## Functional Forms and Specification Errors

#### Eco321: Econometrics

Donghwan Kim Department of Economics SUNY at Stony Brook

Spring 2005

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

**Functional Forms** 

Dummy variables

Specification Errors

Example



# **Functional Forms**

## Quadratic Functional Forms<sup>1</sup>

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$$

Maginal effect of x on y

$$\frac{dy}{dx} = \beta_1 + \beta_2 x$$

► Concave (β<sub>2</sub> < 0) or canvex (β<sub>2</sub> > 0) function

$$\frac{d^2y}{dx^2} = \beta_2$$

<sup>1</sup>the subscript *i* is suppressed for simplicity

## **Functional Forms**

## Log-linear Functional Form

$$y = A x^{\beta_1} e^{\epsilon}$$

Taking natural logarithm in both side of the equation

 $\log y = \beta_0 + \beta_1 \log x + \epsilon$ 

►  $\beta_0 = \log A$ 

• The parameter  $\beta_1$  is (constant) elasticity

$$\frac{d(\log y)}{d(\log x_1)} = \frac{dy}{dx_1} \frac{x_1}{y} = \beta_1$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q ○

### Semilog Functional Form<sup>2</sup>

 $\log y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$ 

•  $\beta_1$  is proportionate change in y per unit change in  $x_1$ .

$$\frac{\partial y}{\partial x_1} \frac{1}{y} = \frac{\partial (\log y)}{\partial x_1} = \beta_1$$

(日本) (日本) (日本) (日本) (日本) (日本)

It is widely used in human capital models

<sup>&</sup>lt;sup>2</sup>See page 166 in textbook for more details

# **Dummy Variables**

#### Example

#### $Wage = \beta_0 + \beta_1 Education + \beta_2 Female + \epsilon$

- ► The dummy variable takes only two values, 1 or 0.
- Female = 1 if the person is woman
  0 if otherwise (the person is man)
- The Female variable measures the effect of gender on wages
- The statistical significance of the estimator β<sub>2</sub> shows the existence of gender discrimination

(日本) (日本) (日本) (日本) (日本) (日本)

# **Dummy Variables**

#### Analysis

- ► For Woman Wage =  $(\beta_0 + \beta_2) + \beta_1$ Education +  $\epsilon$
- For Man Wage =  $\beta_0 + \beta_1$ Education +  $\epsilon$
- ▶ β<sub>2</sub>: wage difference
- ► Assume that β<sub>2</sub> < 0</p>



Dummy variables

# Dummy Variable with Interaction term

## Example

 $Wage = \beta_0 + \beta_1 Education + \beta_2 Female + \beta_3 (Female \cdot Education) + \epsilon$ 

- ► For Woman Wage =  $(\beta_0 + \beta_2) + (\beta_1 + \beta_3)$ Education +  $\epsilon$
- ► For Man Wage =  $\beta_0 + \beta_1$ Education +  $\epsilon$
- β<sub>2</sub>: wage difference
- $\beta_3$ : different marginal effect
- Assume that  $\beta_2 < 0$  and  $\beta_3 > 0$



Education

# **Omitted Variable**

True Model

 $y_i = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + u$ 

Estimated Model

 $y = \beta_0 + \beta_1 x_1 + \epsilon$ 

▶ The omission of relevant variable *x*<sub>2</sub> (omitted variable)

Result

The OLS estimator is biased unless  $x_1$  and  $x_2$  are not correlated (Show it!!)

(日本) (日本) (日本) (日本) (日本) (日本)

# **Omitted Variable**

Meaning of  $\beta_1$ : Mixture of Direct and Indirect Effects Assume that

 $x_2 = \delta_0 + \delta_1 x_1 + \nu$ 

Insert it in the true model and rearrange it

 $y = (\gamma_0 + \gamma_2 \delta_0) + (\gamma_1 + \gamma_2 \delta_1) x_1 + (\gamma_2 \nu + u)$ 

 $\blacktriangleright \ \beta_1 = \gamma_1 + \gamma_2 \delta_1$ 

- $\gamma_1$ : direct effect of  $x_1$  on y
- $\gamma_2 \delta_1$ : indirect effect of  $x_1$  on y through  $x_2$
- $\beta_1$  and  $\gamma_1$  may have different sign<sup>3</sup>

**Specification Errors** 

# Measurement Error

## Measurement Error in Explanatory Variables

Model

$$y = \beta_0 + \beta_1 x^* + \epsilon$$

► x<sup>\*</sup> in not observed.

▶ Instead *x* is observed but with error (errors-in-variables).

#### Measurement Error u

$$x = x^{*} + u$$

(日本) (日本) (日本) (日本) (日本) (日本)

Assume that x and u are correlated

## Measurement Error

Result

The OLS estimator is biased toward zero (attenuation bias)

The correlation between regressor and error term

- It means violation of the  $E(\epsilon|x) = 0$  assumption (Show it!!)
- The OLS estimator is biased

Remedy

#### Instrumental variable (IV) estimator<sup>4</sup>

(日) (日) (日) (日) (日) (日) (日)

<sup>&</sup>lt;sup>4</sup>It will be covered later

# **Proxy Variables**

### The Effect of Education on Wage

Wage =  $\beta_0 + \beta_1$ Education +  $X\beta_2 + \epsilon$ 

The Education variable is not measured

Proxy for Education: Years of Schooling

The error *u* 

Years of Schooling = Education + u

(日本) (日本) (日本) (日本) (日本) (日本)

If years of schooling and the error term u is correlated, the OLS estimator is biased

# Example: The effect of education of wage

The Econometric Model<sup>5</sup>

 $log(wage) = \beta_0 + \beta_1 Age + \beta_2 Education + \beta_2 Female + \beta_2 Africamer + \epsilon$ 

ション ふゆう メヨト メヨト マロト

## The things to be considered

- Semilog Functional form
- The Female and Africamer dummy variables
- ▶ The possible omitted variables: experience, ability
- Proxy for education: years of schooling