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1. Steenrod’s problem

Convention: Throughout, a space means a finite simplicial complex, and a map means a
continuous map.

1.1. Steenrod’s problem on “smoothability” of cycles. Our motivating question is:

Question 1.1. What is the picture of a cycle?

The following exercise can be solved by drawing pictures of simplicial chains:

Exercise 1.2. Let X be a space.

(1) Let α ∈ H1(X;Z). Then there exists a map

f : S1 ⊔ · · · ⊔ S1 → X

such that α = f∗[S
1 ⊔ · · · ⊔ S1].

(2) Let α ∈ H2(X;Z). Then there exists a map

f : Σ1 ⊔ · · · ⊔ Σk → X

where Σi are oriented surfaces (i = 1, . . . , k), such that α = f∗[Σ1 ⊔ · · · ⊔ Σk].

In fact, Exercise 1.2 can be continued for α with higher and higher dimensions, although the
proofs get significantly harder – as the dimension of the cycle increases, it becomes increasingly
harder to “resolve the singularities” on the cycle.

Remark 1.3. Doing Exercise 1.2 might also convince you that all cycles are smooth outside
of a codimension-2 subset. This is basically the reason why pseudo-cycles compute ordinary
homology. See McDuff-Salamon (Chapter 6), and Zinger1, for more details.

One can ask the following general question:

Question 1.4 (Steenrod’s problem). Given a cycle α ∈ Hk(X;Z), does there exist a closed

oriented manifold Mk of dimension k and a continuous map M
f−→ X such that f∗[M ] = α?

1Zinger (2008), Pseudocycles and integral homology
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Famously Thom (1954) answers the question in the negative. However, in contrast,

Theorem 1.5 (Thom, 1954). Given a cycle α ∈ Hk(X;F2), there exists a closed k-manifold

Mk together with a continuous M
f−→ X such that f∗[M ] = α.

Combining these, Thom shows that for any integral homology class, some odd multiple of it
can be represented by a manifold.

1.2. A reformulation: bordism theories. Before going into the proof of Theorem 1.5, we
first give a (tautological) reformulation of the Steenrod problem in terms of a comparison
between two homology theories.

Let X be a space. We define the unoriented bordism group of X, denoted by ΩO
n (X), to be

the set of all continuous maps M
f−→ X where M ranges over (homeomorphism classes of) all

closed n-manifolds, with the group operation given by

(M
f−→ X) + (N

g−→ X) := (M ⊔N
(f,g)−−−→ X),

modulo the bordism relation:

• A closed manifold M is null-bordant if there exists a manifold W whose boundary is
M ;

• An element M
f−→ X of ΩO

n (X) is null-bordant if there exists a W with ∂W = M and

a map W
F−→ X extending f ;

• Two elements M
f−→ X and N

g−→ X are bordant if M ⊔(−N)
(f,g)−−−→ X is null-bordant.

There is no set-theoretic issue since all closed manifolds can be embedded in RN .

Remark 1.6. In our un-oriented setting, notice that any element in ΩO
n (X) has order 2, so

ΩO
n (X) is a vector space over F2.

Moreover, Cartesian products between manifolds give us the product map

ΩO
n (X)⊗ ΩO

m(Y ) → ΩO
n+m(X × Y ).

In particular, this makes ΩO
∗ := ΩO

∗ (pt) into a graded-commutative ring, called the unoriented
bordism ring.

Back to the Steenrod problem, notice that our assignment to each Mn f−→ X a homology class
f∗[M ] ∈ Hn(X) in fact defines a well-defined homomorphism ΩO

n (X) → Hn(X), natural with
respect to X. The only thing that we need to verify for this claim is that

Exercise 1.7. If M
f−→ X is null-bordant, then f∗[M ] = 0 in homology.

Thus we have reformulated the Steenrod problem into a problem of studying this “morphism”
between these two generalized homology theories ΩO

∗ and H∗. In typical topologist fashion,
we study this problem by studying the “universal” objects for these two theories.

2. Homology theories and spectra

We begin by a general discussion on generalized (co)homology theories and spectra, before
focusing on the homology theories relevant to the F2-Steenrod problem: the mod-2 ordinary
homology theory and the unoriented bordism theory.
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2.1. Eilenberg-Steenrod axioms and generalized (co)homology theories. We tem-
porarily switch to cohomology for familiarity. First recall the Eilenberg-Steenrod axioms for
ordinary cohomology. Fix an abelian group π.

Theorem 2.1 (Eilenberg-Steenrod axioms). For each q ∈ Z, there exist a contravariant
functor Hq(−;π) from the homotopy category of pairs of spaces to the category of abelian
groups, together with a natural transformation

δ : Hq(Y ;π) → Hq+1(X,Y ;π)

where Hq(X;π) is defined to be Hq((X, ∅);π). These satisfy and are characterized by the
following axioms:

(1) (Exact sequence) For each pair (X,A),

· · · → Hq(X,Y ;π) → Hq(X;π) → Hq(Y ;π)
δ−→ Hq+1(X,Y ;π) → · · ·

is exact;
(2) (Excision axiom) If (X;A,B) is an excisive triad, so that X is the union of the

interiors of A and B, then the inclusion (A,A∩B) ↩→ (X,B) induces an isomorphism

H∗(X,B;π)
∼=−→ H∗(A,A ∩B;π);

(3) (Additivity axiom) If (X,Y ) is the disjoint union of a set of pairs (Xi, Yi), then
the inclusions (Xi, Yi) ↩→ (X,Y ) induce an isomorphism

H∗(X,Y ;π)
∼=−→



i

H∗(Xi, Yi;π);

(4) (Weak equivalence) If f : (X,A) → (Y,B) is a weak equivalence, then

f∗ : H∗(Y,B;π) → H∗(X,A;π)

is a weak equivalence;
(5) (Dimension axiom) For X = pt,

H∗(pt;π) =


π, ∗ = 0

0, ∗ ∕= 0
.

Definition 2.2. A generalized cohomology theory (a.k.a. extraordinary cohomology theory)
is a functor E∗(−) from the homotopy category of pairs of spaces to the category of abelian
groups, together with a natural transformation

δ : E∗(Y ) → E∗+1(X,Y )

for each pair (X,Y ), where E∗(X) denotes E∗(X, ∅), satisfying all of the Eilenberg-Steenrod
axiom but the dimension axiom.

One can check that ΩO
∗ is a generalized cohomology theory.

2.2. Representing (co)homology theories by spectra. Recall that ordinary cohomology
with coefficient in an abelian group π is “represented” by the Eilenberg-MacLane spaces
K(π, i), characterized by

πk(K(π, i)) =


π, k = i

0, k ∕= i
,

in the sense that for any space X,

(2.1) Hi(X;π) = [X,K(π, i)]
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as sets (where for two spaces X and Y , [X,Y ] denotes the set of homotopy classes of maps
X → Y ).

Exercise 2.3. The left-hand side of (2.1) is an abelian group whereas the right-hand side is
a priori only a set – is there a natural abelian group structure on the right hand side, and
how to describe it?

This seemingly miraculous fact is actually a consequence of the much more general Brown
representability theorem. Without recalling the full statement, we now state its consequence
for generalized cohomology theories.

Suppose that we are given a generalized cohomology theory E∗(−), defined on (say) CW
pairs. Since

En(X) = En(X, pt)⊕ En(pt),

we define the reduced cohomology

En(X) := En(X, pt).

The additivity axiom (in the reduced context, the Milnor-Brown wedge axiom) gives that the
map

θ : En




i∈I

Xi


→



i∈I

En(Xi)

given by the inclusions Xi ↩→


i Xi is an isomorphism (takes coproducts to products). This,
together with the Mayer-Vietoris property (takes weak pushouts to weak pullbacks), allows us
to invoke the Brown representability theorem, which says there are connected CW complexes
En with basepoints, and natural equivalences

En(X) ∼= [X,En]

as sets, where X ranges over connected CW complexes.

The generalized cohomology E∗ has one more data, the coboundary map δ, which reflects in
the reduced theory as the suspension isomorphisms

En(X)
σ−→ En+1(ΣX).

[In more detail, σ is given by

En(X, pt) En+1(CX,X)

En+1(ΣX,C ′X)

En+1(ΣX, pt)

δ

σ

∼=

∼=

where each of the map in the diagram is an isomorphism, and we view the (reduced) suspension
ΣX as the union along X of two (reduced) cones CX,C ′X of X.] Now in terms of the
representing spaces En, the suspension isomorphism σ becomes gives

[X,En]
σ−→ [ΣX,En+1] ∼= [X,Ω0En+1]

(where Ω0X of a space is the component of basepoint in the based loop space ΩX). Thus we
get an equivalence En → Ω0En+1 for all n ∈ Z.
This naturally leads to the following definition:
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Definition 2.4 (G.W. Whitehead, ...). A spectrum E is a sequence of spaces En with base-
point, together with choices of n : ΣEn → En+1, or equivalently ′n : En → ΩEn+1. If we
are working with connected spaces, then automatically ′n(En) ⊂ Ω0En+1, so a variant of the
definition specifies maps ′n : En → Ω0En+1.

A spectrum is an Ω-spectrum (resp. Ω0-spectrum) if ′n : En → ΩEn+1 (resp. ′n : En →
Ω0En+1) is a weak equivalence for each n ∈ Z.

To summarize, for each generalized cohomology theory, we have constructed an associated Ω0-
spectrum. (There is a version of construction where we allow our spaces X to be disconnected
and construct an Ω-spectrum out of it. We will be vague about such details.)

Example 2.5. For an abelian group π, denote by Hπ the spectrum associated to the ordinary
cohomology theory H∗(−;π). Thus (Hπ)(n) = K(π, n).

2.3. Homotopy theory for spectra. Other than representing spaces of generalized coho-
mology theories, one other natural example is:

Example 2.6. Let X be a space. Define its suspension spectrum Σ∞X by

Σ∞X(n) :=


ΣnX, n ≥ 0

pt, n < 0

with the obvious maps. Since a “jump” happens at n = 0, this is not an Ω-spectrum!

The suspension spectrum Σ∞S0 of the 0-sphere plays a special role in the theory. We call it
the sphere spectrum and denote it by S, with S(n) = Sn for n ≥ 0.

Recall the usual definition of stable homotopy group of a space X

πst
r (X) := lim−→

n→∞
πr+n(Σ

nX).

Notice that this definition adapts nicely for spectra.

Definition 2.7. Let E be a spectrum. Its r-th homotopy group is defined by

πr(E) = lim−→
n→∞

πn+r(En)

where the direct system is formed by maps

πn+r(En)
Σ−→ πn+r+1(ΣEn)

n−→ πn+r+1(En+1).

The direct limit is attained for Ω0-spectra. For suspension spectra Σ∞X, the direct limit is
also attained, thanks to Freudenthal suspension theorem.

From this viewpoint, spectra are “stable” topological spaces. We would therefore like to study
their homotopy theory. Just like in the case of spaces, we need to first build and decorate
our category of spectra by (1) fixing a nicely-behaving class of spectra, the CW spectra; (2)
introduce various homotopical notions (what are the morphisms? what is a homotopy?) (3)
introduce various homotopical operations and constructions (e.g. wedge and smash products,
(co)fibrations) and undertand their properties. We only briefly sketch these for the sake of
time. Throughout, one should notice various similarities of this category of spectra with the
category of chain complexes of abelian groups.

The following follows Part III of Adams’s book on Stable Homotopy and Generalised Homology
very closely.
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2.3.1. CW spectra and subspectra.

Definition 2.8. A spectrum E is a CW spectrum if (1) En are CW complexes; (2) n : ΣEn →
En+1 is an isomorphism onto a subcomplex of En+1.

Remark 2.9. One can eventually prove a CW approximation theorem so that this is no
essential loss of information.

From now on a spectrum means a CW spectrum.

Definition 2.10. A subspectrum of a spectrum X is a collection of subcomplexes Yn ⊂ Xn

such that under the structure maps ΣXn → Xn+1, the subcomplex ΣYn is mapped to Yn+1.

Then we can define relative homotopy groups of spectra by

πr(X,Y ) := lim−→
n→∞

πn+r(Xn, An),

and one can show the sequence

· · · → π∗Y → π∗X → π∗(X,Y ) → π∗−1Y → · · ·
is exact.

2.3.2. Maps between spectra. The definition of a morphism is trickier than one might have
thought. Let us first define the notion one might naively guess:

Definition 2.11. A function f from one spectrum E to another F of degree r is a sequence of
maps fn : En → Fn−r such that the diagrams of the structure maps are strictly commutative
for each n:

ΣEn En+1

ΣFn−r Fn−r+1

Σfn fn+1
.

Example 2.12. We would like the Hopf map S3 → S2 to induce a function S → S of degree
−1. But Hopf map does not come from a suspension of a map S2 → S1.

To remedy this, we should allow our map E → F to be ill-defined on certain places, but these
ill-defined regions are “eventually” well-defined after enough suspensions.

Definition 2.13. Let E be a CW spectrum. A subspectrum E′ ⊂ E is said to be cofinal (or
dense) if for all n and for all finite subcomplex K ⊂ En, there exists an m, depending on n
and K, such that ΣmK is mapped into E′

m+n under the obvious map.

Definition 2.14. Let E be a CW spectrum and F a spectrum. A map from E to F is a

function f ′ : E′ → F where E′ ⊂ E is a cofinal subspectrum. Two such E′ f ′

−→ F,E′′ f ′′

−−→ F
are equivalent if there is a cofinal subspectrum E′′′ contained in E′ and E′′ such that the
restriction of f ′ and f ′′ to E′′′ coincide. Compositions of maps are defined in an obvious way.

2.3.3. Homotopy of maps between spectra. To define the notion of homotopy, we need the
notion of a cylinder.

Definition 2.15. Let I+ := [0, 1] ⊔ {∗}. If E is a spectrum, define the cylinder spectrum
Cyl(E) to have terms

(Cyl(E))n := I+ ∧ En

and structure maps

(I+ ∧ En) ∧ S1 1∧n−−−→ I+ ∧ En+1.
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Denote the two inclusions of E into Cyl(E) by

i0, i1 : E → Cyl(E).

Definition 2.16. Two maps f0, f1 : E → F are homotopic if there is a map

h : Cyl(E) → F

such that f0 = hi0, f1 = hi1.

Denote by [E,F ]r the set of homotopy classes of maps of degree r from E to F .

As a sanity check:

Proposition 2.17. For a finite CW complex K and a spectrum F ,

[Σ∞K,F ]r ∼= lim−→
n→∞

[Σn+rK,Fn].

In particular the homotopy groups of a spectrum is given by

πr(F ) ∼= [S, F ].

Theorem 2.18 (Stable Freudenthal suspension). Susp∗ : [X,Y ] → [Susp(X), Susp(Y )] is a
bijection.

Ingredients of the proof. Consider

[X,Y ] [Cone(X), X; Cone(Y ), Y ]

[Susp(X), Susp(Y )] [Cone(X), X; Susp(Y ), pt]

Cone

Susp j∗

j∗

• The map Cone is a bijection because we can define a restriction map

res : [Cone(X), X; Cone(Y ), Y ] → [X,Y ].

To show that Cone◦res is the identity, we need to use a version of homotopy extension
lemma for spectra and the fact that π∗Cone(Y ) = 0.

• j∗ is clearly a bijection;
• j∗ is a bijection by a relative version of Whitehead’s theorem, using the fact that

j∗ : π∗(Cone(Y ), Y ) → π∗(Susp(Y ), pt)

is a bijection (this requires the usual Frendenthal suspension theorem).

□

Let us explain how this makes [X,Y ] into an abelian group. The set [Susp(X), Y ] is a group,
since we can use the spare suspension coordinate S1 to concatenate domains of the maps.
Similarly [Susp2(X), Y ] is a group since we can use the S2 to concatenate; but it is also
abelian since we have space to homotope the two ways of concatenating. This is essentially
the same reason why for an ordinary space K, π0(K) is a set, π1(K) is a group, and π2(K)
is an abelian group.

In fact, if we don’t stop at Susp2(X) or π2, we notice in Susp3(X) or π3, we have not just an
abelian group, but also the various ways of homotoping the two concatenations are themselves
homotopic to each other, and so on and so forth. Therefore in some sense, [X,Y ] is better
than an abelian group – it is “infinitely abelian”.
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2.3.4. Products and coproducts of spectra.

Definition 2.19. For a collection {Xα}α∈A of spectra, define the wedge product


α Xα by



α

Xα



n

:=


α

(Xα)n

and the structure maps



α

(Xα)n


∧ S1 =



α

((Xα)n ∧ S1) →


α

(Xα)n+1.

Lemma 2.20 (Wedge product is a coproduct).



α

Xα, Y


∼=−→



α

[Xα, Y ].

Next we would like to define products in the category of spectra. Unfortunately the construc-
tion is very complicated (it took over 30 pages in Adams’s book!). Fortunately all that we
will use are properties of the construction, which we shall state:

Theorem 2.21. For X,Y CW spectra, there is a CW spectrum X ∧ Y called the smash
product of X and Y , such that

(1) X ∧ Y is functorial in both X and Y ;
(2) ∧ is commutative, associative, and has the sphere spectrum S as a unit, up to coherent

equivalences;
(3) The smash product is distributive over the wedge sum: let iα : Xα →


α Xα, then the

morphism


α

(Xα ∧ Y )
{iα∧1}−−−−→




α

Xα


∧ Y

is an equivalence;

(4) If X
f−→ Y

i−→ Z is a cofibering, then

W ∧X
1∧f−−→ W ∧ Y

1∧i−−→ W ∧ Z

is a cofibering.

For the precise meaning of cofibering in the context of spectra, see the upcoming section 2.3.5.

2.3.5. Fiber and cofiber sequences. As with spaces, we need to introduce the notions of cones
and suspensions.

Definition 2.22. Let X be a spectrum. Let Cone(X) be the spectrum with

Cone(X)n := I ∧Xn, (I ∧Xn) ∧ S1 1∧n−−−→ I ∧Xn+1.

Definition 2.23. Let X be a spectrum. Let Susp(X) be the spectrum with

Susp(X)n := S1 ∧Xn, (S1 ∧Xn) ∧ S1 1∧n−−−→ S1 ∧Xn+1.

Definition 2.24. Given a map f : X → Y between CW spectra, represented by a function
f ′ : X ′ → Y where X ′ is a cofinal subspectrum, define Y ∪f ′ CX by

(Y ∪f ′ CX)n := Yn ∪f ′
n
(I ∧X ′

n)

with the obvious structure maps. Choosing different X ′ and f ′ gives equivalent result, so we
denote it by Y ∪f CX and call it the mapping cone.
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Then we have the following sequence of morphisms

X
f−→ Y

i−→ Y ∪f CX.

Anything equivalent to this sequence is called a cofiber sequence or a Puppe sequence.

Example 2.25. Let A ⊂ X be a subspectrum. We say A is closed if for every finite subcom-
plex K ⊂ Xn, Σ

mK ⊂ Am+n implies K ⊂ An. Denote by i : A → X the inclusion. Then we
can form the quotient spectrum X/A where (X/A)n := Xn/An, and there is a map

r : X ∪i CA → X/A

which is an equivalence (by a version of Whitehead theorem for spectra). The quotient
sequence

A
i−→ X → X/A

is a cofibering.

As with spaces, continuing the sequence to the right gives

X
f−→ Y

i−→ Y ∪f CX
j−→ Susp(X)

−Susp(f)−−−−−−→ Susp(Y ) → · · ·

Proposition 2.26. For each Z, the sequence

[X,Z]
f∗

←− [Y, Z]
i∗←− [Y ∪f CX,Z]

j∗←− [Susp(X), Z]
−Susp(f)∗←−−−−−−− [Susp(Y ), Z] ← · · ·

is exact.

Proof. Exercise. □

Proposition 2.27 (Cofiberings are the same as fiberings). The sequence

[W,X]
f∗−→ [W,Y ]

i∗−→ [W,Y ∪f CX]

is exact.

Proof. Chase the diagram

X Y Y ∪f CX Susp(X) Susp(Y )

W W Cone(W ) Susp(W ) Susp(W )

f i j −Susp(f)

1 i

g

j

h

−1

k Susp(g) .

(If for g ∈ [W,Y ] we have ig ∼ 0, then we get h and thus k, and that it maps to g under f∗
follows from the rightmost square.) □

2.3.6. Homology and cohomology. Now that we have seen that a spectrum plays both the role
of a “stable space” and a generalized cohomology theory, let us define

Definition 2.28 (G.W.Whitehead). Given a spectrum E, we define the E-homology and
E-cohomology of another spectrum X as follows:

(1) En(X) = [S, E ∧X]n;
(2) En(X) = [X,E]−n.
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One can easily check, using properties we have previously stated, that these are generalized
(co)homology theories satisfying (the spectral analogues of) the Eilenberg-Steenrod axioms.
Moreover, the dimension axiom becomes

En(S) = E−n(S) = πn(E).

Before going into further details, let us mention a curious fact:

Theorem 2.29 (G.W.Whitehead). En(X) ∼= Xn(E).

Proof. Since E ∧X → X ∧ E is an equivalence,

[S, E ∧X]n ∼= [S, X ∧ E]n.

□

The proof is one-line, but note the following corollary, whose proof is more nontrivial if we
don’t have this language:

Corollary 2.30. (Hπ)n(HG) ∼= (HG)n(Hπ).

2.3.7. Ring spectra. The representing spectrum of a multiplicative cohomology theory has
further structures:

Definition 2.31. A ring spectrum is a spectrum E together with maps µ : E ∧ E → E,
η : S → E of degree 0 such that the “obvious” diagrams commute.

One can similarly define commutative ring spectra and module spectra.

Given a ring spectrum, the cohomology theory it represents is multiplicative:

E(X)⊗ E(Y ) ∼= [X,E]⊗ [Y,E] ∼= [X ∧ Y,E ∧ E]
µ−→ [X ∧ Y,E] ∼= E(X ∧ Y ).

The multiplication E(X) ⊗ E(Y ) → E(X × Y ) is then induced from this by the plus con-
struction in a standard way.

3. Thom’s reformulation

Thom’s brilliant insight is to “dualize” the Steenrod problem – in the words of Dennis2,
the Pontryagin-Thom construction illustrates “basic duality between geometric covariant ob-
jects and algebraic contravariant objects”. Along the way, we will discover the representing
spectrum for bordism theories.

Notation: Given a bundle η, we distinguish the bundle with its total space by calling the
total space E(η). The trivial k-plane bundle over a space X is denoted by k = kX . The
Thom space of a bundle η is denoted Th(η), and is defined by the quotient of the associated
disc bundle D(η) over the unit sphere bundle S(η).

2Sullivan, Dennis. “René Thoms work on geometric homology and bordism.” Bulletin of the American
Mathematical Society 41.3 (2004): 341-350.
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3.1. Pontryagin-Thom construction. Given M
f−→ X, where M is a closed n-dimensional

manifold, we will associate to it an algebraic contravariant object as follows.

• First, choose an embedding i : M ↩→ Sn+k. Denote by ν the normal bundle of the
embedding.

• Then the Gauss map gives us a classifying map which we still denote by ν : M →
BO(k), which pulls back the universal k-plane bundle ξk over BO(k) to the normal
bundle ν.

• Taking the product of BO(k) with X, we obtain a bundle map

E(ν) E(ξk)×X ∼= E(ξk × 0X)

M BO(k)×X
ν×f

.

This induces a map on the Thom spaces: Th(ν) → Th(ξk×0X) ∼= Th(ξk)∧X+ (where
X+ is the one-point compactification of X)3;

• Composing the collapsing map Sn+k → Th(ν) by quotienting out everything outside
a tubular neighborhood of ν with the map Th(ν) → Th(ξk) ∧X+, we obtain a map
Sn+k → Th(ξk) ∧X+.

Definition 3.1. Denote by MO(k) := Th(ξk), the Thom space of the universal bundle.

Summarizing, starting from M
f−→ X, we have associated with it an element πn+k(MO(k) ∧

X+). We now need to study its dependence on various data chosen during the process:

• (Dependence on stabilization) Suppose that we chose a different embedding i′ : M ↩→
Sn+k′

. Recall the following theorem in differential topology:

Theorem 3.2. Suppose i : M ↩→ Rn+k and i′ : M ↩→ Rn+k′
, with extensions to

embeddings of E(νi) and E(νi′). Then for m large enough, the composite embeddings
of E(νi) and E(νi′) into Rn+m are isotopic.

Thus we just need to check what happens when we stabilize the embedding M ↩→
Sn+k ↩→ Sn+k+1.

Exercise 3.3. The following diagram commutes:

Sn+k+1 Th(ν ⊕ 1) MO(k + 1) ∧X+

ΣSn+k Σ(Th(ν)) ΣMO(k) ∧X+

∼= ∼= ∼=

Thus from M
f−→ X we obtain an element in

MOn(X) := lim−→
k

πn+k(MO(k) ∧X+).

• (Dependence on bordism class) Given a null-bordism X = ∂W , we can embed W into
Dn+k+1 so that the boundary ∂W ↩→ ∂Dn+k+1 = Sn+k. Checking the commutativity

3Exercise: (1) Th(η × ξ) ∼= Th(η) ∧ Th(ξ); (2) Over a compact base, Th(η) ∼= E(η)+.
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of

Sn+k Th(ν) MO(k) ∧X+

Dn+k+1 Th(ν)

,

gives a well-defined map

ΩO
n (X) → lim−→

k

πn+k(MO(k) ∧X+).

Conversely, given a map f : Sn+k → MO(k) ∧ X+, we would like to obtain an element in
ΩO

n (X). Recall that the base space BO(k) is the direct limit of Grassmannians Grk(Rn+k),
and the universal k-plane bundle ξk → BO(k) is the direct limit of bundles ξk,n → Grk(Rn+k).
By compactness, the image of f lands in Th(ξk,n) for some finite n. Transversality (near the
zero section Grk(Rn+k) ↩→ Th(ξn,k)) gives us that M := f−1(Grk(Rn+k)) is a well-defined

bordism class of manifold, and the composition M
f−→ MO(k) ∧ X+

proj2−−−→ X+ gives us an
element in ΩO

n (X). One can check that this construction gives us a well-defined map

lim−→
k

πn+k(MO(k) ∧X+) → ΩO
n (X),

which is clearly a two-sided inverse to our previous map.

The spaces MO(k) together with the suspension map forms a ring spectrum MO.

Theorem 3.4 (Thom, 1954). The Thom spectrum MO represents the unoriented bordism
theory ΩO

n (−).

We have thus further reduced the Steenrod problem from a comparison between two ho-
mology theories H∗(−;F2) and ΩO

∗ (−), to a comparison between their representing spectra
(K(F2, n))n and MO(n). Namely, we have constructed (by “pushing forward fundamenta
classes”) a morphism MO → HF2, and we would like to construct a splitting HF2 → MO.

For this we need to compute the topologies of these spaces.

4. Cohomology of MO(n): Thom isomorphisms and characteristic classes

In this section we compute the cohomology of MO. Most of the content from this section can
be found in Milnor-Stasheff.

4.1. Thom isomorphism. Recall that Thom isomorphism says:

Theorem 4.1 (Thom, 1951; see Milnor-Stasheff Theorem 8.1). Let F ↩→ E
π−→ B be a rank-n,

unoriented, real vector bundle. Denote by E0 the complement of the zero-section in E, and
F0 := F \ {0}. Then there exists a unique class U ∈ Hn(E,E0;F2), called the Thom class,
such that its restriction to each fiber

U |(F,F0) ∈ Hn(F, F0;F2) ∼= F2

is the non-zero element, and that the correspondence

Hk(B;F2) → Hk+n(E,E0;F2); x → π∗x ∪ U

defines an isomorphism for every k.
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Therefore, for each bundle η over B, the cohomology of the Thom space is given by

H∗(Th(η);F2) ∼= H∗(E(η), E(η)0;F2) ∼= H∗−rank(η)(B;F2).

Moreover, this isomorphism is an isomorphism of H∗(B)-modules, where the action on the
relative group H∗(E(η), E(η)0;F2) is given by pulling back and taking cup product. Thus
H∗(Th(η);F2) is a free H∗(B)-module generated by the Thom class U ∈ Hrank(η)(Th(η);F2).

4.2. Stiefel-Whitney classes. For the case of MO(n), the cohomology ring of the base
space H∗(BO(n);F2) is well-understood, since BO(n) can be constructed by taking a direct
limit of real Grassmannians:

Theorem 4.2 (See Milnor-Stasheff Theorem 7.1). The cohomology ring of BO(n) is given
by

H∗(BO(n);F2) ∼= F2[w1, . . . , wn], wi ∈ Hi(BO(n);F2),

i.e. a polynomial algebra over F2 freely generated by the Stiefel-Whitney classes w1(ξn), . . . , wn(ξn)
of the universal n-plane bundle.

5. Cohomology of HF2: the Steenrod algebra

Before going into Steenrod algebra, we should say one word about why they feature promi-
nently in this story. We would like to study the cohomologyHi(K(F2, n);F2) of the Eilenberg-
MacLane spaces. By the fact that these spaces themselves represent the HF2 theory,

Hi(K(F2, n);F2) ∼= [K(F2, n),K(F2, i)].

On the other hand, by “Yoneda”, this set can be identified as the set of natural transformations
from Hn(−;F2) to Hi(−;F2). These are, by definition, the (primary) cohomology operations.
To be more honest, we only need the stable cohomologies of the Eilenberg-MacLane spaces,
and the corresponding stable operations are governed by the Steenrod algebra. We now make
these precise.

We very closely follow a combination of Adams Berkeley notes and Miller’s notes.

5.1. A brief overview of the mod-2 Steenrod algebra. Recall that the mod-2 Steenrod
operations are homomorphisms

Sqi : Hn(X,Y ;F2) → Hn+i(X,Y ;F2)

satisfying (and are characterized by):

(1) Naturality: given (X,Y )
f−→ (X ′, Y ′),

Hn(X ′, Y ′;F2) Hn(X,Y ;F2)

Hn+i(X ′, Y ′;F2) Hn+i(X,Y ;F2)

f∗

Sqi Sqi

f∗

;

(2) Stability: if δ : Hn(Y ;F2) → Hn+1(X,Y ;F2) is the coboundary map, then Sqi(δu) =
δ(Sqiu);

(3) Properties for small values of i:
(a) Sq0u = u;
(b) Sq1u = βu where β is the mod-2 Bockstein;

(4) Properties for small values of n:
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(a) If n = i, Sqiu = u2;
(b) If n < i, Sqiu = 0;

(5) Cartan formula:

Sqi(u ∪ v) =


j+k=i

(Sqju) ∪ (Sqku);

(6) Adem relations: if i < 2j then

SqiSqj =


k+ℓ=i+j
k≥2ℓ

λk,lSq
kSqℓ

where λk,ℓ are certain binomial coeffcients.

We also write

Sq :=

∞

i=0

Sqi

to be the total Steenrod operation, so that, for example, the Cartan formula becomes

Sq(u ∪ v) = Sq(u) ∪ Sq(v).

We give a very brief sketch of the construction. Let X be a finite simplicial complex. In
e.g. defining the cup product on H∗(X), we must define a diagonal embedding X ↩→ X ×X.
However the “genuine” diagonal map X ↩→ X × X is not a simplicial embedding (e.g. if
X = [0, 1], the diagonal embedding [0, 1] → [0, 1] × [0, 1] by t → (t, t) does not map cells to

cells), and we must choose an approximation to diagonal ∆. Such choice is far from unique:

let τ : X × X → X × X be the map that switches the two factors, then τ ◦ ∆ is also an
approximation to diagonal. In other words, we obtain an F2-invariant map

S0 ×X → X ×X,

where the F2-action on the domain is on S0 and the F2-action on the target is by τ . But
by acyclic carrier theorem, all such diagonal approximations are homotopic. So choosing a
homotopy gives a map [0, 1]×X → X ×X. Again, flipping this map by τ gives another such
homotopy, and thus an F2-invariant map

S1 ×X → X ×X

where the F2-action on S1 is the antipodal action. Continuing this procedure gives us an
F2-invariant map

S∞ ×X → X ×X

and passing to F2-equivariant cohomology in F2-coefficient gives us a map

H∗(X;F2) → H∗
F2
(X ×X;F2) → H∗(X;F2)⊗H∗(BF2;F2) ∼= H∗(X;F2)[x]

where |x| = 1, and we define the xk-coefficient of this map to be Sqk.

Definition 5.1. A (primary) cohomology operation of type (n,m,G,H) is a collection of

φ : Hn(X,Y ;G) → Hm(X,Y ;H)

which are natural with respect to mappings of pairs.

A stable (primary) cohomology operation of degree i is a collection of

φn : H
n(X,Y ;G) → Hn+i(X,Y ;G)

defined for each n and each pair (X,Y ), so that each φn is natural with respect to mappings
of pairs, and that φn+1δ = δφn where δ is the coboundary homomorphism.
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Definition 5.2. Define the set A to be the set of stable primary operations for G = F2.

The set A is obviously a graded associative algebra (by addition and composition).

Theorem 5.3 (Serre). The algebra A is generated by the Steenrod squares Sqi. More pre-
cisely, A has a Z2-basis of operations

Sqi1Sqi2 · · · Sqit

where i1, . . . , it take all values such that

ir ≥ 2ir+1 (1 ≤ r < t), it > 0,

and the empty product is admitted and interpreted as the identity operation.

These products are called admissible monomials. The reason of the ir ≥ 2ir+1 is the Adem
relations. This theorem is why A is called the Steenrod algebra.

Proof sketch. The linear independence can be seen by looking at the action of A on specific
spaces. Since this is a useful computation we do it in some detail.

Let us first calculate the action of A on H∗RP∞ = F2[x], where x = w1(ξ1) ∈ H1(RP∞;F2)
is the 1st Stiefel-Whitney class of the universal line bundle ξ1 over RP∞ ∼= K(F2, 1). By
property (3a) and (4a), Sq(x) = x+ x2, and thus by the Cartan formula,

Sq(xk) = (Sq(x))k = xk(1 + x)k.

Thus

Sqixk =


k

i


xk+i.

Now letX :=
n

i=1 RP∞. The cohomology ringH∗(X;F2) is the polynomial ring F2[x1, . . . , xn]
where xi ∈ H1(X;F2) comes from the i-th RP∞ factor. We compute that the action of

SqI := Sqi1 · · · Sqik (where I = (i1, . . . , ik) is admissible: ij−1 ≥ 2ij for all j) on x1 . . . xn ∈
H∗(X;F2). This is done by using our previous calculation and the Cartan formula repeat-

edly. This will result in a huge sum. To deal with it, we order the monomials xi1
1 . . . xin

n

lexicographically. Then:

• For k = 1, we have

Sqi(x1 · · ·xn) = x2
1 · · ·x2

ixi+1 · · ·xn + smaller terms;

• For k = 2, we have, for i1 ≥ 2i2 (admissibility),

Sqi1Sqi2(x1 · · ·xn) = x4
1 · · ·x4

i2x
2
i2+1 · · ·x2

i1−2i2xi1−2i2+1 · · ·xn + smaller terms;

• In general, for admissible SqI := Sqi1 · · · Sqik ,

SqI(x1 · · ·xn) = x2k

1 · · ·x2k

ek
x2k−1

ek+1 · · ·x2k−1

ek+ek−1
x2k−2

ek+ek−1+1 · · ·xn

where (e1, . . . , ek) are defined by

es :=


i2 − 2is+1, 0 < s < k

ik, s = k
.

Noticing that we can recover the sequence I = (i1, . . . , ik) from (e1, . . . , ek) gives the linear
independence statement.

The part of the theorem that says SqI spans A is harder. We only give a very brief sketch,
and leave details to Adams’s Berkeley notes, Chapter 2. The key geometric step is to notice
that
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Lemma 5.4. There is a 1-1 correspondence between stable primary operations of degree n
and sequences of elements eq+n ∈ Hq+n(K(F2, q);F2) satisfying Ωeq+n = eq+n−1, where we
use the desuspension map

H∗(K(F2, q);F2) ∼= [K(F2, q),K(F2, ∗)]
Ω−→ [K(F2, q−1),K(F2, ∗−1)] ∼= H∗−1(K(F2, q−1);F2).

That is:

An ∼= lim←−
q

Hq+n(K(F2, q);F2) ∼= Hq+n(K(F2, q);F2)

for q ≥ n.

Thus we need to compute the cohomologies of K(F2, q). We of now do induction on q by
studying the Serre spectral sequence associated to the path fibration of these spaces, which
look like K(F2, q − 1) ↩→ ∗ → K(F2, q) (also notice that K(F2, 1) has a model RP∞ whose
cohomology we understand well). □

5.2. The Steenrod algebra as a Hopf algebra. This part will be very brief, and we refer
to

• Milnor, The Steenrod Algebra and Its Dual ;
• Milnor-Moore, On the Structure of Hopf Algebras.

The Steenrod algebra A has a coproduct ψ : A → A that is coassociative and (crucially)
cocommutative, defined by (the Cartan formula)

Sqk →


i+j=k

Sqi ⊗ Sqj .

In fact this makes A into a Hopf algebra. The fact that ψ is cocommutative means that the
dual A∗ is a Hopf algebra with a commutative product, which makes it much easier to study,
and Milnor has worked out the structure of the Hopf algebra A∗ which is surprisingly clear.
However we will not use this strong result. What we do need is a general fact about Hopf
algebra actions.

Let X be a space and we now consider the action of A on H∗(X;F2). The observation is
that the coproduct ψ on A is compatible with the cup product ∪ on H∗(X;F2), in that the
following two maps coincide:

(1) First take ∪ and then act by A:

A⊗H∗(X;F2)⊗H∗(X;F2)
1⊗∪−−−→ A⊗H∗(X;F2) → H∗(X;F2);

(2) First take the ψ, then act by A component-wise, then take ∪:

A⊗H∗(X;F2)⊗H∗(X;F2) H∗(X;F2)

A⊗A⊗H∗(X;F2)⊗H∗(X;F2) A⊗H∗(X;F2)⊗A⊗H∗(X;F2) H∗(X;F2)⊗H∗(X;F2)

ψ⊗1⊗1

1⊗T⊗1

∪

where the map T is simply switching factors.

This is simply a consequence of the Cartan formula and the very definition of ψ.

Let us abstractly formulate this situation. Let A be a Hopf algebra over K, and let M,N be
A-modules (using only the algebra structure of A). Then M ⊗K N is an A-module using the
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diagonal map ψ:

A⊗ (M ⊗N) M ⊗N

(A⊗A)⊗ (M ⊗N) (A⊗M)⊗ (A⊗N)

ψ⊗1

1⊗T⊗1

.

We say an A-module M is an A-module algebra if M is an algebra such that the algebra
structure map

M ⊗K M → M

is an A-module map. For example, H∗(X) is an A-module algebra.

Similarly, we say an A-module M is an A-module coalgebra if M is a coalgebra such that the
coalgebra structure map

M → M ⊗K M

is an A-module map.

Recall that a coalgebra A is called connected if the counit  : A → K is an isomorphism in
degree ≤ 0.

Proposition 5.5 (Milnor-Moore). Let K be a field, let A be a connected Hopf algebra over
K, and let M be a connected A-module coalgebra with counit 1 ∈ M0. Assume that i : A →
M ; a → a · 1 is monic. Then M is a free A-module.

5.3. The Steenrod algebra action on H∗(MO). We will adopt the following abuse of
notation in this section: we write H∗(MO) as the HF2-cohomology of the Thom spectrum
MO. More explicitly (using Proposition 2.17),

Hk(MO) := [MO,HF2]−k
∼= lim−→

n→∞
[MO(n),K(F2, n+ k)] ∼= lim−→

n→∞
Hn+k(MO(n);F2).

Thus the Thom class U ∈ Hn(MO(n);F2) gives a stable cohomology class U ∈ H0MO.

Proposition 5.6. The Steenrod algebra A acts freely through degree n on the Thom class U
of MO(n). Thus A acts freely on U ∈ H0MO.

Proof sketch. Use our computation of the action of A on x1 · · ·xn ∈ H∗ (
n

i=1 RP∞;F2), and
the looking at

H∗(MO(n);F2)
s∗−→ H∗(BO(n);F2)

f∗

−→ H∗


n

i=1

RP∞;F2



where

(1) s is the zero section inclusion map, and maps U to wn (this is exactly the same as
the proof that the restriction of the Thom class to the zero section is the Euler class,
for oriented bundles – the point here is that wn is the “Euler class” for F2-oriented
vector bundles, i.e. all real vector bundles);

(2) f is the classifying map for ξ1 × · · ·× ξ1, and maps wn to

wn(ξ1 × · · ·× ξ1) = x1 · · ·xn.

□

Theorem 5.7. H∗MO is free as an A-module.
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Proof. We just need to demonstrate thatH∗MO is anA-module coalgebra, which is connected
with counit U ∈ H0MO. The theorem is then implied by Proposition 5.6 using Milnor-
Moore’s Proposition 5.5.

That H∗MO is a coalgebra is a result of MO being a ring spectrum:

H∗MO → H∗(MO ∧MO) ∼= H∗MO ⊗F2
H∗MO.

One can show that all maps here respect Steenrod operations, so H∗MO is an A-module
coalgebra. Moreover, that H∗MO is connected with counit U simply follows from Thom
isomorphism. □

6. Concluding the proof

We put everything together and sketch the final few steps of the proof.

Recall that we have two spectra ΩO and HF2 together with a map ΩO → HF2. We would like
to construct a splitting HF2 → ΩO so that the composition HF2 → ΩO → HF2 is the identity.
By the Pontryagin-Thom construction, we have identified ΩO with the Thom spectrum MO,
and thus we can replace ΩO → HF2 with MO → HF2 given by the Thom class

U ∈ H0MO ∼= [MO,HF2]0.

Exercise 6.1. Why?

To summarize what we have achieved in studying H∗MO, we have demonstrated that H∗MO
is an A-module coalgebra in which the Thom class U ∈ H0MO is the counit, and we have
showed that H∗MO is free as an A-module.

This means that we can choose a basis {vα} for H∗MO as a free A-module, and thus obtain
maps vα : MO → Σ|α|HF2 (where Σ|α| means suspending by the degree |α| of vα). Thus we
obtain a map

v : MO →


α

Σ|α|HF2,

which is by construction an isomorphism on H∗(−;F2) (both sides are free as A-modules with
generators labeled by {α}).
The final insight required is that one could “break the homotopy type into rational and p-adic
parts”4:

Theorem 6.2. In fact v is a weak homotopy equivalence.

Proof sketch. We indicate roughly how the proof works.

For each abelian group G, there exists a spectrum SG, unique up to homotopy equivalence,
called the Moore spectrum of G, such that

H∗(SG;Z) ∼=


G, ∗ = 0

0, ∗ ∕= 0
.

Define the stable homotopy group of X with coefficient in G to be

πn(X;G) := [S, SG ∧X]n.

Given a prime p and a morphism f : X → Y of spectra

4See https://ncatlab.org/nlab/show/fracture+theorem.

https://ncatlab.org/nlab/show/fracture+theorem


SPECTRA, UNORIENTED BORDISMS, AND STEENROD PROBLEM 19

(1) If f is an isomorphism in mod-p homotopy, then f is an isomorphism in mod pk-
homotopy for all k by the exact sequence

· · · → πn(X;Z/pk+1Z) → πn(X;Z/pkZ) → πn(X;Z/pZ) → · · ·
and is therefore an isomorphism in Z/p∞Z := limZ/pk (p-complete) homotopy;

(2) We have the Whitehead theorem that if f : X → Y is an isomorphism in mod-p
homology and X,Y are connected, then f is an isomorphism in mod-p homotopy;

Thus v is an isomorphism in mod-2 homotopy.

On the other hand, since every element in ΩO
∗ has order 2, the rational and p-adic homotopy

type for any odd prime p vanishes. Therefore v is an isomorphism in integral homotopy. □

Thus we can conclude the proof: from the weak equivalence we can construct a splitting

HF2 →


α Σ|α|HF2
∼= MO, so that its composition with MO

U−→ HF2 is the identity.

Combining with the fact that MO
U−→ HF2 coincides with the fundamental class map ΩO →

HF2 shows that every mod-2 cycle is represented by a cycle in ΩO.


