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1 A∞ Algebra and Noncommutative Geometry

The notion of A∞ algebras and A∞ categories are the main tool used to encode the
counting data from Lagrangian intersection. The A∞ relation, in the simplest way, is usu-
ally written down in a rather combinatorial way. One way to understand this machinery,
proposed by Kontsevich [KoSo1,2], is (the hope of) a translation of the theory of A∞ cat-
egories into a geometric language of non-commutative geometry, for which a dictionary
between algebra and geometry can be established like in algebraic geometry (in the ”affine
case”).

maps f : X → Y morphisms of algebras f∗ : O(Y ) → O(X)
points of X homomorphisms HomAlgk(O(X), k)
closed embedding i : X ↪→ Y epimorphism of algebras i∗ : O(Y ) ↠ O(X)
finite product

∏
i∈I Xi tensor product

⊗
i∈I O(Xi)

finite disjoint union
⊔

i∈I Xi direct sum
⊕

i∈I O(Xi)
vector bundle E on X finitely generated projective O(X)-module

Γ(E)

And we would also like some translation of notions in differential geometry, as we have
done in algebraic geometry.

X is smooth O(X) is formally smooth, i.e. for any f : B ↠
B/I with In = 0 for some n ≥ 0, the induced
map f∗ : Hom(A,B) → Hom(A,B/I) is sur-
jective

total space totE symmetric algebra generated by Γ(E∗), i.e.
Sym(Γ(E∗)) =

⊕
n≥0 Sym

n(Γ(E∗))

a vector field on X a derivation of O(X)
tangent bundle TX O(X)-module of all derivations Der(O(X))
tangent space TpX vector space (mx0

/m2
x0
)∗, where mx0

is the
kernel of x0 ∈ Hom(O(X), k)

cotangent bundle T ∗X O(X)-module Ω1(O(X)) :=Hom(Der(O(X)),O(X))
differential forms Ω•

X ∧•(Ω1(O(X)))

We start with the tensor category C = VectZ
k or VectZ2

k consists of Z or Z2-graded vector
space, in which the unit object is given by the 1-dim vector space k with grading 0, and
the tensor is the normal tensor product of vector spaces with added grading. An associative
algebra over C is given by a vector space A ∈ Ob(C ) and an associative product A ⊗ A →
A preserving the grading. And the coassociative coalgebras can be seen as the dual of
associative algebras, with induced structure called the coproduct ∆ : A∗ → A∗ ⊗ A∗ (such
that ∆(f)(a, b) = f(a)f(b) for f ∈ A∗, a, b ∈ A). Here we also assume our (co)algebra is
(co)unital, and the counit is simply a linear map e : A∗ → k. Notice under this duality, the
category of (finite generated) coassociative coalgebras can be seen as the opposite of the
category of (finite generated) associative algebras.

In algebraic geometry, the affine scheme associated to a commutative algebra R is given
by a topological space Spec(R) (the points are prime ideas), together with a structure sheaf
induced by R. Due to the contrafunctoriality between the category of algebras and the
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category of affine schemes, it is reasonable to think a coalgebra B as our ”scheme”, and
the dual algebra B∗ as its ”structure sheaf”, which we call a formal graded manifold XB

and its algebra of functions O(XB) (the non-commutative nature makes it hard to identify
our formal manifold as a topological space). A point of X, following our dictionary above,
can given by a morphsim of algebra pt : k → B, here k is the coalgebra by dualizing the
algebra structure on k (with product k⊗k → k given by multiplication and grading 0), thus
equipped with coproduct ∆(k) = 1⊗ k + k ⊗ 1, k ∈ k.

The simple objects in our category would be those cofree coalgebras (like An in algebraic
geometry), which can be seen as tensor coalgebras over vector spaces.

Definition 1.1. A tensor coalgebra over vector space V is given by T (V ) =
⊕

n≥0 V
⊗n,

together with a coproduct
∆ : T (V ) → T (V )⊠ T (V )

(v1 ⊗ v2 ⊗ · · · ⊗ vn) 7→
∑

0≤i≤n

(v1 ⊗ · · · ⊗ vi)⊠ (vi+1 ⊗ · · · ⊗ vn).

Notice here we use ⊠ to distinguish the tensor product in C from the one in T (V ), and
when i = 0, n the corresponding term collapse to the identity 1 ∈ k = V ⊗0.

For the formal graded manifold XT (V ) associated to T (V ), the structure algebra O(X) =
k⟨⟨V ∗⟩⟩ the non-commutative formal power series generated by V ∗. There is a distinguished
point on X given by the canonical isomorphism idk : k → k = V ⊗0 ↪→ T (V ).

Now we want to formulate some differential geometry structures on XB . The tangent
space at a given point pt is defined to be the vector space

(mpt/m
2
pt)

∗,mpt = {a ∈ B∗|a ◦ pt = 0},

here mpt is a well defined two-sided ideal of B∗. And a vector field on X is given by a
coderivation d on the associated coalgebra B. Roughly speaking, it is the dual of a derivation
d∗ on the structure algebra O(X) = B∗, and its evaluation at a given point pt ◦ d|mpt

vanish on m2
pt, thus gives a tangent vector in (mpt/m

2
pt)

∗. To be compatible with the graded
structure on the algebra, we need some Koszul sign rule introduced below.

Definition 1.2. For any permutation σ and graded vector space V , we have a commutation
morphism τσ : V ⊗n → V ⊗n induced by the commutation morphism of swap τ(v1 ⊗ v2) =
(−1)deg v1 deg v2v2 ⊗ v1. The Koszul sign of a permutation is the sign of τσ.

A coderivation of graded coalgebra B is a (not necessarily grading preserving) homo-
morphism d : B → B such that

∆ ◦ d = (d⊠ idB + τ ◦ (d⊠ idB) ◦ τ) ◦∆, e ◦ d = 0.

For a formal graded manifold with point (XB , pt), a differential is a coderivation d of
degree 1, meaning it is a grading preserving map B → B[1], with zero square d ◦ d = 0, and
d|pt = d ◦ pt = 0.

The description of tangent space is quite simple when we consider the formal graded
manifold (XT (V ), idk), which is exactly the graded vector space V . In fact, the differential
on X gives us an A∞-structure on V , by following correspondence.
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Proposition 1.3. The space of differential d on T (V ) is one-to-one corresponding to the
space of the series of degree 1 maps mn : V ⊗n → V [1], n ≥ 0 that satisfy the shifted A∞
relations, given by∑

0≤k≤k+l≤n

(−1)∗mn−l+1(v1 ⊗ · · · ⊗ vk ⊗ml(vk+1 ⊗ · · · ⊗ vk+l)⊗ vk+l+1 ⊗ · · · ⊗ vn) = 0

for all vi ∈ V and notice here m0 naturally becomes a zero map.
The correspondence from left to right is given by projV ◦d, for projV : T (V ) → V the

normal projection, called the Taylor coefficients of d. And the other side is given by the
augmentation {m̂n} of {mn}, defined by

m̂n(v1⊗· · ·⊗vn) =
∑

0≤k≤k+l≤n

(−1)∗v1⊗· · ·⊗vk⊗ml(vk+1⊗· · ·⊗vk+l)⊗vk+l+1⊗· · ·⊗vn.

By this construction, we can recover our original definition of A∞-algebra A, i.e. a
graded algebra equipped with differentials mn satisfying the A∞ relations above. The only
difference is that our vector space V should be seen as A[1], the A∞-algebra shifted down
by 1, which means that mn : A⊗n → A[2 − n] should be of degree 2 − n. In the following
construction, we identify A∞-algebra A and the corresponding formal pointed differential
graded manifold (XT (A[1]), idk) (XA in short). And we restrict to this special case, although
we can deal with more general coalgebras.

Definition 1.4. An A∞-morphism between A∞-algebra A1 and A2 is a grading preserving
homomorphism f : T (A1[1]) → T (A2[1]), commuting with differentials, i.e.

(f ⊠ f) ◦∆A1 = ∆A2 ◦ f, f ◦ dA1 = dA2 ◦ f.

Again it is equivalent to consider its Taylor coefficients fn : A⊗n
1 → A2, which satisfy∑

0≤k≤k+l≤n

(−1)∗fn−l+1(v1 ⊗ · · · ⊗ vk ⊗ml(vk+1 ⊗ · · · ⊗ vk+l)⊗ vk+l+1 ⊗ · · · ⊗ vn)

=
∑

1≤k≤n
1=i1<···<ik≤n

(−1)∗mk(fi2−i1(vi1 ⊗ · · · )⊗ fi3−i2(vi2 ⊗ · · · )⊗ · · · ⊗ fn−ik+1(vik ⊗ · · · ⊗ vn)).

For A∞-algebra A, the A∞-relation would imply m1 ◦ m1 = 0 , thus can be seen as
a chain complex. Any A∞-morphism f : A1 → A2 is quasi-isomorphism if it induces the
quasi-isomorphism between chain complexes (A1,mA1,1) and (A2,mA2,1).

A dg-vector bundle E over XA is an free O(XA)-module Γ(E ) called the module of sec-
tions on E , together with a differential dE : Γ(E ) → Γ(E )[1] such that d2E = 0, dE |Ex0

= 0,
which is compatible with the differential on O(XA). Turning into the coalgebra side, we de-
fine an left A-module M as a graded vector space, with identification Γ(E )

∼−→ O(XA)⊗̂M∗

for some dg-vector bundle E , called a trivialization of E (here ⊗̂ denotes the topologically
completed tensor product, which can be thought as adding infinite sums). It is the same
to say our left A-module M carries a differential dM : T (A[1]) ⊗ M → (T (A[1]) ⊗ M)[1],
making it a dg-comodule over the dg-coalgebra T (A[1]).
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Again using d2M = 0, the Taylor coefficients of dM is a series of map mM,n : A[1]⊗n⊗M →
M [1] satisfying∑
0≤k≤k+l≤n

(−1)∗mM,n−l+1(v1 ⊗ · · · ⊗ vk ⊗ml(vk+1 ⊗ · · · ⊗ vk+l)⊗ vk+l+1 ⊗ · · · ⊗ vn ⊗ y)

+
∑

0≤k≤n

(−1)∗mM,k(v1 ⊗ · · · ⊗ vk ⊗mM,n−k(vk+1 ⊗ · · · ⊗ vn ⊗ y)) = 0.

The homomorphism space of the comodules M,N over T (A[1]), is a chain complex

Hom(T (A[1])⊗M,T (A[1])⊗N), δ(f) = dN ◦ f − (−1)deg f+1f ◦ dM

where the grading given by the degree of the homomorphism. And we call f quasi-isomorphism
if δ(f) = 0. This gives a dg-category structure on the category of A-module. Similarly we
can define the category of right A-module and the A−B bimodule.

The tensor product of right and left A-modules M,N , is given by a dg k-module

M ⊗ T (A[1])⊗N, d ∈ Hom(M ⊗ T (A[1])⊗N,M ⊗ T (A[1])⊗N)

where the differential d is induced by the ones on M⊗T (A[1]), T (A[1]) and T (A[1])⊗N , and
we can expect that a similar formula for such a coderivation to have a zero square can be
deduced thereafter. Furthermore one can follow our construction to define the simultaneous
tensor product between A-B bimodules and B-A bimodules.

2 Yoneda Homomorphism and Yoneda Embedding

Now we have developed the category of left (right) A∞-module, so we expect to have an
A∞ version of Yoneda lemma. An analogous of commutative algebra indicates an important
role of unital condition to get such a lemma.

Definition 2.1. An A∞-algebra A is called strict unital if there exist an element e ∈ A of
degree zero (degree -1 in A[1]), such that

m2(e, v) = m2(v, e) = v,mn(· · · , e, · · · ) = 0,∀n ̸= 2.

It is called weakly (or homological) unital if the graded associative algebra H•(A) has an
unit.

Most of time, we can only get weakly unit when construct our A∞-algebra. However
the following proposition shows they are actually equivalent, which can be constructed
geometrically.

Proposition 2.2. For any A∞-algebra A with weakly unit e, there exist a quasi-isomorphism
A ↪→ A′, where A′ = A⊕ kb[1]⊕ ke+ is an A∞-algebra satisfying mA′,1(b) = e+ − e, so that
e+ is a strict unit of A′.

Also, given a non-unital A∞-algebra A, we can forcely add strict unit by adding a formal
dg-line, i.e. X ′ = L × XA, where L is the formal dg-line corresponding to a 1-dim A∞-
algebra with m2 = id,mn = 0, n ̸= 2.

Now we define the target of our Yoneda homomorphism, in terms of diagonal bimodule.
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Definition 2.3. The dg-algebra A have a natural A-A bimodule structure, with differen-
tial given by dA, called the diagonal bimodule of A. Notice its endomorphism algebra
EndA-mod(A) carries a dg-algebra structure.

Lemma 2.4 (Yoneda homomorphism). There exist a natural A∞-morphism called left Yoneda
homomorphism

Y l : A → EndA-mod(A),

which has Taylor coefficient Y l
n : A⊗n → EndA-mod(A) induced by the A∞-relation

mA,n+m ∈ Hom(A⊗n,Hom(A⊗k ⊗A,A)) = Hom(A⊗(n+k) ⊗A,A),

and Yl is a quasi-isomorphism if and only if A is weakly unital.

Now we can try to consider a categorical version of A∞-algebra, like the generalize the
group to the groupoid.

Definition 2.5. An A∞ category A is a category, in which Hom(X,X ′), X,X ′ ∈ Ob(A ) are
a graded vector spaces, equipped with products mn, satisfying A∞-relations∑

0≤k≤k+l≤n

(−1)∗mn−l+1(v1 ⊗ · · · ⊗ vk ⊗ml(vk+1 ⊗ · · · ⊗ vk+l)⊗ vk+l+1 ⊗ · · · ⊗ vn) = 0

for any vi ∈ Hom(Xi, Xi−1).

It is helpful to connect it with an A∞-algebra A =
⊕

X,X′ Hom(X,X ′), for which the
mismatched products are defined to be zero. So roughly speaking, A∞ category is the A∞-
algebra equipped with labels. We can follow this idea to define the category of left (right,
bi) A -modules, and notice we say our A∞ category A is weakly (strict) unital if every
Hom(X,X) is weakly (strict) unital and they sum up to be a weak unit in the associated
A∞-algebra A. Following is a stronger version of Yoneda lemma.

Lemma 2.6 (Yoneda functor). There exist a natural A∞-functor called left Yoneda functor

Y l : A op → A -mod,

which maps each object X to its left Yoneda module Y l(X) =
⊕

Y Hom(X,Y ). If A is weakly
unital, then Y l is a full functor and gives quasi-isomorphisms on the hom spaces.

3 Hochschild Cohomology and Homology

One interpretation of the Hochschild cochain is given by a shift of the DGLA (differential
graded Lie algebra) of vector fields on XA, i.e. the space of derivations. By the augmentation
arguement we introduced before, it can be written as

CC•(A,A) = Der(O(X))[−1] = HomV ect(T (A[1]), A),

and the differential is given by δ(ϕ) = dA ◦ ϕ − ϕ ◦ dA, ϕ ∈ CC•(A,A) (here we use the
augmented differential).
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Proposition 3.1. For A an A∞-algebra, we have the following quasi-isomorphism of cochain
complexes

CC•(A,A)[1] ≃ Der(O(XA)) ≃ TidXA
Maps(XA, XA).

Here Maps(−,−) is the internal hom in the category of dg-coalgebras, thus the tangent
space at identity can be seen as the deformation of A∞ structure.

Moreover, if A is weakly unital, it is quasi-isomorphic to EndA-mod-A(A,A), which is a
chain complex following our previous definitions.

Here we have a quick generalization, under the weakly unital assumption, to consider
the Hochschild cochain with coefficients in M , given by

CC•(A,M) = HomA-mod-A(A,M) = HomV ect(T (A[1]),M),

and the differential δ(ϕ) = dM ◦ ϕ− ϕ ◦ dA.
To define Hochschild chain complex, we consider the tensor product of A−A bimodule,

which is a the chain complex

CC•(A,M) = A⊗A-A M = A⊗ T (A[1])⊗M ⊗ T (A[1]),

and the differential dA⊗M is given by dA and the differential of bimodules A,M (notice we
always think the bimoudle tensor product as a ”cyclic chain”).

Also we may construct the cap product map

∩ : CC•(A,A)× CC•(A,M) → CC•(A,M),

ϕ∩(b⊗v1⊗· · ·⊗vn) =
∑

(−1)∗dM,∗ (vj+1 ⊗ · · · ⊗ vn ⊗m⊗ v1 ⊗ · · · ⊗ ϕ∗(vi ⊗ · · · )⊗ · · · ⊗ vs)⊗· · ·⊗vj ,

where m ∈ M .

Proposition 3.2. CC•(A,A) naturally has a structure of dg-algebra. And the cap product
gives CC•(A,M) a structure of CC•(A,A)-module. In other words, we have

dA⊗M (ϕ ∩ µ) = δ(ϕ) ∩ µ+ ϕ ∩ dA⊗M (µ),

(ϕ1 · ϕ2) ∩ µ = ϕ1 ∩ (ϕ2 ∩ µ),

for any ϕ1,2 ∈ CC•(A,A), µ ∈ CC•(A,M).

We may generalize our discussion to an A∞-category version, which turns out having no
difference but only adding those labels.

4 Split-generation and Poincare Duality

Consider that X is a full subcategory of a triangulated category C . We say X split-
generates C , if every element of C is isomorphic to a summand of a finite iterated cone of
elements in X, i.e. the image of some idempotent maps on iterated mapping cones.
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An A∞-category A usually is not triangulated. However, the category of modules
A -mod is natrually pre-triangulated, i.e. its cohomology category H∗(A -mod) is trian-
gulated, meaning we can do sums, shifts, mapping cones, etc. So we say any full subcate-
gory X split-generates A if any object Z, Y l(Z) is split-generated by objects Y l(X), X ∈
Ob(X ).

An important criterion, first introduced by Abouzaid, is to consider the tensor product
Y r(Z)⊗X Y l(Z), which can be concretely given by⊕

Xi

HomC (Xk, Z)⊗HomC (Xk−1, Xk)⊗ · · · ⊗HomC (Z,X1).

And we have collapsing morphism Y r(Z)⊗X Y l(Z)
µ−→ HomC (Z,Z) given by

a⊗ xk ⊗ · · · ⊗ x1 ⊗ b 7→ (−1)∗mA ,k+2(a⊗ xk ⊗ · · · ⊗ x1 ⊗ b),

which is a chain map, so having homology level morphism [µ].

Proposition 4.1. We have the following statements equivalent:

• The object Z is split-generated by X .

• [µ] hits the identity.

• [µ] is an isomorphism.

We call an A∞-category A (homologically) smooth, if the diagonal bimodule A∆ is split-
generated by finitely many Yoneda bimodules Y l(X)⊗k Y r(Y ) (we call it perfect object in
C -mod). This notation meets with the smoothness of (DbCoh of) an algebraic variety.

It is natural to consider a possible Poincare duality for Hochschild (co)homology, which
need two ingredient: a Calabi-Yau map CY# : HH∗−n(A ) → HH∗(A ,A !) and the map
µ̄ : HH∗(A ,A !) → HH∗(A ). A ! is the inverse dualizing bimodule of A , and µ̄ is an
isomorphism if A is smooth (using the split-generating criterion above).

A immediate result, given that our Calabi-Yau map is an isomorphism, is that we can now
prove, for non-degenerate M (OC hits the identity), an isomorphism between symplectic
cohomology SH∗(M) and Hochschild (co)homology of wrapped Fukaya category W. In
fact we have maps

HH∗−n(W)
[OC]−−−→ SH∗(M)

[CO]−−−→ HH∗(W)

where the closed-open map CO is a ring homomorphism and the open-closed map OC is a
map of SH∗(M)-module. In fact, using cap product we can argue that CO is injective and
OC is surjective in that case. We assume OC(σ) = 1 ∈ SH∗(M), then for any s ∈ SH∗(M)
we have

OC(CO(s) ∩ σ) = s · OC(σ) = s

which implies that CO(s) ̸= 0. And we have our Poincare duality map

HH∗−n(W)
[CY#]
−−−−→ HH∗(W,W !)

[µ̄]−−→ HH∗(W).

As long as we can prove the diagram (homotopy) commutes (called generalized Cardy
condition), OC and CO naturally become isomorphisms.
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