Remarks on Piecewise Monotone Maps Corrected Version

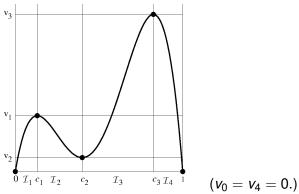
John Milnor

Stony Brook University

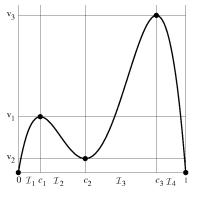
Bremen, August, 2015
Revised: September 2021
When running this file in firefox the movies will display if you click the indicated button.

PM-maps $f: (\mathcal{I}, \partial \mathcal{I}) \to (\mathcal{I}, \partial \mathcal{I})$ where $\mathcal{I} = [0, 1]$.

PM-maps $f: (\mathcal{I}, \partial \mathcal{I}) \to (\mathcal{I}, \partial \mathcal{I})$ where $\mathcal{I} = [0, 1]$.



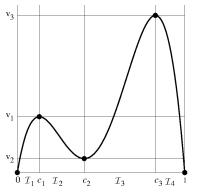
PM-maps $f: (\mathcal{I}, \partial \mathcal{I}) \rightarrow (\mathcal{I}, \partial \mathcal{I})$ where $\mathcal{I} = [0, 1]$.



$$(v_0 = v_4 = 0.)$$

Maximal intervals of monotonicity: $\mathcal{I}_j = [c_{j-1}, c_j]$ where $0 = c_0 < c_1 < \cdots < c_{d-1} < c_d = 1$.

PM-maps $f: (\mathcal{I}, \partial \mathcal{I}) \to (\mathcal{I}, \partial \mathcal{I})$ where $\mathcal{I} = [0, 1]$.



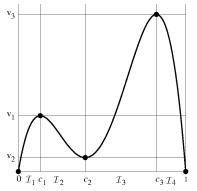
$$(v_0 = v_4 = 0.)$$

Maximal intervals of monotonicity: $\mathcal{I}_j = [c_{j-1}, c_j]$ where

$$0 = c_0 \ < \ c_1 \ < \ \cdots \ < \ c_{d-1} \ < \ c_d = 1 \ .$$

The vector $\mathbf{V} = (v_0, v_1, \dots, v_d) \in \mathcal{I}^{d+1}$ where $v_j = f(c_j)$ will be called the **critical value vector.**

PM-maps $f: (\mathcal{I}, \partial \mathcal{I}) \to (\mathcal{I}, \partial \mathcal{I})$ where $\mathcal{I} = [0, 1]$.



$$(v_0 = v_4 = 0.)$$

Maximal intervals of monotonicity: $I_j = [c_{j-1}, c_j]$ where

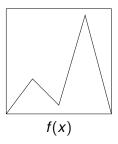
$$0 = c_0 \ < \ c_1 \ < \ \cdots \ < \ c_{d-1} \ < \ c_d = 1 \ .$$

The vector
$$\mathbf{v} = (v_0, v_1, \dots, v_d) \in \mathcal{I}^{d+1}$$
 where $v_j = f(c_j)$ will be called the **critical value vector.**

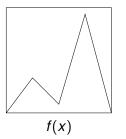
Caution: In this talk the word "critical" will be used to mean local maximum or minimum point. Inflection points are not "critical".

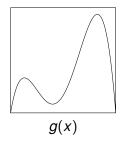
Theorem. Given a PM-map f(x) with critical value vector $(v_0, v_1, ..., v_d)$, there is one and only one polynomial PM-map g(x) of degree d with the same critical value vector.

Theorem. Given a PM-map f(x) with critical value vector $(v_0, v_1, ..., v_d)$, there is one and only one polynomial PM-map g(x) of degree d with the same critical value vector.

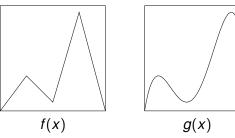


Theorem. Given a PM-map f(x) with critical value vector $(v_0, v_1, ..., v_d)$, there is one and only one polynomial PM-map g(x) of degree d with the same critical value vector.



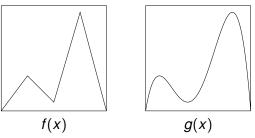


Theorem. Given a PM-map f(x) with critical value vector $(v_0, v_1, ..., v_d)$, there is one and only one polynomial PM-map g(x) of degree d with the same critical value vector.



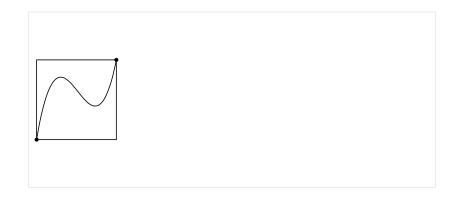
Proofs by deMelo and vanStrien, 1993; by Milnor and Tresser (and also by Douady and Sentenac in appendix), 2000.

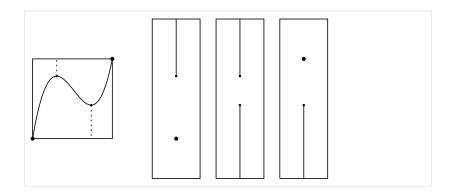
Theorem. Given a PM-map f(x) with critical value vector $(v_0, v_1, ..., v_d)$, there is one and only one polynomial PM-map g(x) of degree d with the same critical value vector.

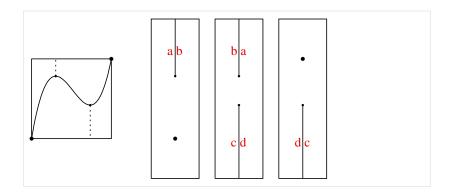


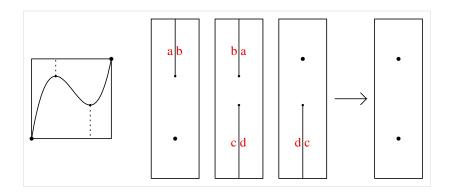
Proofs by deMelo and vanStrien, 1993; by Milnor and Tresser (and also by Douady and Sentenac in appendix), 2000.

For the effective construction of g(x), see [Bonifant-Milnor-Sutherland, 2021] in the list of references at the end.









Suppose that we are given two different PM-maps f and g with the same critical value vector.

Suppose that we are given two different PM-maps f and g with the same critical value vector.

LEMMA. There is one and only one "connecting homeomorphism"

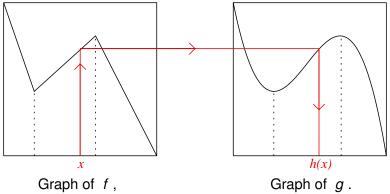
 $h=h_{f,g}$ from $(\mathcal{I},\partial\mathcal{I})$ to itself which maps each interval of monotonicity $\mathcal{I}_j(f)$ to the corresponding interval $\mathcal{I}_j(g)$ and which satisfies $g\circ h=f$.

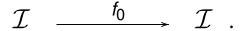
Suppose that we are given two different PM-maps f and g with the same critical value vector.

LEMMA. There is one and only one

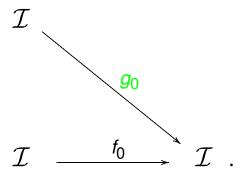
"connecting homeomorphism"

 $h=h_{f,g}$ from $(\mathcal{I},\partial\mathcal{I})$ to itself which maps each interval of monotonicity $\mathcal{I}_j(f)$ to the corresponding interval $\mathcal{I}_j(g)$ and which satisfies $g\circ h=f$.

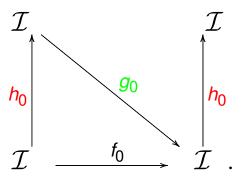




Suppose that we start with any PM-map f_0 .



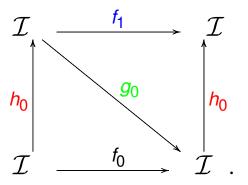
Suppose that we start with any PM-map f_0 . Then there is a unique polynomial map g_0 of minimal degree with the same critical value vector.

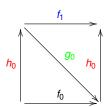


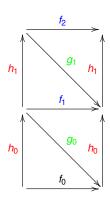
Suppose that we start with any PM-map f_0 . Then there is a unique polynomial map g_0 of minimal degree with the same critical value vector.

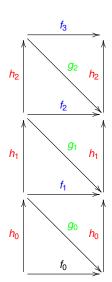
By the Lemma, there is a connecting homeomorphism

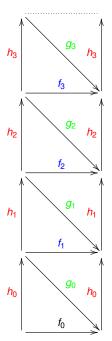
$$h_0 = h_{f_0, g_0}$$
 with $g_0 \circ h_0 = f_0$.











This construction defines a continuous correspondence $f_0 \mapsto f_1$ such that f_1 is topologically conjugate to f_0 .

This construction defines a continuous correspondence $f_0 \mapsto f_1$ such that f_1 is topologically conjugate to f_0 .

Iterating, we obtain an infinite sequence of topologically conjugate maps $f_0 \mapsto f_1 \mapsto f_2 \mapsto \cdots$.

This construction defines a continuous correspondence $f_0 \mapsto f_1$ such that f_1 is topologically conjugate to f_0 .

Iterating, we obtain an infinite sequence of topologically conjugate maps $f_0\mapsto f_1\mapsto f_2\mapsto\cdots$. **Problem:** For which f_0 does this sequence converge uniformly to a polynomial map?

This construction defines a continuous correspondence $f_0 \mapsto f_1$ such that f_1 is topologically conjugate to f_0 .

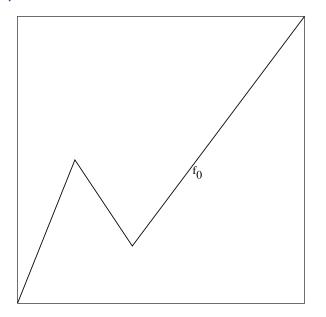
Iterating, we obtain an infinite sequence of topologically conjugate maps $f_0\mapsto f_1\mapsto f_2\mapsto\cdots$.

Problem: For which f_0 does this sequence converge uniformly to a polynomial map?

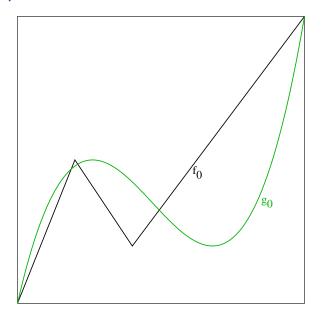
Caution: The tower algorithm bears a superficial resemblance to the Thurston algorithm; but they are not at all the same:

- 1. The Thurston algorithm is firmly documented and extremely stable. The tower algorithm may be easier to understand and to program; but it is speculative, and there are serious questions of stability.
- 2. The Thurston algorithm requires critical finiteness.
 The tower algorithm can be applied equally well to PM maps which are not critically finite; and also to other situations.

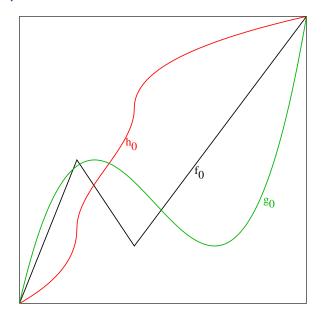
An Example with d = 3.



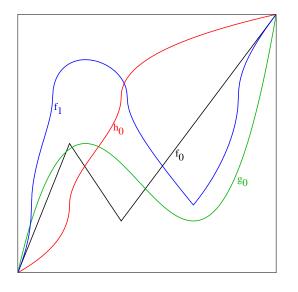
An Example with d = 3.



An Example with d = 3.



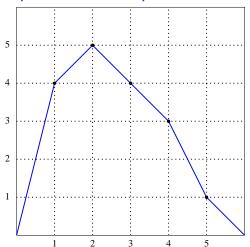
An Example with d = 3.



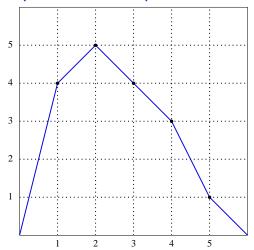
(movie 1)

A Critically Preperiodic Example

A Critically Preperiodic Example

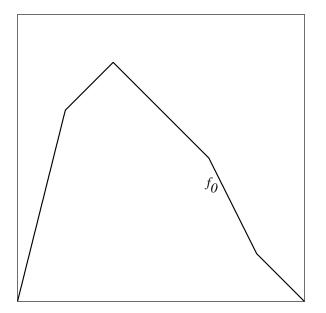


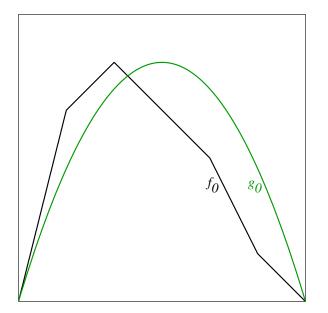
A Critically Preperiodic Example

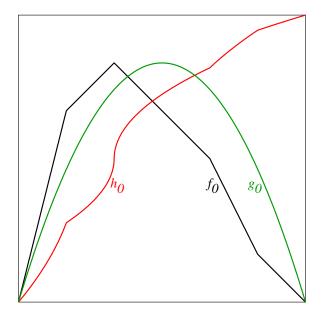


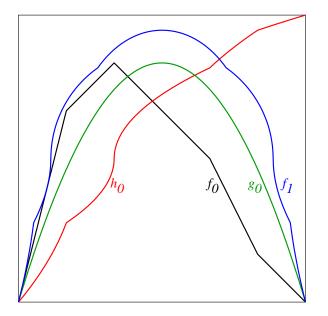
Here f_0 has critical orbit:

$$(2)\mapsto (5)\mapsto (1)\mapsto (4)\leftrightarrow (3)$$
.

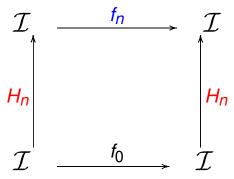




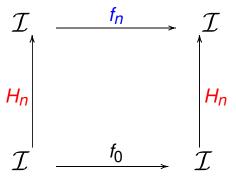




We can skip the intermediate steps and look at the topological conjugacy



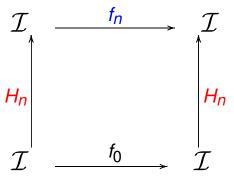
We can skip the intermediate steps and look at the topological conjugacy



where

$$H_n = h_{n-1} \circ h_{n-2} \circ \cdots \circ h_1 \circ h_0$$
.

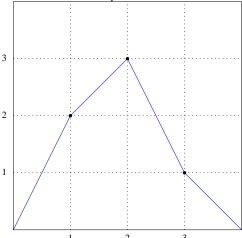
We can skip the intermediate steps and look at the topological conjugacy



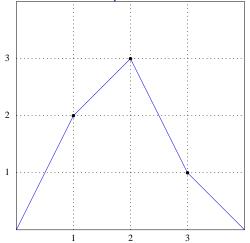
where

$$H_n = h_{n-1} \circ h_{n-2} \circ \cdots \circ h_1 \circ h_0$$
.
Thus $f_n = H_n \circ f_0 \circ H_n^{-1}$.

A Critically Periodic Example

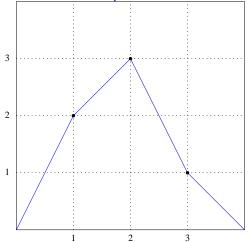


A Critically Periodic Example



Critical orbit : $(2) \mapsto (3) \mapsto (1) \mapsto (2)$.

A Critically Periodic Example



Critical orbit : $(2) \mapsto (3) \mapsto (1) \mapsto (2)$.

"Good Convergence": For "many" choices of f_0 the sequences $\{f_n\}$ and $\{g_n\}$ seem to converge uniformly to a common polynomial limit f_∞ ,

"Good Convergence": For "many" choices of f_0 the sequences $\{f_n\}$ and $\{g_n\}$ seem to converge uniformly to a common polynomial limit f_∞ , and the sequence $\{h_n\}$ seems to converge to the identity.

"Good Convergence": For "many" choices of f_0 the sequences $\{f_n\}$ and $\{g_n\}$ seem to converge uniformly to a common polynomial limit f_∞ , and the sequence $\{h_n\}$ seems to converge to the identity.

But this limit map f_{∞} may not be topologically conjugate to f_0 .

"Good Convergence": For "many" choices of f_0 the sequences $\{f_n\}$ and $\{g_n\}$ seem to converge uniformly to a common polynomial limit f_∞ , and the sequence $\{h_n\}$ seems to converge to the identity.

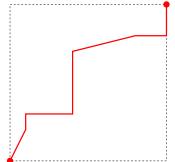
But this limit map f_{∞} may not be topologically conjugate to f_0 . the sequence of compositions $H_0 = h_{n-1} \circ \cdots \circ h_{n-1} \circ \cdots \circ h_n$

And the sequence of compositions $H_n = h_{n-1} \circ \cdots \circ h_1 \circ h_0$ may not converge to a homeomorphism.

"Good Convergence": For "many" choices of f_0 the sequences $\{f_n\}$ and $\{g_n\}$ seem to converge uniformly to a common polynomial limit f_∞ , and the sequence $\{h_n\}$ seems to converge to the identity.

But this limit map f_{∞} may not be topologically conjugate to f_0 .

And the sequence of compositions $H_n = h_{n-1} \circ \cdots \circ h_1 \circ h_0$ may not converge to a homeomorphism.

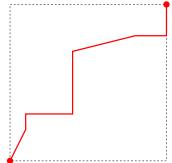


The **graph** of H_n does seem to converge to a limit in the **Hausdorff topology.**

"Good Convergence": For "many" choices of f_0 the sequences $\{f_n\}$ and $\{g_n\}$ seem to converge uniformly to a common polynomial limit f_∞ , and the sequence $\{h_n\}$ seems to converge to the identity.

But this limit map f_{∞} may not be topologically conjugate to f_0 .

And the sequence of compositions $H_n = h_{n-1} \circ \cdots \circ h_1 \circ h_0$ may not converge to a homeomorphism.



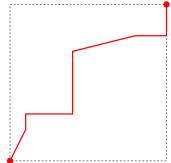
The **graph** of H_n does seem to converge to a limit in the **Hausdorff topology.**

The set of all limits of graphs of homeomorphisms forms a compact metric space.

"Good Convergence": For "many" choices of f_0 the sequences $\{f_n\}$ and $\{g_n\}$ seem to converge uniformly to a common polynomial limit f_∞ , and the sequence $\{h_n\}$ seems to converge to the identity.

But this limit map f_{∞} may not be topologically conjugate to f_0 .

And the sequence of compositions $H_n = h_{n-1} \circ \cdots \circ h_1 \circ h_0$ may not converge to a homeomorphism.



The **graph** of H_n does seem to converge to a limit in the **Hausdorff topology.**

The set of all limits of graphs of homeomorphisms forms a compact metric space.

Every such limit is a geodesic in the Manhattan metric. |dx| + |dy|.

We have

$$f_n = H_n \circ f_0 \circ H_n^{-1},$$

We have

$$f_n = H_n \circ f_0 \circ H_n^{-1},$$

where the maps H_n and H_n^{-1} may have points with derivative tending to infinity as $n \to \infty$.

We have

$$f_n = H_n \circ f_0 \circ H_n^{-1},$$

where the maps H_n and H_n^{-1} may have points with derivative tending to infinity as $n \to \infty$.

Therefore computation of f_n is likely to become very unstable as $n \to \infty$.

We have

$$f_n = H_n \circ f_0 \circ H_n^{-1},$$

where the maps H_n and H_n^{-1} may have points with derivative tending to infinity as $n \to \infty$.

Therefore computation of f_n is likely to become very unstable as $n \to \infty$.

This seems to be particularly a problem for maps with topological entropy zero.

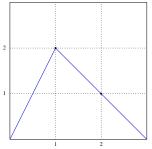
We have

$$f_n = H_n \circ f_0 \circ H_n^{-1},$$

where the maps H_n and H_n^{-1} may have points with derivative tending to infinity as $n \to \infty$.

Therefore computation of f_n is likely to become very unstable as $n \to \infty$.

This seems to be particularly a problem for maps with topological entropy zero.



Given $d \ge 2$ and $v_0 \in \{0, 1\}$:

```
Given d \ge 2 and v_0 \in \{0, 1\}:

Let \mathcal{F} = \mathcal{F}(d, v_0) be the metric space consisting of all PM-maps f with d intervals of monotonicity and with f(0) = v_0,
```

```
Given d \ge 2 and v_0 \in \{0, 1\}:

Let \mathcal{F} = \mathcal{F}(d, v_0) be the metric space consisting of all PM-maps f with d intervals of monotonicity and with f(0) = v_0, where \operatorname{dist}(f, g) = \max_{x} (|f(x) - g(x)|).
```

```
Given d \ge 2 and v_0 \in \{0, 1\}:

Let \mathcal{F} = \mathcal{F}(d, v_0) be the metric space consisting of all PM-maps f with d intervals of monotonicity and with f(0) = v_0, where \operatorname{dist}(f, g) = \max_{\mathbf{x}} (|f(\mathbf{x}) - g(\mathbf{x})|).
```

Definition. A subset $\mathcal{G} \subset \mathcal{F}$ is **parametrized by critical values** if, for any $f \in \mathcal{F}$ there is one and only one $g = g_f \in \mathcal{G}$ with the same critical value vector \mathbf{v} .

Given $d \ge 2$ and $v_0 \in \{0, 1\}$:

Let $\mathcal{F} = \mathcal{F}(d, v_0)$ be the metric space consisting of all PM-maps f with d intervals of monotonicity and with $f(0) = v_0$, where $\mathrm{dist}(f, g) = \max_x \left(|f(x) - g(x)| \right)$.

Definition. A subset $\mathcal{G} \subset \mathcal{F}$ is **parametrized by critical values** if, for any $f \in \mathcal{F}$ there is one and only one $g = g_f \in \mathcal{G}$ with the same critical value vector \mathbf{v} .

For each such \mathcal{G} there is an associated tower construction

$$\Theta_{\mathcal{G}}: f \mapsto h_{f,q} \circ g$$
 where $g = g_f$

which maps each $f \in \mathcal{F}$ to a topologically conjugate map $\Theta_{\mathcal{G}}(f) \in \mathcal{F}$.

Examples of sets \mathcal{G} parametrized by critical values.

1. Polynomials. The space \mathcal{G}_{poly} of polynomial maps of $(\mathcal{I},\,\partial\mathcal{I})$ with all critical points real and distinct, and in the interior of \mathcal{I} .

- **1. Polynomials.** The space \mathcal{G}_{poly} of polynomial maps of $(\mathcal{I}, \partial \mathcal{I})$ with all critical points real and distinct, and in the interior of \mathcal{I} .
- **2. A trivial example.** Take evenly spaced critical points $c_j = j/d$, and suppose that g is linear on each $\mathcal{I}_j = [c_{j-1}, c_j]$.

- **1. Polynomials.** The space \mathcal{G}_{poly} of polynomial maps of $(\mathcal{I},\,\partial\mathcal{I})$ with all critical points real and distinct, and in the interior of \mathcal{I} .
- **2. A trivial example.** Take evenly spaced critical points $c_i = j/d$, and suppose that g is linear on each $\mathcal{I}_i = [c_{i-1}, c_i]$.
- **3. Constant Slope.** By definition, a map f of the interval has **constant slope** $s \ge 0$ if f is piecewise linear with derivative satisfying |f'(x)| = s almost everywhere.

- **1. Polynomials.** The space \mathcal{G}_{poly} of polynomial maps of $(\mathcal{I},\,\partial\mathcal{I})$ with all critical points real and distinct, and in the interior of \mathcal{I} .
- **2. A trivial example.** Take evenly spaced critical points $c_i = j/d$, and suppose that g is linear on each $\mathcal{I}_i = [c_{i-1}, c_i]$.
- **3. Constant Slope.** By definition, a map f of the interval has **constant slope** $s \ge 0$ if f is piecewise linear with derivative satisfying |f'(x)| = s almost everywhere.

Lemma. The set $\mathcal{G}_{CS} \subset \mathcal{F}$ consisting of all PM-maps with constant slope is parametrized by critical values.

- **1. Polynomials.** The space \mathcal{G}_{poly} of polynomial maps of $(\mathcal{I},\,\partial\mathcal{I})$ with all critical points real and distinct, and in the interior of \mathcal{I} .
- **2. A trivial example.** Take evenly spaced critical points $c_i = j/d$, and suppose that g is linear on each $\mathcal{I}_i = [c_{i-1}, c_i]$.
- **3. Constant Slope.** By definition, a map f of the interval has **constant slope** $s \ge 0$ if f is piecewise linear with derivative satisfying |f'(x)| = s almost everywhere.

Lemma. The set $\mathcal{G}_{CS} \subset \mathcal{F}$ consisting of all PM-maps with constant slope is parametrized by critical values.

Proof Outline: Suppose that $g_f \in \mathcal{G}_{CS}$ has the same critical value vector as f.

- **1. Polynomials.** The space \mathcal{G}_{poly} of polynomial maps of $(\mathcal{I},\,\partial\mathcal{I})$ with all critical points real and distinct, and in the interior of \mathcal{I} .
- **2. A trivial example.** Take evenly spaced critical points $c_i = j/d$, and suppose that g is linear on each $\mathcal{I}_i = [c_{i-1}, c_i]$.
- **3. Constant Slope.** By definition, a map f of the interval has **constant slope** $s \ge 0$ if f is piecewise linear with derivative satisfying |f'(x)| = s almost everywhere.

Lemma. The set $\mathcal{G}_{CS} \subset \mathcal{F}$ consisting of all PM-maps with constant slope is parametrized by critical values.

Proof Outline: Suppose that $g_f \in \mathcal{G}_{CS}$ has the same critical value vector as f. Then the slope s of g_f must be equal to the total variation of f (or of g_f):

$$s = \sum_{j=1}^{d} |v_j - v_{j-1}| > 0$$
.

- **1. Polynomials.** The space \mathcal{G}_{poly} of polynomial maps of $(\mathcal{I},\,\partial\mathcal{I})$ with all critical points real and distinct, and in the interior of \mathcal{I} .
- **2. A trivial example.** Take evenly spaced critical points $c_j = j/d$, and suppose that g is linear on each $\mathcal{I}_j = [c_{j-1}, c_j]$.
- **3. Constant Slope.** By definition, a map f of the interval has **constant slope** $s \ge 0$ if f is piecewise linear with derivative satisfying |f'(x)| = s almost everywhere.

Lemma. The set $\mathcal{G}_{CS} \subset \mathcal{F}$ consisting of all PM-maps with constant slope is parametrized by critical values.

Proof Outline: Suppose that $g_f \in \mathcal{G}_{CS}$ has the same critical value vector as f. Then the slope s of g_f must be equal to the total variation of f (or of g_f):

$$s = \sum_{j=1}^{d} |v_j - v_{j-1}| > 0$$
.

Now compute the critical points of q_f inductively \cdots .

Theorem of Misiurewicz and Slenk:

Theorem of Misiurewicz and Slenk:

If $g:\mathcal{I}\to\mathcal{I}$ has constant slope $s\geq 0$, then its topological entropy is given by

$$\mathbf{h}_{\mathrm{top}}(g) = \log^+(s) \geq 0$$
.

Theorem of Misiurewicz and Slenk:

If $g:\mathcal{I}\to\mathcal{I}$ has constant slope $s\geq 0$, then its topological entropy is given by

$$\mathbf{h}_{\mathrm{top}}(g) = \log^+(s) \geq 0$$
.

Thus if iteration of $\Theta_{\mathcal{G}_{CS}}$ converges to a map of constant slope, then we can easily compute the topological entropy of the limit map f_{∞} .

Theorem of Misiurewicz and Slenk:

If $g:\mathcal{I}\to\mathcal{I}$ has constant slope $s\geq 0$, then its topological entropy is given by

$$\mathbf{h}_{\mathrm{top}}(g) = \log^+(s) \geq 0$$
.

Thus if iteration of $\Theta_{\mathcal{G}_{CS}}$ converges to a map of constant slope, then we can easily compute the topological entropy of the limit map f_{∞} .

Question. For which $f_0 \in \mathcal{F}$, does the sequence

$$\Theta_{\mathcal{G}_{CS}}: f_0 \mapsto f_1 \mapsto f_2 \mapsto \cdots$$

converge uniformly to a map of constant slope,

Theorem of Misiurewicz and Slenk:

If $g:\mathcal{I}\to\mathcal{I}$ has constant slope $s\geq 0$, then its topological entropy is given by

$$\mathbf{h}_{\mathrm{top}}(g) = \log^+(s) \geq 0$$
.

Thus if iteration of $\Theta_{\mathcal{G}_{CS}}$ converges to a map of constant slope, then we can easily compute the topological entropy of the limit map f_{∞} .

Question. For which $f_0 \in \mathcal{F}$, does the sequence

$$\Theta_{\mathcal{G}_{CS}}: f_0 \mapsto f_1 \mapsto f_2 \mapsto \cdots$$

converge uniformly to a map of constant slope, with the same entropy?

(movie 6)

(movie 6)

In this example, f_n converges to the standard **tent map**, and s converges to 2.

(movie 6)

In this example, f_n converges to the standard **tent map**, and s converges to 2. Therefore

$$\boldsymbol{h}_{top}(\textit{f}_{0}) \ = \ log(2) \quad ?$$

(movie 6)

In this example, f_n converges to the standard **tent map**, and s converges to 2. Therefore

$$\boldsymbol{h}_{top}(\textit{f}_{0}) \ = \ log(2) \quad ?$$

Conjecture. For any (reasonable ?) f_0 , the associated sequence of constant slope maps g_n converges, and yields the correct topological entropy $\mathbf{h}_{\text{top}}(f_0) = \log^+(s(g_\infty))$.

(movie 6)

In this example, f_n converges to the standard **tent map**, and s converges to 2. Therefore

$$\boldsymbol{h}_{top}(\textit{f}_{0}) \ = \ log(2) \quad ?$$

Conjecture. For any (reasonable ?) f_0 , the associated sequence of constant slope maps g_n converges, and yields the correct topological entropy $\mathbf{h}_{\text{top}}(f_0) = \log^+(s(g_\infty))$.

(However, the sequence of topologically conjugate maps f_n does not always converge to a constant slope map;

(movie 6)

In this example, f_n converges to the standard **tent map**, and s converges to 2. Therefore

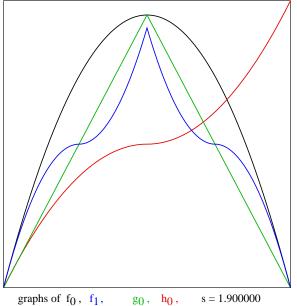
$$\mathbf{h}_{\mathrm{top}}(f_0) = \log(2) ?$$

Conjecture. For any (reasonable ?) f_0 , the associated sequence of constant slope maps g_n converges, and yields the correct topological entropy $\mathbf{h}_{\text{top}}(f_0) = \log^+(s(g_\infty))$.

(However, the sequence of topologically conjugate maps f_n does not always converge to a constant slope map; and the sequence of h_n does not always converge to the identity map.)

Example: $f_0(x) = 3.8 x(1 - x)$.

Example: $f_0(x) = 3.8 x(1 - x)$.

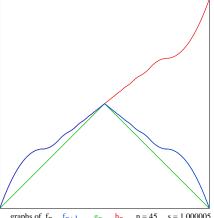


Anomalous Convergence: $f_0(x) = 2.8 x(1 - x)$.

(movie 8)

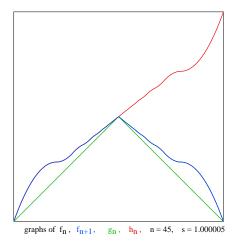
Anomalous Convergence: $f_0(x) = 2.8 x(1 - x)$.

(movie 8)



Anomalous Convergence: $f_0(x) = 2.8 x(1-x)$.

(movie 8)

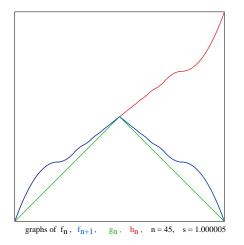


There seems to be uniform convergence:

$$f_n \to f_\infty$$
, $g_n \to g_\infty$, $h_n \to h_\infty$ as $n \to \infty$;

Anomalous Convergence: $f_0(x) = 2.8 x(1 - x)$.

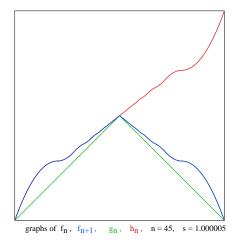
(movie 8)



There seems to be uniform convergence:

Anomalous Convergence: $f_0(x) = 2.8 x(1 - x)$.

(movie 8)



There seems to be uniform convergence:

 $f_n \to f_\infty$, $g_n \to g_\infty$, $h_n \to h_\infty$ as $n \to \infty$; but $f_\infty \neq g_\infty$, and the homeomorphism h_∞ is not the identity map.

Theorem. If the sequence $\{f_n\}$ converges uniformly,

Theorem. If the sequence $\{f_n\}$ converges uniformly, then the sequences $\{g_n\}$ and $\{h_n\}$ also converge uniformly;

Theorem. If the sequence $\{f_n\}$ converges uniformly, then the sequences $\{g_n\}$ and $\{h_n\}$ also converge uniformly; and the limit maps f_∞ , g_∞ , and h_∞ commute with each other.

Theorem. If the sequence $\{f_n\}$ converges uniformly, then the sequences $\{g_n\}$ and $\{h_n\}$ also converge uniformly; and the limit maps f_∞ , g_∞ , and h_∞ commute with each other. Furthermore

$$\mathbf{h}_{\mathrm{top}}(f_{\infty}) \ = \ \mathbf{h}_{\mathrm{top}}(g_{\infty}) \ = \ \log^+ ig(s(g_{\infty})ig)$$
 ;

Theorem. If the sequence $\{f_n\}$ converges uniformly, then the sequences $\{g_n\}$ and $\{h_n\}$ also converge uniformly; and the limit maps f_∞ , g_∞ , and h_∞ commute with each other. Furthermore

$$\mathbf{h}_{\mathrm{top}}(f_{\infty}) \ = \ \mathbf{h}_{\mathrm{top}}(g_{\infty}) \ = \ \log^+ \big(s(g_{\infty})\big)$$
 ;

and if $\mathbf{h}_{\mathrm{top}}>0$ we have "good convergence": $f_{\infty}=g_{\infty}$, and h_{∞} is the identity map.

Theorem. If the sequence $\{f_n\}$ converges uniformly, then the sequences $\{g_n\}$ and $\{h_n\}$ also converge uniformly; and the limit maps f_∞ , g_∞ , and h_∞ commute with each other. Furthermore

$$\mathbf{h}_{\mathrm{top}}(f_{\infty}) \ = \ \mathbf{h}_{\mathrm{top}}(g_{\infty}) \ = \ \log^+ ig(s(g_{\infty})ig)$$
 ;

and if $\mathbf{h}_{\mathrm{top}}>0$ we have "good convergence": $f_{\infty}=g_{\infty}$, and h_{∞} is the identity map.

Lemma. If $g=g_{\infty}$ has constant slope s>1, then no non-trivial orientation preserving homeomorphism $h=h_{\infty}$ can commute with g.

Theorem. If the sequence $\{f_n\}$ converges uniformly, then the sequences $\{g_n\}$ and $\{h_n\}$ also converge uniformly; and the limit maps f_∞ , g_∞ , and h_∞ commute with each other. Furthermore

$$\mathbf{h}_{\mathrm{top}}(f_{\infty}) \ = \ \mathbf{h}_{\mathrm{top}}(g_{\infty}) \ = \ \log^{+}\left(s(g_{\infty})\right)$$
 ;

and if $\mathbf{h}_{\mathrm{top}}>0$ we have "good convergence": $f_{\infty}=g_{\infty}$, and h_{∞} is the identity map.

Lemma. If $g = g_{\infty}$ has constant slope s > 1, then no non-trivial orientation preserving homeomorphism $h = h_{\infty}$ can commute with g.

Proof:

Step 1. Precritical points of g are everywhere dense,

Theorem. If the sequence $\{f_n\}$ converges uniformly, then the sequences $\{g_n\}$ and $\{h_n\}$ also converge uniformly; and the limit maps f_∞ , g_∞ , and h_∞ commute with each other. Furthermore

$$\mathbf{h}_{\mathrm{top}}(f_{\infty}) \ = \ \mathbf{h}_{\mathrm{top}}(g_{\infty}) \ = \ \log^{+}\left(s(g_{\infty})\right)$$
 ;

and if $\mathbf{h}_{\mathrm{top}}>0$ we have "good convergence": $f_{\infty}=g_{\infty}$, and h_{∞} is the identity map.

Lemma. If $g = g_{\infty}$ has constant slope s > 1, then no non-trivial orientation preserving homeomorphism $h = h_{\infty}$ can commute with g.

Proof:

- **Step 1.** Precritical points of g are everywhere dense,
- **Step 2.** Any precritical point of g must be fixed by h.

Theorem. If the sequence $\{f_n\}$ converges uniformly, then the sequences $\{g_n\}$ and $\{h_n\}$ also converge uniformly; and the limit maps f_∞ , g_∞ , and h_∞ commute with each other. Furthermore

$$\mathbf{h}_{\mathrm{top}}(f_{\infty}) \ = \ \mathbf{h}_{\mathrm{top}}(g_{\infty}) \ = \ \log^{+}\left(s(g_{\infty})\right)$$
 ;

and if $\mathbf{h}_{\mathrm{top}}>0$ we have "good convergence": $f_{\infty}=g_{\infty}$, and h_{∞} is the identity map.

Lemma. If $g = g_{\infty}$ has constant slope s > 1, then no non-trivial orientation preserving homeomorphism $h = h_{\infty}$ can commute with g.

Proof:

Step 1. Precritical points of g are everywhere dense,

Step 2. Any precritical point of g must be fixed by h.

But does
$$\mathbf{h}_{\text{top}}(f_{\infty}) = \lim_{n \to \infty} \mathbf{h}_{\text{top}}(f_n)$$
 ?

Appendix: The Balmforth-Spiegel-Tresser Algorithm

(Phys. Rev. Let. 72, 1994; or arXiv, 1993)

Appendix: The Balmforth-Spiegel-Tresser Algorithm

(Phys. Rev. Let. **72**, 1994; or arXiv, 1993)

Given a PM-map f with critical points c_j , let $P_m \subset \mathcal{I}$ be the finite set consisting of all $f^{\circ h}(c_j)$ with $0 \le h < m$.

Appendix: The Balmforth-Spiegel-Tresser Algorithm

(Phys. Rev. Let. **72**, 1994; or arXiv, 1993)

Given a PM-map f with critical points c_j , let $P_m \subset \mathcal{I}$ be the finite set consisting of all $f^{\circ h}(c_j)$ with $0 \leq h < m$. This subdivides \mathcal{I} into finitely many intervals J_1, \cdots, J_N .

Given a PM-map f with critical points c_j , let $P_m \subset \mathcal{I}$ be the finite set consisting of all $f^{\circ h}(c_j)$ with $0 \leq h < m$. This subdivides \mathcal{I} into finitely many intervals J_1, \cdots, J_N .

Construct an $N \times N$ matrix $M = [a_{ik}]$ with

$$a_{ik} = \begin{cases} 1 & \text{if } f(J_i) \supset J_k, \\ 0 & \text{if } f(J_i) \text{ is disjoint from the interior of } J_k, \\ .5 & \text{if } f(J_i) \text{ covers part of } J_k. \end{cases}$$

Given a PM-map f with critical points c_j , let $P_m \subset \mathcal{I}$ be the finite set consisting of all $f^{\circ h}(c_j)$ with $0 \leq h < m$. This subdivides \mathcal{I} into finitely many intervals J_1, \dots, J_N .

Construct an $N \times N$ matrix $M = [a_{ik}]$ with

$$a_{ik} = \begin{cases} 1 & \text{if } f(J_i) \supset J_k, \\ 0 & \text{if } f(J_i) \text{ is disjoint from the interior of } J_k, \\ .5 & \text{if } f(J_i) \text{ covers part of } J_k. \end{cases}$$

If we replace each .5 by a zero, we get a matrix M_0 whose leading eigenvalue is a lower bound for $s = \exp\left(\mathbf{h}_{\text{top}}(f)\right)$.

Given a PM-map f with critical points c_j , let $P_m \subset \mathcal{I}$ be the finite set consisting of all $f^{\circ h}(c_j)$ with $0 \le h < m$. This subdivides \mathcal{I} into finitely many intervals J_1, \dots, J_N .

Construct an $N \times N$ matrix $M = [a_{ik}]$ with

$$a_{ik} = \begin{cases} 1 & \text{if } f(J_i) \supset J_k, \\ 0 & \text{if } f(J_i) \text{ is disjoint from the interior of } J_k, \\ .5 & \text{if } f(J_i) \text{ covers part of } J_k. \end{cases}$$

If we replace each .5 by a zero, we get a matrix M_0 whose leading eigenvalue is a lower bound for $s = \exp\left(\mathbf{h}_{\mathrm{top}}(f)\right)$. Similarly, if we replace each .5 by a one, we get a matrix M_1 whose leading eigenvalue is an upper bound for s.

Given a PM-map f with critical points c_j , let $P_m \subset \mathcal{I}$ be the finite set consisting of all $f^{\circ h}(c_j)$ with $0 \leq h < m$. This subdivides \mathcal{I} into finitely many intervals J_1, \cdots, J_N .

Construct an $N \times N$ matrix $M = [a_{ik}]$ with

$$a_{ik} = \begin{cases} 1 & \text{if } f(J_i) \supset J_k, \\ 0 & \text{if } f(J_i) \text{ is disjoint from the interior of } J_k, \\ .5 & \text{if } f(J_i) \text{ covers part of } J_k. \end{cases}$$

If we replace each .5 by a zero, we get a matrix M_0 whose leading eigenvalue is a lower bound for $s = \exp\left(\mathbf{h}_{\text{top}}(f)\right)$. Similarly, if we replace each .5 by a one, we get a matrix M_1 whose leading eigenvalue is an upper bound for s.

Theorem (BST). As $m \to \infty$, these upper and lower bounds both converge to $\exp(\mathbf{h}_{top}(f))$.

It began with a classic Mechoui

It began with a classic Mechoui

And with Misha and Carsten and Cui

It began with a classic Mechoui

And with Misha and Carsten and Cui

But time's running out

It began with a classic Mechoui

And with Misha and Carsten and Cui

But time's running out

So let's get up and shout

It began with a classic Mechoui

And with Misha and Carsten and Cui

But time's running out

So let's get up and shout

Three cheers for John Hamal Hubbard,

It began with a classic Mechoui

And with Misha and Carsten and Cui

But time's running out

So let's get up and shout

Three cheers for John Hamal Hubbard, and for Dynamical Holomorphie!

References

- The W. Thurston Algorithm Applied to Real Polynomial Maps, A. Bonifant, J. Milnor and S. Sutherland arXiv:2005.07800 [math.DS]; augmented version to appear in "Conformal Geometry and Dynamics".
- Thurston's Algorithm without Critical Finiteness,
 J. Milnor Linear and Complex. Analysis Problem Book 3,
 Part 2, Havin and Nikolskii editors, Springer Lecture Notes
 in Math. **1474**, p.434–436, 1994.
- Metrics on Trees I: The Tower Algorithm for Interval Maps. G. Tiozzo, (Work in Progress).