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ABSTRACT As an experimental test of the minimax the-
ory for two-person zerosum games, subjects played a game that
was especially easy for them to understand and whose minimax-
prescribed solution did not depend on quantitative assumptions
about their utilities for money. Players’ average relative
frequencies for the moves and their proportions of wins were
almost exactly as predicted by minimax, but subject-to-subject
variability was too high. These results suggest that people can
deviate somewhat from minimax play since their opponents
have limited information-processing ability and are imperfect
record keepers, but they do not stray so far that the difference
will be noticed and their own payoffs will be diminished.

1. Introduction

von Neumann and Morgenstern’s minimax solution (1) is
generally accepted as the correct way to play two-person
zerosum games. It states that a player should evaluate each
possible strategy by its lowest expected value to the player
over all possible strategies by the opponent and should
choose a strategy whose lowest expected value is maximum.
von Neumann and Morgenstern (1) give a justification for this
policy as that of rational players; but does it describe the
behavior of real players? A number of experiments have been
reported but the results have been rather negative (see, for
example, ref. 2 and Section 6). The issue of the empirical
validity of the minimax theory is important since many
models in the social sciences, particularly economics, are
based on the minimax theory or its generalization for
nonzerosum games, the theory of Nash equilibria (3).

A problem in empirical research has been the design of an
experiment that accurately tests the theory. Here I describe
an experimental game chosen to avoid two previous difficul-
ties. First, the game allows calculation of the solution without
assumptions about the exact shape of the players’ utility
functions for money. Second, the game is easy for the
subjects to comprehend; in fact, it is unique in being the
simplest nontrivial game possible according to a definition of
simplicity to be given in Section 3. My subjects’ behavior was
close to minimax, and I suggest that this confirmatory
evidence should weigh strongly against past failings of the
theory, on the grounds that the design used here is more
appropriate.

2. The Problem of Utility Measurement

The strategies recommended by the minimax solution depend
on the subjects’ utilities for the money payoffs. The utilities
may be different from the payoffs themselves, so any empir-
ical test must either determine or make some assumption
about the players’ utility functions. To my knowledge, all
past researchers have assumed explicitly or implicitly that
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utility in zerosum games depends only on the player’s own
payoff and is a linear function of that payoff. This seems
counterintuitive since it rules out such motives as a desire to
equalize winnings or to beat the opponent. Also, I have seen
no empirical evidence that utility is linear in money even if the
range of payoffs is restricted to small amounts.

A different approach would be to assess each player’s
utility function individually and then design a game matrix
with payoffs calculated to be zerosum in utilities. I know of
no research that has done this, and very likely the reason is
that utilities would be different in a game than in the
single-person decision situation used for calibration. When
people interact various competitive or altruistic motives arise
so their utilities come to depend on their own and their
opponent’s payoffs as well.

The experiment described here uses a different approach.
A matrix is constructed with the property that a player’s
minimax strategy is invariant over a set that includes all
reasonable utility functions. The game is shown below. Each
player has four moves, choosing one of the four rows or one
of the four columns, and each cell indicates the payoff of
player 1 in cents for that joint choice. (I am free to choose
wins and losses of nickels since any game for larger or smaller
amounts that can be transformed into the game below is
regarded as identical.) The payoff for player 2 at an outcome
is always the negative of the payoff for player 1.

Move of player 2

+5 -5 -5 -5
Move of | -5 -5 +5 +5
player 1 -5 +5 -5 +5
-5 +5 +5 -5

Minimax theory prescribes that each player should use the
mixed strategy vector (0.4, 0.2, 0.2, 0.2), that is, assign these
four probabilities to each of the four rows or columns. In this
case player 1 will win 40% of the time and have an expected
payoff of —2 cents. This solution holds for any pair of utility
functions u;(x;, x2) and ux(x;, x), where x; and x, are the
money payoffs in the matrix. The premises required for this
result are only that each player would rather win an amount
than lose that amount, that utility depends only on the payoffs
and not on extra-game theoretic features such as the cell in
which the payoff vector appears, and that the subjects regard
their opponents to be gaining or losing utility increments that
are proportional but opposite to their own.

This invariance over utility functions occurs because there
are only two types of outcomes, a win and a loss, and the
minimax solution is invariant for a positive linear transfor-
mation of either player’s utilities. If their utility functions
satisfy (S, —5) > u;(—5, S), then positive linear transfor-
mations can always be performed to bring the players’
utilities into coincidence with the money values. An exper-
imenter using the payoffs to solve the game will get the same
result as the subjects using the utilities provided they follow
minimax theory.

Another way of looking at how games of this type avoid
utility function assumptions is to regard utility as a surface,
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a function in the dimensions of the two money payoffs.
Traditional methodology assumes that a player’s utility #;(x,
y) is a linear function of that player’s payoff x, i.e., a plane
whose height is constant for the other player’s payoff. It is
always possible to fit such a plane if there are only two points
(a, —a) and (b, —b) through which it must pass, so it does not
matter if the true utility function is quite irregular elsewhere.
If there were three such points, that is, three possible
outcomes of the game, it would not be possible in general to
replace an arbitrary function with a plane of the given form
and derive identical strategy predictions. There are other
games than the one above that are invariant over such
changes in utility functions—any game in which each player
has exactly two payoff levels will do—but the above game is
most appropriate for an experiment because it is the smallest
nontrivial one, as will be shown in the next section.

3. The Problem of Simplicity

Past experiments have used games that tax the comprehen-
sion of subjects, in my view. In some ways a 2 X 2 game is
simpler than the situations people confront in their daily lives
but a laboratory experiment involving conflict over numerical
payoffs is an unfamiliar setting. Many subjects have difficulty
processing numbers, especially when they must look at them
from their own and their opponent’s viewpoint simultaneous-
ly. (A 2 X 2 zerosum game with a solution in mixed-strategy
probabilities requires the subject to set up and solve a linear
equation involving the four payoffs.)

One way to simplify their task is to restrict the payoffs to
two levels as described above. The game becomes a purely
structural entity involving the relationship of wins and losses,
so the subjects are freed from having to consider relative
magnitudes. In line with past experiments I will have each
player move only once. I will look for games with the smallest
number of strategies, eliminating any dominated or duplicat-
ed strategies.

Of course if the game is trivial to solve one will not be
testing the full logic of the minimax solution, so I will also
eliminate games that are completely symmetrical in strate-
gies. An example would be the children’s game ‘‘scissors,
paper, and stone’’ (4), where a choice of scissors beats paper,
a choice of paper beats stone, and a choice of stone beats
sc;isso;s, leading to the obvious mixed strategy solution (1/3,
1/3, 1/3).

These ideas are formalized in the following requirements:

Condition 1: The game is in normal (matrix) form.

Condition 2: There are exactly two levels of payoff for each
player.

Condition 3: It is not true that a player has two identical
strategies.

Condition 4: Neither player has a dominated strategy.

Condition 5: The game is not completely symmetrical in
strategies.

Condition 6: Any other game satisfying Conditions 1-5 has
at least as many strategies for each player.

It is surprising that there is a unique game satisfying
Conditions 1-6, assuming of course that games equivalent
under positive utility transformations or permutations of the
players or strategies are regarded as identical. It is the game
depicted in Section 2. Uniqueness can be verified relatively
easily by hand by constructing four undirected graphs for n
=1,...,4, where the nodes represent the 2" possible rows
or the game matrix and an edge joins two nodes, if it is
possible for the two rows to occur in a game matrix satisfying
Condition 4. One then determines the maximal complete
subgraphs and eliminates games with dominating strategies
for the column player and also eliminates duplicate and
completely symmetrical games. For the case n = 4, it is
helpful to break the search into a series of smaller tasks by
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looking for possible games according to the number of wins
in each row for the row chooser, e.g., for 4 X 4 games those
with 1, 1, 1, and 1 row-chooser win in the four rows, those
with 1, 1, 1, and 2 wins, etc.

4. Procedure

The game was played by 50 students working in 25 pairs.
They were recruited from the Northwestern University
student body by posted advertisements and personal con-
tacts. Each served in only one session, and students who
knew each other were not allowed to participate in the same
pair. The sessions lasted about half an hour, and subjects
received their winnings as payment.

The players sat opposite each other at a table. Each held
four cards: joker, ace, two, and three. A large board across
the table prevented them from seeing the backs of their
opponent’s cards. The experimenter read the following
instructions.

We are interested in how people play a simple game. I will
give each of you the rules of the game, then have you play
about 15 hands to make sure you are clear about the results.
Then you will play a series of hands for money at 5¢ per hand.

The rules are as follows:

1. Each player has four cards—ace, two, three, and a
joker.

2. Each player will start with $2.50 in nickels for the series
of hands.

3. When I say “‘ready’’ each of you will select a card from
your hand and place it face down on the table. When I say
“‘turn,” turn your card face up and determine the winner. (I
will be recording the cards as played.)

4, The winner should announce, I win" and collect 5¢
from the other player.

5. Then return the card to your hand.
Are there any questions?

Now to determine the winner . . . [Subjects were shown a
placard giving these rules, which were read aloud to them.]

[One subject’s name] wins if there is a match of jokers (two
jokers played) or a mismatch of number cards (two, three, for
example).

[Other subject’s name] wins if there is a match of number
cards (three, three, for example) or a mismatch of a joker (one
joker, one number card).

Thus the game was presented in English without a matrix,
and the subjects learned the rules by practice. The subjects
played 15 times for practice and then 105 times for real
money, proceeding at their own speed. They were not told
the number of hands.

Based on some pretrials, the device of having the players
themselves figure out who won seemed to be useful in that it
increased their involvement in the game and caused them to
focus their attention on each other rather than on the
experimenter. If they happened to make an error in deter-
mining the winner, the experimenter corrected them.

In a post-session questionnaire, all subjects answered that
they had understood the rules of the game well.
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5. Results

The number cards (ace, two, and three) are strategically
equivalent to each other so each should be used with equal
probability. Therefore, I will usually group these three moves
into one in the analysis and look only at the relative counts
of jokers versus number cards.

There were 5250 total moves made in the experiment (50
subjects X 105 plays each). Numbers of jokers for each role
are listed in Table 1. (The complete data may be obtained
from B.O’N.) The proportion of jokers was 0.396 compared
to minimax theory prediction of 0.400. Looking at the two
types of players separately, those in the role of player 1 chose
proportion 0.362 jokers, and those in the role of player 2
chose 0.430, compared to minimax theory predictions of
0.400 for both.

These values are close to the predictions of the theory, and
the discrepancies are not statistically significant. Using a
t-test for comparing a sample of unknown variance to a mean
of 0.400, the two-tailed ¢-values are 0.77 (n = 50), 0.051 (n =
25), and 0.15 (n = 25), respectively.

The standard deviation of the number of jokers used from
subject to subject is greater than that predicted by the
minimax theory. For players 1, 2, and both combined, the
standard deviations are 9.8, 10.6, and 10.8 jokers, respec-
tively, compared with the value 5.02 predicted by the
assumption of independent sampling from a binomial distri-
bution with probability of success, 0.4. These three values
are significantly high (P < 0.01) using x?2 tests. To model this
behavior, I could regard each subject as choosing beforehand
a value of P, the probability of a joker, from a g distribution
and using it through the games. (The B was chosen because
it is on the interval [0, 1], easy to manipulate, and assumes a
variety of shapes.) If the mean P is 0.400, the parameters of
the B can be written r and 3r/2. Applying maximum likelihood
methods using the 50 observed frequencies of jokers gives r
= 12. The upper and lower quartiles of such a g distribution
are P = 0.34 and P = 0.46, so we estimate that 50% of the
subjects have values of P in this interval in contrast to
minimax theory that says that all have P equal to exactly 0.4.

Another difference from the predictions of minimax is
found in the numbers of runs, i.e., unbroken strings of jokers
or of number cards. Many subjects produced unusually high
numbers of runs, meaning that they had too many and,
therefore, too short runs, i.e., a tendency to switch back and
forth between the types of cards more quickly than if their
choices were independent. The number of runs arising from
a long random sequence of independent choices is approxi-
mately normal; so for each player, the expectation and
variance of that player’s number of runs, given the observed
proportion of jokers used, was calculated; and the observed
proportion of runs was converted to a z score. The mean was
z = 0.843 compared to a null hypothesis expectation of z =
0, indicating significantly more runs than expected given
independence (P < 0.001).

Looking at the frequencies of the three types of number
cards, we can judge the prediction that they are produced
with equal likelihood. Subjects in the role of player 1
produced 578 aces, 565 twos, and 532 threes, and those in the
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role of player 2 had 593 aces, 470 twos, and 446 threes; the
latter triple being significantly different from the prediction of
equiprobability by a x2 test (P < 0.001). The best explanation
we can offer is that the players were attracted by the powerful
connotations of an ace, and in hindsight it may have been a
mistake to use this card in the experimental design.

The proportions of wins by each player were strikingly
close to the predicted values. Proportions were (0.401, 0.599)
compared to the minimax prediction (0.400, 0.600) for players
1 and 2, respectively.

A finding of interest is that there was no statistically
significant evidence of differential skill in playing the game.
Skill would mean that some of the subjects could exploit the
other’s deviation from minimax by estimating the other’s
individual moves or noticing statistical tendencies, and so
would do significantly better than 40% wins, while in con-
sequence others would do worse. This would show up as a
higher than expected variance in the number of wins from
subject to subject. Of course variance in the number of wins
for the two types of players will be identical so I calculated
it for those in the role of player 1. The sample standard
deviation of the number of wins was 6.7, which is not
significantly different from 5.02 according to a x? test (P >
0.1). The value 5.02 is the standard deviation of a binomial
distribution with parameters P = 0.4 and n = 50. This means
that the typical player 1 differed from the expectation of 40%
wins by about 6.4% wins rather than 4.8% as would be
expected by chance.

If a player uses a certain move and wins, is that move more
likely than average to be repeated in the next game? For my
subjects it was somewhat less likely. If @ and b are the
probabilities that players 1 and 2, respectively, use a joker,
then the probabilities that a move that has just won will be
repeated immediately are a + b —2aband 1 — a — b +2ab
for the two players, given that successive moves are inde-
pendent. The parameters a and b were estimated by the
observed relative frequencies of jokers used, and for each
player these numbers were compared with the observed
number of repetitions of winning moves. Of the 50 players, 18
repeated more often than expected, and 32 repeated less
often—a difference that is statistically significant (P < 0.05).
A large majority of subjects, 19 out of 25, in the role of player
2 tended to avoid repeating a move after a win.

My players seemed to feel that a move that had just
succeeded should be avoided. This behavior is related to the
single-person decision phenomenon of the gambler’s fallacy
in which a decision maker expects a coin to land ‘‘heads’’
after a run of ‘“‘tails,” and to the negative recency phenom-
enon in probability learning research (5). In a probability-
learning experiment, subjects must guess which of two
outcomes of a random process will occur. It is observed that
they tend to switch their guesses following a success.

6. Discussion

Since game theory deals with social interaction rather than
individuals in isolation, I feel the most accurate test of the
theory involves situations where subjects face other subjects,
rather than preprogrammed strategies. Many researchers

Table 1. Numbers of jokers and wins for each subject

19, 37, 41) (46, 58, 31) (57, 58, 41) (35, 76, 44) (49, 47, 36)
(41, 47, 44) (32, 37, 50) (34, 31, 49) (31, 36, 38) (44, 43, 40)
(32, 39, 39) (51, 45, 57) (28, 56, 43) (32, 34, 49) (48, 39, 34)
(46, 40, 35) (38, 43, 35) (41, 43, 51) (34, 53, 41) (45, 52, 46)
(39, 34, 50) (48, 36, 42) (17, 44, 47) (27, 39, 52) @35, 62, 35)

Numbers in parentheses are the number of jokers used by player 1, the number of jokers used by
player 2, and the number of wins by player 1. The range is (0-105, 0-105, 0-105), and the prediction

of minimax is (42, 42, 42).
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have had subjects play against computers or stooges, and
while this is useful in increasing experimental control, it may
not elicit natural game-playing behavior. An experimenter
cannot program a computer to behave like a natural opponent
without knowing how an opponent behaves; and this knowl-
edge is, after all, the goal of the experiment.

Another disadvantage of having subjects play prepro-
grammed strategies is that the subjects are usually isolated in
cubicles. They do not see an opponent (of course because
there is none) and so feel less involved in a competition. I
believe subjects should face their opponent, as they did in the
present experiment. Some past experiments that were in-
tended to test the minimax theory misinformed subjects in
just the opposite way, telling them they were in a random
environment when in fact there was a real opponent. In other
cases they were not told the payoffs beforehand. Although
the results may be interesting in other ways I do not believe
they are valid tests of the theory of games.

Past experiments were surveyed according to these guide-
lines with the results shown in Fig. 1. I tried to include all
game experiments that used two real people informed of their
situation. This excluded, for one, a design using laboratory
rats playing 2 X 2 games for food pellets (9). Further criteria
were that subjects chose their moves directly, e.g., they did
not choose mixed strategies that were later implemented by
the researcher, and also that the game had two moves per
player. This last requirement aimed at admitting studies that
could be compared with the present experiment, and it
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Fi1c. 1. From 2 X 2 zerosum game experiments, the predicted
probability of the move with lower predicted probability is plotted
versus observed probability. The values of Frenkel were reversed in
the original publication due to a typographical error. E, Estes from
figure 7 in ref. 6; S, Suppes and Atkinson from group E in ref. 7; M,
Malcolm and Lieberman from ref. 8; F, Frenkel from game 75 in ref.
2; O, B.O'N. from the present study.
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eliminated one 3 X 3 game design and several games with
large strategy sets involving duels in continuous time and
Colonel Blotto games of allocation.

Of each player’s two moves, the move with the lower
minimax-predicted probability had its value plotted on the
horizontal axis. Each experiment then yielded two data
points on the figure, one for each player. Clearly past results
have gone against minimax theory, but I regard the present
experiment as evidence that it may have some validity after
all. The difference is due, I suggest, to the simplicity of the
present game, the subjects’ feelings of involvement due to the
experimental design, and the test’s freedom from metric
assumptions about utilities.

Positive evidence for the theory was the correct propor-
tions of strategies used and the correct proportions of wins.
Negative evidence was the dependence among successive
moves and the high variance in the proportion of jokers from
subject to subject.

Thus the theory seemed validated by the large-scale
statistics but not the finer ones. This is puzzling. How could
the overall proportions have followed the theory when the
individual moves that generated them did not? One theoret-
ical explanation, which seems unlikely given people’s psy-
chological limitations, is that the subjects regarded the 105
plays as one large supergame and randomized over all
possible strategies for this game, a set that includes some with
nonindependent moves and greater than predicted variance
in number of jokers. A more plausible explanation is that
players were constrained to follow the minimax in its gross
statistics because these were relatively observable by the
opponent. However, at each move players felt free to invent
patterns, follow hunches, or do other things that introduced
dependencies and variance into the sequence of plays. They
could do this without significant danger because the opponent
had a limited ability to calculate all the relevant probabilities
especially when only a small sample of moves was available.
But a large deviation from the overall minimax proportion
was easier to notice so players avoided the risk of loss by
sticking close to the minimax proportions.

This is more plausible when one considers the feature of
the minimax and Nash equilibrium that, if one player follows
it, the opponent is often free to deviate without loss. The
closer one player gets to the minimax, the less incentive there
is for the other to follow it too. One can then expect a certain
amount of variation, but it would be centered on the minimax
probability. If this explanation were true, one would expect
each player’s proportion of wins to be as predicted. Neither
would decide to go so far from the minimax that their
proportion of wins decreased. This is precisely what was
found: player 1 won almost exactly 40% of the time.
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