
Minimax Play at Wimbledon

By MARK WALKER AND JOHN WOODERS*

In many strategic situations it is important
that one’s actions not be predictable by one’s
opponent, or by one’s opponents. Indeed, the
origins of modern game theory lie in the attempt
to understand such situations. The theory of
mixed-strategy play, including von Neumann’s
Minimax Theorem and the more general notion
of a Nash equilibrium in mixed strategies, re-
mains the cornerstone of our theoretical under-
standing of strategic situations that require
unpredictability.

Many experiments designed to test the theory
of mixed-strategy play using human subjects
have been carried out over the past 40 years or
more. The theory has not fared well.1 The the-
ory’s consistent failure in experimental tests
raises the question whether there areany stra-
tegic situations in which people behave as the
theory predicts.

We develop a test of the minimax hypothesis
using field data from championship professional
tennis matches, and we find that win rates in the
serve and return play of top professional tennis
players are consistent with the minimax hypoth-
esis. However, the players’ choices are not con-
sistent with the serial independence implied by
the minimax hypothesis: even the best tennis
players tend to switch from one action to an-
other too often.

When we apply the same statistical tests to
experimental data, both the equilibrium mixing
proportions and serial independence of choices

are soundly rejected. Our results therefore pro-
vide some evidence that play by highly moti-
vated and highly experienced players may
conform more closely to the theory of mixed-
strategy equilibrium than the play that has been
observed in experiments.

We begin from the observation that games
are not easy to play, or at least to play well. This
is especially true of games requiring unpredict-
able play. Consider poker—say, five-card draw
poker. The rules are so simple that they can be
learned in a few minutes’ time. Nevertheless, a
player who knows the rules and the mechanics
of the game but has little experience actually
playing poker will not play well.2 Similarly, in
experiments on minimax play the rules of the
game have typically been simple, indeed trans-
parently easy to understand. But subjects who
have no experience actuallyplaying the game
are not likely to understand the game’s strategic
subtleties—they are likely to understand how to
play the game, but not how to play the game
well. Indeed, it may simply not be possible in
the limited time frame of an experiment to be-
come very skilled at playing a game that re-
quires one to be unpredictable.

Professional sports, on the other hand, pro-
vide us with strategic competition in which the
participants have devoted their lives to becom-
ing experts at their games, and in which they are
often very highly motivated as well. Moreover,
situations that call for unpredictable play are
nearly ubiquitous in sports: The pitcher who
“tips” his pitches is usually hit hard, and batters
who are known to “sit on” one pitch usually
don’t last long. Tennis players must mix their
serves to the receiver’s forehand and backhand
sides; if the receiver knew where the serve was
coming, his returns would be far more effective.
Point guards who can only go to their right
don’t make it in the NBA. Thus, while the
players’ recognition of the “correct” way to mix
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1 See, for example, Figure 1 in Ido Erev and Alvin E.
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chips and sitting down at a table at Binion’s in Las Vegas.
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in these situations may be only subconscious,
any significant deviation from the correct mix-
ture will generally be pounced upon by a so-
phisticated opponent.3

As empirical tests of the minimax hypothesis,
however, sports are generally inferior to exper-
iments. In the classic confrontation between
pitcher and batter, for example, there are many
actions available (fastball, curve, change-up, in-
side, outside, etc.), and the possible outcomes
are even more numerous (strike, ball, single,
home run, fly ball, double-play grounder, etc.).
Difficulties clearly arise in modeling such situ-
ations theoretically, in observing players’ ac-
tions, and in obtaining sufficient data to conduct
informative statistical tests.

Tennis, however, provides a workable empir-
ical example: although speed and spin on the
serve are important choices, virtually every
(first) serve is delivered as far toward one side
or the other of the service court as the server
feels is prudent, and the serve is for many
players an extremely important factor in deter-
mining the winner of the point. Moreover, the-
oretical modeling is tractable (each point has
only two possible outcomes: either the server
wins the point, or the receiver does); the serv-
er’s actions are observable (it is easy to see
whether he has served to the receiver’s forehand
or backhand); and data is relatively plentiful
(long matches contain several hundred points
played by the same two players).

Following this idea, we use simple 23 2
games as a theoretical model of the serve and its
relation to the winning of points in a tennis
match. We have constructed a data set that
contains detailed information about every point
played in ten professional tennis matches. Each
match provides us with four 23 2 “point
games” with which to test the minimax hypoth-
esis, giving us a total of 40 point games. In each
of the 40 point games we use the server’s “win
rates”—the observed relative frequencies with
which he won points when serving to the re-

ceiver’s left or to his right—to test whether his
winning probabilities are indeed the same for
both serving directions, as the theory says they
should be. In only one of the 40 point games is
minimax play rejected at the 5-percent level.
This rejection rate is actually slightly below the
rate predicted by the random character of equi-
librium play.

In addition to equality of players’ winning
probabilities, equilibrium play also requires that
each player’s choices be independent draws
from a random process. We conduct tests of
randomness, and find that the tennis players
switch their serves from left to right and vice
versa too often to be consistent with random
play. This is consistent with extensive experi-
mental research in psychology which indicates
that people who are attempting to behave truly
randomly tend to “switch too often.” The same
tests reveal far greater deviation from random-
ness in experimental data.

I. A Model of the Serve in Tennis

We model each point in a tennis match as a
simple 23 2 normal-form game between two
players.4 A typical suchpoint gameis depicted
in Figure 1. Each point in a tennis match is
begun by one of the players placing the ball in
play, or “serving.” We assume that the two
actions available to the server are to serve either
to the receiver’s left (L) or to the receiver’s right
(R). Simultaneously with the server’s decision,
the receiver is assumed to guess whether the
serve will be to the left or to the right—i.e., he
makes a decision, perhaps only subconsciously,
to “overplay” to one side or the other.5

After the server and the receiver have both
made their left-or-right choices for the serve,
the winner of the point is determined—perhaps
immediately (if the serve is not returned suc-
cessfully), or perhaps after many subsequent

3 After a recent match, Venus Williams said she had
shown her opponent, Monica Seles, several different types
of serves. “You have to work on that, because it’s very easy
to become one-dimensional and just serve to your favorite
space and the person is just waiting there.” Seles responded
“She mixed it up very well . . . I really love that part of her
game.”

4 Essentially the same 23 2 model appears in Avinash
Dixit and Barry Nalebuff (1991).

5 The point game can be modeled differently. For exam-
ple, the server can be given more choices (serve to the body;
use a flat, slice, or kick serve), and the receiver, instead of
“guessing,” can choose a location across the baseline where
he can position himself to await the serve. These alternative
models of the point game make the same predictions as our
2 3 2 point-game model.
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strokes by each player, or perhaps even after a
second serve is played (if the first serve turns
out to be a fault). We do not attempt to model
the play after the serve, but instead adopt a
reduced-form representation of it: each player’s
payoffs in the four cells of the game matrix are
the respective probabilities that he will ulti-
mately win the point, conditional on the left-or-
right choices each of the players has made on
the serve.

The server’s probabilities of winning the
point are denoted by the four numberspsr,
wheres is the server’s choice (L or R) andr is
the receiver’s choice (L or R). Since one player
or the other must win the point, the receiver’s
probabilities of winning are the numbers 12
psr. We assume that each player cares only
about winning the point; therefore the winning
probabilitiespsr and 12 psr are the players’
payoffs in the 23 2 point game.6 Because the
game is constant sum, it is completely deter-
mined by the server’s probabilitiespsr, as in
Figure 1. (Figure 1 includes a numerical exam-
ple. The example’s payoff numberspsr are hy-
pothetical, but capture salient features of the
data.)

We assume that every point game we will

encounter satisfies the inequalitiespLL , pRL
andpRR, pLR (i.e., the server is more likely to
win the point if he serves away from the di-
rection the receiver is overplaying) as well as
the inequalitiespLL , pLR andpRR, pRL (the
server is less likely to win the point if the
receiver overplays in the direction the server has
chosen). This is equivalent to the following
assumption:

ASSUMPTION 1: Every point in a tennis
match is played as a 23 2 constant-sum
normal-form game with a unique equilibrium in
strictly mixed strategies.

Both our theoretical and our empirical anal-
ysis would be simpler if every point game in
every tennis match were the same—i.e., if there
were no variation in the four probability payoffs
psr over the course of a match or across
matches. This is highly unlikely, however. The
probability payoffs in a point game clearly de-
pend upon the abilities of the specific two peo-
ple who are playing the roles of server and
receiver. The probabilities will therefore vary in
matches between different people, and perhaps
even across matches involving the same pair of
opponents but played on different surfaces or
under different weather conditions. Moreover,
the probabilities will typically vary even within
a single match, because the serve alternates
between the two players in successive games.

6 The tennismatch consists of repeated play of point
games. We address below the relation between the point
games and a player’s strategy for the match.

FIGURE 1. THE POINT GAME

Note: Outcomes (cell entries) are the probability the Server wins the point.
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Further, even when holding the server and re-
ceiver fixed, as is done within a single game, the
points that make up the game alternate between
“deuce-court” points and “ad-court” points. Be-
cause of the players’ particular abilities, the
probability payoffs for a deuce-court point will
generally differ from the probabilities for an
ad-court point.

In a given match, then, there are typically at
least four distinct point games, identified by
which player has the serve and by whether it is
a deuce-court point or an ad-court point. We
assume that there is no further variability in the
point games within a single match.

ASSUMPTION 2: There are four point games
in a tennis match, distinguished by which player
is serving for the point, and by whether thepoint
is a deuce-court point or an ad-court point.

The Tennis Match as a Game.A player in a
tennis match is presumably interested in win-
ning points only as a means to his ultimate goal
of winning the match. The fact that the point
games are merely the elements of a larger
(infinite-horizon, extensive-form) game raises
an immediate question: is it appropriate to as-
sume, as we are doing, that the players’ payoffs
in the point game are the probabilities they will
win the point? The link between the point
games and the “match game” is provided by the
main result in Walker and Wooders (2000),
where a class of games calledbinary Markov
gamesis defined and analyzed. They show that
equilibrium play in such games (of which tennis
is an example) requires that a player play each
point as if it were the only point: his play should
be independent of the score (except to the extent
that it directly affects the probability payoffs
psr), and independent of the actions or out-
comes on all previous points.7

II. On Testing the Theory

Our simple theoretical model of tennis, when
combined with the equilibrium result from

Walker and Wooders (2000), makes some pre-
dictions about tennis players’ behavior that we
can subject to empirical testing. The theory’s
first implication is that for every point of a
tennis match each of the players will make his
left-or-right choice according to his minimax
mixture for the associated point game. The ob-
served choices in a given match will therefore
be independent draws from a binomial process
which depends upon (a) which player is serving
and (b) whether the point is a deuce-court point
or an ad-court point; and the binomial process is
otherwise independently and identically distrib-
uted (i.i.d.) across all serves in the match. Fur-
thermore, if the four probability payoffspsr in
a point game are known, then it is straightfor-
ward to calculate each player’s equilibrium
mixture. It would seem to be straightforward,
then, to simply test whether the observed fre-
quencies of a player’s left and right choices
[separated according to (a) and (b)] could have
been the result of his equilibrium i.i.d. binomial
mixture process, in just the same way that tests
of the minimax hypothesis have been performed
with experimental data.

However, in a tennis match the entriespsr in
the payoff matrix are not known, nor can we
observe the receiver’s choices, and therefore we
cannot estimate the numberspsr. The only el-
ements of the point game that are observable in
an actual tennis match are (1) the server’s action
on each first serve (was the serve to the left or
to the right?), and (2) which player ultimately
won the point. In a given point game, if the
players are playing according to the equilib-
rium, which is in mixed strategies, then each
player’s expected payoff from playing left must
be the same as his expected payoff from playing
right—i.e., a player must have the same proba-
bility of winning the point, whichever direction
he serves, and his observed win rates can be
used to test that hypothesis.

III. The Data

Our data set was obtained from videotapes of
ten tennis matches between highly ranked pro-
fessional players in the four so-called major, or
Grand Slam, tournaments and the year-end
Masters tournament. All but two of the matches
were the final (championship) match of the re-
spective tournament. There were several criteria

7 Martina Navratilova has said that on the night before
she was to play in the 1990 Wimbledon final she condensed
her strategy to just a few words: “I had to keep my mind off
winning: . . . Think about that point and that point only.”
(John Feinstein, 1991.)
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that we required the matches to satisfy for in-
clusion in our data set: that winning the match
be important to both players (hence the Grand
Slam and Masters tournaments); that the players
be well known to one another, so that each
would enter the match with a good sense of the
probability payoffspsr; and that the matches be
long enough to contain many points,8 in order to
have enough observations to make our statisti-
cal tests informative—specifically, so that the
tests would be likely to reject the minimax
hypothesis in cases where it is false (in other
words, so that the tests would have adequate
power).

Recall that every tennis match contains four
point games, so in our ten matches we have
data for 40 point games in all. Note that in
Table 1, where the data are summarized, the
matches are separated by horizontal lines, and
there are four rows for each match. Each row
corresponds to a point game. Indeed, it will be
helpful to think of each row of Table 1 as the
data from an “experiment,” for which we model
the data generating process as a 23 2 point
game, as in Section I. We will want to test
whether the data in these experiments could
have been generated byequilibriumplay of the
relevant point game.

The data set contains the following informa-
tion for every point in every one of the ten
matches: the direction of the point’s first serve
(left, center, or right), and whether or not the
server ultimately won the point. The data are
presented in Table 1 (with serves to the center
omitted: only 6 percent of first serves were to
the center, so they would have a negligible
effect on our results). The columns labeled
Serves in Table 1 indicate, for each match,
server, and court (i.e., for each “experiment”),
the number of times the direction of the first
serve was left (L) or right (R). The columns
labeled Points Won indicate, for each direction
of first serve, the number of times the server
ultimately won the point.9 The relative fre-

quency of each direction of first serve (the ob-
served mixture) is given in the Mixture
columns, and the relative frequencies with
which points were won (the “win rate”) for each
direction are given in the Win Rates columns.
The winner of the match is indicated in
boldface.

In our data set the players had on average 160
first serves but only 63 second serves. Since the
number of second serves from either court is
generally small (averaging just 33 from the
deuce court and 30 from the ad court in our
matches), we analyze only first serves.

IV. Testing for Equality of Winning
Probabilities

We first test, for each of the 40 point-game
“experiments” in our data set, the hypothesis
that the server’s winning probabilities were the
same for left and right serves. We represent
each experiment’s data as having been gener-
ated by random draws from two binomial
processes—a left process, which determines the
winner of the point if the server has served to
the left; and a right process, which determines
who wins the point if the serve was to the right.
The processes’ binomial parameters are not
known, and they might differ across the 40
experiments. We first consider each experiment
in isolation: in each one, our null hypothesis is
that the left and right processes’ binomial pa-
rameters are the same—i.e., that the server’s
winning probabilities in that point game were
the same for left serves as for right serves.

We use Karl Pearson’s chi-square goodness-
of-fit test of equality of two distributions (see,
for example, p. 449 of Alexander M. Mood et
al., 1974). We index the 40 point-game exper-
iments byi (i 5 1, . . . , 40). Foreach exper-
iment i , our null hypothesisis that pL

i 5 pR
i ,

or equivalently, that there is a numberpi such
thatpL

i 5 pi andpR
i 5 pi. If the null hypothesis

is true, then the Pearson test statistic is dis-
tributed asymptotically as chi-square with two

8 There is some possibility that selecting only long (and
thus close) matches could introduce a sample selection bias:
matches might be long partlybecauseboth players are
playing as the equilibrium predicts.

9 We are interested in the relation between (first) serve
direction and whether the server ultimately wins the point.
Therefore, for example, each of the following cases would

yield an increment in both the number of serves to L and the
number of points won when the serve is to L: (a) when a
first serve is to L and the serve is good and the server wins
the point; and (b) when a first serve is to L and the serve is
a fault and the server wins the point following the second
serve, which could be in any direction.
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degrees of freedom ifpi is known, or with one
degree of freedom ifpi must be estimated from
the data, as in our case.

Table 1 reports the results of the Pearson
test. For each of the 40 point-game experi-
ments, the two columns labeled “Pearson sta-

TABLE 1—TESTING FOREQUALITY OF WINNING PROBABILITIES IN TENNIS DATA

Match Server Court

Serves Mixture Points Won
Win
Rates

Pearson
statistic p-valueL R Total L R L R L R

74Wimbldn Rosewall Ad 37 37 74 0.50 0.50 25 26 0.68 0.70 0.063 0.802
74Wimbldn Rosewall Deuce 70 5 75 0.93 0.07 50 3 0.71 0.60 0.294 0.588
74Wimbldn Smith Ad 66 10 76 0.87 0.13 45 7 0.68 0.70 0.013 0.908
74Wimbldn Smith Deuce 53 29 82 0.65 0.35 33 14 0.62 0.48 1.499 0.221

80Wimbldn Borg Ad 19 73 92 0.21 0.79 11 50 0.58 0.68 0.758 0.384
80Wimbldn Borg Deuce 37 62 99 0.37 0.63 26 41 0.70 0.66 0.182 0.670
80Wimbldn McEnroe Ad 45 40 85 0.53 0.47 27 26 0.60 0.65 0.226 0.635
80Wimbldn McEnroe Deuce 44 44 88 0.50 0.50 28 32 0.64 0.73 0.838 0.360

80USOpen McEnroe Ad 39 40 79 0.49 0.51 23 30 0.59 0.75 2.297 0.130
80USOpen McEnroe Deuce 51 32 83 0.61 0.39 31 18 0.61 0.56 0.167 0.683
80USOpen Borg Ad 29 47 76 0.38 0.62 17 30 0.59 0.64 0.206 0.650
80USOpen Borg Deuce 30 50 80 0.38 0.63 20 26 0.67 0.52 1.650 0.199

82Wimbldn Connors Ad 32 46 78 0.41 0.59 16 32 0.50 0.70 3.052 0.081**
82Wimbldn Connors Deuce 76 15 91 0.84 0.16 51 8 0.67 0.53 1.042 0.307
82Wimbldn McEnroe Ad 32 39 71 0.45 0.55 23 24 0.72 0.62 0.839 0.360
82Wimbldn McEnroe Deuce 35 44 79 0.44 0.56 24 30 0.69 0.68 0.001 0.970

84French Lendl Ad 33 34 67 0.49 0.51 18 21 0.55 0.62 0.359 0.549
84French Lendl Deuce 26 45 71 0.37 0.63 19 31 0.73 0.69 0.139 0.710
84French McEnroe Ad 38 29 67 0.57 0.43 23 18 0.61 0.62 0.016 0.898
84French McEnroe Deuce 42 30 72 0.58 0.42 21 20 0.50 0.67 1.983 0.159

87Australn Edberg Ad 47 22 69 0.68 0.32 29 12 0.62 0.55 0.318 0.573
87Australn Edberg Deuce 19 56 75 0.25 0.75 12 40 0.63 0.71 0.456 0.499
87Australn Cash Ad 38 27 65 0.58 0.42 19 14 0.50 0.52 0.022 0.883
87Australn Cash Deuce 39 29 68 0.57 0.43 25 16 0.64 0.55 0.554 0.457

88Australn Wilander Ad 32 36 68 0.47 0.53 20 25 0.63 0.69 0.365 0.546
88Australn Wilander Deuce 20 56 76 0.26 0.74 16 35 0.80 0.63 2.045 0.153
88Australn Cash Ad 40 23 63 0.63 0.37 22 13 0.55 0.57 0.014 0.907
88Australn Cash Deuce 37 37 74 0.50 0.50 19 25 0.51 0.68 2.018 0.155

88Masters Becker Ad 50 26 76 0.66 0.34 30 18 0.60 0.69 0.626 0.429
88Masters Becker Deuce 53 31 84 0.63 0.37 38 20 0.72 0.65 0.472 0.492
88Masters Lendl Ad 55 21 76 0.72 0.28 43 15 0.78 0.71 0.383 0.536
88Masters Lendl Deuce 46 38 84 0.55 0.45 24 23 0.52 0.61 0.589 0.443

95USOpen Sampras Ad 20 37 57 0.35 0.65 12 28 0.60 0.76 1.524 0.217
95USOpen Sampras Deuce 33 26 59 0.56 0.44 20 22 0.61 0.85 4.087 0.043*
95USOpen Agassi Ad 39 16 55 0.71 0.29 29 13 0.74 0.81 0.298 0.585
95USOpen Agassi Deuce 30 29 59 0.51 0.49 17 17 0.57 0.59 0.023 0.879

97USOpen Korda Ad 55 19 74 0.74 0.26 42 16 0.76 0.84 0.513 0.474
97USOpen Korda Deuce 52 30 82 0.63 0.37 38 19 0.73 0.63 0.852 0.356
97USOpen Sampras Ad 33 51 84 0.39 0.61 21 32 0.64 0.63 0.007 0.934
97USOpen Sampras Deuce 50 43 93 0.54 0.46 33 28 0.66 0.65 0.008 0.929

Totals 1,622 1,404 3,026 0.54 0.46 1,040 918 0.64 0.65 30.801 0.852

* Indicates rejection at the 5-percent level of significance.
** Indicates rejection at the 10-percent level of significance.
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tistic” and “p-value,” at the right-hand side of
the table, report the value of the test statistic,
Qi , along with its associatedp-value. In only
one of our 40 point-game experiments (Sam-
pras serving to Agassi in the deuce court in
1995) do we find the null hypothesis rejected
at the 5-percent level (ap-value less that
0.05), and for only one other point game
(Connors serving to McEnroe in the ad court
in 1982) do we reject at the 10-percent level.
Note that with 40 point games, the expected
number of individual rejections according to
the theory (i.e., when the null hypothesis is
true) is two rejections at the 5-percent level
and four at the 10-percent level. Considering
simply the number of 5-percent and 10-per-
cent rejections, then, the tennis data appear
quite consistent with the theory.

This suggests a test of thejoint hypothesis
that the data fromall 40 experiments were
generated by equilibrium play. We apply
Pearson’s test to the joint hypothesis thatpL

i

5 pR
i for each oneof the experimentsi 5

1, . . . ,40 (but allowing the parameterspL
i

and pR
i to vary across experimentsi ). The

test statistic for the Pearson joint test is
simply the sum of the test statisticsQi in the
40 individual tests we have just described,
which under the null hypothesis is distributed
as chi-square with 40 degrees of freedom. For
our tennis data, the value of this test sta-
tistic is 30.801 and the associatedp-value is
0.852. Clearly, we cannot reject this joint
hypothesis at any reasonable level of
significance.

We have observed, above, that in the 40
individual tests, the data yield slightlyfewer
rejections of the null hypothesis than one
would expect to obtain when the theory is
correct—i.e., when the joint null hypothesis is
true. We develop this idea further, to obtain a
more informative assessment of the data’s
conformity with the theory. We consider all
40 point-game experiments, and we compare
the observed distribution of the 40Qi values
with the distribution predicted by the theory.
Recall that under the joint null hypothesis
(pL

i 5 pR
i for each experimenti ) the Pearson

FIGURE 2. WIN RATES IN TENNIS: KOLMOGOROV TEST
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TABLE 2—TESTING FOREQUALITY OF WINNING PROBABILITIES IN O’NEILL’S DATA

Pair Player

Mixtures Win Rates

PearsonQ p-valueJoker Non-Joker Joker Non-Joker

1 1 0.181 0.819 0.211 0.430 3.156 0.076**
2 0.352 0.648 0.892 0.456 19.139 0.000*

2 1 0.438 0.562 0.391 0.220 3.631 0.057**
2 0.552 0.448 0.690 0.723 0.142 0.706

3 1 0.543 0.457 0.526 0.229 9.667 0.002*
2 0.552 0.448 0.483 0.766 8.749 0.003*

4 1 0.333 0.667 0.829 0.214 36.167 0.000*
2 0.724 0.276 0.618 0.483 1.587 0.208

5 1 0.467 0.533 0.388 0.304 0.822 0.365
2 0.448 0.552 0.596 0.707 1.424 0.233

6 1 0.390 0.610 0.463 0.391 0.544 0.461
2 0.448 0.552 0.596 0.569 0.076 0.782

7 1 0.305 0.695 0.531 0.452 0.559 0.454
2 0.352 0.648 0.541 0.515 0.064 0.800

8 1 0.324 0.676 0.412 0.493 0.609 0.435
2 0.295 0.705 0.548 0.527 0.040 0.841

9 1 0.295 0.705 0.290 0.392 0.976 0.323
2 0.343 0.657 0.750 0.580 2.971 0.085**

10 1 0.419 0.581 0.364 0.410 0.229 0.632
2 0.410 0.590 0.628 0.597 0.103 0.748

11 1 0.305 0.695 0.313 0.425 1.176 0.278
2 0.371 0.629 0.744 0.530 4.686 0.030*

12 1 0.486 0.514 0.490 0.593 1.108 0.292
2 0.429 0.571 0.444 0.467 0.051 0.821

13 1 0.267 0.733 0.536 0.364 2.514 0.113
2 0.533 0.467 0.732 0.429 9.959 0.002*

14 1 0.305 0.695 0.344 0.521 2.794 0.095**
2 0.229 0.771 0.542 0.531 0.009 0.926

15 1 0.457 0.543 0.313 0.333 0.052 0.820
2 0.371 0.629 0.615 0.712 1.048 0.306

16 1 0.438 0.562 0.304 0.373 0.539 0.463
2 0.381 0.619 0.650 0.662 0.015 0.904

17 1 0.362 0.638 0.368 0.358 0.011 0.917
2 0.410 0.590 0.674 0.613 0.416 0.519

18 1 0.390 0.610 0.488 0.484 0.001 0.973
2 0.410 0.590 0.535 0.500 0.124 0.725

19 1 0.324 0.676 0.500 0.338 2.534 0.111
2 0.505 0.495 0.679 0.538 2.186 0.139

20 1 0.429 0.571 0.600 0.317 8.386 0.004*
2 0.495 0.505 0.481 0.642 2.755 0.097**

21 1 0.371 0.629 0.436 0.500 0.404 0.525
2 0.324 0.676 0.500 0.535 0.114 0.735
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statistic Qi is asymptotically distributed as
chi-square-1 for eachi . In other words, each
experiment yields an independent draw,Qi ,
from the chi-square-1 distribution, and thus
(under the joint null hypothesis) the 40Qi

values in Table 1 should be 40 such chi-
square draws. Equivalently, thep-values as-
sociated with the realizedQi values (also in
Table 1) should have been 40 draws from the
uniform distributionU[0, 1].

A simple visual comparison of the observed
distribution with the theoretically predicted
distribution is provided in Figure 2, in which
the empirical cumulative distribution function
(the c.d.f.) of the 40 observedp-values is
juxtaposed with the theoretical c.d.f., the dis-
tribution thep-values would have been drawn
from if the data were generated according to
the theory—i.e., the uniform distribution, for
which the c.d.f. is the 45° line in Figure
2. The empirical and the theoretically pre-
dicted distributions depicted in Figure 2 are
strikingly close to one another.

We formalize this comparison of the two
distributions via the Kolmogorov-Smirnov (KS)
test, which allows one to test the hypothesis that
an empirical distribution of observed values
was generated by draws from a specified
(“hypothesized”) distribution. In addition to
its appealing visual interpretation, as in Fig-
ure 2, the KS test is also more powerful than
the Pearson joint test against many alternative

hypotheses about how the data were
generated.10

In performing the KS test for the tennis data,
the hypothesized c.d.f. for thep-values is the
uniform distribution,F( x) 5 x for x e [0, 1].
Denoting the empirical distribution of the 40
p-values in Table 1 byF̂( x), the KS test statis-
tic is K 5 =40 supx[[0,1]|F̂( x) 2 x|, which has
a known distribution (see p. 509 of Mood et al.,
1974). For the tennis data in Table 1, we have
K 5 0.670, with ap-value of 0.76, far toward
the opposite end of the distribution from the
rejection region. This data, in other words, is
typical of the data that minimax play would
produce: minimax play would generate a value
of K at least this large 76 percent of the time,
and a “better” (smaller) value ofK only 24
percent of the time.

A. Applying Our Tests to Experimental Data

In experiments on mixed-strategy play,
observed play adhered most closely to the
equilibrium prediction in Barry O’Neill’s
(1987) experiment.11 When we apply the
same statistical tests to O’Neill’s data as we

10 See Walker and Wooders (1999 fn. 19) for a simple
illustration of this.

11 O’Neill’s ingenious experimental design avoided
several weaknesses he had identified in prior tests of the
theory.

TABLE 2—Continued.

Pair Player

Mixtures Win Rates

PearsonQ p-valueJoker Non-Joker Joker Non-Joker

22 1 0.457 0.543 0.354 0.439 0.774 0.379
2 0.343 0.657 0.528 0.638 1.191 0.275

23 1 0.162 0.838 0.471 0.443 0.043 0.835
2 0.419 0.581 0.818 0.361 21.641 0.000*

24 1 0.257 0.743 0.519 0.487 0.079 0.779
2 0.371 0.629 0.641 0.424 4.609 0.032*

25 1 0.333 0.667 0.486 0.257 5.486 0.019*
2 0.590 0.410 0.726 0.581 2.383 0.123

167.741 0.000*

* 10 rejections at 5 percent.
** 15 rejections at 10 percent.
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have to our tennis data, the difference is
striking.

In O’Neill’s experiment 25 pairs of sub-
jects repeatedly played a simple two-person
game in which each player chooses one of
four cards: Ace, Two, Three, or Joker. The
game has a unique Nash equilibrium: each
player chooses the Joker with probability 0.4
and chooses each number card with probabil-
ity 0.2. O’Neill’s subjects all played the
game 105 times, each subject always play-
ing against the same opponent.12 O’Neill
awarded the winner of each play a nickel and
the loser nothing (a total of $5.25 per pair of
subjects).

In order to compare our binary-choice data
with O’Neill’s data, we pool the three num-
ber cards, which are strategically equivalent,
into a single action, “non-Joker,” and focus
our analysis on the binary choice of a Joker
or a non-Joker card. We index the subjects by
i [ {1, . . . , 50}. Of course each subject’s
choices were observable in O’Neill’s experi-
ment, so we can use each of the 50 subjects’
win rates to test whether his winning proba-
bilities were the same for his plays of the
Joker and the non-Joker cards. We conduct
the same tests as we have already carried out
above for the tennis data. Table 2 contains the
observed mixtures and win rates, and the cor-
responding values of the test statistic and its
p-values.

In the 50 individual tests (in each of which
the null hypothesis is that the subject’s Joker
and non-Joker winning probabilities are the
same), we obtain 10 rejections at the 5-per-
cent level and 15 rejections at the 10-percent
level.13 In order to test thejoint hypothesis
that the winning probability is the same for
Joker and non-Joker cards forevery subject
(but possibly different across subjects), we

simply sum the 50 values of the test statistic
to obtain the statistic¥ i51

50 Qi , just as we
described above for the tennis data. This sta-
tistic is asymptotically distributed chi-square
with 50 degrees of freedom under the null
hypothesis. The value of the statistic is
167.741 and the associatedp-value is 1.2393
10214; hence the joint null hypothesis is re-
jected at virtually any level of significance, in
sharp contrast to the largep-value (0.852)
obtained in the parallel test on the tennis data.

Figure 3 is the analogue for O’Neill’s data
of Figure 2 for the tennis data: it depicts the
empirical distribution and the hypothesized
(i.e., uniform) distribution of thep-values for
the tests of equality of winning probabilities
in O’Neill’s data. The value of the KS test
statistic is K 5 1.704, with a p-value of
0.006. Hence the KS test rejects the null hy-
pothesis at significance levels as low as 1
percent, again a sharp contrast with the tennis
data, in which the correspondingp-value is
0.76. Comparison of Figures 2 and 3 provides
a striking visual picture of the difference be-
tween the two data sets’ conformity with the
theory of mixed-strategy equilibrium. Thep-
values in the tennis data are distributed almost
exactly uniformly, as the theory predicts they
should be, but thep-values are far from uni-
form for O’Neill’s data.

B. The Power Of Our Tests

In order to evaluate the power of our tests,
we concentrate our attention on the Pearson
joint test for equality of the server’s left and
right winning probabilities. Using the numer-
ical example in Figure 1,14 we formulate a
parametric class of plausible alternative hy-
potheses and we conduct Monte Carlo simu-
lations to evaluate the power of the Pearson

12 Regardless of the players’ risk attitudes, the unique
equilibrium of the repeated O’Neill game consists of the
players mixing independently at each stage according to the
stage game’s equilibrium mixture. This follows from results
in Wooders and Jason Shachat (2001), who study sequential
play of stage games in which each stage game has only two
possible outcomes.

13 James N. Brown and Robert W. Rosenthal (1990)
have provided an extensive statistical analysis of O’Neill’s
data, including direct tests using subjects’ empirical mix-
tures, and they obtain similar levels of rejection.

14 Of course, as we have already pointed out, the actual
probability payoffs in the point games are not observable,
and they surely differ from one “experiment” to another.
However, the point-game example in Figure 1 captures
some of the key aggregate features of the actual data in our
tennis matches: in the game’s equilibrium the server serves
to the receiver’s left with mixture probability 0.531⁄3, while
in the data 53.5 percent of all first serves are to the left; and
the game’s value (i.e., the probability that the server will
win the point) is 0.65, while in the data the servers won 64.7
percent of all points.
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test to reject the null hypothesis when any of
these alternative hypotheses is true.

Our null hypothesis in each experiment (viz.,
that the server’s left and right winning probabili-
ties are the same) is a consequence of our assump-
tion that the receiver is playing his minimax
mixture. But the receiver may actually be mixing
his choices in some other proportions. Letu de-
note the proportion of the points on which the
receiver chooses left; the null hypothesis for a
given experiment is thus thatu 5 2

3
, and alterna-

tive values ofu comprise the alternative hypotheses
we will consider. For any value ofu, the server’s
winning probabilitiespL andpR are given by

pL ~u! 5 0.58u 1 0.79~1 2 u!

and

pR~u! 5 0.73u 1 0.49~1 2 u!.

Under the joint null hypothesis that in a data
set with 40 experiments each receiver follows

his minimax mixture, the Pearson test statistic
¥ i51

40 Qi is asymptotically distributed as chi-
square with 40 degrees of freedom.

At the 5-percent significance level, the Pear-
son joint test consists of rejecting the null hy-
pothesis if¥ i51

40 Qi exceeds the critical value
55.75. The power of this test against an alter-
native value ofu is defined as the probability of
rejecting the joint null hypothesis when the al-
ternative value ofu is the true value. But for
values ofu different fromu0 5 2

3
, we havepL Þ

pR, and hence the distribution of the Pearson
test statistic¥ i51

40 Qi is not known. We have
used Monte Carlo methods to estimate
the power of the test against alternative values
of u.15 The power function is depicted in

15 For a given, fixed value ofu, data was randomly
generated for 40 experiments; the test statistic was com-
puted and compared to the critical value 55.75, and the null
hypothesis was thus either rejected or it was not. This
process was repeated 100,000 times, with the empirical
frequency of rejection then used as the estimate of the test’s

FIGURE 3. WIN RATES IN O’NEILL: KOLMOGOROV TEST
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Figure 4. One can see that the Pearson joint test
has significant ability to reject the null hypoth-
esis when the true value ofu differs signifi-
cantly fromu0 5 2

3
. For example, ifu 5 0.5—

i.e., if the receivers actually choose left and
right with equal probability—the joint null hy-
pothesis is rejected with probability 0.58. Thus,
the test has fairly high power, even though the
server’s winning probabilities are not very dif-
ferent (they arepL 5 0.685 andpR 5 0.610).
Under the alternative hypothesis thatu 5 0.4,
i.e., that the receiver chooses left with probabil-
ity 0.4, the power of the test rises dramatically
to 0.98.

V. Serial Independence

First we test individually, for each of the 40
“experiments” in our data set, the hypothesis

that the server’s choices were serially indepen-
dent. Letsi 5 (s1

i , . . . , snL
i
i
1 nR

i ) be the list of
first-serve directions in experimenti , in the
order in which they occurred, wheresn

i [ {L, R}
is the direction of thenth first serve, and where
nL

i andnR
i are the number of first serves to the

left and to the right. Our test of serial indepen-
dence is based on the number of runs in the list
si , which we denote byr i. (A run is a maximal
string of consecutive identical symbols, either
all L’s or all R’s.16) We reject the hypothesis of
serial independence if there are either “too
many” runs or “too few” runs. Too many runs
suggests negative correlation in the choice of
direction: the runs tend to be too short, and thus
the server is changing direction too often for his
choices to have been randomly generated. Too
few runs suggests that the server’s choices are
positively correlated: the server is not changing
direction often enough to be consistent with

power underu, i.e., the probability of rejecting whenu is
true. This Monte Carlo estimation of the test’s power was
performed for many values ofu.

16 For example, the sequences 5 (L, L, R, L) has three
runs. We omit serves to the center.

FIGURE 4. THE POWER FUNCTION
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randomness, resulting in runs that tend to be too
long.

Under the null hypothesis of serial indepen-
dence, the probability that there are exactly
r runs in a list made up ofnL and nR occur-
rences ofL andR is known (see, for example,
Jean Dickinson Gibbons and Subhabrata
Chakraborti, 1992). Denote this probability by
f(r ; nL, nR), and letF(r ; nL, nR) denote the
value of the associated c.d.f., i.e.,F(r ; nL,
nR) 5 ¥k51

r f(k; nL, nR), the probability of
obtaining r or fewer runs. At the 5-percent
significance level, the null hypothesis of serial
independence in experimenti is rejected if ei-
therF(r i; nL

i , nR
i ) , 0.025 or 12 F(r i 2 1; nL

i ,
nR

i ) , 0.025, i.e., if the probability ofr i or
fewer runs is less than 0.025 or the probability
of r i or more runs is less than 0.025.

Table 3 shows the data and the results for our
tests of serial independence. For each of the 40
point-game experiments, the columns L, R, and
Total give the number of first serves in each
direction and the total number of first serves.
The Runs column indicates the number of runs,
r i, in the list si of first serves (the lists are not
shown). The columnsF(r 2 1) andF(r ) give
the value of the c.d.f. in experimenti for r i 2 1
and r i runs, respectively. At the 5-percent sig-
nificance level, the null hypothesis is rejected in
five of the 40 experiments (the expected number
of 5-percent rejections is only two). In three
cases the null hypothesis is rejected because
there are too many runs, and in two cases the
rejection is because there are too few runs.

To test the joint hypothesis that first serves
are serially independent ineachof the 40 ex-
periments, we again employ the Kolmogorov-
Smirnov goodness-of-fit test. The KS test
requires that the sequence of random variables
of interest be independently and identically dis-
tributed, with acontinuouscumulative distribu-
tion function. Hence, the KS test cannot be
applied directly to the values in either column
F(r 2 1) or columnF(r ), since these values
are neither identically distributed (the distribu-
tion of r i depends onnL

i and nR
i ) nor con-

tinuously distributed. We circumvent these
difficulties by constructing, for each experiment
i , the (random) statisticti given by a draw from
the uniform distributionU[F(r i 2 1; nL

i , nR
i ),

F(r i; nL
i , nR

i )]. A particular realization of this
statistic for each experiment is given in the

right-most column of Table 3. Under the null
hypothesis of serial independence in experiment
i , the statisticti is distributedU[0, 1].17

The empirical c.d.f. of the realized values
t1, . . . , t40 in Table 3 is depicted in Figure 5.The
value of the KS test statistic isK 5 1.948,18

with a p-value of 0.001. Hence, we reject the
null hypothesis that in all 40 experiments the
first serves were serially independent. Figure 5
and Table 3 show that there tend to be too many
large values ofti, i.e., too many runs, relative to
the null hypothesis.

The finding that even the best tennis players
typically switch from one action to another
too often is perhaps not surprising. There is
overwhelming experimental evidence that
when people try to generate “random” se-
quences they generally “switch too often” to be
consistent with randomly generated choices
(W. A. Wagenaar, 1972).

A. Serial Independence in O’Neill’s Data

Table 4 shows the data and the results of tests
for serial independence in O’Neill’s experi-
ment. We distinguish only between Jokers and
non-Jokers when counting runs. For each of
O’Neill’s 50 subjects, the columns J and N in
Table 4 indicate the number of times the subject
chose Joker and non-Joker (out of 105 plays
altogether), and the Runs column indicates the
number of runs in the subject’s list of choices.
At the 5-percent significance level, the null hy-
pothesis that play is serially independent is re-
jected for 15 subjects (the expected number is
only 2.5). In 13 of the 15 rejections there are too
many runs, and in the other two there are too
few runs.

The values in the right-most column of Table
4 are, for each subjecti , a realized value of the
test statisticti constructed as described above.
The empirical cumulative distribution of theseti

values is shown in Figure 6. The value of the
KS test statistic isK 5 2.503, with ap-value of
0.000007. Hence we reject the joint null hypoth-

17 A proof is contained in footnote 24 of Walker and
Wooders (1999).

18 This “randomized” test was performed many times.
While there was of course variation in the 40ti values
across trials, there was only slight variation in the value of
K and in thep-value, at the third decimal place and beyond.
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esis that each of the 50 subjects’ choices were
serially independent in O’Neill’s experiment.
Just as in the tennis data, there are generally too
many runs for the joint null hypothesis to be

true. Comparing the empirical cumulative dis-
tribution functions in Figures 5 and 6 suggests
that while play is negatively correlated in both
the tennis data and O’Neill’s experimental data

TABLE 3—RUNS TESTS ONTENNIS DATA

Match Server Court

Serves
Runs

r i F(r i 2 1) F(r i) U[F(r i 2 1), F(r i)]L R Total

74Wimbldn Rosewall Ad 37 37 74 43 0.854 0.901 0.866
74Wimbldn Rosewall Deuce 70 5 75 11 0.349 1.000 0.804
74Wimbldn Smith Ad 66 10 76 21 0.812 1.000 0.823
74Wimbldn Smith Deuce 53 29 82 43 0.832 0.892 0.852

80Wimbldn Borg Ad 19 73 92 33 0.633 0.788 0.757
80Wimbldn Borg Deuce 37 62 99 52 0.817 0.866 0.855
80Wimbldn McEnroe Ad 45 40 85 44 0.512 0.599 0.553
80Wimbldn McEnroe Deuce 44 44 88 49 0.774 0.832 0.818

80USOpen McEnroe Ad 39 40 79 38 0.249 0.326 0.298
80USOpen McEnroe Deuce 51 32 83 36 0.131 0.185 0.142
80USOpen Borg Ad 29 47 76 42 0.873 0.916 0.912
80USOpen Borg Deuce 30 50 80 43 0.829 0.887 0.844

82Wimbldn Connors Ad 32 46 78 49 0.990* 0.995 0.994
82Wimbldn Connors Deuce 76 15 91 31 0.958** 1.000 0.999
82Wimbldn McEnroe Ad 32 39 71 36 0.437 0.533 0.520
82Wimbldn McEnroe Deuce 35 44 79 36 0.152 0.212 0.183

84French Lendl Ad 33 34 67 41 0.931 0.958 0.938
84French Lendl Deuce 26 45 71 41 0.955** 0.976 0.963
84French McEnroe Ad 38 29 67 40 0.921 0.952 0.947
84French McEnroe Deuce 42 30 72 45 0.982* 0.991 0.984

87Australn Edberg Ad 47 22 69 40 0.994* 0.997 0.997
87Australn Edberg Deuce 19 56 75 29 0.374 0.519 0.505
87Australn Cash Ad 38 27 65 40 0.964** 0.980 0.968
87Australn Cash Deuce 39 29 68 37 0.711 0.791 0.725

88Australn Wilander Ad 32 36 68 38 0.739 0.813 0.795
88Australn Wilander Deuce 20 56 76 29 0.265 0.389 0.275
88Australn Cash Ad 40 23 63 29 0.316 0.424 0.364
88Australn Cash Deuce 37 37 74 28 0.007 0.013* 0.010

88Masters Becker Ad 50 26 76 38 0.724 0.796 0.783
88Masters Becker Deuce 53 31 84 45 0.847 0.900 0.890
88Masters Lendl Ad 55 21 76 32 0.515 0.607 0.539
88Masters Lendl Deuce 46 38 84 43 0.489 0.577 0.506

95USOpen Sampras Ad 20 37 57 25 0.231 0.335 0.245
95USOpen Sampras Deuce 33 26 59 22 0.011 0.021* 0.019
95USOpen Agassi Ad 39 16 55 29 0.943 0.980 0.968
95USOpen Agassi Deuce 30 29 59 24 0.032 0.058 0.052

97USOpen Korda Ad 55 19 74 28 0.301 0.389 0.323
97USOpen Korda Deuce 52 30 82 43 0.793 0.859 0.842
97USOpen Sampras Ad 33 51 84 35 0.065 0.101 0.079
97USOpen Sampras Deuce 50 43 93 41 0.079 0.114 0.087

* Indicates rejection at the 5-percent level.
** Indicates rejection at the 10-percent level.

1534 THE AMERICAN ECONOMIC REVIEW DECEMBER 2001



(generally too much switching between choices
in both cases), the correlation is clearly less in
the tennis data.

Thus, just as with our tests using players’ win
rates, the tests for randomness (and serial cor-
relation in particular) reveal a striking differ-
ence between the theory’s consistency with the
data for top tennis players and its consistency
with the data from experiments.

VI. Concluding Remarks

The theory of mixed-strategy equilibrium
has not been consistent with the empirical
evidence gathered through more than 40 years
of experiments involving human subjects.
Conversely, the theory has performed far
better in explaining the play of top profes-
sional tennis players in our data set. We do
not view these results as an indictment of the
many experiments that have been conducted

to test for equilibrium play: the experiments
have established convincingly that when un-
predictable play is called for, inexperienced
players will not generally mix in the equilib-
rium proportions. Nor do we mean to suggest
that the theory applies only to people who
have developed years of experience in a par-
ticular strategic situation. There is a spectrum
of experience and expertise, with novices
(such as typical experimental subjects) at
one extreme and world-class tennis players at
the other. The theory applies well (but not
perfectly) at the “expert” end of the spectrum,
in spite of its failure at the “novice” end.
There is a very large gulf between the two
extremes, and little, if anything, is presently
known about how to place a given strategic
situation along this spectrum or about how
to divide the spectrum into the portions on
which current theory applies and the portions
where a more general, or even a new, theory
must be developed. The last ten years or

FIGURE 5. RUNS IN TENNIS DATA: KOLMOGOROV TEST
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TABLE 4—RUNS TESTS ONO’NEILL’S DATA

Pair Player

Choices
Runs

r i F(r i 2 1) F(r i) U[F(r i21), F(r i)]J N

1 1 19 86 34 0.688 0.753 0.718
2 37 68 47 0.297 0.381 0.337

2 1 46 59 66 0.995* 0.997 0.995
2 58 47 51 0.315 0.389 0.323

3 1 57 48 57 0.748 0.807 0.750
2 58 47 53 0.466 0.545 0.468

4 1 35 70 50 0.659 0.728 0.714
2 76 29 55 0.999* 1.000 1.000

5 1 49 56 55 0.596 0.670 0.613
2 47 58 62 0.956** 0.972 0.963

6 1 41 64 58 0.912 0.939 0.921
2 47 58 34 0.000 0.000* 0.000

7 1 32 73 48 0.682 0.748 0.734
2 37 68 68 1.000* 1.000 1.000

8 1 34 71 40 0.049 0.073 0.055
2 31 74 54 0.985* 0.991 0.985

9 1 31 74 40 0.114 0.158 0.139
2 36 69 63 0.999* 1.000 0.999

10 1 44 61 57 0.810 0.861 0.814
2 43 62 57 0.830 0.878 0.866

11 1 32 73 40 0.086 0.122 0.090
2 39 66 59 0.963** 0.978 0.973

12 1 51 54 58 0.786 0.839 0.831
2 45 60 43 0.023 0.037** 0.027

13 1 28 77 38 0.131 0.179 0.173
2 56 49 53 0.440 0.518 0.508

14 1 32 73 50 0.828 0.873 0.847
2 24 81 46 0.990* 0.994 0.991

15 1 48 57 57 0.748 0.807 0.749
2 39 66 59 0.963** 0.978 0.968

16 1 46 59 39 0.002 0.004* 0.003
2 40 65 48 0.265 0.334 0.318

17 1 38 67 57 0.931 0.958 0.940
2 43 62 68 0.999* 1.000 0.999

18 1 41 64 44 0.062 0.091 0.076
2 43 62 45 0.070 0.102 0.080

19 1 34 71 56 0.975* 0.985 0.978
2 53 52 58 0.784 0.837 0.836

20 1 45 60 70 1.000* 1.000 1.000
2 52 53 79 1.000* 1.000 1.000

21 1 39 66 63 0.996* 0.998 0.998
2 34 71 48 0.548 0.625 0.619
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so have seen the development of a large
literature on out-of-equilibrium play, or
“learning,” in games, as well as alternative
notions of equilibrium. This literature holds
some promise for advancing our under-
standing of human behavior in strategic
situations.
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