
§15. Denjoy’s Theorem
This section will prove a basic result due to Arnaud Denjoy (1884-1974). We will state

his result in three equivalent forms.

Theorem 15.1. Let f be a C2 -smooth orientation preserving circle diffeomor-
phism with irrational rotation number. Then:

(1) f is topologically conjugate to a rotation; furthermore

(2) every orbit is dense, and

(3) for any non-trivial interval I ⊂ R/Z there exists a forward image
f◦q(I) , q ≥ 1 , which intersects I . (In other words, the non-wandering set
Ω(f) is the entire circle.)

Here most of the hypotheses are essential. Clearly the hypothesis of irrational rotation
number is essential, and we will see in 15.5 that C1 -smoothness would not be enough.
(However, the hypothesis that f ′(ξ) > 0 everywhere can be weakened. Compare [Yoccoz,
1984], [Swiatek, 1991].) Note that we must assume C2 -differentiability for f , but obtain
only a continuous conjugacy. It took almost fifty years until Michel Herman (1942-2000)
was able to solve the more difficult problem of obtaining a smooth conjugacy under suitable
hypotheses. Compare the discussion in §16D.

The proof begins as follows. According to 14.13, there is a monotone map g , semi-
conjugating f to an irrational rotation. Thus each pre-image g−1(η) ⊂ R/Z is either a
point or a closed interval. If all of these pre-images are points, then g is a homeomorphism,
and f is actually topologically conjugate to an irrational rotation. In this case, it follows
from 14.14 that every forward orbit under f is dense. On the other hand, if some g−1(η)
is a non-trivial interval Ī , then evidently Ī is a wandering interval . That is, the successive
images f◦k(Ī) are pairwise disjoint.

Thus, if we can prove (3), then (1) and (2) will follow. To complete the proof of Denjoy’s
Theorem, we must show that a C2 -diffeomorphism with irrational rotation number cannot
have any wandering interval. The proof will be based on the following ideas. (Compare [de
Melo and van Strien].)

§15A. Distortion Estimates. Let I be a closed interval of real numbers, and suppose
that the real valued function F is defined and C1 -smooth on I , with derivative F ′(x) > 0 .
By the non-linearity (or the distortion) of F on I we will mean the non-negative real number

nonlin(F , I) = log max
x

F ′(x)− log min
x

F ′(x) = log
maxx F ′(x)

minx F ′(x)
,

where x varies over I . Note that nonlin(F , I) = 0 if and only if F is linear on I .

Lemma 15.2. If F : I0 → I1 and G : I1 → I2 are C1 -smooth with positive
derivative, then

nonlin(G ◦ F , I0) ≤ nonlin(F , I0) + nonlin(G , I1) .

Proof. This follows easily from the chain rule:

log(G ◦ F )′(x) = logF ′(x) + logG′(y) ,

where y = F (x) . ¤
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15. DENJOY’S THEOREM

Now suppose that F is smooth of class C2 . If F ′ on the interval I takes its maximum
at xmax and its minimum at xmin , then evidently

nonlin(F , I) = log F ′(xmax)− log F ′(xmin) =
∫ xmax

xmin

(log F ′)′(x) dx

=
∫ xmax

xmin

F ′′(x)

F ′(x)
dx ≤

∫

I

∣∣∣∣∣
F ′′(x)

F ′(x)

∣∣∣∣∣ dx .
(15 : 1)

Next consider an orientation preserving circle diffeomorphism f which is C2 -smooth.
Let I0 ⊂ R/Z be an interval, and let In = f◦n(I0) be its image under n-fold iteration of
f . Since the map f is invertible, this notation makes sense not only for n ≥ 0 but also for
n < 0 . Note that the first derivative f ′ is a well defined continuous function from R/Z to
the positive reals. Hence the non-linearity nonlin(f , I0) ≥ 0 is defined.

Lemma 15.3. There exists a constant K =
∫
R/Z |f ′′(ξ)/f ′(ξ)| dξ with the

following property. For any interval I0 ⊂ R/Z and any n > 0 , if the first n
forward images I0 , I1 , . . . , In−1 are pairwise disjoint, then the non-linearity of
the n-fold iterate satisfies

nonlin(f◦n , I0) ≤ K < ∞ .

Proof. By Lemma 15.2 this non-linearity is less than or equal to the n-fold sum
nonlin(f, , I0) + · · ·+nonlin(f , In−1) , and by inequality (15: 1) this is less than or equal to
the integral over I0 ∪ I1 ∪ · · · ∪ In−1 of |f ′′/f ′| , which is less than or equal to K . ¤

Next let f be any orientation preserving circle homeomorphism with irrational rotation
number, and let f : · · · 7→ ξ−1 7→ ξ0 7→ ξ1 7→ ξ2 7→ · · · be any orbit.

ξ0

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

Figure 48. The points ξ1 , ξ3 , ξ7 , . . . are closest returns to ξ0 for the irrational
rotation ξ 7→ ξ +

√
2/2 (mod 1) , while ξ2 , ξ4 , ξ5 , ξ6 are not.

Definition: We will say that ξq is a closest return to ξ0 if all of the points ξj with
0 < |j| < q belong to the same component of the complement R/Z r ({ξ0} ∪ {ξq}) .

It is easy to see that there are infinitely many closest returns, as long as the rotation
number is irrational. (According to 14.11, it suffices to consider the case of a rigid rotation.

15-2



15A. DISTORTION ESTIMATES

In the case of a rotation, one can check that ξq is a closest return if and only if the distance
d(ξ0 , ξq) is strictly less than d(ξ0 , ξn) for all 0 < n < q .)

Proof of Theorem 15.1. Suppose that the circle homeomorphism f has a “wandering
interval”, that is an interval I0 ⊂ R/Z such that the iterated images In = f◦n(I0) satisfy
I0 ∩ In = ∅ for n > 0 , and therefore Im ∩ Im+n = ∅ for all m ∈ Z and all n 6= 0 .
Choose a base point ξ0 ∈ I0 and let ξn = f◦n(ξ0) ∈ In . Evidently the cyclic ordering of
the various disjoint intervals In ⊂ R/Z is precisely the same as the cyclic ordering of these
representative points ξn . If the rotation number rn(f) is irrational, then we have shown
that there exist infinitely many integers q so that ξq is a closest return to ξ0 . Since all of
the intervals Ik are pairwise disjoint, with total length less than or equal to one, it follows
that we can choose such a closest return so that the lengths `(Iq) and `(I−q) are arbitrarily
close to zero.

With this choice of q , we will enlarge the intervals I0 7→ . . . 7→ Iq−1 so as to obtain

disjoint intervals Î0 7→ . . . 7→ Îq−1 such that f |Î0 is extremely nonlinear. To construct Î0 ,
consider the two points ξ−q and ξ0 . These points cut the circle into one interval J which
contains all of the intervals Ij with 0 < |j| < q and a complementary interval J ′ which

is disjoint from all of them. Let Î0 be the interval I−q ∪ J ′ ∪ I0 . Then it is not difficult to

check that Î0 is disjoint from its forward images Îj = f◦j(Î0) for 0 < j < q .

Î0

I0
I-5

I5

Î1
I1

Î2
I2

Î3

I3

Î4

I4

Figure 49. Construction of the interval Î0 . Here q = 5 , and the rotation number
is (

√
5− 1)/2 (mod Z) .

Let us apply the Mean Value Theorem to the smooth mapping h = f ◦q , which carries
I−q onto I0 , and carries I0 onto Iq . According to this theorem, there exists a point
α ∈ I−q so that h′(α) = `(I0)/`(I−q) and a point β ∈ I0 so that h′(β) = `(Iq)/`(I0) .

Since I−q ∪ I0 ⊂ Î0 , it follows that the non-linearity of h on Î0 satisfies

nonlin(h , Î0) = max
ξ∈Î0

log h′(ξ)−min
ξ∈Î0

log h′(ξ) ≥ log h′(α)− log h′(β) .

Now, as the choice of closest return q tends to infinity, the length `(I0) remains fixed
but `(I−q) and `(Iq) tend to zero. Hence h′(α) → ∞ , h′(β) → 0 , and it follows that

nonlin(f◦q , Î0) → ∞ . This is impossible; for by Lemma 15.3 there is a fixed upper bound
K < ∞ for the non-linearities of all such compositions. This completes the proof that a
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C2 -circle diffeomorphism with irrational rotation number has no wandering interval, and
hence completes the proof of Theorem 15.1. ¤

Here is a interesting consequence.

Corollary 15.4. If a non-monotone circle map f is C2 -smooth, with only
finitely many critical points, and if the first derivative f ′(ξ) changes sign as we
pass through any critical point, then f must have at least one periodic orbit.

Proof. If the degree of f is different from +1 , then the conclusion is clear since f
must have a fixed point. In the degree one case, it follows by 14.13 that f is semiconjugate
to an irrational rotation under some degree one monotone semiconjugacy g . Clearly any
critical point of f , or any interval on which f ′(x) ≤ 0 , must be contained in the interior
of some wandering interval I = g−1(η) . There can be only finitely many such wandering
intervals I on which f is non-monotone. Evidently f must carry the left [respectively
right] endpoint of each such I to the left [respectively right] endpoint of f(I) . Hence we can

choose a new map f̂ which coincides with f outside of these special wandering intervals,
and is a C2 -diffeomorphism of the circle. Now the same map g will semiconjugate f̂ to an
irrational rotation. This contradicts Denjoy’s Theorem, and completes the proof of 15.4. ¤

§15B. Denjoy Counterexamples. Denjoy also proved the following result, which
shows that the hypothesis of C2 -smoothness is essential in 15.1

Theorem 15.5. For any irrational number α there exists a C1 -circle diffeo-
morphism f which has a wandering interval, and which has rotation number
equal to α (modulo Z ).

Proof. We will first construct a circle homeomorphism, and then show how to make it
a C1 -diffeomorphism. Start with the rotation η 7→ η + α , and consider the orbit

· · · 7→ η−1 7→ η0 7→ η1 7→ · · ·
where ηk ≡ k α . We will thicken this orbit, replacing each point ηn by an interval In =
[an , bn] of length `n = bn−an . Evidently these lengths `n > 0 must satisfy

∑∞
−∞ `n ≤ 1 .

In fact, to simplify the construction, let us choose lengths `n > 0 with sum precisely equal
to 1 . For each n ∈ Z let xn be the unique number in the half-open interval [0, 1)
which is congruent to nα (mod Z) . Now define the endpoints of the required intervals
In = [an , bn] by the formula an = a(xn) , bn = b(xn) , where

a(x) =
∑
{`k ; xk < x} , b(x) =

∑
{`k ; xk ≤ x}

for every x ∈ [0, 1) . Thus the interval [a(x), b(x)] has length `n > 0 if x = xn , but is
degenerate with length zero if x is not one of the xn . These intervals are disjoint, with
union [0, 1) . Then it is easy to see that there is one and only one continuous monotone
map G : R → R which satisfies G([a(x) , b(x)]) = x for every x ∈ [0, 1) , and with
G(x+ 1) = G(x) + 1 .

In particular, these intervals [a(x) , b(x)] ⊂ [0, 1) are ordered in the same way as the
points x . For each x ∈ [0, 1) with image ξ in the circle R/Z , let I(ξ) ⊂ R/Z be the
image of the corresponding interval [a(x) , b(x)] . Evidently these images are disjoint, with
union R/Z , and are arranged in the same cyclic order as the points ξ themselves. In fact
the map G is the lift of a monotone degree one circle map g with g(I(ξ)) = ξ . Thus
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0 01 -12-2 3-3 4 -4

Figure 50. The bottom line, representing the circle R/Z , is mapped to itself by the
irrational rigid rotation t 7→ t + α (mod Z) . Each label n on the bottom line,
standing for the point nα (mod Z) , corresponds to an entire interval I(nα) of
length `n in the top line, which also represents the circle R/Z . Here

∑
n `n = 1

so that the union of these intervals has full measure. The map f on the top circle,
which carries I(nα) onto I((n + 1)α) , is monotonely semiconjugate to the rigid
rotation on the bottom circle.

we can construct a degree one circle homeomorphism f which maps each I(ξ) = g−1(ξ)
to I(ξ + α) . In fact, if I(ξ) reduces to a single point, then f(I(ξ)) is uniquely defined,
while if I(ξ) is a non-degenerate interval then we can choose any orientation preserving
homeomorphism from I(ξ) onto I(ξ+α) . This f is the required map, which is monotonely
semiconjugate to rotation by α .

If we want f to be a C1 -diffeomorphism, then we must be a little more careful with
this construction. First, we must choose the lengths `n > 0 so that

lim
|n|→∞

`n+1/`n = 1 .

For example let `n = c/(n2 + 1) , where the constant c is chosen so that
∑+∞

−∞ `n = 1 .
Next we must choose each homeomorphism from In = [an , bn] to In+1 to be a diffeomor-
phism, with derivative equal to +1 at the two endpoints, and with derivative converging
uniformly to +1 as |n| → ∞ . As an example, we can define this diffeomorphism by the
formula

an + x 7→ an+1 +
∫ x

0
exp

(
cn t (`n − t)

)
dt .

It is not difficult to check that there is a unique value of the parameter cn ∈ R so that the
image of In will have the required length

∫ `n

0
exp

(
cn t (`n − t)

)
dt = `n+1 .

Furthermore, cn converges to zero, and hence the derivative converges uniformly to 1 as
`n+1/`n → 1 . It is now reasonably straightforward to check that the map f which is
constructed using these diffeomorphisms is C1 -smooth with derivative identically equal to
+1 , except within the interiors of the non-degenerate intervals I(ξ) . ¤

Remark 15.6. Instead of mapping In = [an , bn] to In+1 by a homeomorphism, we
could also choose some arbitrary continuous map In → In+1 which carries left endpoint
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to left endpoint and right endpoint to right endpoint. In this way, we could construct a
degree one circle map f which is not monotone, even though it has a well defined irrational
rotation number. (Compare 14.13.) This shows also that the hypothesis of C2 -smoothness
is essential in 15.4.

§15C. Differential equations on the torus. The title of Denjoy’s original paper
referred to differential equations on the torus, rather than to circle maps. In fact there is
a very close relationship between these two subjects. (Compare §1C.) Suppose that we are
given a doubly periodic C1 -smooth real valued function of two variables.

s(t, x) = s(t+ 1 , x) = s(t , x+ 1) .

Solving the differential equation
dx/dt = s(t, x)

we obtain a family of smooth functions x = Φh(t) , parametrized by the initial height
Φh(0) = h ∈ R , and satisfying the required equation dΦh(t)/dt = s(t , Φh(t)) for all
t ∈ R . In particular, if we follow the solution from time t = 0 to t = 1 , then we obtain a
C1 -smooth diffeomorphism of R ,

x 7→ F (x) = Φx(1) ,

which commutes with integer translations, and therefore corresponds to a circle diffeomor-
phism f : R/Z → R/Z . (If we followed the solution from time t0 to t0+1 , then we would
obtain a topologically conjugate circle map.)

Figure 51. Trajectory curves for a flow on the (universal covering of the) torus
R

2/Z
2 . Here the integer lattice points are marked by heavy dots. The corresponding

circle map has a wandering interval containing the origin, hence this example cannot
be made C2 -smooth.
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Here are some basic properties of this construction:

(1) The k -fold iterate of the map f (or F ) corresponds to the map obtained by
following the solutions from time t = 0 to t = k . That is, F ◦k(x) = Φx(k) .

(2) If we think of these curves as lying on the torus

T
2 = R

2/Z
2 = (R/Z)× (R/Z) ,

then a solution curve is closed (ie., comes back to itself after finite time) if and only if the
corresponding orbit under the circle map f is periodic.

(3) The translation number tn(F ) can be described as the “average slope”
limt→∞ (Φh(t)− Φh(0))/t associated with any solution curve x = Φh(t) .

(0,ξ) (1,ξ)

(0,f(ξ)) f

Figure 52. Construction of the mapping torus of f .

Any orientation preserving circle diffeomorphism can be obtained by this construction.
Given a circle diffeomorphism f , form the mapping torus Torus(f) as follows. Start with
the cylinder [0 , 1] × (R/Z) , and glue the right hand boundary 1 × (R/Z) onto the left
hand boundary 0× (R/Z) by the diffeomorphism

(1 , ξ) ↔ (0 , f(ξ)) .

The resulting identification space is the required mapping torus. The horizontal curves
ξ = constant in this mapping torus play the same role as the family of curves x = Φh(t)
in the discussion above. For if we follow such a curve to the right from the point (0 , ξ)
then we arrive at (1 , ξ) , which is identified with (0 , f(ξ)) .

We can identify this mapping torus with the standard torus T
2 as follows. Let F be

a lift of f , and let τ(t) be a C∞ function which takes the value zero for t close to zero
and the value one for t close to one. Then the required diffeomorphism Torus(f)→ T

2 is
constructed by mapping each point (t, x) ∈ [0, 1]× R to the point

(t , (1− τ(t))x+ τ(t)F (x)) ∈ [0, 1]× R .

Evidently two points (1, x) and (0, F (x)) which are identified in T
2 correspond to two

points (1 , F (x)) and (0 , F (x)) which are identified in T
2 . Now the family of hori-

zontal curves in the mapping torus corresponds to a suitable family of curves in T
2 ,

and differentiating these curves we obtain a corresponding differential equation
dx/dt = s(t, x) on T

2 . If f is Cr -smooth, then the resulting function s(t, x) is also.
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