Liouville Sectors

1. Motivation: Kontsevich’s cosheaf conjecture

This talk (and the next one or two) will be about some of the results from the papers
[GPS20] and [GPS24b]. Let me begin by explaining the motivation for these two
papers (and also the third one [GPS24a]). The idea was to formulate and prove a
version of a 2008 conjecture by Kontsevich [Kon09] called the cosheaf conjecture.
To state the conjecture, consider a Weinstein manifold X. Recall that the core cx of
X is by definition the set of all points in X which do not escape to infinity under the
positive Liouville flow. Figure 1 illustrates two possible cores that may arise from
Weinstein structures on an infinite pair of pants.

Conjecture 1.1 (Kontsevich’s cosheaf conjecture). There exists a natural homotopy
cosheaf of A.-categories on ¢x whose global sections give the wrapped Fukaya
category of X.

In plainer language, the conjecture says that there should be a natural way of
associating to each open subset U C ¢x an Aw-category C(U) and to each inclusion
of open subsets U C V an A-functor C(U) — C(V). The category C(cx) should
be the wrapped Fukaya category of X. Moreover, these categories should satisfy a
“descent” property: given any collection of open subsets {U;}icr of ¢x with union
U = |J U;, the induced functor
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should be a pre-triangulated equivalence of A-categories. Thus, the conjecture

essentially states that the wrapped Fukaya category of X can be computed from
local information. It may help to compare this statement to the Seifert-van Kampen
or Mayer—Vietoris theorems from algebraic topology.

Exercise 1.2 (Wrapped Fukaya categories of cotangent bundles). The cotangent
bundle T*Q of a smooth manifold is a Weinstein manifold with core ¢r-g = Q.
Assuming the cosheaf conjecture, use the fact that Perf C(B) =~ Perf Z for any open
ball B € Q to prove

Perf W(T*Q) = Perf C_.(QQ).

This result is originally due to [AS06] and [Abol12] (proven without the cosheaf
conjecture) and can be thought of as an “open string” version of the Viterbo iso-
morphism.



Figure 1: Two (equivalent) Weinstein structures on the infinite pair of pants and
corresponding sectorial decompositions. The individual sectors should be thought
of as preimages under the Liouville flow of open subsets in the corresponding core.

The formulation of the cosheaf conjecture proven in [GPS24b] is slightly different
from the statement above. Indeed, from the perspective of Floer theory it is not
entirely clear how one should define the category €(U) for an arbitrary open subset
U (of course, this is possible with sheaf-theoretic techniques). Thus, instead of
working with open subsets of the core ¢x, we consider “nice” codimension zero
submanifolds with boundary X" C X called Liouville sectors. Figure 1 shows two
different ways in which a pair of pants can be decomposed into Liouville sectors.
The first paper [GPS20] defines the wrapped Fukaya category W(X”) of a Liouville
sector and proves it is covariantly functorial with respect to inclusions. The descent
property is now stated in terms of Liouville sectors.

Theorem 1.3 (Sectorial descent). Given a Weinstein sectorial covering { X;}ie; of X
(defined in Definition 3.20), the induced functor

ho§o}im W(X;) = W(X)
-

is a pre-triangulated equivalence.

Exercise 1.4 (Mirror symmetry for a pair of pants). We expect from SYZ mirror



symmetry that the infinite pair of pants X is mirror to the union of two complex
lines X = {xy = 0}. Let us outline a local-to-global way of verifying this claim. On
the A-side we can decompose X into sectors X; and Xj as in the bottom of Figure 1,
and on the B-side we can decompose X into the union of two complex lines. These
decompositions should be thought of as mirror to each other; indeed, the sectors
X1, Xp are mirror to complex lines and the sector X; N X5 is mirror to a point. From
these two decompositions we obtain commutative squares

WX N Xp) — W(X;) DPCoh(x) —— D'Coh(A?)
W(Xp) —— W(X) DPCoh(A!) —— D!Coh(X)

Both of these diagrams are pushout squares; the first follows from sectorial descent
and the second can be checked by hand. One can further define a morphism of
spans

W(Xz) «—— W(X1 N X)) — W(Xy)

| ! |

DYCoh(A!) «—— DP’Coh(x) ——— D'Coh(A1)

and explicitly show that each vertical map is a pre-triangulated equivalence. This
induces a pre-triangulated equivalence W(X) — D?Coh(X), thus verifying mirror
symmetry for X and X.

2. Stable Hamiltonian hypersurfaces

Although the goal of this talk will be to introduce the notion of a Liouville sector,
let us first discuss something which may at first seem completely unrelated: stable
Hamiltonian structures. This is a generalization of a contact structure which origi-
nated in [[H794] as a setting in which the Weinstein conjecture could be proven. The
reason we are interested in them is that they provide a general setting in which SFT
still works; this will help motivate the somewhat abstruse definition of a Liouville
sector in the following section.

Definition 2.1 (Stable Hamiltonian structures). A stable Hamiltonian structure (SHS)
on Y?"~! is a pair (w, A) consisting of:

¢ a closed 2-form w of maximal rank,

* al-form A such that Alyer, # 0 and ker w C ker dA.
The Reeb vector field of Y is the unique vector field tangent to ker @ such that A(R) = 1.



Example 2.2 (Contact forms). If a is a contact form on Y, then (da, a) is a stable
Hamiltonian structure whose Reeb vector field corresponds with the Reeb vector
field of a.

We will primarily be interested in stable Hamiltonian hypersurfaces, i.e., hyper-
surfaces Y?*~! C (X?", w) which admit an SHS of the form (w|y,A). Note that in
this case w|y is always closed and of maximal rank, so we just need to find a 1-
form A satisfying the desired properties. Recall that the 1-dimensional distribution
C = ker(w|y) is called the characteristic foliation of Y.

Example 2.3 (Contact type hypersurfaces). Recall that Y is a contact type hypersurface
ifin a neighborhood of Y the symplectic form w admits a primitive A whose Liouville
vector field Z is transverse to Y. Then (w|y, A]y) is an SHS.

Example 2.4 (Sectorial hypersurfaces). If H is a Hamiltonian on X, then (w|y, dH|y)
is an SHS on Y iff X} is transverse to Y. This example will be important later when
we define Liouville sectors. Note that H must either strictly increase or decrease
in the direction of C, which implies the leaves C are all embedded copies of R. In
particular, the symplectic reduction F = Y/C is well-defined.

Example 2.5 (Regular energy surfaces of Hamiltonian circle actions). Suppose X
has a Hamiltonian circle action with moment map H, and let Y = H~!(0) be a regular
energy surface. Then C is an S!-foliation and the symplectic reduction F = Y/C is
defined. Let A be any connection 1-form on the principal S'-bundle Y — F. Then
(w|y, A) is a stable Hamiltonian structure on Y.

Exercise 2.6. Suppose Y is a stable Hamiltonian hypersurface in X, and let Z be the
dual vector field of A. For a small time ¢, let Y; be the image of Y under the time
t flow of Z. Show that the flow of Z sends the characteristic foliation of Y to the
characteristic foliation of Y;.

As mentioned earlier, stable Hamiltonian structures are a setting in which SFT
works. Let us very briefly outline how one of the main ideas in SFT, the “stretching
of the neck” procedure, works. Suppose Y is a stable Hamiltonian hypersurface
which separates X into two pieces X_ and X,. The SHS on Y implies the existence
of a tubular neighborhood of Y which is symplectomorphic to

(=&, €)r XY, w|y +d(rA)),

see [Wenl16] for a proof. The idea will be to make this “neck” region longer and
longer until the manifold X splits into two pieces. More precisely, for a large number
T > 0, consider coordinates on the neck given by a level-preserving diffeomorphism

(-T, T)XY — (—¢,¢) XY,
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Figure 2: A holomorphic building resulting from stretching the neck

and equip X with an almost complex structure Jr which is cylindrical with respect
to these coordinates. As we take T — oo, the almost complex structures Jr will
degenerate (it is worthwhile to think about this statement in the dimension n =1
case), and we imagine that X splits into two completed halves X_ and X. By placing
some additional assumptions on Jr (which can be satisfied precisely because Y has
a SHS), a version of the SFT compactness theorem [BEH 03] now implies that
any sequence of holomorphic curves ur in (X, J7) will admit a subsequence ur, for
T, — oo which converges to a holomorphic building 1., i.e., a holomorphic curve with
multiple levels consisting of a bottom level in X_, several middle levels in different
copies of the symplectization of Y, and a top level in X,. One very important fact
to know is that the different components of u., tend asymptotically to Reeb orbits
of Y. See Figure 2 for a picture.

3. Liouville sectors

3.1. The definition

We first recall the definition of a Liouville manifold. We emphasize that our defini-
tion of a Liouville manifold does not come equipped with a fixed cylindrical end.
Some familiar concepts are slightly modified with this coordinate-free approach
(see for instance the definition of a linear Hamiltonian in the first bullet point of
Definition 3.3), but the arguments tend to be cleaner this way.

Definition 3.1 (Liouville manifolds). A Liouville manifold is an exact symplectic
manifold (X, A) for which a neighborhood at infinity is diffeomorphic to the positive
half of a symplectization

([1,0), XY, ra)

via a diffeomorphism respecting Liouville forms. A Liouville manifold with boundary
(resp. corners) is defined in the same way, except the manifolds X and Y are now
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allowed to have boundary (resp. corners). The Liouville vector field of X is the dual
vector field Z of the 1-form A.

Exercise 3.2. Show that the contact manifold Y above is independent of the choice
of cylindrical end. We will refer to Y as the boundary of X at infinity and denote it
by de X.

Definition 3.3 (Liouville sectors). A Liouville sector is a Liouville manifold with
boundary X for which there exists a function I : X — R such that

e lislinear at infinity, i.e., ZI = I near infinity (note this is different from another
common definition of a linear Hamiltonian, found for example in [Abo15]),

* the Hamiltonian vector field X; is outward pointing along dX.

Strictly speaking, the second bullet point makes sense only after extending I to
a neighborhood of dX, but it turns out that the extension does not matter. This
follows, for instance, from the following exercise.

Exercise 3.4. Orient the characteristic foliation of dX so that the positive direction of
C satisfies w(N, C) > 0 for an inward pointing vector field N. Show that the second
condition in Definition 3.3 is equivalent to the condition that I is strictly increasing
in the positive direction of the characteristic foliation. (This is how Liouville sectors
are defined in [GPS20].)

You may also notice that the second condition in Definition 3.3 implies by
Example 2.4 that (w|sx,dI) is an SHS on dX. In fact, the example shows that
the leaves of the characteristic foliation of dX are embedded copies of R, so the
leaf space is a symplectic manifold by symplectic reduction. We summarize the
structure of X in the following proposition.

Proposition 3.5 (Structure of dX). Let F = I-}(0). Then:

(i) (F,A|f)is a Liouville manifold.

(ii) F is symplectomorphic to the symplectic reduction of X by its characteristic
foliation.

(iii) The quotient map dX — F and the function I specify a diffeomorphism dX =
R x F sending the characteristic foliation of dX to the horizontal foliation on
R xF.

See Figure 3.

Proof. We will prove (i), leaving (ii) and (iii) as exercises. Fix a choice of cylindrical
end [1,0), X dowX of X. On this cylindrical end, we can write I(r,y) = b(y)r for
some function b : doX — R (this is precisely what it means for I to be linear at
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Figure 3: The boundary of a Liouville sector. The Liouville vector field (not shown)
points in the outward radial direction. Note this figure is only a cartoon since the
boundary of a sector is never 2-dimensional.

infinity). Observe that the intersection of F with our fixed cylindrical end is given
by [1, 00), X b=1(0). In particular, we see that the Liouville vector field rd, is tangent
to F, so it must also be the Liouville vector field of F itself. This exhibits a cylindrical
end of F on which the Liouville flow is complete, so we are done. m]

The observation that dX is a stable Hamiltonian hypersurface allows us to
use ideas from SFT to give the following motivation for Definition 3.3. Imagine
performing a neck stretch on X along the hypersurface dX. Since dX has no
closed characteristics, any holomorphic building obtained in the limit cannot have
components in R X dX, and thus has only a single level contained in the interior
of X. This means that holomorphic curves stay away from JX once the neck has
been sufficiently stretched; more precisely, there should exist an almost complex
structure on X for which holomorphic curves avoid a neighborhood of dX. While
this is purely motivation, a precise statement along these lines can be proven, which
we will see in Proposition 3.13. Having this strong control on holomorphic curves
near dX is crucial for several reasons when defining the wrapped Fukaya category
of X, for instance in ensuring that Gromov compactness still holds.

3.2. Examples

Example 3.6 (Cotangent bundles). The cotangent bundle T*Q of a manifold with
boundary is a Liouville sector. To see this, consider the decomposition near the
boundary

T"Q =TdQ XT*[0,¢e) =T*dQ X [0, €)s X R;.



o) ri-ebxF L oo)xig}*E

) &
a

{ R

F t

Figure 4: The Liouville sector obtained from a sutured Liouville domain.

The function I = t is linear at infinity and has the outward pointing Hamiltonian
vector field —d;, as required.

Example 3.7 (Punctured bordered Riemann surfaces). Let X be a compact bordered
Riemann surface punctured at a finite number of points. Then X is a Liouville
sector iff each boundary component of X is homeomorphic to R. Some examples
are pictured in Figure 1.

Example 3.8 (Sutured Liouville domains). Let (X, A) be a Liouville domain, and let
Fy € dX be a codimension one submanifold with boundary such that (Fo, A|f,) is a
Liouville domain. The condition that dA|r, is a symplectic form on Fy is equivalent
to the Reeb vector field of dX( being transverse to Fy, so the Reeb flow exhibits an
embedding

A= (—é‘, E)t X Fg =< dXp

Consider the completion of Xj in the complement of A given by
X = Xo Ugxy-a ([1,00), X (dXo — A))

with the usual Liouville 1-form (see Figure 4). Note that X is a manifold with
corners, but let us ignore this issue for now. In fact, the corner structure provides a
convenient decomposition of dX into the four faces

dX = AU ([0,00) X (=€, &) X dFp) U ([1,00) X {—¢} X Fg) U ([1,00) X {€} X Fyp).

To show that X is a Liouville sector, consider the linear Hamiltonian I = —tr on
0X, where t and r are the coordinates in the above definitions of A and X. We now
show that the Hamiltonian vector field X; is outward pointing on each of the four
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faces:

* On A, the function I is given by the negative Reeb coordinate —t. Thus X;
is the Liouville vector field of Xy, which is outward pointing because X is a
Liouville domain.

* On[1, 00) X {—¢} X Fy, the function I is given by the symplectization coordinate
r. Thus, X; is precisely the Reeb vector field d;, which again is outward
pointing. Similar reasoning works for the face [1, o) X {e} X Fo.

e TheremainingfaceV := [0, o), X(—¢, €); X dFpisabit tricky. First, observe that
the submanifold S := {t = 0} equipped with the restriction of A is precisely the
symplectization of dFy. One can show that there is an isomorphism respecting
1-forms

(V,Alv) = ((—¢, €); XS, Als + rdt).

In view of this isomorphism, it is straightforward to check that the positive
direction of the characteristic foliation of V' (in the sense of Exercise 3.4) is given
by the vector field Ryr, — d¢, where Rf, is the Reeb vector field of the contact
manifold (JFy, A). Since I is increasing along this vector field V, Exercise 3.4
implies X is outward pointing along V.

We have shown that X satisfies the definition of a Liouville sector as long as we
ignore the corners. It turns out the corners do not pose an actual issue. Roughly,
the idea is that we can smooth out the corners in a “convex” way, so that the positive
direction of the characteristic foliation in the smoothed boundary lies in the convex
hull of the positive directions of the characteristic foliation in the original boundary.
In particular, this means the condition of Exercise 3.4 is preserved by this smoothing
process. This completes the proof that X is a Liouville sector. (See Lemma 2.13 and
Definition 2.14 in [GPS20] for a different and arguably simpler proof of this result.)

Exercise 3.9. Show that Example 3.7 is a special case of Example 3.8. In fact, there
is a precise sense in which every Liouville sector is equivalent to one obtained from
Example 3.8, see Section 2.7 in [GPS20].

Exercise 3.10. Let X and Fo be asin Example 3.8. Show that the symplectic reduction
of dX by its characteristic foliation is given by the completion of Fy.

Example 3.11 (Legendrian stops). Let Xy be a Liouville domain and A € JX a
Legendrian in its contact boundary. The Weinstein tubular neighborhood theorem
tells us that a neighborhood of A in dX is given by an open subset of the jet bundle
J'A = T*A x R. Under this identification, the disk bundle D*A x {0} is a Liouville
domain sitting inside dXy, so we may apply the above construction to obtain a
Liouville sector X.



This construction is essentially the same as adding a Legendrian stop to Xp,
which we will discuss more in the next talk. Namely, we will consider the partially
wrapped Fukaya category of (the completion of) X, with a stop at A, which is defined
by the usual wrapping procedure except we no longer allow Lagrangians to wrap
through A. It turns out that this is essentially equivalent to the wrapped Fukaya
category of the Liouville sector X.

3.3. Holomorphic curves near the boundary

We now return to the idea that holomorphic curves must stay away from the bound-
ary of a Liouville sector. The idea will be to strengthen the result of Proposition 3.5
by showing a neighborhood of the boundary admits a particularly nice product
structure.

Proposition 3.12 (Product decomposition near dX). Let X be a Liouville sector
equipped with a choice of I, and let F = [71(0) be as in Proposition 3.5. Then there
exists a cylindrical neighborhood of dX which is symplectomorphic to F X Co<Re<¢
with the product symplectic form.

Proof. We denote a small cylindrical neighborhood of dX by Nbd dX. Let R (where
the letter ‘R” stands for “real,” not “Reeb”) be the unique function defined on
Nbd dX satisfying

Rljx =0, X;R=-1

Since dR vanishes on dX, the vector field Xg must lie in the symplectic complement
of TdX, hence Xy is tangent to the characteristic foliation of dX. Moreover, the
computation

[X], XR] 4w = [X], XR] J 0+ XR | Lxla) = LXI(XR M| a)) = LXI(dR) = d(LXIR) =0
shows that [ X, Xg] = 0. Thus, the flow of (1/2)X; and X define a diffeomorphism
F X COSRGSE = Nbd aX

We leave it as an exercise to show this is a symplectomorphism. (The factor of 1/2
is necessary to match the symplectic form on C.) m]

To prevent holomorphic curves from approaching dX, we consider almost com-
plex structures | such that the projection

7 : Nbd dX — COSRQSS

is J-holomorphic. We call such an almost complex structure adapted to dX. In view
of Proposition 3.12, it is clear that adapted almost complex structures exist (and
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moreover that the space of adapted almost complex structures is contractible).

Proposition 3.13 (Holomorphic curves stay away from dX). Suppose ] is adapted,
and let u : ¥ — X be a connected holomorphic curve (possibly with boundary)
such that

e 1(dY) is disjoint from Nbd 0X,
* 1u(X) NNbd dX is compact.

Then either u is constant or disjoint from Nbd dX.

Proof. Our hypotheses together with the open mapping theorem from complex
analysis imply that the image of

1" (Nbd 9X) = Nbd 9X = Cocre<e
is either empty or a point. m]

Example 3.14 (Holomorphic disks with Lagrangian boundary). When defining the
wrapped Fukaya category of X, we will consider cylindrical at infinity Lagrangians
Li,...,Lx € X and holomorphic disks with boundary conditions on these La-
grangians. By choosing Nbd dX to be disjoint from the L;, any holomorphic disk
with boundary on the L; must be disjoint from Nbd dX by Proposition 3.13. This,
together with a geometric boundedness argument, will imply the moduli space of
such disks is compact.

Remark 3.15. One issue working with adapted almost complex structures is that it
is not possible to guarantee that | is both adapted and contact type at infinity. This
is a real issue (since the maximum principle no longer holds) and is discussed in
[GPS20], but we will mostly ignore it.

3.4. Sectorial coverings

We now return to our original motivation for Liouville sectors and discuss a way
of decomposing a Liouville manifold X into sectors so that Theorem 1.3 can be
applied. The idea will be to cut X along hypersurfaces which satisfy a condition
generalizing Definition 3.3.

Example 3.16 (Cutting along a single hypersurface). As a warm-up, let us consider
the case of a single hypersurface H which divides X into two cylindrical pieces X_
and X,. The picture to keep in mind is the second decomposition in Figure 1. For
X_ and X, to be sectors, we want the hypersurface H to admit a linear at infinity
function I : H — X such that Xj is transverse to H and points from X, to X_. Then
I realizes X, as a Liouville sector and —I realizes X_ as a Liouville sector. In order
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for {X_, X;} to form a cover of X for which the statement of Theorem 1.3 makes
any sense, we need to enlarge X_ and X, so that the intersection X_ N X, is also a
Liouville sector. This is certainly possible in view of Proposition 3.12. In fact, the
proposition implies that one can arrange for the resulting intersection to be of the
form

X_NX; =FXCge<e = FxT[0,1]

where F = I71(0) is as usual.

The key to making Example 3.16 work was the local model given by Proposi-
tion 3.12. In general, if we want to cut X along a (not necessarily disjoint) collection
of hypersurfaces Hy, . .., H,, we will need a condition on the multiple intersections
Hj, N---N H; to guarantee the existence of an analogous product neighborhood.

Definition 3.17 (Sectorial collection of hypersurfaces). A collection Hy, ..., H, of
cylindrical hypersurfaces in X is sectorial if all multiple intersections H;, N--- N H;,
are coisotropic and there exist functions I; : Nbd H; — R such that

d11'|ci #0, dI|cj :Ofori;tj, {Ii,I]‘}ZO,
where C; is the characteristic foliation of H;.

We refer to Section 12 of [GPS24b] for a detailed treatment of sectorial collections.
The following result (Lemma 12.8 and Remark 12.9 from [GPS24b]) is proven in
essentially the same way as Proposition 3.12.

Proposition 3.18 (Local model near multiple intersections). For a sectorial collection
of hypersurfaces Hy, ..., H,, any multiple intersection H;, N --- N H; admits a
cylindrical neighborhood which is symplectomorphic to a cylindrical neighborhood
of F x RFin F x T*R¥. In this local model, the hypersurfaces H; ; aresimply preimages
of the coordinate hyperplanes in R* under the projection F x T*R¥ — R¥. In fact, any
mutually transverse collection of hypersurfaces in R lifts to a sectorial collection
in this local model.

We can now generalize Example 3.16 to a sectorial collection of hypersurfaces
Hi,...,H, in X. We require that these hypersurfaces split the manifold into pieces
X1,...,Xm whose closures are embedded (this is analogous to the condition in
Example 3.16 that H splits X into two individual pieces). As before, we would
like to enlarge the X; in such a way that they form a cover of X whose multiple
intersections are Liouville sectors. However, we immediately run into an issue;
unlike in Example 3.16, the X; may now have corners corresponding to multiple
intersections of the hypersurfaces H;. In particular, it is not even clear that the X;
are Liouville sectors at all (what would their I-functions be?). To remedy this issue,
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we observe that the boundary faces of X; form a sectorial collection, allowing us to
apply the following result.

Exercise 3.19. Let X be a Liouville manifold with corners whose boundary faces
d'X,...,9"X form a (possibly immersed) sectorial collection given by functions
Ii, ..., I,. We splice these functions together to define I : dX — R as follows. On
the face 9’ X and away from the corners, set I = I;. Near the corners of X, where
we have a local model given by Proposition 3.18, we define

I= Z P(til;,

where ¢ is a bump function supported near zero and ¢4, ..., t, are the cotangent
coordinates of T*R¥ in the local model. Show that I realizes X as a Liouville sector.
(The fact X has corners is an issue, see the argument at the end of Example 3.8.)

Thus, the X; are indeed Liouville sectors. In fact, we claim that, for appropriate
enlargements of the X;, the multiple intersections X; N --- N X;, form Liouville
manifolds which also satisfy the hypotheses of Exercise 3.19, and are therefore
Liouville sectors. To choose these enlargements, the idea is that perturbing the
sectorial collection H; is easy to do by the last sentence in Proposition 3.18. Thus,
we obtain the desired cover of X.

Using this cover we have just constructed, Theorem 1.3 can be applied to com-
pute the wrapped Fukaya category of X (assuming a Weinstein condition). In fact,
the theorem is stated for the following more general class of covers, where the above
argument still applies:

Definition 3.20 (Sectorial coverings). A cover Xj, ..., X, of a Liouville manifold X
by manifolds with boundary is sectorial if the hypersurfaces dXj, ..., dX, form a
sectorial collection.

Exercise 3.21. Apply Exercise 3.19 to show the multiple intersections X;, N---N X

ik
of a sectorial cover are Liouville sectors.
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