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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 310, Number 1, November 1988

 HOLOMORPHIC MAPS FROM Cn TO Cn

 JEAN-PIERRE ROSAY AND WALTER RUDIN

 ABSTRACT. We study holomorphic mappings from Cn to Cn, and especially
 their action on countable sets. Several classes of countable sets are considered.

 Some new examples of Fatou-Bieberbach maps are given, and a nondegener-

 ate map is constructed so that the volume of the image of Cn is finite. An

 Appendix is devoted to the question of linearization of contractions.

 Introduction. In Part I of this paper we investigate relations between various
 classes of countable subsets of C0 on the one hand, and holomorphic maps of C0
 (one-to-one or not) on the other. Part II contains some results concerning the
 ranges of entire maps. Both parts depend to a large extent on the use of the same
 tool, namely those automorphisms of C0 that we call shears.

 Throughout the paper, n will be a positive integer, usually > 2 unless the con-

 trary is stated. The automorphisms of C0 are the biholomorphic maps from C0
 onto Cn. They form a group under composition, denoted by Aut(Cn). When
 n = 1, this group is quite easy to describe: its members are the functions that send

 z to az + b (a, b E C, a :$ 0). But Aut(Cn) is a huge and complicated group for
 every n > 1.

 If F: Cn -* Cn is a holomorphic map, we write F'(z) for its Frechet derivative
 at z. The Jacobian of F at z, written (JF) (z), is the determinant of the linear

 operator F'(z). We call F nondegenerate if JF $ 0.
 Here are some of our results:

 (1) The Mittag-Leffler interpolation problem (find an entire function f: C -- C
 that has prescribed values on a given discrete set) can be solved for holomorphic

 maps F: Cn -_ Cn, when n > 1, so that an additional requirement is satisfied,
 namely: (JF) (z) = 1 at every z E Cn. In other words, the interpolating map can
 be so chosen that it is locally volume-preserving (Theorem 1.1).

 When n = 1 there is a similar (but considerably niore difficult) theorem which
 we do not include here: an interpolating f can be found whose derivative is nowhere
 0. We thank R. C. Gunning for showing us how to prove this one-variable result
 by the techniques of an earlier paper [6].

 (2) Given any two countable dense subsets X and Y of Cn (n > 1), there is an
 F E Aut(Cn) so that F(X) = Y. The proof (in ?2) actually produces such an F
 with JF_ 1.
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 48 J.-P. ROSAY AND WALTER RUDIN

 (3) The situation is very different for discrete subsets of Cn. (A set E C C' is
 discrete if no point of C' is a limit point of E.) Every infinite discrete set E C Cn
 (n > 1) can be mapped onto an arithmetic progression by a one-to-one holomorphic
 map F from C' into Cn with JF _ 1 (Theorem 3.7), but in general not by any
 automorphism of Cn (Theorem 4.8).

 We call a set E C Cn tame if some F C Aut(Cn) maps E onto an arithmetic
 progression. (The term "tame" was suggested by its use in geometric topology
 where, for example, an arc L in R3 is called tame if some homeomorphism of the
 ambient space R3 maps L onto a straight line interval.)

 In ?3 we show that some apparently rather weak conditions imply tameness, and
 that every infinite discrete E C Cn is the union of two tame ones. In [7], Hermes
 and Peschl asked, in fact, whether every infinite discrete E C Cn is tame. (We
 thank Eric Bedford for telling us about this paper.) The above-mentioned Theorem
 4.8 shows that the answer is no. In ?5 we show more: The infinite discrete subsets
 of Cn do not form just one equivalence class modulo Aut(Cn), but continuum many

 (?5.3).

 (4) The preceding result follows from the existence of discrete sets D C Cn that
 are rigid relative to Aut(Cn): the identity map is the only automorphism of Cn that
 maps D onto D. On the other hand, tame sets are what one may call permutable
 by Aut(Cn): Every permutation of a tame set E C Cn is the restriction to E of
 some F E Aut(Cn) (?3.2).

 (5) Every tame set E in Cn is avoidable by biholomorphic maps: there is a

 biholomorphic F: cn - Cn\E. On the other hand, we show in ?4 that there exist
 discrete sets D C Cn which intersect the range of every nondegenerate holomorphic
 F: Cn -* cn, whether F is one-to-one or not.

 In ?6 we construct tame sets in Cn that intersect F(Cn) for every F with JF 1.
 From this we deduce the existence of regions Q c Cn (for every n > 1) so that
 Q = F(C') for some biholomorphic F, but not for any biholomorphic F with
 constant Jacobian.

 Nishimura [12, 13] was apparently the first to prove the existence of such re-
 gions Q, but only in C2. He used an entirely different method, depending on the
 subharmonicity of log {Fl. It is not clear whether his method can be extended to

 cn when n > 2.

 (6) In ?7 we construct holomorphic maps F: C' -* C', for all n > 1, with
 JF = 1, which are bounded on the complement of a set of finite volume. It follows,
 of course, that vol F(Cn) < oo. The existence of such maps settles several questions
 raised by Graham and Wu [4, pp. 627-628, 651], and disproves a conjecture made
 in [2, p. 168].

 (7) If K is a strictly convex compact set in Cn (or K is a point) and E is
 any countable set in Cn\K, then there is a biholomorphic F: Cn , Cn so that
 E c F(Cn) C Cn\K (Theorem 8.5). In particular, E could be dense in Cn\K.
 When K is a point, this yields regions Q :$ Cn that are dense in Cn and are
 biholomorphic images of Cn.

 (8) In the final section we consider an older topic, namely the Fatou-Bieberbach
 method of constructing biholomorphic images of Cn in Cn, starting with an auto-
 morphism that has an attracting fixed point. Here is the basic theorem:
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 HOLOMORPHIC MAPS FROM Cy TO Cn 49

 (*) Suppose that F E Aut(Cn) fixes a point p e Cn and that all eigenvalues

 A,, An of F'(p) satisfy lAil < 1. Let Q be the set of all z E Cn for which
 liMko,o, Fk(Z) = p where Fk = F o Fk-l, F' = F. Then there exists a biholomor-
 phic map ' from Q onto Cn.

 A large part of the long paper [2] by Dixon and Esterle depends on this theorem.
 The desired 4' is obtained as a solution of the functional equation

 (**) N-1 o T o F = T

 where N is a "normal form" for F. (Except in special cases, N = F'(p).) On p.
 142 they refer to Reich's papers [15, 16] for the solution of (**). Reich [16, p. 235]
 claims to prove that

 4 = lim Nk oF
 k-_oo

 solves (**).

 However, this sequence {fNk O Fk} need not converge, not even in some small
 neighborhood of p, and not even in the formal power series sense. We give a very
 simple counterexample in ?9.2.

 In ?9 we prove (*) under the simplifying assumption that fAi 12 < I Aj I for all
 eigenvalues Ai, Aj of F'(p). In that case the above-mentioned sequence does con-
 verge, and our proof is quite direct and even simpler than the one found by one of
 us a few years ago (see [2, pp. 144-145]). We use this special case to exhibit several
 new examples of regions that are biholomorphically equivalent to Cn.

 However, the general case of (*) deserves a correct proof. Even though it may
 be possible to fix the one in [16], we give one in an Appendix which is quite self-
 contained and is actually much shorter and simpler than the work in [15 and 16].
 It relies on an analysis of what we call lower-triangular mappings. These may have
 some independent interest.

 We shall use very customary notations: {ei... , en } is the standard basis for Cn,
 and wr, . . * ,-wn are the coordinate projections, i.e., if z = Eziei, then ri(z) = zi.

 Also, IZI = ( Izi12)1/2, B = {z: lzl < 1} is the open unit ball of Cn, S =
 {z: IZI = 1} is its boundary. Occasionally, when needed because more than one

 dimension is involved, we shall write Bn in place of B.
 As mentioned earlier, much of our work will use shears. These automorphisms

 of Cn are obtained by choosing some j (1 < j < n) and adding a holomorphic

 function of the other n - 1 variables to zj. For instance, any map F(z,... Iz) =
 (w,. .. wn) of the form

 wl = Z1 + f(z2... zn) wi = zi for 2 < i < n

 is a shear in the direction of e1. We will often want to do this without reference to
 any coordinate system. In fact, most of the shears a that we will use will have the
 simple form a(z) = z + f(Az)u where A: Cn -+ C is a linear functional, Au = 0,
 and f: C -- C is holomorphic.

 It is easy to see that a` has the same form, with -f in place of f, and that
 Ja_ 1.

 Other automorphisms of Cn, which we will only use a few times, have the form

 wj = zjexp{cjf(z"' Zn) < j < n),
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 50 J.-P. ROSAY AND WALTER RUDIN

 where a,1... ,an are nonnegative integers, cj E C, E cja3 = 0, and f: C -* C is
 holomorphic. These satisfy

 W a, ... wan = Zal . .. zan W1 n n~

 and their Jacobian is W1W2 * * * Wn/Z1Z2 * Zn.

 PART I. COUNTABLE SUBSETS OF Cn

 1. An immersion-interpolation theorem. The classical interpolation the-

 orem of Mittag-Leffler states that if {ai} is a discrete sequence in C, then to ev-
 ery choice of {bi} in C corresponds an entire function f so that f(ai) = bi for
 i = 1, 2, 3, .... We show in this section that the corresponding interpolation prob-
 lem for holomorphic maps from Cn into Cn can be solved (when n > 1) so that

 the interpolating map satisfies the additional requirement that its Jacobian be a
 nonzero constant.

 1 . 1. THEOREM. Assume that n > 1, that {pj} is a discrete sequence in C'
 (without repetition), and that {wj} is an arbitrary sequence in C'.

 Then there exists a holomorphic map 1: Cn -_ Cn so that

 (a) I(pj) = wj for j = 1,2,3, ... and
 (b) (J(D)(z) = 1 for every z E Cn.

 Conclusion (b) implies, in particular, that 1D is a local homeomorphism, i.e., an
 immersion of Cn into Cn.

 Our proof will use a sequence of shears. The following lemma describes the basic
 move.

 1 . 2. LEMMA. Suppose that E > 0 and that

 (i) a1,...,am are points in a compact convex set K c C',
 (ii) p and q are points in a hyperplane HI C Cn (of complex dimension n - 1)

 which does not intersect K.

 Then there is a shear T which moves p to q, fixes every ai, and moves no point
 of K by as much as E.

 PROOF. Assumption (ii) implies that there is a linear functional A: C' -+ C
 so that Ap = Aq and Ap lies outside A(K). Since Ap = Aq, there is a unit vector

 u E Cn so that Au = 0, q = p + cu for some c E C. Since Ap 0 A(K), and A(K) is
 a compact convex set in C, there is a polynomial g: C - - C that satisfies

 g(Ap)=c, g(Aa.)=0 (1<i<m)

 and 9g1 < E on A(K). Define

 r(z) = z + g(Az)u (z E Cn).

 This r has the desired properties.

 1.3. COROLLARY. If a,,...Iam, K, E are as above, and p, q are points in
 Cn\K, then some composition of two shears moves p to q, fixes every ai, and
 moves no point of K by as much as E.

 PROOF. There are hyperplanes II' and 11", through p and q, respectively, which
 do not intersect K and which are not parallel. Pick w E HI' n H" and apply Lemma
 1.2 twice (with E/2 in place of E) to move p to w and then w to q.
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 HOLOMORPHIC MAPS FROM Cn TO Cn 51

 1.4. PROOF OF THEOREM 1.1. We first choose the origin of Cn so that 0 <

 IP1 I < IP21 < IP31 <.. and then choose coordinate axes so that the hyperplane
 { z1 = 0} contains none of the points wj. We will (J as a composition

 (1) (? = EoF

 in which F is a limit of a certain sequence of compositions of shears (thus JF _ 1)
 and

 (2) E(zl,z2,... Zn) = (ezl,Z2ez1, Z3, ..., Zn)

 It is clear that JE 1. Thus JT _=1.
 The most significant property of E, however, is the following: Every w E Cn

 whose first coordinate Iri (w) is different from 0 lies in the range of E; moreover,

 one can choose v E Cn so that w = E(v) and so that Iri(v)I is larger than any
 prescribed number.

 We start the construction of F by setting Fo(z) = z. Suppose k > 1 and

 Fk-l E Aut(Cn) has been chosen. We can then choose Vk E Cn so that E(Vk) = Wk

 and 1Lrl(vk)l is so large that Vk lies outside the compact set Fk-l(rkB), where
 rk = lPkl. Thus there exists qk so that vk = Fk-l(qk) and IqkI > rk.

 We now choose 6k, 0 < 8k < rk - rk-l, so that

 (3) IFk 1(z') - Fk1(zll)I < 2-k

 for all z', z" E rkB with IZ' - Z"I < 6k. Corollary 1.3 furnishes Gk, a composition
 of two shears, so that

 (4) Gk(pk) = qk, Gk(pi) = Pi (1 < i < k-1)

 and

 (5) IGk(z) - ZI < 8k (z E rk-1B).

 Define Fk = Fk-l Gk. Then

 (6) Fk(pk) = Vk, Fk(pi) = Fk-l(pi) (1 < i < k-1)

 and (3) and (5) show that

 (7) lFk(z) - Fk-l(z)l < 2-k (Izl < rk-)-
 It follows that F = limk-, 0 Fk exists, uniformly on compact subsets of Cn

 (because rk -* oo as k -+ oo), that F: Cn + Cn is one-to-one and has JF _ 1
 and that F(pk) = Vk for k = 1,2,3,..., because Fj(pk) = Vk for all j > k. Since
 E(Vk) = Wk, the proof is complete.

 1.5. REMARK. In the last paragraph we asserted that F is one-to-one. This

 property of F was actually not needed for the proof of Theorem 1.1, but we will
 refer to it in ?3.7. Our assertion is based on the following well-known and easily

 proved fact which we will use repeatedly:

 If F = liMk,0 Fk, uniformly on compact subsets of Cn, and each Fk is holo-
 morphic and one-to-one on Cn, then either JF 0_ (i.e., F is degenerate) or F is
 one-to-one on Cn.

 References, and more elaborate results of this kind, may be found in [2, pp.
 140-141].
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 52 J.-P. ROSAY AND WALTER RUDIN

 2. Dense sets. Theorem 2.2 will show that all countable dense subsets of Cn
 "look alike" to the group Aut(Cn) when n > 1.

 2.1. LEMMA. Suppose E, K, D C Cn, E is finite, K is compact, D is dense,
 and n > 1. If a e Cn\E and E > 0, then there is a shear a so that

 (i) a(p) = p for every p e E,
 (ii) a(a) e D, and
 (iii) la(z) - zl + la-'(z) - zl < E for every z E K.

 Note that we do not assume that a 0 K.
 PROOF. Choose coordinates in Cn so that a = 0. Since a 0 E, and E is finite,

 there is a hyperplane LI through 0 which contains no point of E. Let u be a unit

 vector orthogonal to 11. Then (p, u) $ 0 for every p e E. Since D is dense in Cn,

 there is a sequence {wi} in D that converges to 0 and is "tangent" to II. More
 explicitly, there are unit vectors ui so that wi 1_ u and ui -+ u as i -x oo. Hence
 there exists c > 0 so that I (p, ui) I > c for all p E E as soon as i is large enough, say
 i > io. Define

 (1) gi(A)= J { (p, ui) }

 for A E C, i > io, and put

 (2) ai(z) = z + gi((Z, ui))w

 for z E Cn, i > io. Since wi I ui, each ai is a shear.
 It is clear that ai(p) = p for every p E E and that ai(0) = wi E D.
 The denominators (p, ui) in (1) are bounded from 0. Hence {gi((z, ui))} is uni-

 formly bounded on K. Since wi -O 0 as i -+ 00, it follows that ai (z) -+ z uniformly
 on K. The same holds for a7-, since a7-1 is obtained by simply replacing + by -
 in (2).

 We conclude that ai satisfies (i), (ii), and (iii) as soon as i is large enough.

 2.2. THEOREM. If X and Y are countable dense subsets of Cn, n > 1, then

 there is an F E Aut(Cn) so that F(X) = Y and JF _ 1.

 PROOF. Enumerate X = {xi}, Y = {yi}, both without repetition.
 We will construct a sequence of automorphisms Fj, starting with the identity

 map for Fo. Make the induction hypothesis that j > 0 and that Fj maps 2j points
 Pl ... * P2j of X to 2j points ql, .. . , q2j of Y.

 We will now construct Fj+ .

 Let K be a large compact ball in Cn that contains (jB) U Fj (jB) in its interior,
 say at distance > 2 from the boundary of K. Choose Ej, 0 < Ej < 2-i-1, so that

 (1) I1Fj- (z/) - F.7' (zll) I < 2-
 for all z', z" e K with Iz' - z"I < 2Ej.

 Let P2j+1 be the first xi in X\{pl, ... ,P2j}. Apply Lemma 2.1 to the finite set
 {ql, . ,q2j} and the dense set Y\{q,... ,q2j} to find a shear aj so that

 o j(qi) = qi for 1 < i < 2j,
 (2) o 1(F (p2j+1)) E Y\{q ,.... , q2j},

 . la3(z)-zl + laf-'(z)-zl < ej for every z E K.
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 HOLOMORPHIC MAPS FROM Cn TO Cn 53

 Put q2j+l = Oj(Fj(p2j+l)), and let q2j+2 be the first yi in Y\{ql,..., q2j+}.
 Apply Lemma 2.1 to the finite set {ql, . , q2j+i } and the dense set

 a j(Fj (X\{p, . . ., P2j+1 }))

 to find a shear rj and a point P2j+2 E X so that

 ( rj(qi) = qi for 1 < i < 2j + 1,
 (3) r3 (q2j+2) = aj (Fj (P2j+2)),

 T Ijj(z)-z I? k1(z) - zI < ej for every z E K.
 Now define

 (4) Fj+ =rj- 1o oa o Fj.
 Then Fj+ 1 (pi) = qi for 1 < i < 2j + 2, which is our induction hypothesis, with
 j + 1 in place of j.

 Assume z E jB. Since r.' o aj moves no point of Fj (jB) by as much as 2E., we
 have

 (5) Fj+ 1 (z) -Fj (z) I < 2ej < 2-j.

 Since aT1 orj moves no point of jB by as much as 2ej, we see, because of (1), that

 F-1 (a-1 (Tj(z))) - F-1 (z)I < 2;

 in other words

 (6) IF37 (z) -F- 1 (z) I < 2-j.

 The conclusion to be drawn from (5) and (6) is that both {Fj} and {FF-1}
 converge, uniformly on compact subsets of Cn, and that F = limFj satisfies the
 theorem; note that {pj} and {qj} are reorderings of X and Y, respectively, hence
 F(X) = Y.

 3. Tame sets. It will be convenient to have the following fact available before
 we define what we mean by a tame set.

 3.1. PROPOSITION. Suppose n > 1. If {ai} and {pi} are discrete sequences
 in C, ai oaj and 3i $ /3j when i : j, then there are three shears in C' whose
 composition r satisfies

 r(aoiel) = f3ie, (i = 1, 2,3, ...).

 Here e1 is the first element in the standard basis {e1,... , en} of Cn. Of course,
 any other nonzero vector could be substituted for e1.

 PROOF. The Mittag-Leffler interpolation theorem furnishes entire functions

 f,g: C -C that satisfy f(ai) = 3i -ai, g(/3i) = -ai, for i = 1, 2, 3, ... Define

 al(z) = z + zle2, a2(z) = Z + f(z2)el, a3(Z) = z + g(zl)e2

 for z = (Zl,Z2, ...,Zn) E Cn, and put r= a3 0a2 oa1. The action of ron caie1 is
 described by

 0al 02 + 3
 a -e ai~e, + &ie2 Oie,e1 ai- e2 O /3el.
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 3.2. REMARK. The case in which {fpi} is a rearrangement of {ai} shows that
 every permutation of {cei el} extends to an automorphism of Cn. This is one illus-
 tration (Theorem 2.2 is another one) of the fact that Aut(C') is a huge group, for
 every n > 1.

 3.3. DEFINITION. Let N = {el,2el,3el,... }. We call a set E C Cn tame in
 Cn if F(E) = N for some F E Aut(Cr), and we say that E is very tame in Cn if
 such an F can be found that also has JF _ 1.

 3.4. REMARKS. (a) If L' and L" are complex lines in Cn (n > 1) then some
 affine map with Jacobian 1 carries L' to L". Proposition 3.1 shows therefore that

 every infinite discrete set E C Cn that lies in a complex line is tame (in fact,
 very tame) in Cn. Our "tame" sets are thus the same as those that were called
 "planierbar" by Hermes and Peschl [7]. They did not distinguish between tame
 and very tame. In ?6 we shall see that the very tame sets actually form a proper
 subclass of the tame ones.

 (b) Remark 3.2 shows that the concept of a "tame sequence" {pj} in Cn, as
 being one for which some F E Aut(Cn) gives F(pj) = jel, j = 1, 2,3, .. ., does not
 differ in any essential way from that of a tame set.

 (c) Instead of requiring JF _ 1 in the definition of "very tame" we could
 equally well have imposed the (apparently) less restrictive requirement that JF
 be a nonzero constant. But this would in fact define the same class of sets. For if

 JF _ c - 0 and F(E) = N then J(c-l/nF) _ 1 and (c-1/nF)(E) = c-1/nN, a
 very tame set, by Proposition 3.1.

 We-shall now consider the following situation: k and m are positive integers,

 n = k + m, and Cn = Ck $ Cm, where Ck is spanned by {el,... . .ek, Cm
 is spanned by {ek+l.... ,en}. Thus every z E Cn has a unique decomposition
 z = z'+z", with z' E Ck, z" E Cm. We define ir' and 1r" by ir'(z) = z', ir"(z) = z".

 The following theorem says, roughly speaking, that sets with a discrete projection
 and finite fibers are very tame.

 3.5. THEOREM. Suppose E C Cn is infinite, 7r'(E) is discrete in Ck, and to
 each p E r'(E) correspond only finitely many q E Cm so that p + q E E. Then E
 is very tame in Cn.

 (The case k = 1 is in [7].)

 PROOF. Let {Pl,P2,P3, ... } be an enumeration of ir'(E). We can successively
 find W1, W2, w3, ... in Cm so that

 (1) Iq + wjl > j + lz" +wi

 for all points pj + q E E and all pi + z" E E that have i < j. There is a holomorphic
 F: Ck _* Cm so that F(pi) = wi for i = 1,2,3.... (When k = 1, use the Mittag-
 Leffler theorem; when k > 1, the required interpolation theorem is also very well
 known and can, in fact, be deduced from our Theorem 1.1.) We use F to define a
 "shear" oi:

 (2) 51(z) = z' + (z" + F(z')) (z E Cn).

 Our choice of {wj} shows that 1r" is one-to-one on El = o1(E) and that r" (E1) is
 discrete in Cm.
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 Hence there is a function p, defined on ir"(El), so that z1 + p(z") runs through
 the positive integers (in one-to-one fashion) as z runs through E1, and there is a

 holomorphic function g: Cm C so that g(z") = p(z") on ir"(Ei). The shear

 (3) 02 (Z) = z + g(z"))el
 thus carries E1 onto a set E2 = 02(El) so that 1rl, restricted to E2, is a one-to-one
 map onto the positive integers.

 Finally, there are holomorphic functions hj: C -- C (j = 2,3,... ,n) so that
 hi (r) is the jth coordinate of that point of E2 whose first coordinate is r (where
 r=1,2,3,...). The shear

 n

 (4) u3 (Z) = z -E hj(Zj)e,
 j=2

 then takes E2 onto N = {e, 2e1, 3e1,...
 Thus (03 0 02 o 1)(E) = N, and J(u3 ? 0 o) _ 1

 3.6. COROLLARIES. (a) Every discrete infinite set E C Cn-1 is very tame in
 C n

 (b) The union of a finite set and a [very] tame set is [very] tame.
 (c) Every discrete infinite set E C Cn (n > 1) is the union of two that are very

 tame in Cn.

 (Hermes and Peschl have (c), but with n in place of two.)
 To prove (a), apply Theorem 3.5 with k = n - 1.
 To prove (b), it is enough to consider the union of N and a finite set, and apply

 Theorem 3.5 with k = 1.

 To prove (c), let n = k + m as above, and put

 El = {z' + z" E E: Iz" I < Iz' 1, E2 = {z' + z" E E: Iz"I > Iz'I}.
 Theorem 3.5 applies to E1 as it stands (over every compact set in Ck there are at
 most finitely many points of E1), and it applies to E2 with the roles of k and m
 reversed. Thus both E1 and E2 are very tame in Cn.

 (Note: We have ignored the possibility that E1 or E2 might be finite. In that
 case, E itself is very tame, by (b).)

 Corollary (c) says that every infinite discrete E C Cn is, in a certain sense,
 close to being tame in Cn. Our next theorem seems to point in the same direction.

 Nevertheless, we shall see in ?4 that Cn contains infinite discrete sets that are not
 tame.

 3.7. THEOREM. If E is an infinite discrete set in Cn, then there is a holo-

 morphic H: Cn -_ Cn so that H is one-to-one on Cn, JH -1, and H(E) = N.

 Note that we do not (in fact, cannot) prove that H(Cn) = Cn, except when E
 is tame.

 PROOF. Let E = {P1,P2,P3, * * }. In the proof of Theorem 1.1 we constructed
 a holomorphic F: Cn -* Cn which was one-to-one, had JF = 1, so that the
 restriction of ir1 to the set F(E) was one-to-one, and i1(F(E)) was discrete in C.
 The case k = 1 of Theorem 3.5 shows therefore that F(E) is very tame in Cn. Put
 H = G o F, where G E Aut(Cn), JG _ 1, and G(F(E)) = N.

 Here is another application of Theorem 3.5. It gives rise to an interesting open

 question. (See Question 4.)
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 3.8. THEOREM. Suppose that E is an infinite discrete set in Cn (n > 1) and

 that all coordinates zi of every z = (Z1l, Zn) E E satisfy Izil > 1. Then E is
 very tame in Cn.

 PROOF. Put P(z) = z1Z2 * Zn. Let {A1, A2, 3X .3.. } be an enumeration of the
 set P(E) C C, and put

 (1) Et = {z E E: P(z) = At} (t = 1, 2,3, ...).

 Then {At} is discrete in C, and each Et is finite. Choose a holomorphic f: C -* C
 so that

 (2) f(At) = t (t = 1,2,3,...).

 Define a map w = 4?(z) by

 (3) wi = zef (P(Z)) w2 = z2ef (P(Z)) wi = Zi for 3 < i < n.

 Then 1 E Aut(Cn), J =_ 1, and if z E Et then the first coordinate w1 of 1(z)
 satisfies Iwll > et. This shows that J?(E) satisfies the hypotheses of Theorem 3.5,
 with k = 1. Hence 4?(E) is very tame, and the same is then of course true of E.

 We conclude this section with an analogue of Theorem 3.5, without any finiteness
 assumption.

 3.9. THEOREM. With n = k + m as in Theorem 3.5, assume that E is an
 infinite discrete set in Cn and that 7r'(E) is discrete in Ck. Then E is tame in Cn.

 PROOF. Assume, without loss of generality, that z' $ 0 and z" / 0 for every

 z' + z" E E. Let {pj } be an enumeration of 7r'(E) and put

 (1) 61 = min{Iz"j: pj + z" E E}.
 Then 6. > 0 for j = 1, 2,3,... and therefore there is a holomorphic f: Ck - C So
 that

 (2) Re f (pj) > log(pj 11/6j)

 for all j. Put g = exp(f) and define Ib E Aut(Cn) by

 (3) 4?(z' + z") = z' + g(z')z".

 If pj + z" E E, then

 (4) 9g(pj)z"l > 9g(pj)16j > 1P1l.

 Each point of 1 (E) thus has the form pj + w" with Iw" I > Ipj . This shows that
 ir" is finite-to-one on .1(E) and that 7r"(4(E)) is discrete in Cm. By Theorem 3.5,
 Ib(E) is tame in Cn, hence so is E. This completes the proof.

 Note that (J4)(z) = g(z'), not a constant. We shall see in ?6 that the hypotheses
 of Theorem 3.9 do not force E to be very tame.

 4. Unavoidable sets.

 4.1. DEFINITION. If r is some class of holomorphic maps from Cn into Cn, we
 say that a set E C Cn is F-unavoidable or that E is unavoidable by members of F,
 if E intersects F(Cn) for every F E r.
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 (Examples: If n = 1 and r is the class of all nonconstant entire functions, then
 every 2-point set in C is r-unavoidable. For nondegenerate holomorphic maps in

 cn, Gruman [22] has found unavoidable sets of real dimension n.)
 In the present section we show, for n > 1, that tame sets are avoidable by

 biholomorphic maps (Proposition 4.2) but that there exist discrete sets E C Cn
 that are unavoidable by nondegenerate holomorphic maps F: Cn -> Cn (Theorem

 4.5).
 These discrete sets are therefore not tame.
 In ?6 we construct sets E C Cn, for all n > 1, which are tame, hence avoidable

 by biholomorphic maps, but which are unavoidable by holomorphic maps with
 constant (nonzero) Jacobian.

 4.2. PROPOSITION. If n > 1 and E is tame in Cn then there is a biholomor-

 phic map F: Cn -+ Cn so that F(Cn) does not intersect E.
 If E is very tame in Cn, then the above-mentioned F can be chosen so that

 JF_ 1.

 PROOF. There is a biholomorphic G: Cn -_ Cn, with JG _ 1 and G(Cn) $ Cn.
 (This is the well-known Fatou-Bieberbach phenomenon; see [2], or ?9 of the present
 paper.) Put G(Cn) = Q. Since Q is homeomorphic to Cn but Q i cn , we see that
 Cn\Q is unbounded and therefore contains a subset Eo to which Theorem 3.5 can
 be applied. Thus there exists a very tame set Eo C Cn\Q.

 Since E and Eo are both tame, there is a 1 E Aut(Cn) with 1(Eo) = E. If E is
 very tame, then 1 can be chosen so as to have J? 1_t. In either case, F = a O G
 has the desired properties.

 The next lemma will involve two spaces, Ck and Cn, with 1 < k < n. The case
 k = n is all that will be used in the present section, but in ?6 we will need k = nr-i.

 For the sake of clarity, we shall write Bk and Bn for the corresponding open unit
 balls. As is frequently done, we shall use the symbol a to denote boundaries as well
 as partial derivatives.

 4.3. LEMMA. Given 0 < a, < a2, 0 < r, < r2, C > 0, let F be the class of all
 holomorphic maps

 (1) F= (fl,...,fk): a2Bn - r2Bk

 such that

 (2) IF(O)l < Ir,
 and

 (3) 9(f1'.. . Zk) > c at some point of alBn.
 D(zl,* * , zk)-

 Then there is a finite set

 (4) E = E(a1, a2, r1, r2, c) C D(r,Bk)

 with the following property:

 If F E F and F(a1Bn) intersects D(r,Bk) then F(a2Bn) intersects E.

 PROOF. Let E1 c E2 C E3 c ... be finite subsets of 9(rlBk) whose union
 is dense in 9(rlBk). Assume, to reach a contradiction, that no Ej does what the
 lemma claims.
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 This means that there exist Fj E r and zj E a,Bn (j = 1,2,3,...), with
 Fj(zj) E a(rlBk), so that

 (5) Fj(a2Bn) n Ej = 0.

 Note that r is a normal family in a2Bn. Hence, passing to a subsequence if nec-
 essary, we have zj -* w E a,Bn, F3 -* F E r as j -* oo, uniformly on compact
 subsets of a2Bn, and

 (6) F(w) = lim Fj(zj) E a(r1Bk).

 Since F E r, (3) shows that the set

 (7) Q = {z E a2Bn: rankF'(z) = k}

 is not empty. Hence S is a connected open set that is dense in a2Bn, so that F(Q)
 is connected, open, and dense in F(a2Bn).

 Since IF(w)l = r1 and w E a2Bn, the maximum principle shows that F(a2Bn)
 contains points outside r,Bk, hence so does F(Q). On the other hand, (2) shows
 (since F(Q) is dense in F(a2Bn)) that F(Q) intersects r,Bk. Being connected,
 F(Q) must therefore intersect D(rlBk).

 So there is a point p E Q with F(p) = q E D(rlBk). Since F'(p) has rank k, the
 rank theorem implies that p lies in a compact set K C a2Bn so that the restriction
 of F to K is a one-to-one map from K onto a closed ball ,B with center at q, radius

 6 > 0. Let F-1 denote the inverse of this restriction. Since Fj -* F uniformly on
 K, we see that Fj o F-1 moves no point of ,B by more than 6/3, for all sufficiently
 large j, and this implies that Fj (K) D d', the ball with center q, radius (2/3)6.
 Thus /3' c Fj(a2Bn). But as soon as j is large enough, /3' contains points of Ej,
 and we have a contradiction to (5).

 In the rest of this section we will use the preceding lemma with k = n, and we

 will revert to our earlier notation, writing B for Bn and S for DBn.

 4.4. LEMMA. To each positive integer t corresponds a discrete set Et C Cn\tB
 so that the assumptions

 (i) F: tB -* Cn is holomorphic,

 (ii) IF(O)I < t/2,
 (iii) I(JF)(z)I ? 1/t at some point of -tB,
 (iv) F(tB) nEt = 0

 imply that F( 2tB) c tB.

 PROOF. Choose {aj} and {rj} so that

 (l)~ ~ ~ ~~' t= a, < a2 < a3 < ... < 3t,
 (2)~ ~ ~~~~

 (2) t = r < r2 < r3 < ...

 and rj -* oo as j - oo. Define
 00

 (3) Et= U E(aj, aj+,, rj, rj+,, l/t),
 j=l

 using the notation of Lemma 4.3. Since Et is the union of finite sets lying on the

 spheres rjS, and rj -* oo, we see that Et is discrete.
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 Assume now that F satisfies (i)-(iv). Then F is bounded on (3/4)tB; hence

 (4) F(aj+3B) C rj+1B

 for some j. By (iv) and (3), F(aj+iB) does not intersect E(aj, aj+i, rj, rj+i, 1/t).
 Lemma 4.3 shows therefore that F(ajB) does not intersect rjS. Thus

 (5) F(ajB) C rjB.

 We can now repeat the argument that led from (4) to (5) until we reach

 (6) F(aiB) C r1B

 which is the desired conclusion.

 4.5. THEOREM. If n > 1, then there is a discrete set D C Cn which is unavoid-
 able by nondegenerate holomorphic maps from C' into Cn.

 As explained in ?4.1, this D is not tame in Cn.
 PROOF. We define

 00

 (1) D = U Et,
 t=1

 where Et is as in Lemma 4.4. Then D is discrete, because Et lies outside the ball
 tB, so that D n (tB) is finite, for each t.

 Assume now that F: Cn -* Cn is holomorphic, JF # 0, and (to reach a con-
 tradiction) that F(Cn) does not intersect D. For large enough t, F satisfies the
 hypotheses of Lemma 4.4. Hence F(-tB) C tB for all large enough t. This growth
 restriction forces F to be a polynomial map, of degree 1. In other words, F is
 affine. But affine maps from Cn into Cn whose Jacobian is not identically zero are
 automorphisms of Cn. Thus F(Cn) = Cn D D, and we have our contradiction.

 4.6. REMARK. It was of course quite unimportant to have integers t in the

 preceding construction. In fact, given any sequence {tj} of positive numbers that
 tends to oo (and {tj } can be arbitrarily "thin") one can construct D as in Theorem
 4.5 so that D lies on the spheres whose radii are in {tj}. (Note that the r's that
 occur in Lemma 4.4 can also be put into {tj}.) Thus D can lie outside of large
 prescribed regions.

 Also, we used spheres just for convenience. It is clear that many other configu-
 rations can serve equally well.

 4.7. Here is another way of seeing that unavoidable sets can be confined to
 certain relatively small regions in Cn.

 Let g: C -+ C be entire and let A be the set of all z E C for which lg(z)l < 1.
 We claim that there is a discrete set

 (1) Do C C2\(A x A)

 which is unavoidable by nondegenerate holomorphic maps F: C2 -+ C2.
 To see this, pick D as in Theorem 4.5, so that

 (2) D c C2\U,
 where U2 is the unit bidisc in C2, put

 (3) ,(z, w) = (g(z), g(w)) ((z, w) E C2)

 and define Do = 4- (D).
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 Then Do is discrete, (2) and (3) show that (1) holds, and if F avoided Do then
 a o F would avoid D, a contradiction.

 The point is that A can be very large:

 For example C\A could lie in the half-strip consisting of all x + iy with x > 0
 and IYI < 1 [18, p. 334, Example 11].

 Or, using Arakelian's theorem [3], one can find g so that C\A lies in the set of
 all x + iy with x > 0 and IYI < E(x), where E is an arbitrary preassigned positive
 continuous function on [0, oo) that has lim E W(x) = 0.

 We conclude this section with a result that should be compared to Theorem 3.7:

 4.8. THEOREM. If E C Cn is unavoidable by one-to-one holomorphic maps
 from Cn into Cn, then no holomorphic F: Cn _+ Cn with F(N) = E can be
 one-to-one on Cn.

 PROOF. By Proposition 4.2, there is a biholomorphic G: Cn -* Cn\N. If F is
 one-to-one on Cn and F(N) = E, then F o G avoids E.

 5. Rigid sets. We shall now use a more elaborate version of the construction
 that yielded Theorem 4.5 to prove the following result.

 5. 1. THEOREM. There is a discrete set D C Cn with the following property:

 If F: Cn -* Cn is holomorphic, JF 0 0, and

 (1) ~~~~F(Cn\D)C Cn\D

 then F(z) = z for every z E Cn.

 COROLLARY. No automorphism of Cn, other than the identity, can map D onto
 D.

 This is the reason for calling such sets D rigid.

 PROOF. The set D will be constructed so that

 (a) every nondegenerate holomorphic F that satisfies (1) is affine, and

 (b) the identity map is the only affine F (with JF : 0) that satisfies (1).

 Of course, it is easy to achieve (b). However, we do it in detail, by starting with

 certain finite sets AP in the coordinate axes Lp A {ep: A e C}, where {e,... ,en}
 is the usual basis of Cn.

 Let Ap be a set of p + 3 points in B n Lp, so located that no affine map of Lp
 into Lp (other than the identity) permutes Ap, for p = 1, 2,... , n, and put

 (2) Do = A1 u uAn.

 Moreover, Do is to be so chosen that

 (3) #(Don L) < 2

 for every complex line L in Cn which is not one of L1,.. , Ln
 (The symbol # indicates the cardinality of the set that follows it.)

 Suppose now that t is a positive integer and that discrete sets Do, .D. , 1 have
 been chosen. Put
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 Let Et be as in Lemma 4.4. Apply 1 + mt unitary transformations to Et so that
 the resulting sets Et,i (1 < i < 1 + mt) are pairwise disjoint. Define

 1+mt 00

 (5) Dt= U Et,i, D=UDt.
 i=1 t=o

 There was a great deal of choice in the proofs of Lemmas 4.3 and 4.4. In par-

 ticular, the set E in Lemma 4.3 can be so chosen that no complex line contains

 more than two points of E, and the same can be achieved for Et in Lemma 4.4 (by
 suitably rotating each summand in 4.4(3)). The sets Et,i can then be so placed
 that no Dt with t > 1 intersects any of the lines L1,... , L2, and so that the final
 set D has no more than two points on any other complex line in Cn.

 Note that D is discrete because each Et,i lies outside tB, so that

 (6) #(D n tB) = mt < oo (t = 1,2,3,. ..).

 We now turn to our given mapping F. For large t we have IF(0)J < t/2, and
 IJFI > l/t at some point of 1tB. Since (6) holds, and F maps no point of (tB)\D
 into D, it follows that F(tB) misses at least one of the 1 + mt sets Et,i. Lemma
 4.4 shows therefore that

 (7) F (2tB) c tB

 for all sufficiently large t.
 As in the proof of Theorem 4.5, the growth restriction (7), combined with the

 hypothesis JF - 0, forces F to be an affine automorphism of Cn.
 It remains to be shown that F must be the identity map. Define

 (8) p(L) = #(D n L)
 for complex lines L in Cn. Since F is one-to-one, it follows from (1) that F(D) D D.
 Hence F(D n L) = F(D) n F(L) D D n F(L), from which it follows that

 (9) 1i(L) > 1i(F (L))
 for every complex line L in Cn.

 Since F is an affine automorphism, it permutes the set of complex lines. So there

 is an L for which F(L) = Ln, and (9) gives

 (10) p(L) > 1(Ln) = n + 3.
 But Ln is the only line that has as many as n + 3 points in common with D. Thus

 L = L,. Because of the way in which An was chosen at the start of the proof, we
 see that F fixes every point of L,

 The same reasoning can now be applied successively to L1, ... , L1. Since Cn
 is spanned by {L1 , .L. , Ln and F is linear, we conclude that F is the identity map
 on C'.

 5.2. REMARK. Let D be as in the preceding proof, and let D', D" be modifica-
 tions of D, obtained by moving just one point of A1 to different spots on L1 n B,
 in such a way that D' and D" have all the properties of D that were used in that
 proof.

 If we now assume that F E Aut(Cn) and F(D') = D", the preceding argument
 can be repeated, almost word for word, to give the conclusion that F(z) = z for all
 z E Cn. But this is absurd if D' : D".
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 Therefore no F E Aut(Cn) maps D' into D".
 Since there are continuum many choices for D' (any two differing by only one

 point) we have proved the following result:

 5.3. COROLLARY. If n > 1 then C' contains continuum many discrete sets
 no two of which are Aut(Cl)-equivalent.

 6. Tame sets that are not very tame. Theorem 6.4 will show that such sets

 exist in Cn for all n > 1. We begin with a lemma in linear algebra.

 6.1. LEMMA. Suppose that

 (a) A is a linear operator in Cn, detA = 1,
 (b) P is a linear projection in Cn, rankP = n-1,

 (c) u e Cn, lul = 1, Pu = 0.
 Then IA-1uI < IIPAIn-1.

 (The norm is the usual operator norm, relative to the Euclidean metric on Cn.)

 PROOF. Choose an orthonormal basis {v1,... , vn} of Cn so that A-1u = Av1
 for some A > 0, and use this basis to identify linear operators on Cn with matrices.

 If D is diagonal, with entries (A, 1,... ,1) down the main diagonal, then ADv1 = u,
 so that the columns of AD are

 (1) u, Av2, ...,Avn

 Since p2 = p, each vector Avj - PAvj lies in the null-space of P, hence is a multi-
 ple of u. The columns Av2, .. ., Avn can therefore be replaced by PAV2, .. ., PAvn,
 without changing the determinant of AD. It follows now from Hadamard's inequal-
 ity that

 IA-1ul = A = detD = det(AD)
 = det[u, PAV2, . . ., PAvn]

 < lul IPAv21 ... IPAvnl < IIPAIIn-1

 because lul = Iv21 = = lvnl = 1.
 As in ?4, we will now use the notations Bn, Bn-1 for the open unit balls in Cn,

 cn , n > 1.

 6.2. LEMMA. Given 0 < a, < a2, r > 0, there is a 6 > 0, namely

 (1) 6 = (in - 1)n-1 (a2 - al)n
 nn rn - 1

 with the following property:
 If F: a2Bn -* (rBn-1) xC is holomorphic, with JF =_ 1, then F(a2Bn) contains

 the disc

 (2) {F(z) + Aen: IAl < 6}

 for every z E a,Bn.

 PROOF. Choose Ol so that a, < a < a2. (The best choice will be indicated at
 the end of the proof.) Fix z E a1Bn. Put u = eioen and let -a be the straight line
 interval defined by

 (3) -y(t) = F(z) + tu (O < t < T),
 where T is the smallest number for which -t(T) lies outside F(caBn)
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 Our objective is to find a good lower bound for T.

 There is a path F in aBn, starting at z and ending at some point of O(9!Bn), so
 that

 (4) F(1(t)) = 7(t) (0 < t < T).
 By the chain rule,

 (5) F'(F(t))F'(t) = '-7(t) = u (0 < t < T).

 Now fix some t E [0, T], put w = F(t), A = F'(w), and let P be the orthogonal
 projection in Cn whose null-space is spanned by en. Then PF maps the ball with

 center w and radius a2 - a into rBn-1 (because lwl < a). The Schwarz lemma [19,
 p. 161] shows therefore that

 (6) IIPAII = IIP(F'(w))II = II(PF)'(w)II < r/(a2 - or).

 Since Pu = 0, and (5) shows that 1'(t) = A`1u, we conclude from (6) and Lemma
 6.1 that

 (7) 11'(t)I < {r/(a2 - a)}n- 1 (o < t < T).

 Since IF(0) < a, and IF(T)I = ce, it follows that
 T

 (8) a -a < IF'(t) I dt < {r/(a2 -_ a n- l T

 Hence

 (9) T > rl(-n( - al)(a2 - )n-1

 If we choose a so as to maximize the right side of (9), we obtain T > 6, where 6
 is given by (1).

 6.3. LEMMA. Given 0 < a, < a2, 0 < ri < r2, there is a discrete set

 (1) E = E(ai, a2, ri, r2) c 9(riBn_i) x C

 so that the assumptions

 (i) F: a2Bn -* Cn is holomorphic,
 (ii) IF(0)I < 1r1, F'(O) = I, JF _ 1,
 (iii) F(a2Bn) n E = 0,
 (iv) (PF) (a,Bn) intersects a9(r,Bn_1 )'

 imply that (PF) (a2Bn) intersects 9(r2Bn_i))

 Here P is the same projection that was used in the proof of Lemma 6.2, and I
 denotes the identity operator in Cn.

 PROOF. Choose t, a1 < t < a2. Use Lemma 4.3, with k = n- 1, c = 1
 (because F'(0) = I), and (a1, t, r1, r2) in place of (a1, a2, r1, r2), and pick a finite
 set E' c 9(r,Bn-1) in accordance with Lemma 4.3.

 Next, pick 6 > 0 as in Lemma 6.2, but with (t,a2,r2) in place of (a1,a2,r), and
 let E" be a discrete set in C which intersects every open disc of radius 6.

 Put E = E'x E".
 Assume now that F satisfies (i)-(iv) but that

 (2) (PF)(a2Bn) C r2Bn-l1
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 Then (PF)(tBn) C r2Bn_- and (PF)(ajBn) intersects 9(r1B1_j), so that Lemma
 4.3 shows that

 (3) (PF)(tB, ) intersects E'.

 By Lemma 6.2, our choice of 6 leads from (3) to

 (4) F(tBn) intersects E

 which contradicts (iii).

 6.4. THEOREM. There is a tame set D in Cn which is unavoidable by holo-
 morphic maps F: Cn -* Cn with constant (nonzero) Jacobian.

 Proposition 4.2 shows that this tame set D is not very tame.

 PROOF. Put Sk = k/(k + 1) and define

 oo k

 D U U E(I +Sk,i+sk+1, k,k+1)
 k=1 j=1

 using the notation of Lemma 6.3.

 Suppose F: Cn -_ Cn has JF c 0 O. Let A = F'(0) and define 4) =F o A`.
 Then 4)'(0) = I and J) _ 1. Since F(Cn) = 4)(Cn) it suffices to prove that
 4)(Cn) intersects D. Assume, to reach a contradiction, that 4)(Cn) n D = 0. Fix

 j > 14)(Q) and make the induction hypothesis

 (Hk) (P4))((j + sk)Bn) intersects O9(kBn1l)e

 Since

 (9(zi X Zn-1 )

 where 4) = (,.*. 1 , pn - X Pn), the Schwarz lemma shows that (Hj) holds. The set
 ()(Cn) is assumed to miss E(j + Sk, i + 8k+1, k, k + 1). Lemma 6.3 shows therefore
 that (Hk) implies (Hk+1). Hence (Hk) holds for all k > j. But this is absurd, since

 Sk < 1 for all k, and P4) is bounded on (j + 1)Bn.
 Theorem 3.9 shows that D is tame in Cn.

 6.5. REMARK. Let D be a set as in Theorem 6.4. Proposition 4.2 shows

 There exist regions Q C Cn (in fact, Q c Cn\D) so that Q = F(Cn) for some
 biholomorphic F, but so that no such F can have constant Jacobian.

 As mentioned in the Introduction, this phenomenon was first discovered by

 Nishimura [12, 13] in the case n = 2.

 PART II. HOLOMORPHIC IMAGES OF Cn

 In the next three sections we describe various ways in which holomorphic images

 of Cn in Cn can be small when n > 1.

 7. Entire maps whose ranges have finite volume. We shall use the nota-

 tion vol(E) for the (2n)-dimensional Lebesgue measure of a set E C Cn. By a cube
 in Cn we shall mean the Cartesian product of n equal squares in C whose sides are
 parallel to the coordinate axes.
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 7.1. THEOREM. Suppose n > 1, Q is a cube in Cn, and E > 0. Then there

 exists a holomorphic map F from C' into Cn, with JF = 1, so that

 (1) ~~~~~vol(F-l (Cn\Q)) < E.

 In other words, there is a set X C cn so that F(X) c Q and vol(Cn\X) < E.
 Since JF = 1, it follows that

 (2) vol(F(Cn)) < 6 + vol(Q).

 Nevertheless (and this seems quite remarkable) the range of every such F must
 intersect the discrete set D that was constructed in the proof of Theorem 6.4.

 We begin with the case n = 2. The proof will be completed in ?7.3 and ?7.4.

 7.2. LEMMA. Suppose that Qo and Qi are concentric open cubes in C2, with
 Qo c Ql, and that P is a cube in C2.

 To every E > 0 corresponds then a holomorphic map 4): C2 _* C2 so that

 (i) J4) = 1,
 (ii) Iz - 4)(z)I < E in Qo, and
 (iii) vol{fz E Q 1\Qo: 4)(z) PI < E

 PROOF. Let Qo = Lox O, Qi = L1 x l, so that A0 and A1 are squares in
 C.

 Let Po be the cube with the same center as P but with half the diameter.

 Choose E so small that w E Qi if z E Qo and Iz - wl < E.
 For each ca > 0, the map T,>: C2 _* C2 defined by

 (1) To(z) = ((ez"- 1)/Ce,z2e-cz1)

 has JT =-1 and has period 2wri/ca in z1. As ca - 0, T. (z) -* z, uniformly on
 compact sets. Hence there exists ca > 0, fixed from now on, so small that

 (2) Iz - TQ(z)I < E/2 on Qi

 and

 (3) Ta (Po) C P.

 Next we put finitely many disjoint closed squares -j into A1, in such a way that
 (a) the diameter of each >j is < 1/10 of the diameter of Po,
 (b) no -j intersects the boundary of AO, and
 (c) the union of the sets ]7jk = -tj X 1k covers all of Qi except for a set of volume

 < E.

 The desired map 4) will carry each 1jk in Qi\Qo into P, thus assuring conclusion
 (iii) of the lemma, and will have the form

 (4) 4 =T. o T

 where T = a4 o a3 o a2 o a1 will be the composition of four shears ai, chosen so that

 (5) IZ - (z)l < E/2 if z C QO,
 which implies that '(Qo) c Ql, and so that

 (6) TI(Fjk) C Mjk el + Po

 for each 17jk C Ql\Qo; here mjk is some integer.
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 Note that T,> maps the translates of Po in (6) into P, by (3) and the periodicity
 of T<,. Hence 1' given by (4) will satisfy the lemma, because of (2) and (5).

 To complete the proof, we have to describe the ai. The Figure may make it
 easier to visualize their action.

 Let W be the collection of all l7jk C Ql\Qo.
 Let W1 be the collection of all 1jk = -tj X 'k that have '1k C Al1\O.
 Runge's approximation theorem will be tacitly used in the construction of each

 ai to give us certain holomorphic functions pi: C -* C. Recall the projections 7r
 and 7r2 defined by iri(zl, Z2) = Zl, r2(Zi,Z2) = Z2

 Put al(zl,z2) = (zl + 01(Z2),Z2), where pl is almost 0 on AO, pl is almost
 constant on each -1k outside AO, and these constants are so chosen that the pro-
 jections 71 (al(Fjk)), for 17jk E Wi, are disjoint from each other and are far from
 7rl(al(L\l x LAO)).

 Put a2(Zl, Z2) = (Zl,Z2 + 02(zl)). Again, 02 is almost 0 on iri(a,(Qo)), 02
 is almost constant on each projection i1 (al(Fjk)), this time for all 17jk E W, and
 these constants are so chosen that the projections (7r2 ? a2 ? al)(Fjk) are disjoint
 from each other and are far from (in2 o a2 o a1)(Qo).

 Setting P3k = a2(al(Fjk)) and Qo = a2(a1(Qo)), we have now reached the

 following position: Qo is almost the same as Qo, the sets Qo and r3k (for 7jk E W)
 have disjoint 1r2-images, and each V3k differs from a translate of l7jk by a very small
 distortion.

 Now let c = (c1, c2) be the common center of P0 and P.

 Put a3(z1, Z2) = (Z1 + 03(Z2), Z2), where (03 is almost 0 on w2(Q ), 03 is almost
 constant on each ir2 (Vk), and these constants are so chosen that a3 a a2 a al moves
 the center of each 1jk E W to a point

 (7) (c, + (27ri/a)mjk, Wjk),

 where the mjk are distinct large positive integers.
 Finally,

 a4(zl, Z2) = (Zl, Z2 + 904(Z1)),

 where 904 is almost 0 on r1 (a3 (QM)), and 904 is almost equal to the constant c2 - Wjk
 on ir1(a3(Frk))

 If all approximations implicit in "almost" are sufficiently close, then Q -
 a4 a a3 a a2 a a1 will satisfy (5) and (6).

 7.3. PROOF OF THEOREM 7.1 WHEN n = 2. There are concentric open cubes

 Qk in c2 so that Qk C Qk+l for k = 0,1,2,..., Q, is our given cube Q, and
 C2 = Qo U Q1 U Q2 U * * * .

 Assume, without loss of generality, that E is so small that w E Ql if z E Qo and
 Iw-zl < E. Choose Ek > O so that Eo +El + E2 + * * * < e.

 Put Fo (z) = z. Assume, for some k > 0, that we have a holomorphic map
 Fk: C2 _* C2, with JFk 1, and that there is a cube Pk C Qk so that Fk(Pk) C
 Qo. (This induction hypothesis holds when k = 0, with Po = Qo.) Choose 6k > 0
 so that

 (1) IFk(Z') - Fk(Z")I < Ek

 whenever z' E Qk and Iz" - z'I < k.
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 Lemma 7.2 furnishes a holomorphic map 4)k: C2 -* C2 and a closed set Yk C
 Qk+l\Qk with vol(Yk) < Ek, so that

 (i) Jk-k 1,
 (ii) ZZ- k(Z)I < 6k if z E Qk, and
 (iii) 4k ((Qk+l1\Qk )\Yk ) C Pk -

 Define Fk+l = Fk ? 4k, and let Pk+, be some cube in (Qk+l\Qk)\Yk. Then

 (2) Fk+1(Pk+1) C Fk(Pk) C QO

 This completes the induction step.

 For all z E Qk we have

 (3) lFk+l(Z) - Fk(Z)l = IFk(k(z)) - Fk(z)l < Ek

 by (ii) and our choice of 6k. Hence there exists

 (4) F= lim Fk
 k-_oo

 uniformly on compact subsets of C2, JF =- 1 and
 00 00

 (5) JF(z)-Fk(z)l < E Z Fj+j(z) - Fj(z)l < ]Ej < E
 j=k k

 for all z E Qk, by (3).

 If z E Qo then (5) implies that IF(z) - zl < E; hence F(z) E Qi = Q.
 If z E (Qk+l\Qk)\Yk for some k > 0, then (iii) gives

 (6) Fk+l(Z) = Fk(1k(Z)) E Fk(Pk) C QO.

 Also, JF(z) - Fk+1(z)l < E, by another application of (5). As before, we conclude
 that F(z) E Q.

 Any other z E C2 lies in some Yk. This completes the proof, because vi vol(Yk) <

 ZEk < E.
 7.4. PROOF OF THEOREM 7.1. WHEN n > 3. The lemma is now to be stated

 for cubes in Cn rather than in C2; in its proof we have to take shears in n directions
 rather than 2; the only other difference is that we define

 Ta(z) = ((eaz' - 1)/a, z2e - ,z 3, *. * * Zn)

 The theorem follows from the lemma precisely as before.

 8. Moving compact convex sets. Given m affine transformations A1,... , Am
 of Cn, with Jacobian 1, and m pairwise disjoint compact sets Kl,... , Km whose
 images Aj (Kj) are also pairwise disjoint, what additional information will guarantee
 that for every E > 0 there is a polynomial automorphism 4t of Cn which furnishes
 the simultaneous approximations

 1 (z) - Aj (z) I < E on Kj
 forj=l,...,m?

 When m = 2 it is enough to assume that K1 and K2 are convex. But when m >
 3, this is no longer enough: the fact that U K, may have a nontrivial polynomial

 hull [8; 17; 21, p. 389] while the polynomial hull of U Aj (Kj) may be trivial gives
 rise to an obstruction. (We do not know whether there is another one.) We will,
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 however, obtain a positive result when K1 and K2 are convex and K3 is a point
 (Theorem 8.1). This will suffice to prove Theorem 8.5.

 The proof of Theorem 8.1 shows that generalizations to more than two con-

 vex sets are possible, provided that sufficiently strong separation properties are

 assumed. We will not go into the details of this.

 Since every shear, and hence every finite composition of shears, is a limit of

 polynomial automorphisms (uniformly on compact subsets of Ca), whereas it does
 not seem to be known whether every polynomial automorphism with Jacobian 1 is

 a composition of shears when n > 3 [1, p. 299], we state the following theorem in
 terms of shears.

 8.1. THEOREM. Suppose that A: Cn , Cn is affline, with JA = 1, that H
 and K are compact convex sets in Cn, and that H intersects neither K nor A(K).

 Suppose also that v, w E Cn, v 0 H U K, w 0 H U A(K).
 To every E > 0 corresponds then a composition 1 of finitely many shears so that

 1o(z) - zl < E on H, 14(z) - A(z)I < E on K,
 and 4'(v) = w.

 We break the proof into 3 steps. The points v and w are ignored in the first two
 of these. Step 1 proves the resulting simpler theorem under an additional separation

 hypothesis, which is then removed in Step 2.

 If u E Cn, u 5 0, and A is a linear functional on Cn so that Au = 0, we will use
 the phrase "a is a (A, u)-shear" or "a is a shear in the direction of u" to indicate
 that a(z) = z + f(Az)u for some holomorphic f: Cn , C.

 The symbol will indicate uniform approximation, to whatever degree is needed.

 Thus, for example, 'p id. on K means that, given ?7 > 0, we can find p so that
 Ip(z) - zj < r on K (and so that p satisfies whatever else is needed in the particular
 context).

 Just as in ?7, Runge's theorem will be tacitly used every time we pick a shear.

 Although we start with convex sets, the shears that are used in the proof may

 well destroy their convexity. However, the distortions can be controlled so as to be

 so small that the separation properties needed to apply Runge's theorem will be
 satisfied. Or one may begin by replacing H and K by larger sets which are strictly
 convex (see Remark 8.4) but still disjoint. Then convexity can be maintained
 throughout the construction. We will not say anything further about this in the
 proof that follows.

 8.2. PROOF OF THEOREM 8.1.

 Step 1. If A, H, K are as in the theorem, and there is a linear functional L so
 that the sets L(H), L(K), L(A(K)) are pairwise disjoint, then there exists 1i, a
 finite composition of shears, so that

 ()<f{ id. on H,
 (1) '~~~~~~~lA on K.

 PROOF. Pick u E Cn, u $ 0, so that Lu = 0. We will use an (L, u)-shear p to
 move H out of the way whole keeping K and A(K) where they are, will approximate
 A on K by a sequence of shears that does not move p(H) much, and will then move
 'p(H) back to H.
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 Choose coordinates in C' so that 0 E K and

 (2) u= (11,...,1)-

 Then A(z) = Az + p, where p = A(0), A: C' -* C' is linear, and det A = 1. This
 last fact implies, via elementary matrix manipulations, that there is a decomposition

 (3) A = am ? am-1 ? ... oa

 in which each o, is a linear shear in the direction of one of the basis vectors ej.
 Choose r > 0 so large that K c rB and

 (4) (oJj o oj-, . o alw) (K) c rB (l < j < m).

 One more observation before we start to move sets around: Since p E A(K) and
 L separates K from A(K), we have Lp # 0. Hence there is a linear functional L'

 with L'p = 0, L'u = 1.

 Our first move is an (L, u)-shear p so that

 (5)< J( 1 {z+tu on H,

 where the constant t is so large that each coordinate projection iri separates p(H)
 from 2rB and L' separates 'p(H) from A(K). This can be done because of (2) and

 because L'u = 1.

 In the second move we replace each oi in (3) by a shear Oi (in the same direction
 as oi) so that

 (6) + ~ { id. on 'p(H), (6) aj~~~~~~Ol on 2rB.

 Setting T = Om o Om-, o *o ? 1 we thus obtain

 (7) TE O A, p on H, Aon K.

 For the third move, note that L'p = 0 and that L' separates 'p(H) from A(K),
 hence also from

 A(K) - p = A(K) I ((p(K))
 Therefore there is an (L', p)-shear r so that

 (8) r(z) Jz on (0p (H33
 ~z +p onT p(K)

 The fourth move is p-'.
 Then 41 = p-1 o T o o 'p satisfies (1).
 Step 2. Assume now that A, H, K are as in the statement of Theorem 8.1.

 There are linear functionals L and Lo so that Lo separates H from K, L separates
 H from A(K), and the pair {L, Lo} is linearly independent. Hence there exists
 x E C' so that Lox = 0, Lx = 1, and there is an (LO, x)-shear 'po so that

 (9) 00(z)fz on H, ('?( ) {jz+tx onK,
 where the constant t is so large that the set

 (10) L(K + tx) = L(K) + t

 is disjoint from L(H) and from L(A(K)).
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 Thus L separates the sets H, K + tx, A(K).
 The affine map A' that sends z to A(z - tx) sends K + tx to A(K). We can

 therefore apply Step 1, with A' in place of A, and obtain 41, a finite composition
 of shears, so that

 ARp- on po(K).

 Then

 f id. on H,
 (12) 2 ~ A onK,
 which proves the theorem, except that the points v and w still have to be taken
 into account.

 Step 3. With 42 as in (12), put H' = 12(H), K' = )2(K), v' = ??2(v). The

 construction that led to (12) can be so controlled that the convex hulls co(H') and
 co(K') are disjoint and so that neither v' nor w is in their union.

 Then 1 = Fo a 2 will satisfy the conclusion of Theorem 8.1 if F is as in the
 following proposition in which, for simplicity, we have replaced co(H'), co(K'), and
 v' by H, K, and v.

 8.3. PROPOSITION. If H and K are disjoint compact convex sets in C', and v,
 w, are points in Cn, outside H U K, then to every E > 0 corresponds a composition

 F of finitely many shears, so that JF(z) - zl < E on H U K, F(v) = w.

 PROOF. Assume that H n co(K U {v}) = 0. (If this is not the case, then the
 convex hull of H U {v} does not intersect K, and the same proof works, with H
 and K interchanged.)

 Choose coordinates so that w = 0, Re z1 > 0 on H. Since 0 0 K - v, there is a
 linear functional A so that Re Az < 0 on K - v, and

 Az = ciz+ + '+ Cnzn IC12 ++ + cn2=1.

 There is a unitary matrix U with (cl, ... , cn) in the top row, and with det U = 1.
 Then z -- U(z - v) is an affine transformation A, with A(v) 0, that maps K into
 {Rez, < O}. Thus H is disjoint from A(co(K U {v})), and Step 2 of the preceding
 proof furnishes an F1 so that

 f id. on H,
 F1 A on co(KU{v})

 and (by a mninor adjustment) F, (v) = 0.
 But now co(H U {O}) does not intersect F, (K), and we can apply Step 2 again

 to get F2 so that

 F f id. onHU{O}, A-' onFi(K),

 and F2(0) = 0.
 Finally, F = F2 o F1 does what is needed.
 8.4. REMARKS. (a) in Theorem 8.1 we could also prescribe some finite set in H

 and find a map c1 which, in addition to the conclusion of Theorem 8.1, also fixes
 every point of this finite set.
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 (b) As already pointed out, if H and K are strictly convex bodies (i.e., if they
 have defining functions whose Hessian is strictly positive on their boundaries) then,
 by keeping the second derivatives of all shears in the proof very small on the various
 images of H and K (note that we only approximated affine maps locally) we can
 obtain 4I so that the conclusions of Theorem 8.1 hold and so that i(H) and ?1(K)
 are strictly convex.

 We shall now apply these approximation theorems to construct certain biholo-
 morphic maps from Cn into Cn.

 8.5. THEOREM. Suppose n > 1, and
 (i) K C Cn is compact and strictly convex, or K is a point,
 (ii) E is a countable subset of Cn\K.

 Then there is a biholomorphic F: Cn -_ Cn so that

 (1) E cF(Cn )C C\K,

 and JF-1.

 Note that E could be dense in Cn\K. When K is a point, it follows that Cn
 has dense proper subsets that are biholomorphic images of Cn.

 PROOF. Let {W1, W2, W3, ... } be an enumeration of E. Choose coordinates so

 that K lies outside the closed unit ball B of Cn. Put Go(z) = z, Ko = K.
 Now assume, as induction hypothesis, that j > 0, Gj E Aut(Cn), Kj = Gj(K)

 is strictly convex (or is a point) and lies outside (j + 1)B, and that

 (2) GJ(wi) = zi E jB for all i < j.

 Choose Sj, O < bj < 1, so that

 (3) jG-1(z') - G-1(zl")l < 2-i

 for all z', z" E (j + 1)B with Iz' - z"I < bj.
 We can now apply Theorem 8.1 to the convex sets jB, Kj, and the point Gj(w3)

 in place of v, to find f,, a composition of finitely many shears, so that (see Remark
 8.4)

 (a) (D.1 moves no point of jB by as much as 6j,
 (b) 1j (Kj) lies outside (j + 2)B and is strictly convex (or is a point),
 (c) (D(zi) = zi for all i < j,
 (d) Ij(Gj(wj)) = zj lies in (j + 1)B.

 As regards (d), note that wj 0 K, hence Gj(wj) 0 Kj, so there is no conflict
 between (b) and (d). Moreover, if Gj (wj) E jB we satisfy (d) by choosing zj =
 G3(wj); otherwise, pick zj anywhere so that j < IzjI < j + 1.

 Now put G.-+ = 4Dj o Gj, and continue.
 By (a) and our choice of 6j,

 1G7 1(z)-G7-(z)l = IG-1(4%1'(z)) -G (z)I <2-'
 for all z E jB. The limit

 (4) F = lim G.
 j-00 J

 exists therefore, uniformly on compact subsets of Cn, and defines a biholomorphic
 F: Cn Cn with JF_ 1.
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 Since G. 1 (zi) = wi for all j > i, we have F(zi) = wi for all i. Thus E c F(Cn).
 To finish, assume, to reach a contradiction, that w = F(z) for some w E K,

 z E Cn. Let : be a ball with center z. For all sufficiently large j it follows from

 (4) that there are points pj E : so that G l1(pj) = w, i.e., pj = GJ(w). But our
 construction shows that IGj(w)I -+ oo as j -+ oo, because w E K, whereas {pj} is
 bounded. This contradiction shows that F(Cn) contains no point of K.

 8.6. REMARK. In [9, 10], J. A. Morrow has classified the nonsingular compact
 complex manifolds M of complex dimension 2 that contain a nonempty nowhere
 dense closed analytic subset A so that M\A is biholomorphic to C2.

 One may ask whether "analytic" is redundant in this statement. Theorem 8.5
 shows that it is not:

 Take n = 2, K a point (say K = {0}), E dense in C2, and construct F as in
 the proof of Theorem 8.5, as the limit of a sequence of automorphisms of C2. This
 implies that Q = F(C2) is a Runge domain [2, p. 141].

 Let L be a complex line in C2\{0} which intersects Q, and put Lw = {Aw: A E

 C} for each w E L n Q. Since 0 0 Q, no Lw lies in Q. Since Q is a Runge domain,
 each component of onL, is simply connected (otherwise polynomial approximation
 would fail; see, for example, [20]) and its boundary relative to Lw must therefore
 have positive one-dimensional Hausdorff measure. This holds for each w E L n Q.
 A Fubini-type argument shows now that the Hausdorff dimension of C2\Q is at
 least 3.

 We may regard F as a biholomorphic map from C2 into (for example) complex

 projective space p2, with Q dense in p2. Put A = p2\Q. Then A D C2\Q, so that
 A has Hausdorff dimension > 3, and this shows that A is not an analytic subset of
 p2. (The Hausdorff dimension of analytic subsets of p2 is at most 2.)

 We thank E. L. Stout for drawing our attention to this question.

 9. Regions attracted to a fixed point. We begin with a simple case of the
 basic theorem that was mentioned in the Introduction.

 9. 1. THEOREM. Suppose F E Aut(Cn), p E Cn, F(p) = p, and the eigenval-

 ues Ai of A = F'(p) satisfy IAu ? 1>A21 > * >? An I and

 (1) IA, 12 < lAnl
 Define

 (2) Q={ZECn: lim Fbk(Z)) P}

 Then Q is a region, and there is a biholomorphic map IQ from Q onto Cn, given by

 (3) T = lim A kFk.
 k -oo

 The convergence in (3) is uniform on compact subsets of Q.

 Recall that Fk = FoFkl , F1 = F. Note that (1) implies that 0 < IA I < 1 for
 all i. We may describe Q as the region that is attracted to p by F.

 One immediate consequence of (3) is the functional equation

 (4) o1 = A- tF.

 Another is that J =_ 1 whenever JF is constant.
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 PROOF. Take p = 0, without loss of generality. Pick constants a, /1, /2, S sO

 that a < lAnl, IA|I < /1 < /2 < /, and /2 < a. The spectral radius formula gives
 an m so that IIA-NII < a-N and IIANII < O3N for all N > m. Approximating Fm
 by Am shows that there is an r > 0 so that (for our fixed m) z E rB implies

 (5) IFm(z)I < 02 Ilzl

 Put C = sup{IFj(z)I/IzI: 0 < j < m, 0 < lzl < r}.
 If N = km + j, k = 1, 2,3,..., 0 < j < m, and if Izl < r, then iteration of (5)

 yields

 IF N(Z) I= IFj(Fkm (Z)) I< CIF km(Z)l < cokmZ.
 Thus, for all sufficiently large N > No (where No > m depends only on m and r)
 we have

 (6) IFN(z)I < ON for all z E rB.

 It follows from (6) that rB c Q (because / < 1), hence that

 00

 (7) = U F k(rB).
 -00

 This shows that Q is a region and that F(Q) = Q.
 Now pick a compact set K C Q. For some s, F8(K) c rB. Hence (6) shows that

 (8) IFN(z)I < ?N-s = a/N (zEK, N>s+No)
 where a = /38. Since (A-1F)'(O) = I, there is a constant b so that

 (9) lw-A-1F(w)l < blw12 (Iwl < a).
 Thus, if z E K and if we set WN = FN(Z), we get the estimate

 IA-NFN(z) -A-N-FN+1(Z)I < IIA-NII. IWN - A1F(WN)l

 < ?l NblWN12 < a2b(/32/a)N

 for all N > s +No.
 Since :2/a < 1, it follows that (3) holds. It is clear that TE (being a limit of

 a sequence of automorphisms) is holomorphic and one-to-one in Q. (Note that
 T'(0) = I.) Since F(Q) = Q and T = A-14F, we see that ' and A-1' have the
 same range. Since the linear operator A1 is an expansion, it follows that @(Q) is
 all of Cn.

 9.2. EXAMPLE. Define F E Aut(C2) by F(z, w) = (az,,dw + Z2), where 0 <
 / < a < 1. This F fixes the origin, and A = F'(0, O) = ( 0 ). By induction

 Fk(Z,W) = (a kz, kW + k-l(1j + C + * + ck-1)z2),

 where c = a2 //3. Thus

 (A-kFk)(Z W) (Z W+ 1 + C+... + Ck-1)z 2).

 The coefficient of z2 in the second component of Ak-Fk tends to infinity, except
 when c < 1, i.e., when al2 </3.

 Conclusion: The sequence (3) may fail to converge (even locally, and even on
 the level of formal power series) if assumption (1) of Theorem 9.1 is violated.
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 The region that is attracted to the origin by this F is all of C2. To get away

 from this, put

 G(z, w) = (az + (3w + z2)2, W + z2).

 Again, G E Aut(C2); G'(0, 0) = F'(0, 0); the coefficients in Gk are at least as large
 as those in Fk. Therefore A-kGk will still diverge when a 2 > 3. But now the

 region Q that is attracted to (0, 0) by G is not all of C2, because G has three other

 fixed points, given by z3 = (1 - a)(1 - 0)2, W = z2/(l - i).
 9.3. NOTATION. In the examples that follow, we shall use the abbreviation

 F. B. region (for Fatou-Bieberbach) to denote regions Q c cn, Q # Cn, which are
 biholomorphically equivalent to Cn.

 Actually, the examples will all be in C2.
 9.4. Example of an F.B. region Q C 02 whose intersection with every complex

 line is bounded. Define F(z, w) = (u, v) by

 (1) u = aw, v = az+w 2

 for some fixed al, 0 < laol < 1. Then F E Aut(C2), F fixes (0, 0), the eigenvalues of
 F'(0, 0) are ?a. Let Q be the region attracted to (0,0) by F, as in Theorem 9.1.

 If (z, w) lies in the set E defined by IwI > 1 + 21a1I + Izi, then (1) shows that

 lvi > Jw12 - lazi> >w12 - lawl = lwl(lwl - lal)

 > lwl(l + jai) > 1 + 21al + lul
 so that (u, v) E E. Thus F(E) C E. This shows that no point of E lies in Q.

 Now let L be a complex line in C2. Parametrize L by z = a + bA, w = c + dA,
 where a, b, c, d are constants and A ranges over C. If we substitute these expressions

 for z and w into (1) we see that F(z,w) E E as soon as IAl is large enough. (Note
 that d = 0 implies b :$ 0.) For such A, it follows that (z, w) is not in Q.

 9.5. EXAMPLE. The automorphism F(z, w) = (u, v) given by

 (1) u = z +w, v= 2(1-w-ez+w)

 leads to several interesting phenomena.

 Its fixed points are

 (2) Pm = (2mwi, 0),

 one for each integer m. The eigenvalues of F'(pm) are ?1/\'2. Theorem 9.1 can
 therefore be applied:

 There exist pairwise disjoint F.B. regions f2m C C2 (m = 0, +1, 2,... .), at-
 tracted to Pm by F, which are translates of each other:

 (3) QM=nQo+Pm.

 To see (3), note that F( (z, w) + Pm) = F(z, w) + Pm. Hence

 lim Fk((z, w) + pm) = pm if lim Fk(z, w) = po.
 k-.oo k-+oo

 It follows from (3) and the disjointness of {Qm } that the map E given by

 (4) E(u,v) = (eu,ve-u)

 is one-to-one on each Qm, and that

 (5) Q E(Qm)
 is independent of m.
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 This gives an F. B. region Q* in C2 which does not intersect the line {z = 0}.
 Moreover, since JF -1/2 (a constant), the Om's as well as Q* are biholomor-

 phic images of C2 via volume-preserving maps. (This is why we defined E by (4),
 rather than by the simpler formula E(u, v) = (eu, v).)

 It is known [5] that the range of a nondegenerate holomorphic map from C2 into
 C2 carnot avoid 3 complex lines. We shall now see that this is not so if complex
 lines are replaced by translates of R2. Here R2 denotes the set of points of C2 both
 of whose coordinates are real. Define

 (6) Hk = R2 + ((2k + 1)iri, 0)

 for k = 0, ?1, ?2, .... Then F(Hk) = 1k, and no Pm lies in any Hk. Therefore no
 point of any Hk is attracted to any Pm by F.

 Conclusion: No Hk intersects any Om.

 Finally, we modify the regions QFm so as to obtain disjoint F. B. regions Om with
 the following property:

 For each m, Q2m n {w = 0} has infinitely many components.
 Picard's theorem shows that at most one line u = const. misses 0o. Therefore

 Qo contains points (u. vI) with us = s + iy,, 2s7r < y, < (2s + 1)7r, for every
 integer s. Since the numbers exp us are not real, and no two of them are complex

 conjugates of each other, there is an entire function h: C -+ C so that h(R) c R
 and h(exp(u,)) = v. Define a shear '1 by

 (7) 4(u, v) = (u, v - h(eu))

 and put Q2m = 4>(Qm)
 Since ?(Hk) = Hk, no Hk intersects any flm. Each flm contains the points

 (8) (us + 2miri, v, - h(eu9)) = (s + (y8 + 2mir)i, O),

 one in each strip bounded by the (real) lines

 (9) (x + (2k + 1)7ri, O) (-oo < x < oo)

 which lie in Hk. Thus Qm has at least one component in each of these strips.
 9.6. EXAMPLE. We just saw that there exist F. B. regions Qm in C2 which miss

 infinitely many translates of R2. The same can be done with finitely many rotated
 copies of R2:

 Let N be a positive integer, put a = exp(7ri/2N), and put Ek = akR2 for
 k = O, 1 ..., 2N - 1. Define F(z, w) = (u, v) by

 (1) U = Z +W, V= 2 1 [Z +(Z +W)2N+1].

 Then F E Aut(C2), F(Ek) = Ek for all k, the fixed points of F are (0,0) and

 Pm = (am, O) for odd m. The eigenvalues of F(pm) are +(2N + 1)-1/2. It follows
 from Theorem 9.1 that there are N pairwise disjoint F. B. regions Om, attracted
 to Pm by F, and

 (2) Om C C2\(Eo U E2 U ... U E2N-2).

 Note also that F(a2z, a2w) = a2F(z, w), by (1). From this one can deduce that

 the rotation (z, w) -- (a2Z, ca2w) permutes the regions Qm.
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 9.7. Example of an F.B. region Q0 C C2 whose closure misses a complex line.

 (We do not know whether the region Q* in Example 9.5 also has this property.)

 Pick a E C, 0 < I&a < 1, find an entire function f: C -* C so that

 (1) ef(?)=j 1/, f'(O) =0, f(1) = 0, f'(1) = (1+a2/(j-a2)

 and define F(z, w) = (u, v) by

 (2) u = 1 - a2 + &2zef(zw) v = we-f(zw)

 Then F E Aut(C2), JF _ a2, F(1, 1) = (1, 1), and the eigenvalues of F'(1, 1) are
 ?ai. Let Q0 be the region attracted to (1, 1) by F.

 Let Q1 be the region attracted to the fixed point (1 +a, 0), where F' = aI. Since

 (3) F(z,O) = (1-&a2 + az, 0).

 for all z E C, we see that Q1 contains the line {w = 0}. Therefore Q0 does not
 intersect this line.

 This example is quite similar to one of Nishimura's [11]. He does not, however,
 derive it from a theorem about fixed points of automorphisms, but from a more
 difficult one that involves pointwise fixed analytic subvarieties.

 9.8. REMARK. All the F. B. regions Q obtained in Examples 9.4 to 9.7 were

 ranges of biholomorphic maps 1D: C2 -Q 0 with J'T =_ 1, because the automor-
 phisms that were used in the constructions had constant Jacobians. (Here 1D = T-1,
 where T is given by Theorem 9.1.)

 Our next example will use automorphisms of the kind that we mentioned at the
 end of the Introduction. That the resulting map 1D does not have constant Jacobian
 follows from Theorem I of [13], which states:

 If 4): C2 -* C2 is holomorphic and one-to-one, J'T =_ c, and 1D preserves the
 lines {z = 0} and {w = 0}, then (1 E Aut(C2); in fact

 4)(z, w) = (czef(zw), we-f(zw))

 for some entire f: C - C.
 9.9. Example of an F. B. region Q in C2 which contains the set {zw = O} and

 is not dense in C2. Let g, h: C -- C be entire functions, so that

 (1) expg(0) = 2, exph(O) = 1/4

 and

 (2) expg(24p) = 1/2, exph(22P+2) = 4

 for p = 0, 1, 2, ..., define

 (3) G(z, w) = (z exp g(z3w), w exp[-3g(z3w)]),

 (4) H(u, v) = (u exp h(uv), v exp[-h(uv)])
 and put F = H o G. Then F E Aut(C2),

 (5) F(z, ?) = ( 2z, O), F(O, w) = (0, 2w)
 and

 (6) F(2P 2P) = (2P+l,2P+l) (p=0,,2, ...).
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 Setting A = F'(0,0), we have A = 'I. Hence (5) shows that each A-kFk fixes
 every point of {zw = 0}. If 1D = T-', where T is as given by Theorem 9.1, we
 conclude:

 1 is a biholomorphic map from C2 onto the region Q that is attracted to the
 origin by F; every point of {zw = 0} lies in Q because 4I fixes it; by (6), Q contains
 none of the points (2P, 2P).

 In particular, Q : C2.

 But we claimed more, namely that Q is not dense in C2. To achieve this, we
 have to choose g and h with more care; specifically, we strengthen (2) by requiring
 that g and h are almost constant on discs centered at 24P and 22P+2, respectively.

 Here are the details:

 Choose constants cp and c so that

 (7) 0 < co < c1 < < c, (1+ C)4-1 < 1/4.

 Writing D(a, r) for the open disc in C with center at a and radius r, consider the
 discs

 (8) D = 2PD(l,cp), Xp = 2 4PD (1 4), Yp = 22P+2D (14)
 and the polydiscs

 (9) AP = DP x DP

 for p = 0, 1, 2....

 The Xp's have disjoint closures; the same is true of the Yp's. Therefore, given
 Ep > 0, we can find entire functions g and h so that (1) holds and

 (10) ~~~ 12 - egl < Ep on Xp, 14 - e hl < sp on Yp,
 for p = 0,1, 2, .... (The existence of g and h can be proved by repeated applications
 of Runge's theorem, followed by a passage to the limit.)

 Our choice of c in (7) guarantees that z3w E Xp and 4zw E Yp for all (z, w) Ez Ap.
 Therefore, if (z,w) E AP and (u,v) = G(z,w), then (u,v) ? (z/2,8w) since

 eg 1/2 on Xp. So if ep is small enough, it follows that uv E Yp, and therefore

 (11) F(z, w) = H(u, v) ? (4u, v/4) ? (2z, 2w).

 We conclude: If Ep is small enough (depending on the choices made in (7)) then
 (10) will ensure that

 (12) F(z\A) C z\p+1 (p = 0, 1, 2, ..).

 Thus IFk(z,w)I W * oo as k -* oo, for (z,w) in any A\p. This shows that Q
 intersects no AP.

 Open questions.
 1. Consider the following properties which an infinite discrete set E C Cn may

 or may not have:

 (a) E is tame in Cn.
 (b) E is avoidable by biholomorphic maps.
 (c) E is permutable: every permutation of E extends to an automorphism of

 cn .

 (d) E is the set of all fixed points of some automorphism of Cn.
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 We know that (a) implies the other three. (For (a) => (d) see Example 9.5.)

 What other implications hold among these four properties?

 2. Suppose {Qj} is an infinite disjoint collection of F. B. regions in Cn, E is
 discrete in Cn, and E has exactly one point in each Qj. (So E is obviously avoidable
 by biholomorphic maps.) Must E be tame in Cl?

 3. Suppose that the distance between any two points of a set E C C' is at least
 1. Must E be tame in Cn?

 4. If E is discrete in C2 and Izil > 1 for every (Zl,z2) E E, must E be tame in
 C2? (Compare with Theorem 3.8.) The proof of Theorem 6.4 shows that E need

 not be very tame.

 5. If a discrete set E C Cn is unavoidable (by whatever class of maps), must E
 stay unavoidable after removal of one point?

 6. Is there a biholomorphic map from Cn into Cn which is not a limit of

 automorphisms?

 Some related questions: If F is biholomorphic, must F(Cn) be a Runge domain?

 Is the region Q* in Example 9.5 a Runge domain?

 Is the union of every expanding sequence of F. B. regions an F. B. region?

 7. Is there a holomorphic F: C2 __ C2 with JF -1 (or with JF 0 0) so that
 the closure of F(C2) has finite volume?

 8. Is every F E Aut(Cn) with JF _ 1 a limit of a sequence of compositions of
 shears?

 A more specific question: Is the map (z, w) -+ (zezw, wezw) a limit of a sequence
 of compositions of shears in C2?

 9. Let n = 2 for simplicity. Do the transformations described at the end of the
 Introduction generate the group F of all automorphisms of C2 that fix every point
 of {z1z2 = 0}? (One needs to have f(0) = 0.)

 Does every F E F satisfy

 (JF)(zi, Z2) = Wiw2/Z1Z2

 if (wl,w2) = F(zl,z2) and Z1z2 : 0?
 Peschl [14] claims that the answer to the second question is yes. We believe that

 there may be a gap in his proof. To be specific, we do not see how one can justify

 the claim (made on line 10 of p. 1838) that Gnm m G.

 10. Is there a biholomorphic map from C2 into the set {zw $ 0}, i.e., into the
 complement of the union of two intersecting complex lines?

 (Nishimura's papers [12 and 13] contain several results about biholomorphic
 maps from C2 into the complement of one complex line.)

 11. If Q is an F. B. region and L is a complex line, is it possible that

 (a) L n Q is connected (and not empty)?

 (b) L n Q has finitely many components?

 (c) Ln o is a circular disc?
 12. How many complex lines can an F. B. region in C2 contain? Examples 9.4,

 9.7, and 9.9 show that 0, 1, and 2 are possible.

 13. Are there two disjoint F. B. regions in Cn whose union is dense in Cn?
 What if "two" is replaced by "finitely many" or by "infinitely many"?
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 Appendix. As mentioned earlier, it is the purpose of this Appendix to give a
 proof of the theorem concerning attracting fixed points of automorphisms that was

 stated in the Introduction.

 We begin with some facts about holomorphic maps G = (gl,... , g9) from C'
 into C' of the form

 g9(z) = CIZI,

 92 (Z) = C2 Z2 + h2 (Zl )X

 gn(z) = Cnzn + hn(zi), Zn- )

 where c1, .l. , cn are scalars and each hi is a holomorphic function of (zi, ... , zi1)
 which vanishes at the origin. We call such maps lower triangular.

 The matrix that represents the linear operator G'(O) is then lower triangular.

 Thus G'(O) is invertible if and only if no ci is 0. It follows that G is an automorphism
 of Cn (a composition of an invertible linear map and n - 1 shears) if and only if

 no ci is 0.
 If 91gi... , gn are polynomials, the degree of G = (g1, gn) is defined to be

 deg G = maxi deg gi.

 LEMMA 1. Let G be a lower triangular polynomial automorphism of Cn.
 (a) The degrees of the iterates Gk of G are then bounded, and there is a constant

 /< o so that

 (1) Gk(un) c o3kun (k = 1,2,3, ...)
 Here Un is the unit polydisc in Cn.

 (b) If also Icil < 1 for 1 < i < n, then Gk(z) _* 0, uniformly on compact subsets
 of cn, and

 00

 (2) UG Ck(V) = C
 k=1

 for every neighborhood V of 0.

 PROOF. Let G = (91,. ..,n), Gk = (g(k),- ,g$k)) put ,ui = deggi, and let
 S(m, k) be the statement

 (3) deggk) , for 1 < i <m.

 We want to prove S(n, k) for k = 1, 2,3, ....
 Since Gk+1 = G o Gk, we have

 (4) gi + h( 1 t-1) (2 < i < n).
 This shows that S(m, k + 1) follows from S(m, k) and S(m - 1, k). Since S(1, k)

 and S(m, 1) are obviously true for all k and m (note that p,i = 1, and pi > 1 for
 all i), S(n, k) follows by induction.

 Putting d = ,... ,n we have thus proved that deg Gk < d for k = 1, 2,3, ....
 Next, let M be the number of multi-indices a = (a,,... , an) that have lal < d.

 (As usual, a multi-index a is an ordered n-tuple of nonnegative integers a1,... I, an
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 and Il = a, + + an.) Choose C > 1 so that Igil < C on Un for 1 < i < n, and
 put o3 = M. Cd. We claim that then

 (5) jg(k)(Z)j < 3k (Z E Un, 1 < i < n, k = 1, 2,3, . .. )
 Since C < o3, (5) holds when k = 1. Assume (5) for some k > 1. The coefficients

 a, in

 (6) g(k)(Z) = az 1 .. . Zn= Eaz

 Icl<d Icl<d

 are equal to the integrals of g(k) (Z)2a over the unit torus Tn. Thus (5) implies

 Ia,I <3k.
 Since Gk+1 = Gk o G, (6) shows that

 (7) (~~gkl gk g cei .. a g7 +) (1 g n)= E ag91 gn
 Icl<d

 Our choice of M and C implies now that

 (8) ig(k+l)i < M/3kCIaI < M/3kCd = /k+l

 which is (5) with k + 1 in place of k.
 Thus (1) holds, and part (a) of the lemma is proved.

 We turn to (b). Let E C Cn be compact. Note that g(k) (z) = CkZ1. Thus

 I Ig IIE O-0 as k oo. (We use IE to denote the sup-norm over E.) Assume
 now that 1 < i < n and that

 (9) lim 9l IE =0 for 1<j<i.
 k-_oo

 Since hi (O) = 0, it follows that

 (10) k--+oo |hj(g1k,. ,g 1-IIE =0.
 Therefore, given E > 0, (4) shows that

 (11) g9i(k+l)I < ICi Igk I +
 on E, for all sufficiently large k. This implies

 (12) limsuP II 1IE <
 k--oo -

 for all E > 0. Hence (9) holds with i + 1 in place of i.
 The first assertion in part (b) follows now by induction on i. The second assertion

 is an immediate consequence of the first.

 This completes the proof of Lemma 1.

 From now on we shall deal with a fixed invertible linear transformation A: Cn n
 cn, all of whose eigenvalues Ai are less than 1 in absolute value. We order them so
 that

 0 < lA\nl < ... < 1@A1I < 1

 and then choose coordinates in Cn in such a way that the matrix representation of

 A is lower triangular: If A = (aij) then aii = Ai and aij = 0 when i < j.
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 In preparation for our next lemma, we let ? denote the vector space of all

 holomorphic maps H: C' -* Cn, H = (h1,..., hn), whose components hi are
 homogeneous polynomials of degree m.

 A convenient basis W for ,Em consists of those maps H that have only one
 component different from 0, and that one, say hj, is a monomial z' (with Ial = m,
 of course). Among the members of W we call those special in which this hj has the
 form

 hj(z) = z 1 ... 1 i-i
 and the relation

 Aj = A`1 .A..c

 holds.

 This notion of "special" depends of course on our operator A; more precisely, it

 depends on the spectrum of A. Note that no such relation can exist when m is so

 large that JAuJm < lAnl; in that case, no member of R is special. Note also that
 the special members of R are lower triangular.

 We let Xm be the subspace of ,Em that is spanned by these special basis elements.
 (Xm = {O} when there are none.)

 We let VA be the "commutator map" defined by EA (H) = A o H - H o A. For

 each m, VA is thus a linear operator on Em.

 LEMMA 2. Form>2,Zm4=Xm+FA(Gm).

 PROOF. In place of A, we begin with the diagonal matrix D which has A1, A2,...,
 An down its main diagonal.

 If H = (0O . , z. 0,,..., O) is in , with z" in the jth spot, then

 rD(H) = DH - HD = (A A"1 ... Aan)H.

 This shows that ED annihilates precisely those members of R that are special, and

 that ED acts as an invertible linear operator on the space Ym that is spanned by
 the other members of q.

 (Note that Ai - A"' l A. ncannot be 0 if ak > 0 for some k > j, because
 lal = m > 2, so that JA j1 > IAl l A'Inn 1)

 Let ir be the projection in ,Em whose range is Xm and whose nullspace is Ym.
 The preceding observations can then be summarized by saying that ir + ED is an

 invertible linear operator on ?Em
 We now return to our given A. For any E > 0, let S = Se be the diagonal matrix

 that has En, En- 1,... ,6 down its main diagonal. Since A is lower triangular, so is

 S-1AS; if i > j then Ei-Jai. stands in the ith row and jth column of S-1AS.
 Thus S-1AS converges to D as E -+ 0. The invertible operators form an open set

 in the algebra of all linear operators on Em. We conclude from this that there is
 an E > 0, so small that ir + ES- -AS is invertible on Em.

 In other words, to each G E Em corresponds some Ho E Xm and some H E Em
 so that

 S-1GS = Ho + (S-1AS)H - H(S-1AS)

 or

 G = SHoS-1 + A(SHS-1) - (SHS-')A.
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 The fact that S is diagonal shows that SH'S' is a scalar multiple of H, for every
 H E q . Since Ho E Xm, it follows that SHOS'- E Xm. Thus G E Xm +FA(Zm).

 This completes the proof of Lemma 2.

 LEMMA 3. Suppose that V is a neighborhood of 0 in Cn, that F: V -+ Cn is

 holomorphic, F(O) = 0, and that all eigenvalues Ai of A = F'(O) satisfy 0 < 1Ail <
 1.

 Then there exist

 (i) a lower triangular polynomial automorphism G of Cn, with G(O) = 0,
 G'(0) = A, and

 (ii) polynomial maps Tm: Cn , Cn, with Tm(O) = 0, Tn(O) = I, so that
 (1) G-1 o Tm o F-Tm = O(IzIm) (m = 2,3,4,...).

 In other words, the conclusion is that the power series expansion of the left side

 of (1), about the origin of Cn, contains no terms of degree less than m.
 PROOF. We choose coordinates, as before, so that A is lower triangular and

 A11 > ... > lAnlI
 Suppose that the following induction hypothesis holds for some m > 2: Tm is as

 in (ii), Gm is a lower triangular polynomial automorphism of Cn with G (0) = A,
 and

 (2m) Tm o F-Gm o Tm = (IzIm).
 Note that this is true when m = 2, with G2 = A, T2 = I.

 Now (2m) can be rewritten in the form

 (3m) Tm o F -Gm ? Tm - Pm = o(Izlm+l)
 for some Pm E Am Lemma 2 allows us to decompose Pm:

 (4) Pm = Q+AoH-HoA

 for some Q E Xm, H E Am. Define

 (5) Gm+, = Gm +Q, Tm+l =Tm +HOTm.
 We have to prove that (2m+i) holds.

 Let the symbol - indicate that the difference between the two terms on either

 side of it is O(Izlm+l).
 Then Q o Tm+l - Q, Tm+l - Tm - H, and the difference i\ between the left

 sides of (2m+i) and (3m) satisfies therefore

 = (H o Tm o F) + (Gm o Tm) - (Gm o Tm+i) - (Q o Tm+l) + Pm

 (HoA) + (Gm oTm) - (Gm o (Tm +H)) + (AoH) - (HoA)
 so that

 -i C Gm ? (Tm + H) - Gm o Tm -GI (O)H,
 or, equivalently

 -i\ (z) ~ j {Gm [Tm (z) + tH(z)] -G (O) )}H(z) dt.

 Observe now that H(z) = O(IzIm), Tm(Z) = O(IZI), and that the norm of the
 linear operator in . } is therefore O(IzI). This shows that i\(z) = O(Izlm+l) and
 proves (2m+i).
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 As soon as m is large enough, Xm = {O}, hence Gm+1 = Gm This gives G, as
 in (i) satisfying

 (6) Tm o F-G o Tm = O(IzIm)

 for all m > 2. (Note that anything that is O(IzIm) is also O(IzIm-1), etc.) Finally
 we apply G-1 to (6) to obtain (1).

 We are now ready for the main result:

 THEOREM. Suppose that F E Aut(Cn), F(O) = 0, and all eigenvalues Ai of
 F'(O) satisfy lAil < 1.

 Then there exists a biholomorphic map 41 from Cn onto the region

 Q= {zE Cn: limFk(z)=O}.

 Moreover, 1 can be chosen so that J4' _ 1 if JF is constant.

 PROOF. As before, we choose coordinates so that A = F'(O) is lower diagonal,

 and AJ > ... > I An I We can then find a diagonal operator S, as in the proof of
 Lemma 2, which makes Ao = S-1AS so close to being diagonal that IAozl < clzl
 holds for some c < 1 and all z E Cn. (This uses the assumption IA,1 < 1.) If we
 put Fo = S-1FS and prove the theorem for Fo, obtaining (Do and 0o, then it holds
 also for F, with (D = S4oS-' and Q = S(Qo).

 So we may assume, in addition to the stated hypotheses, that IhAIl < 1.
 Fix ae, IhAIl < a < 1. Then there exists r > 0 so that

 (1) IF(z)I < alzl if lzl < r.

 It follows, as in the proof of Theorem 9.1, that rB C Q, that Q is a region, and
 that F(Q) = Q.

 Next, we associate G to F as in Lemma 3, and apply Lemma l(a) to G-1 in
 place of G to conclude (with the aid of the Schwarz lemma) that there is a constant

 -I < oo so that

 (2) IG-k(w) - G-k(wW)l < ykIW - w'I (k = 1, 2,3, ...)

 for all w,w' E Cn with lwl < 1/2, Iw'l < 1/2.
 Fix a positive integer m so that am < 1/a.

 Lemma 3 gives us a polynomial map T = Tm, with T(O) = 0, T'(O) = I, and it
 gives us constants 6 > 0, Ci < oo, so that IwI < 6 implies

 (3) IG-'TF(w) - T(w)I < Clwilm.

 Now let E C Q be compact. Then F8(E) c rB for some integer s. Hence
 Fs+k(E) c Fk(rB) c akrB, for all k > 0, by (1). It follows that there is a
 constant C2 < oo so that

 (4) IF k(z)| I< C2a k < 6
 for all z E E and all k > ko. For such z and k, (3) and (4) show that

 (5) I G-lTFk+ 1 (z) - TFk (z) I < C, I Fk (z) I m < C, C2m amk.
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 For large k, IG-lTFk+l(z)I and ITFk(z)I are < 1/2, for all z E E. Hence (2)
 can be applied to (5), and -we conclude that for k > k1 and for all. z E E,

 (6) IG-k- lTFk+1 (z) -G-kTFk (z)I < ClC2(-yam)k.

 Since -yam < 1, we have proved:

 The limit

 (7) TJ!(z) = lim (G-k o To Fk)(z)
 k-_oo

 exists, uniformly on every compact subset of Q, and defines a holomorphic map

 I: Q -_ Cn which satisfies 1(0) = 0, T'(0) = I, as well as the functional equation

 (8) G-1o ToF='='.

 Since F(Q) = Q, (8) shows that T has the same range as G-1 o T. Thus

 (9) @(Q) = G-Q(,P(Q)) = . = G-k(,p (0)) =

 and since T@(Q) contains a neighborhood of 0, Lemma l(b) shows that T@(Q) = Cn.

 Assume next that x,y E Q and T@(x) = @ (y). By (8), 1 o F = G o T. Hence
 'I(F(x)) = 'I(F(y)). Continuing, we see that %I(Fk(x)) = I(Fk(y)) for all positive
 k. But when k is sufficiently large, both Fk(x) and Fk(y) are in a neighborhood of
 O in which T is one-to-one. Thus Fk(X) - Ek(y), and this implies x = y. So I[ is
 one-to-one in Q.

 We have now proved that % is a biholomorphic map from Q onto Cn.

 The first conclusion of the theorem is therefore satisfied by 1 = ''-1.

 Finally, assume that JF is constant. Since G is a polynomial automorphism of
 cn, the polynomial JG has no zero in Cn, hence is also constant. In fact, JG = JF
 because G'(O) = F'(0). If we apply the chain rule to IQ o F = G o IQ, we obtain, for
 z E Q,

 (10) (J'4)(F(z))(JF)(z) = (JG)(@'(z))(J'I')(z).

 Hence

 (11) (JJIP)(z) = (J J)(F(z)) = = (J ,)(Fk(z)) = ...

 Since Fk(z) -O 0 as k -- oo we conclude that

 (12) (J'T)(z) = (J IF)(0) = 1

 for all z E ?. Hence JJ _ 1 on Cn.
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 REMARK. In the generic case, the eigenvalues of F'(0) satisfy none of the rela-
 tions that give rise to the "special" basis elements of ?Em In that case, Xm = {O}
 for all m, the proof of Lemma 3 gives G = A, and the functional equation (8) can
 be written in the form

 (13) oFoT-1=A.

 One refers to this as "linearizing" the map F, by a biholomorphic change of vari-
 ables.
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