorem 6.4 or Remark 6.7 to construct an
associated hyperbolic map. The required φ(ẑ) will then be the root point of the
corresponding hyperbolic component.

Appendix. Hubbard Trees.

This will be an exposition of Hubbard trees, as originally described in (Douady
and Hubbard 84/85, §IV), with more precise statements due to Alfredo Poirier.
It also describes slightly modified “puffed-out” Hubbard trees.

The Hubbard tree T associated with a post-critically finite polynomial F
can be defined as follows. Each component of the Fatou set ĈrJ(F ) contains
a unique periodic or pre-periodic point which will be called its center. A path
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in the filled Julia set K(F ) is regulated if its intersection with each Fatou
component consists of at most two Poincaré geodesics, each joining the center to
a boundary point. Now let S ⊂ K(F ) be a finite set which contains all critical
points and satisfies F (S) ⊂ S. The associated tree T = TS is the regulated
convex closure: that is the smallest set containing a regulated path between
any two points of S. This is a topological tree, and can be triangulated so that
the set of vertices consists of the given set S , together with a finite number of
points where three or more edges come together. The given mapping F carries
each edge of T homeomorphically onto some union of edges, namely the unique
regulated path joining the images of its two endpoints within T .

For a polynomial map with a superattracting cycle, there is a modified ver-
sion of this definition which is sometimes helpful, since it more closely resembles
the Julia set. Let FT be the union of all Fatou components in K(F ) which
contain vertices of T (or which contain points of the finite set S). Then the
boundary P(T ) of the union T ∪ FT will be called the puffed-out Hubbard
tree. It consists of ∂FT (the union of the boundary circles of these Fatou com-
ponents), together with TrFT (that part of the tree which lies outside of FT ).
As an example, the minimal tree T for the Douady rabbit is the dark tripod
shown in Figure 27, while the puffed-out tree P(T ) is homeomorphic to the
above sketch. Other examples of puffed-out trees are shown in Figures 34 and
35. We will see that T and P(T ) contain the same information; so that we
can use whichever one seems more convenient.

In this paper we will usually concentrate on the minimal Hubbard tree,
taking S to be the union of the orbits of the critical points. However, the
construction works equally well taking a larger finite set, for example by also
including one or more periodic orbits. If T ⊂ K(F ) is an arbitrary Hubbard
tree, then each iterated preimage is also a Hubbard tree, so that we form an
ascending sequence

T ⊂ F−1(T ) ⊂ F−2(T ) ⊂ · · · ⊂ K(F ) .

If we exclude the case where T is a single point (the minimal tree for F (z) =
zd ), then the union of the F−n(T ) is everywhere dense in the filled Julia set
K(F ). Similarly, the puffed-out trees P(F−n(T )) ⊂ K(F ) provide better and
better approximations to the Julia set as n → ∞.

We will ignore complications in the geometry of T and think of it simply
as a one-dimensional acyclic simplicial complex. Three additional elements of
structure are immediately apparent:
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(1) There is a prescribed map (the restriction of F ) from the set V of vertices
to itself. This carries the two endpoints of any edge to distinct points, so
that it can be extended to a map from T to itself which is one-to-one on
each edge.

(2) We must specify which vertices are critical points, and with what multi-
plicity. It will be convenient to describe this by the local degree func-
tion d : V → {1, 2, 3, . . .} , where we set d(v) = 1 if the vertex v is
non-critical and d(v) = m + 1 ≥ 2 if v is a critical point of multiplicity
m.

(30) If three or more edges meet at a vertex, then the cyclic order of these edges
in the positive direction around this vertex must be specified. Note that
this cyclic order determines, up to isotopy, how the tree is to be embedded
into C.

However, this data is not sufficient to uniquely determine the affine conjugacy
class of F . For example Figures 32 and 33 illustrate Julia sets which are not
affinely conjugate to their mirror images, although this fact cannot be deduced
if we are given only the data above. Similarly, the three puffed-out trees at the
top of Figure 35 cannot be distinguished without further information. For this
reason we introduce the angles between edges of the tree as an essential part
of the structure.

Let e1, e2, . . . , en be the edges incident to a single vertex, listed in positive
cyclic order, where the subscripts are interpreted as integers modulo n so that
e0 = en. Then the angles between successive edges ej and ej+1 are to be
positive rational numbers with sum

∠(e0, e1) + ∠(e1, e2) + · · · + ∠(en−1, en) = 1 .

More generally, the angle (in the positive direction) between any two edges
meeting at a common vertex is well defined. We will think of this angle as an
element of the circle Q/Z, and replace the hypothesis (30) by the following
sharper hypothesis. It will be convenient to use the notation Fv(e) for the
unique edge which contains F (U ∩ e), where U is a small neighborhood of v.

(3) This angle ∠(e, e′) ∈ Q/Z is well defined for any two edges meeting at
a common vertex v, and satisfies

∠(e, e′) + ∠(e′, e′′) ≡ ∠(e, e′′) (mod Z) ,

with ∠(e, e′) ≡ 0 only if e = e′. Furthermore, for the image of two such edges
near v, we have

∠

(
Fv(e), Fv(e′)

)
≡ d(v) ∠(e, e′) (mod Z) . (A1)

For the definition of the angle between two edges, we must distinguish two cases,
as follows.
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Figure 32: The top sketch shows a cubic Hubbard tree with a double critical

point at which the two adjacent branches form an angle of 1/3 (= 120◦).

External angles along the root orbit have been indicated. The lower figure

shows the corresponding Julia set. All external rays with angles of the form

k/13 are shown in white.
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Figure 33: The top sketch shows a Hubbard tree with a right angle.

The critical orbit maps as 0 7→ 1 7→ 2 7→ 3 , where 0 and 1 are simple

critical points, while the edges of the tree map as A 7→
C 7→ A ∪ B ∪ C , B 7→ B ∪ A , where the overline stands for reversal of

orientation. The corresponding cubic Julia set is shown below. Here 0 and 1

are the landing points of the 8/27 and 2/9 rays.
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Figure 34: Puffed-out Hubbard tree representations for the nine essentially

distinct maps with both critical orbits periodic of period ≤ 2. The top row

illustrates four maps which have a critical fixed point, denoted by ∗′. The

first two represent points in S1 ∩ S ′
1, namely the map z 7→ z3 with a fixed

double critical point, and the map z 7→ z3 + 3

2
z with two critical fixed

points. The next two maps correspond to points in S2 ∩ S ′
1, with a period

two critical orbit, indicated by ∗ ↔ 1, as well as the fixed critical point ∗′.
The remaining five diagrams represent in S2 ∩ S ′

2 with both critical orbits

of period 2, labeled by ∗ ↔ 1 and ∗′ ↔ 1′. The dots on the boundary

circles represent periodic points of minimal period on the boundary of the

corresponding Fatou component. (When two such Fatou components touch

each other, the associated edge of the tree has been collapsed to a point in

these two figures.) In each case we can obtain representatives for all maps

in the corresponding Sp ∩ S ′
q from the illustrated examples by making use

of conjugation by z ↔ −z (180◦ degree rotation), together with complex

conjugation (reflection in a horizontal line).
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Figure 35: Trees for the seven essentially different maps in S3 ∩ S ′
1. Here

the period three critical orbit is labeled by the symbols ∗ 7→ 1 7→ 2 7→ ∗ ,

while the fixed critical point is labeled by ∗′. Note the 1/7, 2/7, 4/7 internal

angles for the top three examples, and the 1/3, 2/3 internal angles for the

last example.

Definition A.1. Call a vertex v ∈ T ⊂ K(F ) either a Fatou vertex or a
Julia vertex according as it belongs to the Fatou set or the Julia set of F . In
fact we can make this distinction just from the structures (1) and (2) described
above: It is easy to check that v is a Fatou vertex if and only if some forward
image of v is a periodic critical point. In the figures, we will usually emphasize
this distinction by replacing each Fatou vertex by a small circle.

In the case of two edges of T which meet at the center of a Fatou component
U of F , the definition of this angle is straightforward. There is an essentially
unique conformal diffeomorphism taking U to the unit disk and taking each
edge intersected with U to a radius. We can then use the usual angle, as
measured within the unit disk. Since the map F from U to F (U) corresponds
to the map w 7→ wd(v) between disks, the identity (A1) follows easily.

In the case of edges meeting at a Julia vertex v , Poirier defines this angle
as follows. If v is periodic under F , and if n edges meet at v , then we simply
define the angle between two edges which are consecutive in cyclic order to be
1/n. In the more general case where v is not periodic, we must choose these
angles so that Equation (A1) is satisfied. However, it may happen that there
is more than one possible choice. In that case, we can resolve the difficulty
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as follows. Suppose that F ◦m(v) is periodic. Then F−m(T ) will have a full
complement of edges meeting at v. If there are n such edges, then we again
define the angle between two which are consecutive in cyclic order to be 1/n.
As an example, in Figure 33, the angle ∠(A, B) could a priori be either 1/4
or 3/4. In this case, it suffices to pass to F−1(T ) which has four edges meeting
at this point, in order to determine that the correct angle is 1/4.ß

Definition A.2. By an abstract tree we will mean a topological tree
which has been provided with a mapping from vertices to vertices, a local degree
function, and an angle function satisfying the conditions (1), (2) and (3) above.
Note that the cyclic order (30) is uniquely determined by the angular structure
(3).

The problem is now to characterize which abstract trees can actually be
realized as the Hubbard trees of polynomials. Poirier provides a very simple
answer as follows.

Theorem A.3. (Poirier). An abstract tree can be realized as the Hubbard
tree of a polynomial if an only if two conditions are satisfied:

1. Expansiveness. For every edge e, either at least one of its two boundary
points is a Fatou vertex, or else some forward image F ◦k(e) covers two or
more edges.6

2. Normalization. The consecutive angles around any periodic Julia vertex
are all equal.

When these conditions are satisfied, the resulting polynomial is unique up to

affine conjugation, and has degree d satisfying d − 1 =
∑

v

(
d(v) − 1

)
.

For the proof, the reader is referred to (Poirier 93). ⊔⊓
We can also use these ideas to construct the puffed-out Hubbard tree, start-

ing only with the abstract tree. Simply replace each Fatou vertex by a small
circle. Now for any edge e which does not contain a pre-critical point in its inte-
rior (or in other words , any edge such that no forward image crosses through a
critical point), collapse that portion e0 of e which is outside of the small circles
to a single point. It is not difficult to check that the result is homeomorphic
to the puffed-out tree as described above. As an example, in Figure 12a, nei-
ther edge has an interior pre-critical point, hence both edges must be collapsed,
yielding the top right diagram of Figure 34.

To conclude this appendix, here are a few elementary remarks.
As in §6, define the valence n(v) to be the number of edges of T which

are incident at the vertex v. Thus n(v) ≥ 1 , except in the trivial case of a

6An equivalent expansivity condition, used by (Bruin and Schleicher 01), is the following:
For every edge e there must be some forward image F ◦k(e) which contains a critical
point (perhaps on its boundary). It is not difficult to show that this Bruin-Schleicher
condition is completely equivalent to Poirier’s condition.
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Figure 36: Julia sets for three representative examples. The “bow tie”

Julia set above, with polynomial z3 − 3

4
z + i

√
7/4, corresponds to the last

tree in Figure 34. All rays with denominator 32 − 1 = 8 are shown. The

next, on the left, corresponds to the top right tree in Figure 35, and the last

“dancing rabbit” example corresponds to the next to last tree in Figure 31.

All rays of denominator 33 − 1 = 26 are shown in these two cases.
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tree consisting of a single vertex. The tree T is said to be minimal if every
vertex with n(v) ≤ 2 is critical or post-critical. It is not hard to check that
every Hubbard tree contains a unique minimal one.

Note the inequality
n(F (v)) ≥ n(v)/d(v) , (A2)

which follows easily from formula (A1). As an example, in the case of a periodic
Julia vertex it follows that n(v) takes the same value at all vertices of the
cycle. (This was assumed earlier when we assigned the angle ∠(e, e′) = 1/n(v)
between consecutive edges at a periodic Julia vertex v .)

A vertex v is said to be an endpoint (or a free vertex ) of T if n(v) ≤ 1.
As noted in the proof of Lemma 6.5, every tree has at least one endpoint. (For
otherwise, starting with any edge, we could pass to an adjacent edge. Continuing
inductively, we could then construct a closed loop, which is impossible.)

Closely related is the Euler characteristic formula 2 χ(T ) =
∑

v∈V (2 −
n(v)), which holds for any one dimensional simplicial complex. In the case of a
tree, we have χ(T ) = 1 , so that

∑

v

(
2 − n(v)

)
= 2 . (A3)

This clearly implies that there is at least one vertex with n(v) ≤ 1.
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