
The homotopy theory of topological spaces

In the previous talk, we saw the idea of the “homotopy hypothesis,” which (roughly)
states that

“homotopy types of spaces” ≃ “weak ∞-groupoids.”

Today, we will formulate a 1-categorical version of the homotopy hypothesis, real-
ized as an equivalence of 1-categories

Ho(Top) ≃ Ho(sSet).

We will then go over some important constructions from classical homotopy theory,
which will hopefully highlight some limitations of working in this 1-categorical
setting.

1. The homotopy category

1.1. The homotopy category of topological spaces

A preliminary definition of the homotopy category of spaces might be:

Definition 1.1. Let hTop be the category whose objects are topological spaces and
whose morphisms are homotopy classes of continuous maps.

Isomorphisms in hTop are precisely homotopy equivalences. However, it turns
out homotopy equivalence is too strong a notion, as hTop contains a lot of patho-
logical spaces.

Example 1.2. The pseudocircle is a space consisting of four points which is not
homotopy equivalent to any CW complex.

Instead, we want to consider spaces up to weak equivalence. Recall that a map
𝑋 → 𝑌 is a weak equivalence if it induces isomorphisms on all homotopy groups.
For most purposes, weak equivalence is suitable because of the following famous
result.

Theorem 1.3 (Whitehead). A weak equivalence of CW complexes is a homotopy
equivalence.

The problem is that weak equivalence is not an equivalence relation. Thus,
to construct a category of spaces up to weak equivalence, we need the following
construction.
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Definition 1.4. Let C be a category and 𝑊 a set of morphisms. The localization of
C at 𝑊 is a category C[𝑊−1] equipped with a functor C → C[𝑊−1] which sends
morphisms in 𝑊 to isomorphisms. Furthermore, for any other functor C → D

satisfying this property, there exists a unique functor C[𝑊−1] → D so that the
following diagram commutes:

C D

C[𝑊−1]
∃!

Remark 1.5. The definition of localization given here is easy to state, but it is not
quite the correct definition. Saying 𝑄 : C → C[𝑊−1] is a localization functor as per
the above definition is the same as saying that the pullback map

𝑄∗ : Fun(C[𝑊−1], 𝐷) → Fun𝑊 (C,D)

is a bĳection, where Fun𝑊 (C,D) is the set of functors C → Dwhich send morphisms
in 𝑊 to isomorphisms. But both the domain and codomain of 𝑄∗ are naturally
thought of as categories, not sets. Thus, the correct definition of localization should
require that 𝑄 is an equivalence of categories, instead of a bĳection of sets.

Definition 1.6. Let Ho(Top) be the localization of Top at the set of weak equiva-
lences.

Although this definition is natural, it is not easy to work with directly. Fortu-
nately, there is a much more concrete way to think of Ho(Top).

Definition 1.7. Let hCW be the full subcategory of hTop spanned by spaces which
are homotopy equivalent to a CW complex.

Theorem 1.8. The categories Ho(Top) and hCW are equivalent.

The key ingredient needed to prove Theorem 1.8 is the following.

Theorem 1.9 (CW approximation). There exists a functor Γ : hTop → hTop and a
natural transformation 𝛾 : Γ ⇒ id that assigns to each space 𝑋 a CW complex Γ𝑋

and a weak equivalence 𝛾𝑋 : Γ𝑋 → 𝑋.

To prove Theorem 1.8, one can show that the composition of functors

Top → hTop Γ−→ hCW

satisfies the universal property of localization (cf. Remark 1.5).

2



1.2. The homotopy category of simplicial sets

Definition 1.10. Let ∆ be the category whose objects are the ordered sets

[𝑛] = {0 < 1 < · · · < 𝑛 − 1 < 𝑛}

and whose morphisms are nondecreasing maps [𝑚] → [𝑛]. A simplicial set is a
functor ∆op → Set. A morphism of simplicial sets is a natural transformation. The
category of simplicial sets is denoted sSet.

Here is a more down-to-earth description of a simplicial set. A simplicial set
is a collection of sets 𝑆• = (𝑆𝑛)𝑛≥0, where 𝑆𝑛 should be thought of as the set of
𝑛-simplices, equipped with face operators

𝑑𝑛𝑖 : 𝑆𝑛 → 𝑆𝑛−1

and degeneracy operators
𝑠𝑛𝑖 : 𝑆𝑛 → 𝑆𝑛+1

for 0 ≤ 𝑖 ≤ 𝑛.

Example 1.11. Take a (topological) 2-simplex and identify two edges to form a cone.
This can be thought of as a simplicial set where

• 𝑆0 consists of two vertices 𝑥, 𝑦,

• 𝑆1 consists of two edges 𝑎, 𝑏 and a degenerate edge with image 𝑥,

• 𝑆2 consists of a simplex 𝑈 , two degenerate simplices with image 𝑎, two degen-
erate simplices with image 𝑏, one degenerate simplex with image 𝑥, and one
degenerate simplex with image 𝑦,

and so on.

Example 1.12. The singular complex Sing•(𝑋) of a topological space 𝑋 is defined
to be the simplicial set

Sing𝑛(𝑋) = Top(Δ𝑛 , 𝑋),

where Δ𝑛 is the topological 𝑛-simplex. The collection Sing•(𝑋) naturally admits the
structure of a simplicial set.

Any simplicial set 𝑆• can be realized as a topological space |𝑆•|, called the
geometric realization of 𝑆•.

Definition 1.13. A morphism 𝑆• → 𝑇• of simplicial sets is a weak equivalence if the
induced map |𝑆•| → |𝑇•| is a weak equivalence of topological spaces. Let Ho(sSet)
be the localization of sSet at the set of weak equivalences.
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1.3. Comparison of the two categories

Observe that the functors defined in the previous section

sSet Top
|·|

Sing•

form an adjoint pair, i.e., there are natural isomorphisms

Top(|𝑆•|, 𝑋) � sSet(𝑆• , Sing•(𝑋)).

Theorem 1.14 (Milnor 1957). For a topological space𝑋, the counit map |Sing•(𝑋)| →
𝑋 is a weak equivalence of topological spaces.

Corollary 1.15. For a simplicial set 𝑆•, the unit map 𝑆• → Sing•(|𝑆•|) of the above
adjunction is a weak equivalence of simplicial sets.

Proof. The composition
|𝑆•| → |Sing•(|𝑆•|)| → |𝑆•|

is the identity, and the second map is a weak equivalence by Milnor’s theorem.
Hence, the first map is a weak equivalence, as required. □

Corollary 1.16. The categories Ho(Top) and Ho(sSet) are equivalent.

2. Some classical homotopy theory

2.1. Fibrations and cofibrations

Definition 2.1. A Hurewicz fibration is a map 𝐸 → 𝐵 satisfying the homotopy lifting
property:

𝑋 × {0} 𝐸

𝑋 × 𝐼 𝐵

∃

A Serre fibration is a map 𝐸 → 𝐵 satisfying the homotopy lifting property whenever
𝑋 = 𝐷𝑛 (equivalently, when 𝑋 is a CW complex).

Example 2.2. Every (sufficiently nice) covering space is a fibration; more generally,
every (sufficiently nice) fiber bundle is a fibration. For a counterexample, consider
the projection ℝ2 − {0} → ℝ.

Definition 2.3. A Hurewicz cofibration is a map 𝐴 → 𝑋 satisfying the homotopy
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extension property:
𝐴 𝑌𝐼

𝑋 𝑌

𝑝0∃

Example 2.4. If 𝐴 is a subcomplex of a CW complex 𝑋, then the inclusion map 𝐴 →
𝑋 is a cofibration. More generally, if a subspace 𝐴 ⊆ 𝑋 is the deformation retract
of some neighborhood, then 𝐴 → 𝑋 is a cofibration. In fact, under nice conditions
(e.g., all spaces are Hausdorff), a cofibration 𝐴 → 𝑋 is always an inclusion of a
closed subspace.

Proposition 2.5. Any map 𝑓 : 𝑋 → 𝑌 can be factored as the composition of

(i) a map 𝑋 → 𝑍 which is both a homotopy equivalence and a cofibration and a
fibration 𝑍 → 𝑌,

(ii) a cofibration 𝑋 → 𝑊 a map 𝑊 → 𝑌 which is both a homotopy equivalence
and a fibration.

Proof. For (i), take 𝑍 to be the mapping path space

𝐸 𝑓 = 𝑋 ×𝑌 𝑌𝐼 = {(𝑥, 𝛾) ∈ 𝑋 × 𝑌𝐼 | 𝑓 (𝑥) = 𝛾(0)},

and for (ii), take 𝑊 to be the mapping cylinder

𝑀 𝑓 = (𝑋 × 𝐼) ∪𝑋 𝑌 = ((𝑋 × 𝐼) ⨿ 𝑌)/((𝑥, 1) ∼ 𝑓 (𝑥)). □

2.2. Homotopy limits and colimits

One of the issues with the category Top is that limits and colimits do not behave
nicely with respect to homotopy.

Example 2.6. Consider the morphism of spans:

𝐷2 𝑆1 𝐷2

∗ 𝑆1 ∗

The vertical maps are all homotopy equivalences, but the pushout of the two spans
(𝑆2 for the top span and ∗ for the bottom) are not homotopy equivalent.

Definition 2.7. The homotopy pushout of two maps 𝑓 : 𝐴 → 𝑋 and 𝑔 : 𝐴 → 𝑌 is the
double mapping cylinder

𝑀( 𝑓 , 𝑔) = (𝑋 ⨿ (𝐴 × 𝐼) ⨿ 𝑌)/∼,
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where ∼ identifies (𝑎, 0) ∼ 𝑓 (𝑎) and (𝑎, 1) ∼ 𝑔(𝑎).

Proposition 2.8. Given a diagram in Ho(Top)

𝐴 𝑋

𝑌 𝑀( 𝑓 , 𝑔)

𝑍

𝑓

𝑔

∃

there exists a (not necessarily unique) arrow 𝑀( 𝑓 , 𝑔) → 𝑍 such that the diagram
commutes.

Proposition 2.9. If we have a morphism of spans

𝑋 𝐴 𝑌

𝑋′ 𝐴′ 𝑌′

𝑓 𝑔

𝑓 ′ 𝑔′

where the vertical maps are weak equivalences, then 𝑀( 𝑓 , 𝑔) and 𝑀( 𝑓 ′, 𝑔′) are
weak equivalent.

Proof. The natural map 𝑀( 𝑓 , 𝑔) → 𝑀( 𝑓 ′, 𝑔′) induces an isomorphism on funda-
mental groups by van Kampen’s theorem, as well as an isomorphism on homology
groups by the Mayer–Vietoris sequence. By Whitehead’s theorem, this implies the
map is a weak equivalence. □

Homotopy pushouts are special cases of homotopy colimits. We will not go over
the general construction of homotopy limits and colimits, but we will give several
more examples.

Example 2.10. Given a map 𝑓 : 𝑋 → 𝑌, its homotopy fiber 𝐹 𝑓 is the fiber of the map
𝐸 𝑓 → 𝑌 (see Proposition 2.5) over any basepoint 𝑦0, i.e.,

𝐹 𝑓 = {(𝑥, 𝛾) | 𝛾(0) = 𝑓 (𝑥), 𝛾(1) = 𝑦0}.

As evidence for 𝐹 𝑓 being the correct homotopical notion of fiber, one can show that
there is a long exact sequence of homotopy groups

· · · → 𝜋𝑛(𝐹 𝑓 ) → 𝜋𝑛(𝑋) → 𝜋𝑛(𝑌) → 𝜋𝑛−1(𝐹 𝑓 ) → · · · → · · ·𝜋0(𝑋) → 𝜋0(𝑌).
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Example 2.11. The homotopy pullback of two maps 𝑓 : 𝑋 → 𝐴 and 𝑔 : 𝑌 → 𝐴 is the
double mapping space

𝑁( 𝑓 , 𝑔) = 𝑋 ×𝐴 𝐴𝐼 ×𝐴 𝑌 = {(𝑥, 𝛾, 𝑦) ∈ 𝑋 × 𝐴𝐼 × 𝑌 | 𝛾(0) = 𝑓 (𝑥), 𝛾(1) = 𝑔(𝑦)}.

Example 2.12. Let 𝐺 be a topological group and 𝑋 be a 𝐺-space. The homotopy
quotient is the space

𝑋𝐺 = 𝑋 ×𝐺 𝐸𝐺 = (𝑋 × 𝐸𝐺)/𝐺,

where 𝐸𝐺 is a weakly contractible space on which 𝐺 acts freely.

These constructions may seem fairly ad hoc, but note that they are obtained
from replacing maps in the relevant diagram with fibrations or cofibrations, and
then taking a limit or colimit. As motivation for ∞-categories, it will turn out
that homotopy limits and colimits coincide with ordinary limits and colimits in the
∞-category of spaces.

2.3. Classifying spaces

In this section, we construct the classifying space𝐵𝐺 of a group𝐺 using the language
of simplicial sets. We will assume 𝐺 is discrete, but a similar construction works
for any topological group.

Definition 2.13. Given a categoryC, let𝑁(C)𝑛 be the set of all 𝑛-tuples of composable
morphisms

𝑐0 → 𝑐1 → · · · → 𝑐𝑛−1 → 𝑐𝑛

in C. This defines a simplicial set 𝑁(C)• called the nerve of C.

Definition 2.14. Let B𝐺 be the category with one object and automorphism group
𝐺. The classifying space 𝐵𝐺 is defined to be the geometric realization of 𝑁(B𝐺).

Theorem 2.15. For a CW complex 𝑋, there is a natural bĳection

[𝑋, 𝐵𝐺] � 𝐺Bund(𝑋)

between the the set of homotopy classes of maps from 𝑋 to 𝐵𝐺 and the set of
isomorphism classes of principal 𝐺-bundles on 𝑋.

Proof. The theorem holds if we can show that 𝐵𝐺 is the quotient of a contractible
space by a free 𝐺-action. Let E𝐺 be the groupoid with objects the elements of 𝐺
and morphisms ℎ : 𝑔 → 𝑔ℎ, and set 𝐸𝐺 = |𝑁(E𝐺)|. Since E𝐺 is equivalent to the
trivial category, 𝐸𝐺 is contractible. Moreover, the category E𝐺 has a natural free
𝐺-action whose quotient is the category B𝐺. This induces a free 𝐺-action on 𝐸𝐺

whose quotient is 𝐵𝐺, as desired. □

7


	The homotopy category
	The homotopy category of topological spaces
	The homotopy category of simplicial sets
	Comparison of the two categories

	Some classical homotopy theory
	Fibrations and cofibrations
	Homotopy limits and colimits
	Classifying spaces


