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Abstract For q ≥ 3, we let Sq denote the projectivization of the set of symmetric q × q
matrices with coefficients in C. We let I (x) = (xi, j )

−1 denote the matrix inverse, and we
let J (x) = (x−1

i, j ) be the matrix whose entries are the reciprocals of the entries of x . We
let K |Sq = I ◦ J : Sq → Sq denote the restriction of the composition I ◦ J to Sq . This
is a birational map whose properties have attracted some attention in statistical mechanics.
In this paper we compute the degree complexity of K |Sq , thus confirming a conjecture of
Angles d’Auriac et al. (J Phys A Math Gen 39:3641–3654, 2006).
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matrices
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1 Introduction

Fix q ≥ 3, let Mq denote the space of q × q matrices with coefficients in C, and let P(Mq)

denote its projectivization. Then the mapping K : P(Mq) → P(Mq) is defined as follows:
K = I ◦ J , where J (x) = (x−1

i, j ) takes the reciprocal of each entry of the matrix x = (xi, j ),

and I (x) = (xi, j )
−1 is the matrix inverse. The map K is of interest since it represents a

basic symmetry in certain problems of lattice statistical mechanics, and has been studied in
[1–8,12].

The degree complexity of K is the exponential rate of growth of the degrees of its iterates:

δ(K ) = lim
n→∞(deg(K n))1/n . (1.1)
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726 T. T. Truong

There are many K -invariant subspaces T ⊂ P(Mq). The first were considered are Sq

(the space of symmetric matrices), Cq the cyclic (also called circulant) matrices, and SCq =
Sq ∩ Cq (see [12] for more K -invariant subspaces of P(Mq)). In view of complex dynamics,
as well as physical meaning, the map K as well as the restrictions of K to invariant spaces
are of interest. One of the basic questions is to determine the degree complexities δ(K |T ).
The values δ(K |Cq) were found in [4,7]; the values of δ(K |SCq) were found in [2] for prime
q’s, and in [4] for general q’s. Based on extensive computations, [2] has conjectured that

δ(K |Cq) = δ(K ) = δ(K |Sq), (1.2)

for all q . In [5], we proved that δ(K ) = δ(K |Cq). In this paper we prove the remaining
conjectured equality.

Theorem 1 δ(K |Sq) = δ(K ) = δ(K |Cq) is the largest modulus of the roots of the polyno-
mial λ2 − (q2 − 4q + 2)λ + 1.

The proof of Theorem 1 is similar to the proofs for other cases (general matrices, Cq ,
SCq ) in that we repeatedly blowup subvarieties to construct a space Z → P(Sq), and we
conclude by showing that δ(K ) equals the spectral radius sp(K ∗

Z ) of the pullback operator
K ∗

Z : Pic(Z) → Pic(Z) for the lifted map K Z : Z → Z . However, the behavior of singular
orbits is much more complicated for the symmetric case that we consider here. Let us give a
brief comparison of these proofs in the following.

The computations of δ(K |Cq) and δ(K |SCq) can be reduced to computations of δ(F)

where F = L ◦ J for appropriate linear maps L . It was shown in [3] (respectively [4]) that
after a finite series of blowups Z → Cq (respectively Z → SCq ), the induced maps FZ on
Z is algebraic stable, i.e. satisfy

(Fn
Z )∗ = (F∗

Z )n, (1.3)

for all n ∈ N, as linear maps on Pic(Z). It follows (see for example [11]) that δ(F) is the
spectral radius sp(F∗

Z ) of F∗
Z .

For the case of general matrices, we constructed in [5] a space Z for which sp(K ∗
Z ) =

δ(K |Cq). This immediately implies δ(K ) = sp(K ∗
Z ) = δ(K |Cq). (Remark: The same argu-

ment as that of the proof of Lemma 1 below shows that in fact the map K Z in [5] satisfies
condition (1.3), thus gives another proof to the cited result in [5].)

For the proof of Theorem 1 in this paper, we will construct a space Z via a construction
which is similar to, but more complicated than, the one in [5]. Although we do not prove
(1.3), we show that δ(K |Sq) = δ(K ) = δ(K |Cq) are all equal to the spectral radius of K ∗

Z .
The results that allow us to circumvent (1.3) in this case are Proposition 7 and Theorem 2.

This paper is organized as follows: In Sect. 2, we give some basic properties of the map
K |Sq . In Sect. 3 we construct a space Z by a series of blowups starting from Sq . In Sect. 4
we explore the behavior of the iterates of the map K Z on the exceptional hypersurfaces, and
obtain a lower bound for δ(K |Sq). In Sect. 5 we show that the lower bound is equal to the
largest modulus of the roots of the polynomial λ2 − (q2 − 4q + 2)λ + 1, thus complete the
proof of Theorem 1.

2 Basic properties of the map K

By [5], we know that 1 ≤ δ(K |Sq) ≤ δ(K ) ≤ 1 for q = 2, 3, 4, so in the sequel we will
assume that q ≥ 5. For convenience we will use the simple notation K for K |Sq .
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Degree complexity of birational maps related to matrix inversion 727

First, we introduce some notation that will be helpful in the course of the proof of The-
orem 1. Most of the notation used here have a counterpart for the case of general matrices,
which was used in [5].

For 1 ≤ j ≤ q − 1, define R j to be the set of matrices in Sq of rank less than or equal
to j . Elements of R1, the symmetric matrices of rank 1, may be represented as ν ⊗ ν =
(νiν j )1≤i, j≤q for ν = (ν1, . . . , νq) ∈ C

q . In particular, R1 is a smooth subvariety of Sq .
For i, j = 1, . . . , q denote:

�i, j = {x = (xk,l) ∈ Sq : xi, j = 0},
and define

Ai, j =
⋂

k=i or l= j

�k,l .

Thus �i, j is the set of symmetric matrices whose (i, j)th entry is zero, and Ai, j is the
set of symmetric matrices whose i th and j th rows and columns are zero. In particular,
Ai, j = Ai,i ∩ A j, j for all 1 ≤ i, j ≤ q . This leads to a difficulty that does not arise in the
non-symmetric case.

We summarize some properties of the map K in the following proposition

Proposition 1 (a) The exceptional hypersurfaces of K are J Rq−1 and �i, j ’s.
(b) The indeterminacy locus K is contained in the set

J Rq−2 ∪
⋃

(i, j)
=(k,l)

(�i, j ∩ �k,l).

(c) deg(K ) = q2 − q + 1.

Proof The proofs of (a) and (b) are similar to those of Propositions 2.1 and 3.1 in [5]
(see also the results in Sect. 3 of this paper).

We now proceed to proving (c). Regarding Sq as the projective space P
(q2+q−2)/2, then a

point y ∈ Sq can be represented by the homogeneous coordinates (yi, j , 1 ≤ i ≤ j ≤ q).
Then the corresponding matrix in Mq is the symmetric matrix ŷ whose entries are ŷi, j = yi, j

for 1 ≤ i ≤ j ≤ q .
It suffices to show that the homogeneous representation K̂ of K is:

K̂i, j (y) = Ci, j (1/ŷ)
∏

(ŷ),

for 1 ≤ i ≤ j ≤ q , where
∏

(ŷ) := ∏
1≤i, j≤q ŷk,l and Ci, j (1/ŷ) is the (i, j)-cofactor of the

matrix 1/ŷ. That is, to show that the GCD of all polynomials K̂i, j (y) (for 1 ≤ i ≤ j ≤ q)
is 1. To this end, it suffices to show that the GCD of all polynomials K̂i,i (y) (where 1 ≤ i ≤ q)
is 1.

Note that the rational function Ci,i (1/ŷ) does not depend on the variables ŷi,k and ŷk,i for
1 ≤ k ≤ q . Moreover, since Ci,i (1/ŷ) is the determinant of the (q − 1)× (q − 1) symmetric
matrix obtained by deleting the i th row and i th column from the matrix 1/ŷ, it is easy to see
that

Di (y) := Ci,i (1/ŷ)
∏

(k−i)(l−i)
=0

ŷk,l

is a polynomial independent of variables ŷi,k and ŷk,i for 1 ≤ k ≤ q , and is not divisible by
any of the variables ŷk,l where 1 ≤ k, l ≤ q . Then we have

K̂i,i (y) = Di (y)Ei (y)
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where Ei (y) = ∏
(k−i)(l−i)=0 ŷk,l . Observe that

(1) For any i and j , GC D(Di , E j ) = 1. This is because as noted above, Di is not divisible
by any of the variables ŷk,l , while E j is a monomial in these variables.

(2) GC D(E1, E2, . . . , Eq) = 1. In fact, Ei depends only on the variables in Si =
{ŷi,1, ŷi,2, . . . , ŷi,q}. Hence if φ is a divisor of Ei , φ depends only on the variables
in Si . Since

⋂
i=1,...,q Si = ∅, it follows that the GC D(E1, . . . , Eq) must be a constant.

(3) GC D(D1, . . . , Dq) = 1. The argument is similar to that of (2).

From (1), (2) and (3), it follows that GC D(K̂1,1, K̂2,2, . . . , K̂q,q) = 1. ��

3 Construction of the space Z

Let us describe the sequence of blowups used to construct Z .

(A) First we let π1 : Z1 → Sq be the blowing up with center R1 and exceptional divisor
R1 = π−1

1 (R1). To give a local coordinate system we fix 2 ≤ i0, j0 ≤ q , 1 ≤ k0 ≤ q .
Let s ∈ C; v = (vi, j )2≤i, j≤q ∈ Sq−1 and vi0, j0 = 1; ν = (ν1, . . . , νq) ∈ C

q and
νk0 = 1, and ν ⊗ ν ∈ Mq whose (i, j)th entry is νiν j . Without loss of generality,
we may assume that k0 = 1, i.e. ν1 = 1. Then, in the local coordinate (s, v, ν) the
projection π1 = πR1 is given by

πR1(s, v, ν) = ν ⊗ ν + s

(
0 0
0 v

)
. (3.1)

In this local coordinate system, R1 = {s = 0}.
(B) Next we let π2 : Z2 → Z1 be the blow up of Z1 along the strict transforms of Ai, j

for all 1 ≤ i < j ≤ q . The space Z2 depends on the order in which these blowups
are performed. But it does not matter for our purpose, the Picard group Pic(Z2) of Z2

is generated by Pic(Z1) and the exceptional divisors Ai, j = π−1
2 (Ai, j ). The object

we will use is Pic(Z2), which is essentially independent of the order of blowups. We
describe a local coordinate system of π2 near the exceptional divisor A1,2. We fix
3 ≤ i0, j0 ≤ q , 1 ≤ min{k0, l0} ≤ 2. Let s ∈ C; v = (vi, j )3≤i, j≤q ∈ Sq−2 and
vi0, j0 = 1;

⎛

⎜⎜⎜⎝

ζ1,1 ζ1,2 . . . ζ1,q

ζ2,1 ζ2,2 . . . ζ2,q
...

... 0q−2

ζq,1 ζq,2

⎞

⎟⎟⎟⎠ =:
⎛

⎝
ζ ζ ζ

ζ ζ ζ

ζ ζ 0q−2

⎞

⎠ ∈ Sq ,

where 0q−2 is the (q − 2)× (q − 2) zero matrix; ζ = (ζk,l)1≤min{k,l}≤2, and ζk0,l0 = 1.
In the local coordinate (s, ζ, v), the projection π2 = πA1,2 is given by

πA1,2(s, ζ, v) =
⎛

⎝
sζ sζ sζ
sζ sζ sζ
sζ sζ v

⎞

⎠. (3.2)

In this local coordinate system, A1,2 = {s = 0}. Local coordinates near other Ai, j ’s
(i 
= j) are similarly defined.

(C) Next we let π3 : Z3 → Z2 be the blow up of Z2 along the strict transforms of Ai,i

for all 1 ≤ i ≤ q , with exceptional divisors Ai,i = π−1
3 (Ai,i ). We describe a local

123



Degree complexity of birational maps related to matrix inversion 729

coordinate system of π2 near the exceptional divisor A1,1. We fix 2 ≤ i0, j0 ≤ q ,
1 ≤ k0 ≤ q . Let s ∈ C; v = (vi, j )2≤i, j≤q ∈ Sq−1 and vi0, j0 = 1; ζ = (ζk,l)min{k,l}=1

and ζ1,k0 = 1. In the local coordinate (s, ζ, v), the projection π3 = πA1,1 is given by

πA1,1(s, ζ, v) =
(

sζ sζ
sζ v

)
. (3.3)

In this local coordinate system, A1,1 = {s = 0}.
Let K Z3 = π−1

Z3
◦ K ◦ πZ3 be the induced map of K in Z3.

Proposition 2 (i) K Z3(R1) = Rq−1.
(ii) K Z3(J Rq−1) = R1.

(iii) For all 1 ≤ i ≤ q, K Z3(�i,i ) = Ai,i .
(iv) For all 1 ≤ i < j ≤ q, K Z3(�i, j ) = Ai, j ∩ �i,i ∩ � j, j .

Proof (i) It suffices to show that: for ν = (1, ν2, . . . , νq), z = πR1(0, v, ν) ∈ R1 then

K Z3(z) = At
(

0 0
0 Iq−1(v

′)

)
A,

where Iq−1 is the matrix inverse on Mq−1,

v′ =
(

− v j,k

ν2
j ν

2
k

)

2≤ j,k≤q

, A =

⎛

⎜⎜⎜⎝

1 0 . . . 0
− 1

ν2
1

...
. . .

f rac1νq 1

⎞

⎟⎟⎟⎠,

and At is the transpose of A. Here the entries of A outside the main diagonal and the
first column are zero.

Without loss of generality, we work at v and ν such that v′ in the above is invertible. We
have

J (πR1(s, v, ν)) = 1

ν ⊗ ν
+ sv′ + O(s2) = πR1

(
s + O(s2), v′ + O(s),

1

ν

)
.

Let e1 = (1, 0, . . . , 0) be the first standard basis vector in C
q . Then

A

(
1

ν ⊗ ν

)
At = A

(
1

ν
⊗ 1

ν

)
At =

(
A

1

ν

)
⊗

(
A

1

ν

)
= e1 ⊗ e1 =

(
1 0
0 0

)
.

Since A[1,1] (respectively At[1,1]), the matrix in Mq−1 obtained by deleting the first row
and column of A (correspondingly of At ), is the identity matrix in Mq−1, we obtain:

s Av′ At =
(

0 0
0 s A[1,1]v′ At[1,1]

)
=

(
0 0
0 sv′

)
.

Hence

K Z3(z) = π−1
Z3

◦ I ◦ J ◦ πZ3(z)

= π−1
Z3

◦ I

(
1

ν ⊗ ν
+ sv′ + O(s2)

)

= π−1
Z3

(
At I

[
A

(
1

ν ⊗ ν
+ sv′ + O(s2)

)
At

]
A

)
.
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730 T. T. Truong

The principal part (first terms of Taylor expansion) of the latter is equal to

π−1
Z3

(
At I

(
1 0
0 sv′

)
A

)
= π−1

Z3

(
At

(
s 0
0 Iq−1(v

′)

)
A

)
,

and (i) follows by letting s → 0.
Proofs of (ii), (iii), and (iv) are similar (cf. [5], Sects. 2, 3). ��

Remark 1 Proposition 2 (iv) shows that �i, j (i < j) is still exceptional for the map K Z3 ,
which differs from the corresponding situation in [5] for general matrices. This motivates us
to perform blowups in subsection (E) below.

(D) Next we let π4 : Z4 → Z3 be the blow up of Z3 along the strict transforms of
Bi,i = Ai,i ∩ �i,i (where 1 ≤ i ≤ q), with exceptional divisors Bi,i = π−1

4 (Bi,i ). We
describe two local coordinate systems of π4 near the exceptional divisor B1,1.
For the first local coordinate system, we fix 2 ≤ i0, j0 ≤ q , 1 ≤ k0 ≤ q . Let t, ξ ∈ C;
v = (vi, j )2≤i, j≤q ∈ Sq−1 and vi0, j0 = 1; ζ = (ζk,l)min{k,l}=1, k 
=l and ζ1,k0 = 1. In the
local coordinate (t, ξ, ζ, v), the projection π4 = π1

B1,1 is given by

π1
B1,1(t, ξ, ζ, v) =

(
t2ξ tζ
tζ v

)
. (3.4)

In this local coordinate system, B1,1 = {t = 0}.
To cover the points corresponding to ξ = ∞ in the first projection π1

B1,1 , we let t, ξ ∈ C;
v = (vi, j )2≤i, j≤q ∈ Sq−1 and vi0, j0 = 1; ζ = (ζk,l)min{k,l}=1, k 
=l and ζ1,k0 = 1. In the local
coordinate (t, ξ, ζ, v), the projection π4 = π2

B1,1 is given by

π2
B1,1(t, ξ, ζ, v) =

(
t2ξ tξζ

tξζ v

)
. (3.5)

In this local coordinate system, B1,1 = {t = 0}. The set {t = 0, ξ = ∞} in the first projection
π1

B1,1 corresponds to the set {t = 0, ξ = 0} in this second projection π2
B1,1 .

Let K Z4 = π−1
Z4

◦ K ◦ πZ4 be the induced map of K in Z4.

Proposition 3 For 1 ≤ i ≤ q:

(i) K Z4(Ai,i ) = Bi,i ∩ I (�i,i ). In fact, if (s = 0, ζ, v) ∈ A1,1 as in (3.3) then

K Z4(s = 0, ζ, v) = (t = 0, ξ ′, ζ ′, v′) ∈ B1,1, (3.6)

where
(

ξ ′ ζ ′
ζ ′ v′

)
= I

(
0/ζ1,1 1/ζ

1/ζ 1/v

)
.

(ii) K Z4(Bi,i ) = Bi,i .
Moreover, the restriction of K Z4 to each of the spaces Bi,i is the same as K , in the sense
that

K Z4(t = 0, ξ, ζ, v) = (t = 0, ξ ′, ζ ′, v′),

at generic points (t = 0, ξ, ζ, v) of B1,1, where
(

ξ ′ ζ ′
ζ ′ v′

)
= K

(
ξ ζ

ζ v

)
.

Similar results hold for the other Bi,i ’s (1 ≤ i ≤ q).
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Proof (i) We make use of the following property (see formula (4.4) in [5]): If

K

(
ξ ζ

ζ v

)
=

(
ξ ′ ζ ′
ζ ′ v′

)

then

K

(
t2ξ tζ
tζ v

)
=

(
t2ξ ′ tζ ′
tζ ′ v′

)
. (3.7)

Using the projection (3.3), to determine K Z4(A1,1) it suffices to compute the limit when
s → 0 of K (x) where

x =
(

sζ sζ
sζ v

)
.

Rewriting x as

x =
(

s2ζ1,1/s sζ
sζ v

)
,

using the formula (3.7), we have

K (x) =
(

s2ξ ′ sζ ′
sζ ′ v′

)
,

where
(

ξ ′ ζ ′
ζ ′ v′

)
= K

(
ζ1,1/s ζ

ζ v

)
= I

(
s/ζ1,1 1/ζ

1/ζ 1/v

)
.

The last formula shows that when s → 0, the limit of K (x) is in B1,1 ∩ I (�1,1), and we
obtain (3.6). Hence K Z4(A1,1) = B1,1 ∩ I (�1,1).

The proof of (ii) is similar. ��
Let us consider a matrix

x =
(

ξ ζ

ζ v

)
,

written as in (3.4). That is, ξ and the ζ ′s fill out the first row and column, where ξ ∈ C.
We will consider algebraic subvarieties W ⊂ Sq with the property that whenever x ∈ W ,
then

(
t2ξ tζ
tζ v

)
∈ W, (3.8)

for all C � t 
= 0. If W has this property, and if no component of W is contained in the
indeterminacy loci of I , J , and K , then so do I (W ), J (W ), and K (W ).

We say that an irreducible hypersurface W ⊂ Sq is compatible with B1,1 if condition (3.8)
is satisfied and if moreover

W 
⊆ J Rq−1 ∪
⋃

(k,l)
=(1,1)

�k,l .

When W is compatible, then W is not contained in any of the centers of blowups in the
construction of Z4, thus we can take its strict transform inside Z4 and define B1,1 ∩ W ⊂ Z4.
Using coordinate projections analogous to (3.4), we may also define what it means for W to
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be compatible with Bi,i for 2 ≤ i ≤ q . Note that both hypersurfaces �1,1 and I (�1,1) are
compatible with B1,1.

Proposition 4 For 1 ≤ i ≤ q:

If W is compatible with Bi,i and W 
⊆ �i,i , then K Z4(Bi,i ∩ W ) = Bi,i ∩ K (W ).
If W = �i,i , then K Z4(K Z4(Bi,i ∩ �i,i )) = Bi,i ∩ I (�i,i ).

Moreover, K Z4(Bi,i ∩ �i,i ) can be written explicitly. For example, if i = 1 then in the local
coordinate system (3.5) we have: K Z4(B1,1 ∩ �1,1) = {t = ξ = 0}.
Proof The first claim follows from the discussion in last paragraph and Proposition 3.

The proof of the third claim is similar to that of Proposition 2 (iii).
The second claim follows from the third claim and an argument similar to that of the proof

of Proposition 3 (i). ��
(E) Next we let π5 : Z5 → Z4 be the blow up of Z4 along the strict transforms of

Ci, j = Ai, j ∩ �i,i ∩ � j, j (where 1 ≤ i < j ≤ q), with exceptional divisors Ci, j .
We describe a local coordinate system of π5 near the exceptional divisor C1,2. We fix
3 ≤ i0, j0 ≤ q , 1 ≤ min{k0, l0} ≤ 2, k0 
= l0. Let t ∈ C; v = (vi, j )3≤i, j≤q ∈ Sq−2

and vi0, j0 = 1; ξ = (ξ1,1, ξ2,2) ∈ C
2; ζ = (ζk,l)1≤min{k,l}≤2, k 
=l , and ζk0,l0 = 1. In the

local coordinate (t, ξ, ζ, v), the projection π5 = πC1,2 is given by

πC1,2(t, ξ, ζ, v) =
⎛

⎝
t2ξ1,1 tζ tζ
tζ t2ξ2,2 tζ
tζ tζ v

⎞

⎠. (3.9)

In this local coordinate system, C1,2 = {t = 0}.
(F) Finally, we let π6 : Z6 → Z5 be the blow up of Z5 along the strict transforms of

Di, j = Ci, j ∩�i, j (where 1 ≤ i < j ≤ q), with exceptional divisors Di, j = π−1
6 (Di, j ).

We describe two local coordinate systems of π6 near the exceptional divisor D1,2. For the
first local coordinate system, we fix 3 ≤ i0, j0 ≤ q , 1 ≤ min{k0, l0} ≤ 2 < max{k0, l0}.
Let t ∈ C; v = (vi, j )3≤i, j≤q ∈ Sq−2 and vi0, j0 = 1; ξ = (ξ1,1, ξ1,2, ξ2,2) ∈ C

3;
ζ = (ζk,l)1≤min{k,l}≤2<max{k,l}, and ζk0,l0 = 1. In the local coordinate (t, ξ, ζ, v), the
projection π6 = π1

D1,2 is given by

π1
D1,2(t, ξ, ζ, v) =

⎛

⎝
t2ξ1,1 t2ξ1,2 tζ
t2ξ1,2 t2ξ2,2 tζ
tζ tζ v

⎞

⎠. (3.10)

In this local coordinate system, D1,2 = {t = 0}.
To cover the points corresponding to ξ1,2 = ∞ in the first projection π1

D1,2 , we let t ∈ C;

v = (vi, j )3≤i, j≤q ∈ Sq−2 and vi0, j0 = 1; λ ∈ C; ξ = (ξ1,1, ξ1,2, ξ2,2) ∈ C
3 and one of

its coordinates is 1; ζ = (ζk,l)1≤min{k,l}≤2<max{k,l}, and ζk0,l0 = 1. In the local coordinate
(t, ξ, ζ, v), the projection π6 = π2

D1,2 is given by

π2
D1,2(t, λ, ξ, ζ, v) =

⎛

⎝
t2λ2ξ1,1 t2λξ1,2 tλζ

t2λξ1,2 t2λ2ξ2,2 tλζ

tλζ tλζ v

⎞

⎠. (3.11)

In this local coordinate system, D1,2 = {t = 0}. The set {t = 0, ξ1,2 = ∞} in the first
projection π1

D1,2 corresponds to the set {t = 0, λ = 0} in this second projection π2
D1,2 .

(F) We define Z = Z6. Let K Z = π−1
Z ◦ K ◦πZ : Z → Z be the induced map of K on Z .
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Proposition 5 For 1 ≤ i < j ≤ q:

(i) K Z (�i, j ) = Ci, j .
(ii) K Z (Ai, j ) = Di, j ∩ I (�i,i ∩ � j, j ∩ �i, j ).

(iii) K Z (Ci, j ) = Di, j ∩ I (�i, j ).
(iv) K Z (Di, j ) = Di, j .

Moreover, the restriction of K Z to each of the spaces Di, j is the same as K , in the sense that

K Z (t = 0, ξ, ζ, v) = (t = 0, ξ ′, ζ ′, v′),

at generic points (t = 0, ξ, ζ, v) of D1,2, where
⎛

⎝
ξ ′ ξ ′ ζ ′
ξ ′ ξ ′ ζ ′
ζ ′ ζ ′ v′

⎞

⎠ = K

⎛

⎝
ξ ξ ζ

ξ ξ ζ

ζ ζ v

⎞

⎠.

Similar results hold for other Di, j ’s (1 ≤ i < j ≤ q).

Proof The proofs of all these claims are similar to the proof of Proposition 3, but instead of
using formula (3.7), we use a similar formula:

If

K

⎛

⎝
ξ ξ ζ

ξ ξ ζ

ζ ζ v

⎞

⎠ =
⎛

⎝
ξ ′ ξ ′ ζ ′
ξ ′ ξ ′ ζ ′
ζ ′ ζ ′ v′

⎞

⎠

then

K

⎛

⎝
t2ξ t2ξ tζ
t2ξ t2ξ tζ
tζ tζ v

⎞

⎠ =
⎛

⎝
t2ξ ′ t2ξ ′ tζ ′
t2ξ ′ t2ξ ′ tζ ′
tζ ′ tζ ′ v′

⎞

⎠.

��
Corollary 1 The exceptional hypersurfaces of K Z are Ai,i (for 1 ≤ i ≤ q), Ai, j (for
1 ≤ i < j ≤ q), and Ci, j (for 1 ≤ i < j ≤ q).

Let us consider a matrix

x =
⎛

⎝
ξ1,1 ξ1,2 ζ

ξ1,2 ξ2,2 ζ

ζ ζ v

⎞

⎠,

written as in (3.10). That is, the ξ ’s and ζ ′s fill out first two rows and first two columns. We
will consider algebraic subvarieties W ⊂ Sq with the property that whenever x ∈ W , then

⎛

⎝
t2ξ1,1 t2ξ1,2 tζ
t2ξ1,2 t2ξ2,2 tζ
tζ tζ v

⎞

⎠ ∈ W, (3.12)

for all C � t 
= 0. If W has this property, and if no component of W is contained in the
indeterminacy loci of I , J , and K , then so do I (W ), J (W ), and K (W ).

We say that an irreducible hypersurface W is compatible with D1,2 if condition (3.12) is
satisfied and if moreover

W 
⊆ J Rq−1 ∪
⋃

(k,l)
=(1,1),(1,2),(2,2)

�k,l .
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When W is compatible, then W is not contained in any of the centers of blowups in the
construction of Z , thus we can take its strict transform inside Z and define D1,2 ∩ W ⊂ Z .
Using coordinate projections analogous to (3.10), we may also define what it means for W to
be compatible with Dk,l for 1 ≤ k < l ≤ q . Note that both hypersurfaces �1,2 and I (�1,2)

are compatible to D1,2.
Similarly to Proposition 4, we obtain

Proposition 6 For 1 ≤ i < j ≤ q:

If W is compatible with Di, j and W 
⊆ �i,i ∪ �i, j ∪ � j, j , then K Z (Di, j ∩ W ) =
Di, j ∩ K (W ).
If W = �i, j , then K Z (K Z (Di, j ∩ �i, j )) = Di, j ∩ I (�i, j ).

Moreover, K Z (Di, j ∩ �i, j ) can be explicitly written. For example, if i = 1, j = 2, then
in the local coordinate system (3.11) we have: K Z (D1,2 ∩ �1,2) = {t = λ = 0}.

4 A lower bound for δ(K )

We will use the notation:

S =
⋃

i 
= j

Ai, j , U = Z\S.

In this section we will show that instead of establishing the property (1.3) for K Z , we can
work with the restriction of K Z to the Zariski dense open subset U of Z .

We denote by I(K Z ) the indeterminacy locus of K Z .

Lemma 1 For any n ≥ 1, and for any 1 ≤ i < j ≤ q:

K n
Z (Ai,i ) is a subvariety of codimension 1 of Bi,i , and is not contained in I(K Z ) ∪ S.

K n
Z (Ci, j ) is a subvariety of codimension 1 of Di, j , and is not contained in I(K Z ) ∪ S.

Proof In the following, as noted before, we assume that q ≥ 5. We present the proof only
for A1,1, since the proofs for other Ai,i ’s and for Ci, j ’s are similar.

By Proposition 3, we know that K Z (A1,1) = B1,1 ∩ I (�1,1). Hence from Proposition 4,
as long as K m(I (�1,1)) 
⊂ J Rq−1 ∪ ⋃

k,l �k,l for all m = 0, . . . , n then K m+1
Z (A1,1) =

B1,1 ∩ K m(I (�1,1)), for all m = 0, . . . , n. Each of these varieties is a subvariety of codimen-
sion 1 of B1,1, and is not contained in the indeterminacy locus of K Z . Moreover, K m(I (�1,1))

is then compatible to B1,1, hence B1,1 ∩ K m(I (�1,1)) is defined in the local coordinate (3.4)
by {t = 0, P(ξ, ζ, v) = 0)} where P(xi, j ) = 0 is the equation in Sq of K m(I (�1,1)). From
this, it is easy to see that B1,1 ∩ K m(I (�1,1)) is not contained in

⋃
k 
=l Ak,l .

Hence it remains to explore what happens in case K n(I (�1,1)) ⊂ J Rq−1 ∪ ⋃
k,l �k,l for

some n. We choose n = n0 to be the smallest integer satisfying K n(I (�1,1)) ⊂ J Rq−1 ∪⋃
k,l �k,l . It is not difficult to see that I (�1,1) 
⊂ J Rq−1 ∪ ⋃

k,l �k,l , hence n0 > 0, and
then by definition of n0:

K m(I (�1,1)) 
⊂ J Rq−1 ∪
⋃

k,l

�k,l , (4.1)

for all m = 0, . . . , n0 − 1, and

K m(I (�1,1)) ⊂ J Rq−1 ∪
⋃

k,l

�k,l . (4.2)
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Since I (�1,1) is an irreducible hypersurface, K is a birational map, and since J Rq−1

and �k,l ’s are the only exceptional hypersurfaces of K , (4.1) and (4.2) imply that for all
m = 0, . . . , n0: K m(I (�1,1)) is an irreducible hypersurface in Sq . Moreover, either

K n0(I (�1,1)) = J Rq−1, (4.3)

or

K n0(I (�1,1)) = �i, j , (4.4)

for some 1 ≤ i, j ≤ q .
Now we show that in fact

K n0(I (�1,1)) = �1,1. (4.5)

To this end, we will use the operations ρl,m defined as follows: For 1 ≤ l, m ≤ q , let
ρl,m : Sq → Sq denote the matrix operation which interchanges the lth and mth rows, and
then interchanges the lth and mth columns of a matrix x ∈ Sq . Observe that on the space
Sq : ρl,m(I (x)) = I (ρl,m(x)), ρl,m(J (x)) = J (ρl,m(x)), and ρl,m(K (x)) = K (ρl,m(x)).
In particular, ρl,m J Rq−1 = J Rq−1.

First we rule out the possibility (4.3). Assume in order to reach a contradiction that
K n0(I (�1,1)) = J Rq−1. Then for all i we have

K n0(I (�i,i )) = K n0(I (ρi,1�1,1)) = ρi,1 K n0(I (�1,1)) = ρi,1 J Rq−1 = J Rq−1.

Hence q different irreducible hypersurfaces I (�1,1), . . . , I (�q,q) are mapped under K n0 to
the same irreducible hypersurfaces J Rq−1. But this would be a contradiction to the fact that
K n0 is birational. Thus we showed that (4.3) does not occur. Hence (4.4) must occur.

We next show that K n0(I (�1,1)) = �1,1. We know that K n0(I (�1,1)) = �i, j , for some
1 ≤ i, j ≤ q . We need to show that i = j = 1. Assume in order to reach a contradiction that
i 
= 1 or j 
= 1. We have two cases:

Case 1: Both i, j 
= 1. Choose k 
= i, j, 1, we have then:

K n0(I (�k,k)) = K n0(I (ρk,1�1,1)) = ρk,1 K n0(I (�1,1)) = ρk,1�i, j = �i, j .

Hence two different irreducible hypersurfaces I (�1,1) and I (�k,k) have the same
image �i, j under the birational mapping K n0 , which is a contradiction.

Case 2: One of i, j is 1, but the other is not. Without loss of generality, we may assume
that i = 1 and j 
= 1. Then

K n0(I (� j, j )) = K n0(I (ρ1, j�1,1)) = ρ1, j K n0(I (�1,1)) = ρ1, j�1, j = �1, j .

Hence two different irreducible hypersurfaces I (�1,1) and I (� j, j ) have the same image
�1, j under the birational map K n0 , which is again a contradiction.

Hence we showed that if n0 > 0 is the smallest integer such that K n0(I (�1,1)) ⊂
J Rq−1 ∪ ⋃

k,l �k,l , then for all m = 0, . . . , n0, K m(I (�1,1)) is an irreducible hypersur-
face of Sq , and K n0(I (�1,1)) = �1,1. Hence by Proposition 4, for all m = 0, . . . , n0:
K m

Z (B1,1 ∩ I (�1,1)) = B1,1 ∩ K m(I (�1,1)) is a subvariety of codimension 1 of B1,1, and

such that (by Proposition 3) K n0+1
Z (B1,1 ∩ I (�1,1)) = K Z (B1,1 ∩ �1,1) is a subvariety of

codimension 1 of B1,1. Moreover

K n0+2
Z (B1,1 ∩ I (�1,1)) = K Z (K Z (B1,1 ∩ �1,1)) = B1,1 ∩ I (�1,1) = K Z (A1,1).

Hence if (4.2) happens, then the orbit of K Z (A1,1) under K Z is periodic. Thus the orbit of
K Z (A1,1) never lands in I(K Z ).
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To complete the proof, we need to show that the orbit never lands in S = ⋃
i 
= j Ai, j . That

K n0
Z (B1,1 ∩ I (�1,1)), which equals B1,1 ∩�1,1, is not contained in S can be checked directly.

For values m when K m
Z (B1,1 ∩ I (�1,1)) 
= B1,1 ∩ �1,1, we can use the argument at the end

of the second paragraph of this proof to show that K m
Z (B1,1 ∩ I (�1,1)) (which is then equal

to B1,1 ∩ K m
Z (I (�1,1))) is not contained in S as well. ��

By Lemma 1, we obtain the following result

Corollary 2 If V is an irreducible hypersurface which is not contained in S then for any
n ≥ 1: K n

Z (V ) is not contained in I(K Z ) ∪ S.

Let V be a hypersurface (or divisor) of Z . We let V |U denote the restriction to U . Let
RU (V ) denote the “extension by zero” of V |U to Z . We let (K n

Z )∗(V ) denote the pull-back
of V by the map K n

Z .

Proposition 7 If V is a hypersurface on Z, then for all n ≥ 1:

RU ((K n
Z )∗V ) = RU ((K n

Z )∗ RU (V )) = RU ((K ∗
Z )n V ) = RU ((K ∗

Z )n RU (V )), (4.6)

as divisors on Z. In particular, if RU (V ) = 0 then for all n ≥ 1: RU ((K n
Z )∗V ) = 0.

Proof Before applying RU on the left, the difference between any two of the divisors in Eq.
(4.6) is a hypersurface supported in K − j

Z (I(K Z ) ∪ S). However, by Corollary 2, this last set
is disjoint from U , hence the difference vanishes on applying RU . ��

Define � := Pic(Z)/ker(RU ), and let pr� : Pic(Z) → � be the canonical projec-
tion. By Proposition 7, the maps pr� ◦ (K n

Z )∗ : Pic(Z) → � induce well-defined maps
Ln : � → � which satisfy the identities: Ln = (L1)

n for all n ≥ 1.

Theorem 2 δ(K ) ≥ sp(L1), where sp(L1) is the spectral radius of L1.

Proof The dynamical degree δ(K Z ) = limn→∞ ||(K n
Z )∗||1/n is independent of the choice of

norm ||.||Pic(Z) on Pic(Z). Further, since πZ is a birational map, we have that δ(K Z ) = δ(K )

(see for example [10], and see [9] for more general results). Finally, if we use the induced
norm on �, we have

lim
n→∞ ||(K n

Z )∗||1/n
Pic(Z) ≥ lim

n→∞ ||Ln ||1/n
� = lim

n→∞ ||(L1)
n ||1/n

� = sp(L1).

��

5 The spectral radius of L1

A basis for the Picard group Pic(Z) is given by H (the class of a generic hyperplane in Sq ),
and the classes of the strict transforms of R1, Ai,i ’s (1 ≤ i ≤ q), Bi,i ’s (1 ≤ i ≤ q), Ai, j ’s
(1 ≤ i < j ≤ q), Ci, j ’s (1 ≤ i < j ≤ q), and Di, j ’s (1 ≤ i < j ≤ q). The images under
pr� of classes of H and of the strict transforms of R1, Ai,i (1 ≤ i ≤ q), Bi,i (1 ≤ i ≤ q),
Ci, j (1 ≤ i < j ≤ q), and Di, j (1 ≤ i < j ≤ q) form a basis for �. For convenience, we
will use the same letters to denote the images of these classes in �. Further, we define

A =
∑

i

Ai,i , B =
∑

i

Bi,i , C = 2
∑

i< j

Ci, j , D = 2
∑

i< j

Di, j . (5.1)

Let �0 be the subspace of � generated by the ordered basis H, R1, A, B, C and D.
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Lemma 2 The map L1 restricted to �0 is given by

L1(H) = (q2−q + 1)H − (q − 2)R1−(2q−3)A−(2q − 2)B−(2q − 3)C−(2q − 2)D,

L1(R1) = (q2 − q)H − (q − 1)R1−(2q − 3)A − (2q − 2)B − (2q − 3)C − (2q − 2)D,

L1(A) = q H − A − 2B − 2C − 2D,

L1(B) = A + B,

L1(C) = (q2 − q)H − (2q − 2)A − (2q − 2)B − (2q − 3)C − (2q − 2)D,

L1(D) = C + D.

In particular, �0 is invariant under L1, and the spectral radius of L1|�0 is the largest root
of the polynomial λ2 − (q2 − 4q + 2)λ + 1.

Proof The proof is similar to the proof of Proposition 6.1 in [5]. For example, we determine
L1(H). There are integers a, b, αi,i , βi,i , γi, j and λi, j such that

L1(H) = aH − bR1 −
∑

1≤i≤q

αi,iAi,i

−
∑

1≤i≤q

βi,iBi,i −
∑

1≤i< j≤q

γi, j Ci, j −
∑

1≤i< j≤q

λi, j Di, j .

By symmetry, there are constants α, β, γ and λ such that αi,i = α, βi,i = β, γi, j = γ

and λi, j = λ for all 1 ≤ i < j ≤ q . Thus

L1(H) = aH − bR1 − αA − βB − 1

2
γ C − 1

2
λD.

Recall from Proposition 1 that the homogeneous form of K is

K̂i, j (x) = Ci, j (1/x)
∏

(x),

where x = (xk,l)1≤k,l≤q ∈ Sq .
The coefficient a is the degree of K , so by Proposition 1, we have a = q2 − q + 1. To

find the other coefficients, we let H = {l = 0} where l = ∑
ci, j xi, j , and we determine the

order of vanishing of K̂ ◦ l at the various divisors.
The constant b is the order of vanishing of K̂πR1(s, v, ν) in s, where πR1 is given in

(3.1). For ν = (ν1, . . . , νq) with ν1 . . . νq 
= 0,
∏

(πR1(s, v, ν)) 
= 0 when s = 0. Further

1

πR1(s, v, ν)
= 1

ν
⊗ 1

ν
+ O(s).

Since 1
ν

⊗ 1
ν

has rank 1, Ci, j (1/πR1(s, v, ν)) = O(sq−2). Thus b = q − 2.
The constant α is the order of vanishing of K̂πA1,1(s, ζ, v) in s, where πA1,1 is given

in (3.3). The order of vanishing of
∏

(πA1,1(s, ζ, v)) in s is 2q − 1, since only the en-
tries on the first row and first column of the matrix πA1,1(s, ζ, v) vanish when s = 0, and
moreover all of these entries vanishes to order 1 in s. The minimal order of vanishing of
Ci, j (1/(πA1,1(s, ζ, v))) (1 ≤ i, j ≤ q) in s is −2, since Ci, j (1/(πA1,1(s, ζ, v))) is a sum
whose summands are of the form ±σ1σ2 . . . σq−1, where σi are entries of 1/πA1,1(s, ζ, v))

and not any two of them are from a same row or column. Thus α = 2q − 3.
The constants β = 2q − 2, γ = 4q − 6, and λ = 4q − 4 are similarly determined. Hence

L1(H) is as in the statement of the lemma. ��
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738 T. T. Truong

Proof of Theorem 1 By Theorem 2 and Lemma 2, we have δ(K ) ≥ sp(L1) ≥ sp(L1|�0) =
the largest root of the polynomial λ2 − (q2 − 4q + 2)λ + 1. Because the degree complexity
of the matrix inversion restricted to Sq is not larger than that of the general matrices, and since
the value of the later is equal to the largest root of the polynomial λ2 −(q2 −4q +2)λ+1 (see
[5]), we conclude that δ(K ) = the largest root of the polynomial λ2 − (q2 − 4q + 2)λ + 1.
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