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We discuss the monodromy action of loops in the horseshoe locus of the Hénon map

on its Julia set. We will show that for a particular class of loops there is a certain

combinatorially-defined subset of the Hénon Julia set which must remain invariant under

the monodromy action of loops in certain regions. We will then describe a conjecture

for what the monodromy actions of these loops are as well as a possible connection

between the algebraic structure of automorphisms of the full 2-shift and the existence of

certain types of loops in the horseshoe locus.
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CHAPTER 1

INTRODUCTION

1.1 Hénon Mappings

In 1963, Lorentz [Lor63] introduced a three-dimensional differential equation which

was an attempt at a simplified model of convection of air currents in the atmosphere.

There is a particular Poincaré first-return map that Hénon [Hén76] noticed had an action

that is qualitatively similar to, but not exactly equal to the two parameter polynomial

diffeomorphism of the plane, now called the Hénon map:

Hb,c :

 x

y

 7→
 x2 + c − by

x


Over the past four decades, the Hénon map has arguably been the most-studied multi-

dimensional dynamical system. This is in part due to the fact that the Hénon mapping

is a perturbation of the (mostly) well-understood one-dimensional logistic family and

has a relatively simple formulation, yet the dynamics of the Hénon map are fantastically

complicated and the Hénon map exhibits chaotic phenomena that do not appear in one-

dimensional maps.

Subsequent to the success realized in understanding logistic maps by complexifying

and bringing complex analytic techniques to bear, in the 1980s, Hubbard [Hub86] had

the idea to complexify the Hénon mapping and examine structures in complex dynami-

cal and parameter space in order to try to glean insight into the real mappings.

One result revealed through the work of Hubbard and Oberste-Vorth [HOV94a]

is that there is a large region of parameter space, called the horseshoe locus, where

the dynamics on the Julia set is hyperbolic and conjugate to Smale’s horseshoe map.
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Arai [Ara08] has more recently exhibited loops in this horseshoe locus in addition to the

“obvious” classes of loops exhibited in Hubbard and Oberste-Vorth’s work. If one has a

loop in the horseshoe locus, one can continuously follow points of the Julia set around

and back to some (possibly different) point in the Julia set at the basepoint. This induces

an action on the Julia set at the basepoint of the loop, which is called the monodromy

action associated with the loop. The monodromy action maps a loop to a continuous

automorphism of the Julia set of the basepoint of the loop, and this automorphism must

commute with the action of the Hénon map. We call the image of the monodromy action

the induced monodromy group, and (up to conjugacy) the monodromy group is indepen-

dent of the basepoint of the loop in path-connected regions of the horseshoe locus.

From the monodromy action of a loop in parameter space, one can deduce impli-

cations on what types of dynamics must occur as the loop is homotoped to a constant,

and we hope that further results may use monodromy as one of many tools in develop-

ing a road map of Hénon parameter space similar to Douady, Hubbard, Schleicher, and

Milnor’s combinatorial description of quadratic polynomial parameter space.

1.2 Monodromy Image Conjecture

In the complement of the Mandelbrot set, the Julia set is hyperbolic and isomorphic

to the one-sided shift on sequences of two symbols. Aut
(
Σ+

2 , σ
)

is generated by the

automorphism that acts on sequences by exchanging A and B. The generator of the

fundamental group of the complement of the Mandelbrot set induces this automorphism

on the Julia set at any base point. In other words, the induced monodromy group of the

shift locus of quadratic polynomials is Aut
(
Σ+

2 , σ
)
.

For degree d one-complex-dimensional polynomial maps, there is also a shift locus
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L in parameter space, where the polynomial restricted to the Julia set is hyperbolic and

conjugate to the one-sided shift on d symbols. Loops in L based at a specific basepoint

also have a continuous monodromy action on Σ+
d which commutes with the shift. There

is again a natural monodromy action π1(L) 7→ Aut(Σ+
d , σ). The situation is here is more

complicated, as whenever d > 2, then Aut(Σ+
d , σ) is infinitely generated. However, as

Blanchard, Devaney, and Keen [BDK91] show, the induced monodromy group of the

shift locus is again Aut(Σ+
d , σ), and moreover, Blanchard, Devaney, and Keen give an

explicit method to realize the generators.

Based on these facts, Hubbard conjectured that the pattern continued in the two-

dimensional case.

Conjecture 1.1 (Hubbard). The induced monodromy group of the horseshoe locus to-

gether with the shift generate Aut(Σ2, σ).

The one-sided shifts are relatively well-understood. By contrast, the group of con-

tinuous automorphisms of the two-sided shift on two symbols which commute with the

shift is not [BLR88]. We know it contains as subgroups all finite groups as well as Z

and the product of countably many Z’s. It also contains a subgroup isomorphic to the

free group on infinitely many generators. It is unknown if the group is generated by

involutions and the shift. No nontrivial generating set is known. Proving or refuting

Conjecture 1.1 would be a significant advance for automata theory as well as dynamics.

1.3 Monodromy Action Conjectures

The Mandelbrot set lives in a complex slice of Hénon parameter space. Koch ([Koc05]

and [Koc07]) experimentally found that components of the Mandelbrot set bifurcate in
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Hénon parameter space into many pieces, called herds. All of the interesting loops in the

horseshoe locus that are presently known wrap around these herds. Extensive computer

experimentation has led to Conjecture 8.3, which describes what the Monodromy action

is for this class of loops which wrap around Koch’s herds.

Conjecturally, non-hyperbolic components in parameter space can be labeled with a

finite string on two symbols, by which herd they are in and can also be followed back to a

region of the Mandelbrot set. Conjecture 8.3 states that the monodromy action of a loop

around such a non-hyperbolic component in parameter space is described by a natural

generalization of marker automorphisms, which we call compound marker automor-

phisms (defined in Chapter 8). We postulate that the compound marker automorphism

describing the monodromy action for such a loop has two parts. Our conjecture is that

the prefix of the marker string comes from the labeling of which herd the looped com-

ponent is in and that the suffix of the marker string comes from the kneading sequences

realized by the polynomials in the region of the Mandelbrot set where the looped com-

ponent can be followed back to as the Jacobian moves to 0.

An example illustrating Conjecture 8.3 is that experimentally we have found that

the monodromy action of a loop around the B-herd of the region further out than the

airplane polynomial in the natural ordering of the Mandelbrot set to be described by

the marker automorphism B ? BAA. We conjecture that the B that comes before the ?

corresponds to the fact the loop goes around the B herd and that the BAA coming after

the ? corresponds to the fact that every polynomial that is further out than the airplane in

the natural ordering on the Mandelbrot set has a kneading sequence with initial segment

BAA.

It is possible to construct marker strings which do not yield automorphims. Con-

jecture 8.4 states that when this occurs, there is some obstruction in parameter space to
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loops going around the prescribed herds and only the prescribed herds.

1.4 Structurally Stable Set

If Conjecture 8.3 is correct, then loops around non-hyperbolic components coming from

any particular region of the Mandelbrot set must have a trivial action on all points of the

Julia set that lack a particular coding that relates to the symbolic dynamics present in

that region. Though we don’t prove Conjecture 8.3, we do prove this consequence of the

conjecture in Theorem 7.5, which states that the monodromy action must be invariant

on the points in the Julia set that lack a particular (finite) list of words in their symbolic

coding.

To this end, we use two powerful tools. The first is Milnor’s orbit portrait construc-

tion in one complex variable dynamics which is described in [Mil00] and was inspired

by the works of Douady, Hubbard, and Schleicher ([DH82], [DH84], [DH85], [Sch94],

[Sch00], and [Sch04]). Milnor’s construction gives a puzzle decomposition of one-

complex-dimensional dynamical space. With every orbit portrait, we get a Markov

graph Γ that describes the allowable transitions between puzzle pieces. Most impor-

tantly, we get expansion on all of the puzzle pieces that don’t include the critical point.

Hence, the set of points XWc (defined in Chapter 5 as the set of points which never visit

this critical puzzle piece) is hyperbolic and stable under small perterbation. Also, we

get a two-symbol coding of this set described by Corollary 5.22, which states that all

possible two-symbol codings are realizable by points of XWc , with the exception that

there is a finite list of finite strings which may only appear at the beginning of a cod-

ing. This finite list of strings depends only on the abstract orbit portrait from which

the puzzle pieces were generated and is closely related to the kneading sequences of
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one-dimensional polynomials that satisfy the orbit portrait.

The second major tool we use is Hubbard and Oberste-Vorth’s crossed mappings, as

described in [HOV94b]. Roughly speaking, a crossed mapping is a map from one bi-

disk over another with contraction in one direction and expansion in the other. Hubbard

and Oberste-Vorth show that if we have a bi-infinite sequence of degree-one crossed

maps, then there is precisely one point who visits each bi-disk in turn.

In Chapter 6, we construct two-dimensional puzzle pieces which are extensions in

the y-direction of the one-dimensional puzzle pieces from Chapter 4. Then the map-

ping of one puzzle piece over another in one-variable dynamics implies that there is a

1-crossed mapping of the corresponding two-dimensional puzzle pieces. Any bi-infinite

path in Γ then yields a point of the Hénon Julia set. This construction works in a neigh-

borhood of any one-dimensional quadratic wake living inside Hénon parameter space,

so this subset of the Julia set forms a trivial fibre-bundle, and we see in Chapter 7 that

any loop in this region must have a trivial monodromy action on this subset.

This subset corresponds to precisely the points whose itinerary avoids the critical

puzzle piece. The points which avoid the critical puzzle piece are those which do

not have in their itineraries the initial kneading sequences of polynomials in that re-

gion of the Mandelbrot set. Theorem 7.5 expresses the fact that there must be a trivial

monodromy action on this combinatorially-defined subset in a domain around the one-

dimensional wake.
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CHAPTER 2

PRELIMINARIES

2.1 Standard Definitions

For the relevant definitions, we follow [HOV94a], [BS06], and [Ara08]. For parameter

values b, c ∈ C, we define the Hénon map Hb,c : C2 → C2 by:

Hb,c :

 x

y

 7→
 x2 + c − by

x


When b = 0, the first coordinate reduces to a quadratic polynomial on C. When b , 0,

the map is diffeomorphism of C2. We define the following dynamically meaningful

subsets of C2:

K±b,c =


 x

y


∣∣∣∣∣∣∣∣∣ lim

n→∞

∥∥∥∥∥∥∥∥∥H◦±n
a,c

 x

y


∥∥∥∥∥∥∥∥∥ , ∞


as well as:

U±b,c = C2 \ K±b,c

J±b,c = ∂K±b,c = ∂U±b,c

Ub,c = U+
b,c ∩ U−b,c

Kb,c = K+
b,c ∩ K−b,c

Jb,c = J+
b,c ∩ J−b,c

KRb,c = Kb,c ∩ R
2

JRb,c = Jb,c ∩ R
2

7



We also define the Green’s function G+
b,c : C2 → R by:

G+
b,c

 x

y

 = lim
n→∞

1
2n log

pr1

H◦nb,c

 x

y





where pr1 is projection to the first co-ordinate.

For any parameter value (b, c), there exists an Rb,c ∈ R
+ so that dynamical space is

partitioned into three regions:

V0
b,c =

{
(x, y)

∣∣∣|x| ≤ Rb,c and |y| ≤ Rb,c

}
V−b,c =

{
(x, y)

∣∣∣|y| ≥ |x| and |y| ≥ Rb,c

}
V+

b,c =
{
(x, y)

∣∣∣|x| ≥ |y| and |x| ≥ Rb,c

}

with the dynamics on these sets such that Hb,c(V+
b,c) ⊂ V+

b,c ⊂ U+
b,c and H−1

b,c(V
−
b,c) ⊂ V−b,c ⊂

U−b,c.

We define the complex horseshoe locus as the following region in parameter space:

HC =

{
(b, c) ∈ C2

∣∣∣∣∣Hb,c|Kb,c is hyperbolic and conjugate to the horseshoe
}

and we define the real horseshoe locus as the following region in parameter space:

HR =

{
(b, c) ∈ R2

∣∣∣∣∣Hb,c|KRb,c
is hyperbolic and conjugate to the horseshoe

}
Here, the horseshoe refers to the space of bi-infinite sequences on two symbols under

the action of the shift map (also referred to as the full 2-shift).

LetHOV =

{
(b, c) ∈ C2

∣∣∣∣∣b , 0 and |c| > 2(1 + |b|)2
}
, the Hubbard-Oberste-Vorth re-

gion described in [OV87], which is a connected subset ofHC. LetHC0 be the connected

component ofHC which containsHOV. It is unknown ifHC = HC0 .
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Also define:

Conn =

{
(b, c) ∈ C2

∣∣∣∣∣Jb,c is connected
}

Let fc(z) = z2 + c. Let M denote the Mandelbrot set. Let A and B be hyperbolic

components of M with the parameter rays with angles θ−
A

and θ+
A

landing at the root

point of A and the parameter rays with angles θ−
B

and θ+
B

landing at the root point of B.

We define a partial ordering ≺ on hyperbolic components as follows: A ≺ B if any only

if (θ−
B
, θ+
B

) ⊂ (θ−
A
, θ+
A

). Also define the Green’s function G : C → R+
0 associated with fc

to be:

G(z) = lim
n→∞

1
2n log+

(∣∣∣ f ◦nc (z)
∣∣∣)

Let Σ2 denote the two-sided shift on two symbols. Let Σ+
2 denote the one-sided shift

on two symbols, let σ denote the shift operator on each of these spaces, and let δ denote

the automorphism of each of these spaces that acts on sequences by exchanging the two

symbols.

For any dynamical system f : M → M on a topological space, let Aut(M, f ) denote

the continuous automorphisms of M that commute with f . Also let lim
←−−

(M, f ) denote the

inverse limit system:

lim
←−−

(M, f ) =
{
(. . . , x−1, x0, x1, . . .)

∣∣∣xi ∈ M and f (xi) = xi+1 for all i ∈ Z
}

Define b0 = 1
100 , c = −3, and p0 = (b0, c0). Then p0 ∈ HOV ∩H

R. Also there is a

canonical homeomorphism from Kb0,c0 to Σ2 which conjugates Hb0,c0 with σ.

9



2.2 Monodromy Action

For (b, c) ∈ HC , then Jb,c = Kb,c is a Cantor set and varies continuously with respect to

(b, c). Let K be the space of all points which are bounded in positive and negative time,

each associated with their base points:

K =


bc


x

y


∣∣∣∣∣∣∣∣∣
x

y

 ∈ Kb,c


The restriction of K to the horseshoe locus is a locally trivial bundle of Cantor sets.

Given some loop γ : [0, 1]→ HC based at (b0, c0), we can follow the points of Jb0,c0

along γ back to the original base point, giving a homeomorphism on Jb0,c0 which com-

mutes with Hb0,c0 , and moreover, this homeomorphism depends only on the homotopy

type of γ. Because of the canonical identification of Jb0,c0 with Σ2, this induces a natural

map ρ : π1(H , (b0, c0))→ Aut(Σ2, σ).

The facts that ρ(1) = 1 and ρ(γ1 ◦ γ2) = ρ(γ2) ◦ ρ(γ1) mean that ρ is an anti-

homomorphism. ρ is called the monodromy action.

10



CHAPTER 3

MONODROMY IN THEHOV REGION

3.1 Inverse Limit Description

We know from [HOV94b] that if c < M, then there exists some 0 < εc so that for all

b ∈ C with 0 < |b| < εc we have (Jb,c,Hb,c) � lim
←−−

(Jc, fc). Let L be the subset C2

described here. Let π2 : L → (C \M) be the projection that takes (b, c) to c.

For c <M, the removal of the two inverse images of the dynamical ray that includes

c partitions dynamical space, and there is an isomorphism between Jc and Σ+
2 , where one

direction (Jc → Σ+
2 ) is given by mapping a point to its itinerary relative to this partition.

This encoding gives a conjugacy between fc and the shift operator. If c < R+, then

this isomorphism can be made canonical by assigning the symbol A to the side of the

partition that includes the dynamical ray of angle zero and assigning the symbol B to the

side of the partition that includes c. For (b, c) ∈ L, we see that the two-symbol coding

on Jc induces a two-symbol coding on Jb,c which gives a conjugacy between the maps

Hb,c : Jb,c → Jb,c and σ : Σ2 → Σ2.

For parameter values in L, the Julia set of the Hénon map at γc(t) is the inverse limit

system of the quadratic map at π2(γc(t)), so we precisely have the setup described in

Appendix A.

3.2 Homotopy ofHOV

HOV is homeomorphic to the space (C\ {0})× (C\D), the product of two spaces which

each have homotopy group isomorphic to Z, so Π1(HOV) ≡ Z × Z.
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Define γb : I → HOV by γb(t) =
(

1
100e2πit − 3

)
and define γc : I → HOV by

γc(t) =
(

1
100 ,−3e2πit

)
.

γb and γc are both based at p0 and lie in L, and together they generate the funda-

mental group ofHOV.

3.3 Monodromy Action of γb

γb projects by π2 down to C as the trivial constant path at a base point. Trivial paths

must have trivial monodromy actions, so by Theorem A.1, ρ(γb) = 1.

3.4 Monodromy Action of γc

The loop around the Mandelbrot set induces the monodromy action δ on Σ+
2 . Hence, by

Theorem A.8, ρ(γc) = δ.
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CHAPTER 4

ORBIT PORTRAITS AND PUZZLES

The following chapter will present several definitions which give combinatorial de-

scriptions of one-complex-dimensional quadratic maps. The last section in this chapter

is devoted to illustrating these definitions with two examples.

4.1 Formal Orbit Portraits

Let us recall a construction from [Mil00].

Definition 4.1. A formal orbit portrait (or abstract orbit portrait) is a finite ordered

p-tuple of subsets of the circle P =
(
A1, A2, . . . , Ap

)
such that the following conditions

are satisfied:

1. Each A j is a finite subset of R/Z.

2. For each j modulo p, the doubling map t 7→ 2t (mod Z) takes A j bijectively to

A j+1 and preserves cyclic ordering of the elements.

3. All of the angles in A1 ∪ · · · ∪ Ap are periodic under angle doubling with common

period rp.

4. The sets A1, . . . , Ap are pairwise unlinked. This means that for i , j, the two sets

Ai and A j can be contained in disjoint, connected subsets of R/Z.

Definition 4.2. Let P =
{
A1, . . . , Ap

}
be a formal orbit portrait. For each A j, the con-

nected components of (R/Z) \ A j will be called the complementary arcs of A j.

Theorem 4.3 (Milnor). For each A j in a formal orbit portrait P, all but one of the

complementary arcs to A j are taken diffeomorphically to the complementary arcs of
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A j+1 by the angle doubling map. The remaining complementary arc of A j has length

greater than 1/2, and its image covers one of the complementary arcs to A j+1 twice and

every other complementary arc exactly once.

Definition 4.4. Let P =
{
A1, . . . , Ap

}
be a formal orbit portrait. The longest comple-

mentary arc for every A j will be called the critical arc for A j. The complementary arc

which it covers twice under the doubling map will be called the critical value arc for

A j+1 (with the subscripts modulo p).

Theorem 4.5 (Milnor). If P is a formal orbit portrait, then among the complementary

arcs for the various A j ∈ P, there exists a unique arc IP of shortest length. This shortest

arc is the critical value arc for its A j and is contained within all other critical value

arcs. This arc is called the characteristic arc for P.

4.2 Actual Orbit Portraits

Definition 4.6. An actual orbit portrait O for a one-dimensional quadratic map fc is a

repelling or periodic orbit along with the dynamical rays that land on that orbit.

Let O be an actual orbit portrait for the map fc and let (z1, . . . , zp) be the associated

periodic orbit. Each dynamical ray in an orbit portrait has an associated angle. For

i = 1, . . . , n, let Ap be the set of angles of the rays that land at Zi. Then the p-tuple

P =
(
A1, . . . , Ap

)
satisfies the four conditions of Definition 4.1 and is hence an orbit

portrait. We say that the actual orbit portrait O satisfies the formal orbit portrait P or

that fc satisfies the formal orbit portrait. Each actual orbit portrait satisfies exactly one

formal orbit portrait, whereas each polynomial fc may satisfy zero, finitely many, or

countably many formal orbit portraits.
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Moreover, Milnor showed precisely where in parameter space a given formal orbit

portrait is realized.

Theorem 4.7 (Milnor). If P is a formal orbit portrait with characteristic arc IP =

[θ−, θ+], then the two parameter rays Rθ− and Rθ+
land at the same parabolic bifurcation

point ofM.

Definition 4.8. The two parameter rays Rθ− and Rθ+
corresponding to the endpoints of

the characteristic arc of the abstract orbit portrait P along with their common landing

point partition parameter space into two sets: an open set containing 0 and a closed

set containing every parameter ray with angle in IP along with a part ofM. The latter

closed set is called the wake associated with P.

There is a 1-1 correspondence between abstract orbit portraits and parameter wakes.

Theorem 4.9 (Milnor). fc satisfies P if and only if c ∈ W, where W is the wake

associated with P.

4.3 Puzzle Pieces

For our purposes, it will be convenient to work with the following definitions of puzzle

pieces.

Definition 4.10. Given any actual orbit portrait O, removing the associated rays and

landing points cuts up the plane into a finite number of open subsets of C. We call these

open sets and the finite number of landing points of these rays are called the preliminary

puzzle pieces associated with the actual orbit portrait O (or equivalently, associated

with the wakeW).
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The preliminary puzzle pieces are some number of singletons and open subsets of

the plane.

Each ray in an actual orbit portrait maps to another ray in the same portrait. The

boundaries of the preliminary puzzle pieces are made up entirely of rays in the portrait.

The image of any preliminary puzzle piece under fc is a union of other preliminary

puzzle pieces. The mapping is a homeomorphism from each preliminary puzzle piece

to a union of other preliminary puzzle pieces, with the sole exception of the preliminary

puzzle piece that contains the critical point. This preliminary puzzle piece double covers

the preliminary puzzle piece that contains the critical value and singly covers some other

preliminary puzzle pieces.

We wish to isolate this 2-to-1 behavior. The boundary of the preliminary puzzle

piece that contains the critical value is the union of the two rays whose angles are the

endpoints of the characteristic arc for the corresponding abstract orbit portrait. We look

at the two sets of inverse images of these two rays. One set is already in our actual orbit

portrait. The other set is inside the preliminary puzzle piece that contains the critical

point.

Definition 4.11. Further subdividing the preliminary puzzle piece that contains 0 by

the inverse image of the two rays from the characteristic arc gives the puzzle pieces

associated with the actual orbit portrait. The two characteristic rays have a common

landing point, and this landing point has two distinct inverse images. We also let both

of these inverse images be puzzle pieces.

Now, the image of each puzzle piece under fc is a union of other puzzle pieces. These

maps are all homeomorphisms, with the sole exception of the map from the puzzle piece

that contains zero to the puzzle piece which contains the critical value. The puzzle piece

that contains the critical point is called the critical puzzle piece (usually denoted Π0)
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and the puzzle piece that contains the critical value is called the critical value puzzle

piece (usually denoted Π1). The mapping from the critical puzzle piece to the critical

value puzzle piece is a branched double cover. All of the singleton puzzle pieces are on

the repelling or parabolic cycle of the actual orbit portrait, with one exception, and that

exception is one of the two inverse images of the singleton puzzle piece that borders the

critical value puzzle piece. Both inverse images of this singleton are on the boundary of

the critical puzzle piece.

The puzzle pieces satisfy the Markov condition. That is to say that if Πi and Π j are

puzzle pieces, then either Πi = Π j or Πi∩Π j = ∅ and either Π j ⊆ fc(Πi) or fc(Πi)∩Π j =

∅. In addition, it is clear that the puzzle pieces form a partition of the Julia set, since

the only points of parameter space that are not in the union of the puzzle pieces are the

external dynamical rays.

Definition 4.12. We can represent the allowed dynamics with an associated directed

Markov graph Γ. We define the vertices of Γ to be the puzzle pieces {Πi}. We let there

be an arrow Πi → Π j in Γ if and only if fc(Πi) ⊃ Π j. We also sometimes write a double

arrow Π0 ⇒ Π1 to signify that fc : Π0 → Π1 is a branched double cover.

Lemma 4.13. LetW be a wake with associated abstract orbit portrait P. If c, c′ ∈ W,

then the two Markov graphs coming from the puzzle pieces associated with P for fc and

fc′ are isomorphic.

Proof. The puzzles associated with W at c and c′ have the same sets of rays in each

puzzle piece, and they also have the same sets of rays on the boundaries. fc and fc′ are

homeomorphisms an all except for one puzzle piece. The dynamics on the rays is the

doubling map on the circle. So where the rays map determines where the puzzle pieces

map. �
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The puzzle pieces themselves are not the same throughout the wake, because these

are specific subsets of dynamical space, but they do keep the same combinatorics

throughout the wake.

4.4 Fattened Puzzle Pieces

For every puzzle piece, we will define an associated bounded puzzle piece.

Definition 4.14. The bounded puzzle piece Πbd
i associated with a given puzzle piece Πi

is defined as:

Πbd
i = Πi ∩G−1([0, 1))

where G is the associated Green’s function for fc. (The use of the half-open unit interval

here is arbitrary. We could have used any interval [0,m) with m > 0 in its place.)

For every bounded puzzle, piece, we will define an associated fattened puzzle piece.

There are two types of bounded puzzle pieces: singletons and open sets. We will de-

fine the associated fattened puzzle pieces for these two types of bounded puzzle pieces

separately.

For c ∈ int(W), because the periodic cycle associated with O is repelling, we can

find small disks D1, . . . ,Dp centered at the points of this repelling cycle so that Di+1 is

relatively compact in fc(Di). The points on this repelling cycle are on the boundaries of

the puzzle pieces. We can make these disks small enough so that their closure does not

contain the critical point. (For technical reasons, we also need the disks small enough

so that Di∪Π j and fc(Di)∪Π j are simply connected for every choice of i and j. We also

need the images of these disks to have trivial pair-wise intersections and to be contained

in the union of the closures of the open bounded puzzle pieces.)
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Definition 4.15. Define the fattened puzzle piece ∆i associated with a bounded singleton

puzzle piece {pi} to be the aforementioned disk Di which contains pi. For the unique

singleton that is not in the repelling cycle, its negative is in the repelling cycle, so we

use the negative of the fattened puzzle piece around its negative for the fattened puzzle

piece of this singleton.

Every ray that lands at a point pi in the repelling periodic cycle associated with O

must cross ∂Di at some point d. The exterior of the Julia set is open, so there is some

distance on either side of d in ∂Di that is also not in the Julia set. Thus, there is also some

neighborhood of the angle of the dynamical ray so that the nearby dynamical rays must

also cross ∂Di. There are finitely many rays in the actual orbit portrait so there must be

some minimum angle ε that all rays can be perturbed and still intersect the same ∂Di.

Hence, if Rθ is in the orbit portrait O and lands at pi and |θ − θ′| ≤ ε then Rθ′ must also

intersect ∂Di.

Definition 4.16. Define the fattened puzzle piece associated with one of the open

bounded puzzle pieces as follows: We start with the corresponding bounded puzzle

piece. We add on to each bounded puzzle piece the fattened puzzle piece associated

with each singleton bounded puzzle piece on its boundary. We also widen each bound-

ary ray by an angle of ε.

Each fattened puzzle piece ∆i is associated with one of the original puzzle puzzle

pieces Πi. Trivially, we have that Πi ⊂ ∆i.

Theorem 4.17. When the arrow Πi → Π j occurs in the Markov graph for O, then

∆ j is relatively compact in fc(∆i). Additionally, if Πi is non-critical, then the map fc

is uniformly expanding on all of the points in ∆i that map to ∆ j, with respect to their

respective Poincaré metrics.
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Proof. When fc maps Πi over Π j, it is easy to see that fc maps each part of the boundary

of ∆i outside of the closure of ∆ j. The disks around each point were constructed so that

they would map over the closure of the next one. The outer boundary of ∆i will map

outside of ∆ j . The dynamics on the rays is the doubling map on angles, so perturbing a

ray’s angle of out by ε will perturb the angle of its image out by 2ε.

If Πi is non-critical, then Π j is not the critical value puzzle piece, and there are two

distinct branches of the inverse of fc on Π j. Let f −1
c be the branch of the inverse that

takes Π j inside of Πi. Then f −1
c : ∆ j → f −1

c (∆ j) is a holomorphic isomorphism and

preserves the Poincaré metric. Because ∆ j is relatively compact in fc(∆i), then f −1
c (∆ j)

is relatively compact in ∆i, and hence the inclusion map, ι : f −1
c (∆ j) → ∆i is a uniform

contraction.

Thus, the composition f −1
c : ∆ j → ∆i uniformly contracts Poincaré metrics. Hence

its inverse, fc :
(

f −1
c (∆ j)

)
→ ∆ j, is uniformly expanding. �

Corollary 4.18. There exists a metric on an open set containing the closure of the union

of the non-critical bounded puzzle pieces for which fc is uniformly expanding.

Proof. Let ∆0 be the fattened critical puzzle piece. Let D0 be a small disk centered at

zero that does not intersect any non-critical fattened puzzle piece. We can paste together

the Poincaré metrics from every non-critical fattened puzzle piece, using the Poincaré

metric coming from the corresponding fattened puzzle piece when in each bounded

puzzle piece. The result gives an expanding metric on the union of the non-critical

bounded puzzle pieces. �
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4.5 Itineraries Relative to Orbit Portraits

Definition 4.19. The union of the non-critical puzzle pieces has two connected compo-

nents. Let AWc denote the connected component which contains the landing point of the

dynamical ray with angle zero, and let BWc be the connected component that intersects

the characteristic dynamical rays. When c ∈ M, then BWc will contain the critical value.

Definition 4.20. If fc satisfies an abstract orbit portrait P associated with a wake W

and the forward orbit of z never enters the critical puzzle piece of P, then we say that

z has aW-itinerary or has an itinerary relative toW. The itinerary it has is the one-

sided infinite sequence of regions (either AWc or BWc ) that the forward images visit. (We

sometimes abbreviate these regions as A and B when c andW are clear from context).

4.6 Kneading Sequences

Let us now introduce a construction, called kneading sequences, from [Sch94], which

was inspired by [DH82].

4.6.1 Kneading Sequences of Quadratic Polynomials

Choose θ, ϕ ∈ S1. Let the θ-itinerary Iθ(ϕ) of an angle ϕ be a sequence of symbols

defined in the following manner:
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The nth entry of Iθ(ϕ) =



A when 2nϕ ∈
(
θ+1

2 ,
θ
2

)
B when 2nϕ ∈

(
θ+1

2 ,
θ
2

)
(

B
A

)
when 2nϕ = θ

2(
A
B

)
when 2nϕ = θ+1

2

Schleicher defines the kneading sequence of an angle to be K(θ) = Iθ(θ). Also

K+(θ) = limθ′↘θ K(θ′) and K−(θ) = limθ′↗θ K(θ′). Also, K+(θ) is equal to K(θ) with ev-

ery boundary symbol replaced with the top letter, and K−(θ) is K(θ) with every boundary

symbol replaced with the bottom letter.

If A is a hyperbolic component of M, then there are two external parameter rays

θ− and θ+ landing on its root point. K(θ−) has the same symbols as K(θ+), with the

exception that wherever one has the symbol
(

A
B

)
in a position, the other has the symbol(

B
A

)
in the same position and vice versa. We define K(A) to be the common symbols

fromK(θ+) and K(θ−), except we place a ? in every position where one has
(

A
B

)
and the

other has
(

B
A

)
. Also we define K−(A) to be the common sequence K−(θ−) = K+(θ+), and

we define K+(A) to be the common sequence K−(θ+) = K+(θ−).

Definition 4.21. WhenA is a hyperbolic component ofM, we define the characteristic

kneading sequence ofA to be K+(A).

Theorem 4.22 (Schleicher). Let A be a hyperbolic component with angles θ−
A

and θ+
A

landing at its root and B be a hyperbolic component with angles θ−
B

and θ+
B

landing at

its root with A ≺ B (or equivalently 0 < θ−
A
< θ−

B
< θ+

B
< θ+

A
< 1), and ϕ in either

(θ−
A
, θ−
B

) or (θ+
B
, θ+
A

). If there is no hyperbolic component of period k or less between A

and B, then the kth term in the sequences K+(A), K−(B), K(ϕ) are all identical.

The kneading sequence of an angle can only change at the ith position when moving

across a point of the circle that is periodic with period i. In fact, it must change. And
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when the angle is on the periodic cycle of period i, the ith term must be either
(

A
B

)
or

(
B
A

)
.

So, the first k terms in the itineraries of points of the circle are constant on intervals of

the circle where there are no periodic cycles with period less than or equal to k.

Definition 4.23. We say a hyperbolic component B is conspicuous to a hyperbolic com-

ponentA ifA ≺ B,B has a period no greater than that ofA and there are no hyperbolic

components of period lower than that of B between the two in the ≺ ordering.

Note that a wake is always conspicuous to itself, and for a given wake, there can

only be finitely many wakes conspicuous to it. Also, as a relation, conspicuousness

is not transitive or commutative. For readers familiar with the visibility relationshio,

conspicuousness is similar to visibility, though they are distinct. Compare with [Sch94].

The author is indebted to Dierk Schleicher for the idea behind the proof of the fol-

lowing theorem:

Theorem 4.24. Let W be the wake of a hyperbolic component A. There are finitely

many hyperbolic components conspicuous to A. Let these be A1, . . . ,Ar. Choose any

parameter ray Rθ inside ofW that is not one of the finitely many rays that land on the

root points of the components conspicuous toA. Then there is someAi so that K(θ) and

K+(Ai) have a common prefix of length m, where m is the period of Ai.

Proof. We use induction on the ordering of wakes. Let n be the period ofA. If the only

component conspicuous to A is itself then then there are no periodic angles inW with

period less than the period of A. Hence, the first n terms of the kneading sequences

of angles must be constant inside of W. Hence every angle in W has a prefix of the

characteristic kneading sequence ofA.

Alternately, if r > 1, then either Rθ is contained only inA and no other conspicuous
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component, or Rθ is contained in some conspicuous component other than A. If the

latter, we induct on this component.

If the former, then let θ−
A

and θ+
A

be the two parameter rays that land on the root point

of A. For any period k ≤ n, there must be an even number of angles between θ−
A

and

θ of period k under doubling, for if there was an odd number, then there would have to

be at least one wake of period k that contains Rθ and is contained inW. And Rθ would

have to be contained in some wake conspicuous toW.

Since there are an even number of periodic angles of period k between θ−
A

and θ,

then the kth term in the kneading sequence must flip an even number of times between

these two angles, so the kth terms of the sequences K+(A) and K(θ) must be the same.

This is true for every k ≤ n, so K+(A) and K(θ) have the same initial length-n string.

Note also that if θ is one of the rays that land on the root points of the components

then K(θ) is not, strictly speaking, an AB coding, but both K+(θ) and K−(θ) satisfy the

consequent of the theorem statement (except for the two rays landing on A, and in this

case, exactly one of K−(θ) and K+(θ) do). �

4.6.2 Kneading Sequences of Orbit Portraits

We will define a characteristic kneading sequence for an orbit portrait and the associated

wake.

Let P be an abstract orbit portrait of period n with associated wake W. Choose

some c ∈ W. Then fc has an actual orbit portrait O that satisfies P.

Definition 4.25. The characteristic kneading sequence, K(W), of W will be a word

in A’s and B’s of length n and will be constructed as follows: Start at the point of the
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periodic orbit in O that borders on Π1, and list off the two-symbol itinerary of this point

relative to W up to, but not including the point on the orbit that borders Π0. The nth

symbol will be the opposite of the two symbol coding of this point that borders Π0.

This definition is somewhat counter-intuitive. The intuition for this choice is that

the characteristic kneading sequence is the initial segment of the kneading sequences of

polynomials that are “just-beyond” the hyperbolic component at the root ofW. We see

this in the following theorem:

Theorem 4.26. The characteristic kneading sequence for a wake of period n with hy-

perbolic componentA at its root is precisely the first n terms in K+(A).

Proof. Let P be the abstract orbit portrait associated with W. Let θ−1 be the an-

gle of the smaller of the two rays that borders the critical value puzzle piece. Let

θ−0 be the inverse image of θ−1 that is in P. Choose ε to be a small positive num-

ber. Then K(θ−1 + ε) is the itinerary of θ1 + ε under the partition of the circle{
(θ−0 + ε

2 , θ
−
0 + ε

2 + 1
2 ), (θ−0 + ε

2 + 1
2 , θ

−
0 + ε

2 )
}
. If ε is small enough, then the first n−1 terms

in this itinerary will be identical to theW-itinerary of the point of the periodic orbit that

borders Π1. The difference comes at the nth term. 2n−1(θ−1 +ε) = θ−0 +2n−1ε, which (when

ε is small enough) is on the opposite side of the partition as θ−0 , which is the angle of

the external parameter ray that lands on the point of the orbit bordering Π0. Hence the

nth term of K+(A) is the opposite of theW-coding of the point of the periodic orbit that

borders Π0. �

It is worth noting that if A is the hyperbolic component at the root of the wakeW,

then K+(A) is not the same as K(W). K+(A) is a one-sided infinite sequence on two

symbols. K(W) is a finite string of n symbols (where n is the period ofA andW) and

is just the first n symbols of K+(A).
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Corollary 4.27. Let Rθ be a parameter ray that lands in the interior of a wakeW. Then

either there is some wakeW′ conspicuous toW so that K(θ) begins with K(W′) or Rθ

is one of the boundary rays of a wake conspicuous toW. If the latter, then both K−(θ)

and K+(θ) begin with the characteristic kneading sequences of (different) wakes.

Proof. Consequence of Theorems 4.24 and 4.26. �

Thus, we see that the characteristic kneading sequence for a wake describes the

initial segments of the kneading sequences for the group of polynomials that come after

the hyperbolic region at the base of the wake, but before smaller wakes of lower period.

Sometimes we know the initial segments of the kneading sequence for all the subsequent

polynomials (when there are no smaller conspicuous wakes). Other times we only know

the initial segments of kneading sequences of polynomials in a wake that are not in one

of the wakes conspicuous to that wake.

4.7 Examples

The following two examples will illustrate the definitions in this chapter.

4.7.1 The Airplane

The following ordered triple of two-element sets is a formal orbit portrait:

Pair = ({3/7, 4/7} , {6/7, 1/7} , {2/7, 5/7})

Here, A1 = {3/7, 4/7}, A2 = {6/7, 1/7}, A3 = {2/7, 5/7}, and it is easily verified that Pair

satisfies the four conditions of Definition 4.1.
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The complementary arcs of {3/7, 4/7} are (3/7, 4/7) and (4/7, 3/7). The comple-

mentary arcs of {6/7, 1/7} are (6/7, 1/7) and (1/7, 6/7). The complementary arcs of

{2/7, 5/7} are (2/7, 5/7) and (5/7, 2/7). Among these, the critical arcs are (4/7, 3/7),

(1/7, 6/7), and (5/7, 2/7). The critical value arcs are (3/7, 4/7), (1/7, 6/7), and

(2/7, 5/7). The characteristic arc of Pair is (3/7, 4/7).

Figure 4.1: M with 3/7 and 4/7 parameter rays.

As shown in Figure 4.1, the two rays of angles 3/7 and 4/7 land at the same point

of the Mandelbrot set. Let Wair be the wake associated with Pair. The two parameter

rays 3/7 and 4/7 form the boundary ofWair. Wair is the region of parameter space to
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the left of these two boundary rays in Figure 4.1.

Figure 4.2: Airplane polynomial with actual orbit portrait Oair

Every polynomial in Wair satisfies the formal orbit portrait Pair. There is one

such polynomial at approximately c ≈ −1.75 called the airplane polynomial. The

airplane polynomial is characterized as the unique real quadratic polynomial with a

super-attracting period-three cycle. There is an actual orbit portrait Oair for the airplane

polynomial which satsifies Pair. Figure 4.2 shows the Julia set of the airplane along with

Oair.

Figure 4.3 shows the nine puzzle pieces associated with Pair. The five open puzzle
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Figure 4.3: Oair and the Julia set of airplane polynomial

pieces are Π0, Π1, Π2, Π3, and Π4. The four singleton puzzle pieces are Π5, Π6, Π7, and

Π8, and are represented in Figure 4.3 by green dots along the real axis.

Let Γair be the Markov graph of the allowable transitions between puzzle pieces of

Pair. Γair is illustrated in Figure 4.4.

LetAair be the hyperbolic component ofM which contains the airplane polynomial.

Then forAair, θ− = 3/7 and θ+ = 4/7.
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Figure 4.4: Γair

K(θ−) = BA
(A

B

)
K+(θ−) = BAA

K−(θ−) = BAB

K(θ+) = BA
(B
A

)
K+(θ+) = BAB

K−(θ+) = BAA

K(Aair) = BA?

K+(Aair) = BAA
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K−(Aair) = BAB

K(Wair) = BAA

The period ofWair is 3. There are no wakes contained withinWair of lower period.

Thus, the only wake conspicuous toWair is itself.

The fact that no other wakes are conspicuous to Wair implies that every angle be-

tween 3/7 and 4/7 has a kneading sequence which begins with the three symbols BAA.

Also implied is the fact that the kneading sequence of every hyperbolic component C

for which Aair ≺ C begins with the string BAA. Additionally, every wake contained in

Wair has a characteristic kneading sequence which begins with BAA.

4.7.2 BABB

The following ordered quintuple of two-element sets is a formal orbit portrait:

PBABB =

({
13
31
,

18
31

}
,

{
26
31

5
31

}
,

{
10
31
,

21
31

}
,

{
20
31
,

11
31

}
,

{
22
31
,

9
31

})
The characteristic arc of PBABB is (13/31, 18/31). The two parameter rays at angles

13/31 and 18/31 land on the same point of the Mandelbrot set, as is illustrated in Fig-

ure 4.5.

LetWBABB be the wake associated with PBABB and illustrated in Figure 4.5. Every

polynomial inWBABB satisfies PBABB. DefineABABB to be the hyperbolic component of

M at the base ofWBABB. Let fBABB be the polynomial at the center ofABABB. fBABB has

a super-attracting cycle of period 5 and satisfies PBABB. There is an actual orbit portrait

OBABB for fBABB associated with PBABB. Figure 4.6 illustrates OBABB along with the Julia

set of fBABB.
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Figure 4.5: Mandelbrot set with 13/31 and 18/31 parameter rays

Figure 4.7 illustrates the puzzle piece decomposition of dynamical space associated

with PBABB for the polynomial fBABB. The open puzzle pieces are Π0, Π1, Π2, Π3, Π4,

Π5, and Π6. The singleton puzzle pieces are all on the real axis and are marked with

green dots. These are Π7, Π8, Π9, Π10, Π11, and Π12.

Let ΓBABB be the Markov graph describing the possible transitions between these

puzzle pieces. Figure 4.8 shows ΓBABB.

For the hyperbolic component ABABB, θ− = 13/31 and θ+ = 18/31. The following
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Figure 4.6: OBABB and the Julia set of fBABB

may be computed:

K(θ−) = BABB
(A

B

)
K+(θ−) = BABBA

K−(θ−) = BABBB

K(θ+) = BABB
(B
A

)
K+(θ+) = BABBB

K−(θ+) = BABBA
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Figure 4.7: Puzzle pieces for fBABB associated with PBABB

K(ABABB) = BABB?

K+(ABABB) = BABBA

K−(ABABB) = BABBB

K(WBABB) = BABBA

Wair is contained inWBABB and there are no other wakesW′ of period lower than

3 (the period ofWair) for whichWBABB ≺ W
′ ≺ Wair. Also, the period ofWair is less

than the period ofWBABB. Thus,Wair is conspicuous toWBABB.
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Figure 4.8: ΓBABB

LetWBAA be the period 4 wake whose boundary is the union of the two parameter

rays at angles 7/15 and 8/15. WBAA is contained inWBABB. Also, the period ofWBAA

is 4, which is less than the period of WBABB, which is 5. However, WBAA is not con-

spicuous to WBABB, because WBABB ≺ Wair ≺ WBAA, and Wair has a smaller period

thanWBAA.

Every wake is conspicuous to itself, so the only two wakes conspicuous toWBABB

are itself andWair.
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CHAPTER 5

XWC

5.1 Defining XWc

Definition 5.1. Choose any parameter wakeW with associated abstract orbit portrait

P. Choose any c ∈ int (W). Then fc has an actual orbit portrait O with a repelling

periodic cycle that satisfies P. O has a critical puzzle piece Π0. Let

XWc =
{
x ∈ Jc

∣∣∣(∀n ∈ N0) f ◦nc (x) < Π0

}

XWc is the set of all points in the Julia set that do not visit the critical puzzle piece.

It is clear that XWc is forward-invariant under fc. XWc is not backwards-invariant,

because points in the critical value puzzle piece have inverse images in the critical puzzle

piece. These are the only points of XWc that do not have two inverse images in XWc . It is

also clear that points in XWc have a well defined two symbolW-itinerary.

Lemma 5.2. IfW′ ⊆ W are wakes and c ∈ int (W′), then XWc ⊆ X
W′

c

Proof. The critical value puzzle piece of W′ is contained in the critical value puzzle

piece ofW, so we also have containment of their respective critical puzzle pieces. �

Theorem 5.3. fc is uniformly expanding on XWc .

Proof. XWc is contained in the union of the non-critical bounded puzzle pieces. �

Corollary 5.4. XWc ⊂ Jc and every point of XWc is accessible.
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Proof. The statement is trivial for the singleton puzzle pieces since they are the landing

points of rays of the orbit portrait. We have expansion on a neighborhood of every other

point in XWc . �

Corollary 5.5. A point ofXWc is determined by its one-sided two-symbol coding relative

toW.

Proof. We have expansion on the union of all of the non-critical puzzle pieces. fc re-

stricted to the union of the puzzle pieces on either side of the critical puzzle piece is a

homeomorphism. So if two points are distinct, then they must eventually map to differ-

ent sides of the critical puzzle piece. �

Theorem 5.6. If c, c′ ∈ int (W), then theW-itineraries realized by points in (respec-

tively) XWc and XWc′ are identical subsets of Σ+
2 .

Proof. Suppose that the itinerary ε is realized at XWc by a point x, which is the landing

point of a ray Rθ. Note that ε = K(θ). Under the doubling map, θ never enters the inverse

image under the doubling map of the characteristic arc of the wakeW. Hence, because

of the expansion on the non-critical puzzle pieces for fc′ , the dynamical ray of angle θ

for the map fc′ must land at some point x′ ∈ XWc′ . TheW-itinerary of x′ under the action

of fc′ must be K(θ), the same as for x. �

Corollary 5.7. There exists some Σ+
W
⊂ Σ+

2 , depending only on W, so that for every

c ∈ int (W), taking theW-itinerary gives an isomorphism from
(
XWc , fc

)
to

(
Σ+
W
, σ

)
.

Proof. If two points in XWc have the sameW-itinerary, then by the expansion on AWc

and BWc , they must be the same point. Thus we have an injective map from XWc to Σ+
2 .

Let Σ+
W

be the image of this map. By Theorem 5.6, Σ+
W

is independent of our choice of

c. We have a bijection from XWc to Σ+
W

that conjugates fc with the shift. �
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5.2 Multi-Itineraries

The fattened puzzle pieces cover XWc , but they do not partition it. The fattened puzzle

pieces have non-trival intersections.

Definition 5.8. A multi-itinerary of a point x in dynamical space with respect to a map f

relative to a cover C = {∆i} is sequence of elements of the power set of C, (C0,C1,C2, . . .)

such that f n(x) ∈ ∆i if and only if ∆i ∈ Cn.

A multi-itinerary is a natural extension of the concept of an itinerary to situations

where we do not have an explicit partition of dynamical space. 1

The multi-itinerary simply keeps track of all of the regions that the point lands in

under iteration, even when it lands in more than one.

The puzzle pieces have the property that the image of each puzzle piece contains

all of the other puzzle pieces to which there is an arrow from that puzzle piece in Γ.

This property is not stable under a small C1 perturbation, which is why we must use

fattened puzzle pieces. The disadvantage of using fattened puzzle pieces is that we lose

the partition of dynamical space. This introduces some difficulties which we will have

to carefully deal with.

The non-critical fattened puzzle pieces cover XWc , so points in XWc have a multi-

itinerary relative to the non-critical fattened puzzle pieces.

Theorem 5.9. The multi-itinerary of a point x ∈ XWc relative to the fattened puzzle

pieces determines that point’s itinerary relative to the non-fattened puzzle pieces.
1Given sets Cα, indexed by α ∈ ℵ, the multi-itinerary is the itinerary relative to the partition:⋂

α∈ℵ

{
Cα if I(α) = 1
(Cα)c if I(α) = 0

}∣∣∣∣∣∣I ∈ 2ℵ
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Proof. Given a multi-itinerary (C0,C1, . . .) of x, we will give an algorithm for how to

construct x’s itinerary with respect to unfattened puzzle pieces which uses only the

multi-itinerary.

Let xn = f ◦nc (x). Let Ci be the first term in the itinerary that contains more than one

fat puzzle piece. Then the point is inside one of the small disk-like puzzle pieces around

a singleton puzzle piece. Then one of two situations occurs. Either every term in the

itinerary subsequent to Ci includes multiple puzzle pieces or there is some minimum

j > i so that C j does not include any small disk puzzle piece.

If the former, then by the expansion, we know that xi is a point in the periodic cycle,

and Ci and every subsequent term can be replaced with the unfattened singleton puzzle

piece that the corresponding disks contain.

If the latter, then because the small disk puzzle pieces are small enough, we know

that when a point leaves the region where it has a multi-itinerary, then on the next iterate,

it must be in one of the unfattened puzzle pieces adjacent to the next small disk puzzle

piece. Because the map is a local homeomorphism near the points of the periodic cycle,

then this lets us resolve which unfattened puzzle piece from C j−1 that x j−1 is in. Note

that we do not have to worry about x j landing in multiple fattened puzzle pieces that are

not small disks, because these regions lie entirely outside of the Julia set.

This procedure can be applied iteratively to resolve all of the terms between Ci and

C j, and then this process can be iteratively applied (possibly infinitely many times) to

resolve the rest of the terms. Thus, we can determine the coding of x with respect to the

puzzle pieces (which do form a Markov partition) from the coding of x with respect to

the fattened puzzle pieces (which do not). �

Moreover, everything in the proof of Theorem 5.9 holds for bi-itineraries of points
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in the inverse limit system of
(
XWc , fc

)
as well as for small enough C1 perturbations of

fc or its inverse limit.

5.3 Adaptation to Γ

Definition 5.10. Let U be a simply connected Riemann surface homeomorphic to the

disk, and U′ a relatively compact open subset. Define the size of U′ in U to be 1/M ,

where M is the largest modulus of an annulus separating U′ from the boundary of U .

Definition 5.11. Sullivan defines a p-telescope to be a sequence of topological disks

(W0,W1, . . .) such that Wi+1 is relatively compact in p(Wi).

Theorem 5.12 (Sullivan). If (W0,W1, . . .) is a p-telescope, and Wi+1 is of uniformly

bounded size in p(Wi), then the intersection ∩∞i=0 p◦−i(Wi) is a single point.

Proof. Standard application of Schwarz-Pick lemma along with properties of moduli

show that the Poincaré metrics in these disks are uniformly expanding under fc. �

We wish to have an isomorphism between points of XWc and paths in the graph Γ.

The obvious map from XWc to paths in Γ takes a point to its itinerary relative to the

bounded puzzle pieces. This map is well-defined and is injective. The obvious map

going the other direction takes an itinerary of non-critical puzzle puzzle pieces, fattens

them, and then uses telescopes to identify a unique point of XWc . This action is well-

defined, but unfortunately, it is not always injective.

In the case of primitive orbit portraits, there are always two itineraries that map to

any pre-image of the periodic cycle. The reason for this is that when W is primitive,

there is a path in Γ of non-critical open puzzle pieces where successive pieces neighbor

40



the successive points on the repelling periodic cycle associated with W. Thus, the

fattened puzzle pieces will include the successive points of the periodic cycle, and the

telescope will identify that point on the periodic cycle.

To get our desired isomorphism, we must exclude such paths.

Definition 5.13. Call a path (Πi0 ,Πi1 ,Πi2 , . . .) in Γ degenerate if every Πin is an open

puzzle piece and there exists some x in the periodic cycle of the orbit portrait so that

f n
c (x) ∈ ∂Πin for every n ∈ N0.

We call such paths degenerate because the point they identify inXWc using telescopes

is not in the first puzzle piece of the itinerary. IfW is satellite, there are no degenerate

paths. IfW is primitive, there is a single cycle of degenerate paths with the same period

asW.

Definition 5.14. We say that a one-sided or two-sided infinite path in Γ is adapted to

Γ if it does not include the critical puzzle piece and no right-infinite tail of the path is

degenerate.

Theorem 5.15. There is an isomorphism between XWc and paths adapted to Γ.

Proof. The map from XWc to paths is given by itineraries. An itinerary of a point can

never be degenerate. Because of expansion on XWc , this map is injective.

The map from paths to XWc is given by first fattening the puzzle pieces and then tak-

ing a telescope. The strong expansion on the puzzle pieces ensure that this construction

is well-defined. Now we will show that this procedure is injective.

Suppose that (Πi0 ,Πi1 ,Πi2 , . . .) and (Π j0 ,Π j1 ,Π j2 , . . .) are two different non-critical

paths in Γ yield the same point x under the action of fattening and taking telescopes. Let

41



xk = f ◦kc (x). xk ∈ ∆ik ∩ ∆ jk for all k. There is some Πin , Π jn . Fattened puzzle pieces

overlap on the disks around the points in the orbit portrait, so at least one of Πin and

Π jn is an open puzzle piece that borders some point zn on the periodic orbit. Without

loss of generality, let Πin be the open puzzle piece. Let zk+n = f ◦kc (zn). Because fc is a

homeomorphism when restricted to either side of the critical puzzle piece, then Πim ,

Π jm , Πim is open, and zm ∈ ∆im ∩ ∆ jm for all m ≥ n. Hence, we see that (Πi0 ,Πi1 ,Πi2 , . . .)

has a degenerate tail. So whenever two itineraries are associated with the same point

in XWc , then one must have a degenerate tail. Thus the map that associates itineraries

adapted to Γ with points is also injective.

It is also clear that these two actions are inverses of each other. �

Definition 5.16. We say that a one-sided multi-itinerary is adapted to Γ if it is the multi-

itinerary of of some point of XWc relative to the fattened puzzle pieces.

The action that takes a point of XWc to its multi-itinerary adapted to Γ is surjective

because of how adaptation to Γ is defined for multi-itineraries and is injective because

of expansion on XWc .

Definition 5.17. We say that a two-sided multi-itinerary is adapted to Γ if every right-

infinite tail of it is adapted to Γ.

5.4 Relations Between Points and Itineraries

The following commutative diagram illustrates isomorphisms between points in dynam-

ical space, itineraries relative to various partitions, and multi-itineraries. All of these

maps commute with the shift operator or fc (whichever is the appropriate operator on

that space).
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Σ+
W

}}{{
{{

{{
{{

{{
{{

{{
{{

{{

XWc

a

''PPPPPPPPPPPPPPPPPPPPPPPPPPPP

d

��

f

=={{{{{{{{{{{{{{{{{{
Itineraries of fat puzzle

pieces adapted to Γc
oo

b

��

g

``@@@@@@@@@@@@@@@@

Multi-itinerary of fat puzzle
pieces adapted to Γ

e // Itinerary of puzzle
pieces adapted to Γ

OO

a) The puzzle pieces partition XWc , so every point has an itinerary adapted to Γ.

b) The correspondence between puzzle pieces and their fattened counterparts gives

a trivial correspondence between bi-infinite sequences adapted to Γ.

c) An itinerary of fattened puzzle pieces adapted to Γ gives a unique point using

telescopes.

d) Points of XWc have multi-itineraries with respect to the fattened puzzle pieces.

e) Theorem 5.9 gives an algorithm for determining a point’s itinerary given only its

multi-itinerary relative to the fattened puzzle pieces.

f) XWc → Σ+
W

is given by the definition of a W-itinerary. Σ+
W
→ XWc is Corol-

lary 5.5.

g) Non-critical puzzle pieces are always on one side or the other of the critical puzzle

piece.
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5.5 Continuity of XWc

Theorem 5.18. XWc varies continuously with c.

Proof. By Corollary 5.7, every point of XWc is identified with a uniqueW-itinerary and

the set of realizableW-itineraries is independent of the choice of c ∈ int (W). Define

ΦWc,c′(x) to be the point whoseW-itinerary under fc′ is the same as that of x under fc.

What we need to show that the function ΦWc,c′(x) : W → C is a continuous function

of c′ as x, c, andW are held constant. Also note that ΦWc,c : XWc → X
W
c is the identity.

We will show that ΦWc,· (x) is continuous on a small open domain around c.

x ∈ XWc has a W-itinerary: (P0,P1, . . .). Let fc′,Pi be the restriction of fc′ to the

union of either the A- or B-side fattened puzzle pieces, depending on the symbol Pi.

Then

ΦWc,c′(x) =

∞⋂
n=1

f −1
c′,P0

(
· · ·

(
f −1
c′,Pn

(C)
))

For i, j ∈ N0 with i ≥ j, define:

zi, j = f −1
c′,Pi− j

(
· · ·

(
f −1
c′,Pi−1

(
f i
c(x)

)))
zi, j is the point you get when you map x forward i times by fc, and then pull back j times

by fc′ , each time taking the appropriate branch of the inverse. Once we fix c, x, andW

(as we have), then zi, j is a function of c′. If limn→∞ zn,n exists, then this limit must equal

ΦWc,c′(x), because it has the appropriateW-itinerary under fc′ . We will prove convergence

by showing that successive distances between points on the sequence (z0,0, z1,1, z2,2, . . .)

are bounded geometrically with a uniform contraction constant on a small neighborhood

of c. In addition, we will show that ΦWc,· (x) is continuous by showing that the initial
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constant of the geometric series is bounded by a constant multiple of |c − c′| in another

open set around c.

For any zi,0 ∈ AWc ∪ Bc
W, then the mean-value theorem applied to the square-root

function gives:

∣∣∣zi+1,1 − zi,0

∣∣∣ =
∣∣∣ f −1

c′,Pi
( fc(zi,0)) − zi,0

∣∣∣
=

∣∣∣∣∣±√
z2

i,0 + c − c′ − ±
√

z2
i,0

∣∣∣∣∣
≤ max

x∈
{
z2

i,0+t(c−c′)|t∈I
}
∣∣∣∣∣∣ 1
2
√

x

∣∣∣∣∣∣ · |c′ − c|

≤
1

2
√∣∣∣z2

i,0

∣∣∣ − |c′ − c|
|c′ − c|

≤ k0 |c′ − c|

Obviously here, we must restrict c′ to a domain U around c such that U ⊂ int(W) and

small enough so that even for w ∈ U, then |w − c| is smaller in absolute value than the

square of any point in either the AWc or BWc regions. And we let

k0 = sup
y∈AWc ∪BWc

c′∈U

 1

2
√∣∣∣y2

∣∣∣ − |c′ − c|


Hence

∣∣∣zi,0 − zi+1,1

∣∣∣ ≤ k0 |c′ − c| for all i ∈ N0 and c′ ∈ U.

Let ∆mi be the fattened puzzle piece for fc′ whose corresponding non-fattened piece

for fc contains zi,0, and let di(·, ·) be the Poincaré metric on this piece.

The periodic cycle of the orbit portrait associated with W is well-defined and re-

pelling in int (W), so it and the rays that land on it move continuously. Hence, the non-

fattened and fattened puzzle pieces associated withW move continuously for c ∈ W.

Let V be an open region in parameter space around c whose closure is in int(W) and
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such that whenever c′ ∈ V , then the closures of the bounded puzzle pieces for fc are

contained in the fattened puzzle pieces for fc′ and the closures of the bounded puzzle

pieces for fc′ are contained in the fattened puzzle pieces for fc.

Associate with every puzzle piece Πi at every parameter value c′ ∈ V an open set S i

that moves continuously with c′, contains the closure of the ith puzzle pieces for fc and

fc′ , and is contained within the corresponding fattened puzzle pieces for both fc and fc′ .

We apply a constant multiple to the Poincaré metrics on each fattened puzzle piece

so that the resulting metrics are strictly greater than the Euclidean metrics.

For every c′ ∈ V , on every S i, the Poincaré metrics on the corresponding fattened

puzzle pieces are equivalent to the Euclidian metric. There is some some k2 > 1 so that

for all c′ ∈ V , all S i at c′, and all x, y ∈ S i, then

|x − y| < di(x, y) < k2 |x − y|

We have uniform expansion on the map fc′ : ∆i → ∆ j whenever Πi → Π j is in Γ.

There are finitely many arrows in Γ, and this expansion depends continuously on c′, so

there must be some k1 < 1 so that k1 · dn+1(x, y) > dn

(
f −1
c′,Pn

(x), f −1
c′,Pn

(y)
)

whenever c′ ∈ W

and x, y ∈ ∆mn+1 .

Fix c′ ∈ V for the following discussion.

di
(
zi,0, zi+1,1

)
≤ k2

∣∣∣zi,0 − zi+1,1

∣∣∣ ≤ k2k0 |c′ − c|

By induction on the contraction of f −1
c′,Pn

,

di− j

(
zi, j, zi+1, j+1

)
≤ k j

1k2k0 |c′ − c|

Setting i = j yields

d0
(
zi,i, zi+1,i+1

)
≤ ki

1k2k0 |c′ − c|
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We see that the sequence (z0,0, z1,1, z2,2, . . .) is Cauchy and converges. By geometric

summation and repeated application of the triangle inequality,

∣∣∣x − ΦWc,c′(x)
∣∣∣ =

∣∣∣∣∣z0,0 − lim
n→∞

zn,n

∣∣∣∣∣ ≤ d0

(
z0,0, lim

i→∞
zi,i

)
≤

k2k0

1 − k1
|c′ − c|

Since this is true in an open neighborhood W around every c ∈ int(W), then ΦWc,c′(x)

is locally Lipshitz and hence continuous in c′. �

5.6 W-itineraries of XWc

Theorem 5.19. Points in XWc whoseW-itinerary contains K(W) must lie in Π1. Also,

K(W) can only appear as the initial segment ofW-itineraries of points in XWc .

Proof. Let [θ−, θ+] be the characteristic arc of W. Let n be the period of W. Sup-

pose that z ∈ XWc contains the characteristic kneading sequence of W, K(W) =

(χ0, . . . , χn−1) as a substring. Then let z0 be the iterate of z such that K(W) is the initial

segment of the itinerary‘ of z0. Label the further iterates of z0 by zi+1 = fc(zi).

Let p0 through pn−1 be the points of the repelling or parabolic cycle ofW with the

labeling such that p0 is the landing point of Rθ− and Rθ+
. (There are not necessarily n

distinct points in this cycle, but we only need their cyclical order for the following, not

their distinctness.) For any particular p j, the k dynamical rays that land on it partition

the dynamical plane into sectors based at p j. The essential fact is that sectors based at

p j map to sectors based at p j+1. All but one of these sectors maps homeomorphically

to the next. The critical sector (the sector that contains the critical puzzle piece) is the

odd one out. The critical puzzle piece maps in a branched 2-to-1 fashion to the critical
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value puzzle piece. Removal of the critical puzzle piece sometimes splits the critical

sector into two parts, sometimes not. In either case, the connected components of the

remainder map homeomorphically to their images.

The dynamical rays Rθ− and Rθ+
together land on p0 and cut off the critical value

puzzle piece of W. Then R2n−1θ− and R2n−1θ+
land on pn−1, and together make up one

edge of the boundary of the critical value puzzle piece. Also notice that 2nθ− = θ− and

2nθ+ = θ+.

The sector based at pn−1 bounded by R2n−1θ− and R2n−1θ+
contains the critical puzzle

piece as well as the other half of dynamical space which is across the critical puzzle piece

from pn. This sector must therefore contain all of either AWc or BWc , whichever has the

opposite coding as pn−1 itself. Our supposition that the point z0 has a kneading sequence

which is the characteristic kneading sequence of the wakeW therefore ensures that zn−1

is in the sector based at pn bounded by R2n−1θ− and R2n−1θ+
.

Now, assume that zi+1 is in the sector bounded by R2i+1θ− and R2i+1θ+
based at pi+1. If

that sector does not contain the critical point, then its inverse image has two connected

components, each of which maps homeomorphically to the sector. One of these con-

nected components is in AWc and the other is in BWc . If that sector does contain the

critical point, then it contains Π1, and its inverse image is connected and contains the

critical puzzle piece. After removal of the critical puzzle piece, there are two remaining

connected regions, each of which mapping homeomorphically to the original sector mi-

nus the critical value puzzle piece. Again, one of these connected components is in AWc

and one of them is in BWc . As mentioned earlier, points ofXWc can never have any iterate

(including themselves) in Π0, so zi+1 has two distinct inverse images, one in AWc and one

in BWc . One of these is zi. Which one is zi depends on the ith entry in the itinerary of z0,

and hence on the ith entry of the characteristic kneading sequence ofW. Thus, zi and pi
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are in the same one of AWc and BWc .

The map fc|AWc : AWc → C and fc|BWc : BWc → C are both homeomorphisms onto

their images. So pulling back R2i+1θ− , R2i+1θ+
, pi+1 and zi+1 by the appropriate one of f |A or

f |B (whichever one pi and zi are in) must give the appropriate containment relationship:

that zi is contained in the sector based at pi bounded by R2iθ− and R2iθ+
. By induction, z0

is contained in the critical value puzzle piece. Since points in the critical value puzzle

piece cannot have inverse images, then we see that z = z0. Hence, z lies in the critical

value puzzle piece and K(W) is the initial segment of theW-itinerary of z. �

Theorem 5.20. Points inXWc whoseW-itinerary contains the substring K(W′) for any

W′ conspicuous to W must lie in Π1. Also, these substrings can only appear as the

initial segment of itineraries of points in XWc .

Proof. Suppose the itinerary of x contains the characteristic kneading sequence of some

W′ ⊂ W. Choose some c′ ∈ int (W′) ⊆ W. XWc can be followed continuously to

XWc′ , where x ∈ XWc is followed to some x′ ∈ XWc . Because the two external rays and

the point of the periodic orbit that together bound the critical value puzzle piece move

continuously, then either both x and x′ are in their respective critical value puzzle pieces

associated with the wakeW for fc and fc′ or neither are. Similary, the rays that bound

the critical puzzle piece move continuously, so x and x′ have the sameW-itinerary.

x′ contains in its W′-itinerary the characteristic kneading sequence of W′, so by

Theorem 5.19, then x′ is in the critical value puzzle piece associated with W′, and

K(W′) may only appear at the beginning of the W′-itinerary of x′. Since W′ ⊆ W,

then we have containment of their respective critical value puzzle pieces, and we see

that x′ must be in the critical value puzzle piece ofW for fc′ . Also, whenever both are

defined, then theW-itinerary of a point is equal to theW′-itinerary of the point. Hence
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x is in the critical value puzzle piece forW for the polynomial fc and K(W′) can only

appear at the beginning of itsW-itinerary. �

Theorem 5.21. Choose x ∈ XWc . If x is in the critical value puzzle piece, then some

initial string of the two-symbol itinerary of x relative toW is equal to the characteristic

kneading sequence of some conspicuous wakeW′ ⊆ W.

Proof. Suppose x ∈ XWc and x ∈ Π1. x is accessible, so there is some dynamical ray Rθ

that lands on x. The two inverse images Rθ/2 and Rθ/2+1/2 both lie in the critical puzzle

piece. The forward images of x never enter the critical puzzle piece, so theW-itinerary

of x must be the same as K(θ). Since x never again enters the critical value puzzle piece,

then x and θ cannot be periodic. Thus, the parameter ray Rθ cannot lie on the boundary

of some wake smaller thanW. By Corollary 4.27, theW-itinerary of x must begin with

K(W′) for some conspicuous wakeW′ ofW. �

Corollary 5.22. Choose x ∈ XWc . The W-itinerary of x contains the characteristic

kneading sequence of some wake conspicuous to W if and only if x is in the critical

value puzzle piece. Additionally, the characteristic kneading sequence of the wake con-

spicuous to W may only appear as the initial segment of the itinerary of any point of

XWc .

Proof. The “if” direction is given by Theorem 5.21. The “only if” direction is given by

Theorem 5.20. �

Corollary 5.23. The set of one-sided two-symbol W-itineraries of points in fc(XWc )

is a one-sided subshift of finite type where the disallowed words are the characteristic

kneading sequences of wakes conspicuous toW.

Proof. fc(XWc ) can be characterized as the set of points which do not enter the critical

value puzzle piece under iteration. Then by Corollary 5.22, theW-itineraries realized
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by fc(XWc ) are all of the one-sided sequences on two symbols that do no have any char-

acteristic kneading sequence for any wake conspicuous toW. �

lim
←−−

(XWc , fc) naturally inherits a two-sided W-itinerary from the one-dimensional

system.

Corollary 5.24. The set of two-sided two-symbolW-itineraries realized by lim
←−−

(XWc , fc)

is a two-sided subshift of finite type where the disallowed words are the characteristic

kneading sequences of wakes conspicuous toW.

Proof. Note that every point in XWc has two inverse images in XWc with the exception

of points in the critical value puzzle piece. The inverse images of these points are in

the critical puzzle piece and hence not in XWc . Hence lim
←−−

(XWc , fc) is made up of orbits

which never visit the critical value puzzle piece, or equivalently, those that do not have

any characteristic kneading sequence of any wake conspicuous toW. �
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CHAPTER 6

XWB,C

6.1 Crossed Mappings

Let us recall from [HOV94b] the definition of a crossed mapping:

Definition 6.1. Let B1 = U1 ×V1 and B2 = U2 ×V2. Let pr1 : Bi → Ui be the projection

to the first co-ordinate and let pr2 : Bi → Vi be projection to the second co-ordinate. A

crossed mapping from B1 to B2 is a triple (W1,W2, f ), where

1. W1 ⊆ U1
′ × V1 where U1

′ ⊂ U1 is a relatively compact open subset,

2. W2 ⊆ U2 × V2
′ where V2

′ ⊂ V2 is a relatively compact open subset,

3. f : W1 → W2 is a holomorphic isomorphism, such that for all y ∈ V1, the mapping

pr1 ◦ f |W1∩(U1×y) : W1 ∩ (U1 × {y})→ U2

is proper, and the mapping

pr2 ◦ f −1|W2∩({x}×V2) : W2 ∩ ({x} × V2)→ V1

is proper.

When W1 and W2 can be determined from context, we write f : B1 −→
×

B2.

Each Bi has a Kobayashi metric, and when Ui and Vi are disks, the Kobayashi metric

on Bi has the simple form of the product of the Poincaré metrics on Ui and Vi, which

will be denoted |·|Ui
and |·|Vi

, respectively.

Definition 6.2. An analytic curve in B = U ×V is called horizontal-like if at every point

(x, y) ∈ U×V, the tangent vector at that point (η, ν) ∈ T(x,y)B satisfies |(x, η)|U ≥ |(y, ν)|V .
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Definition 6.3. An analytic curve in B = U × V is called vertical-like if at every point

(x, y) ∈ U×V, the tangent vector at that point (η, ν) ∈ T(x,y)B satisfies |(x, η)|U ≤ |(y, ν)|V .

We should note that the intersection of a horizontal-like disk with a vertical-like disk

in the same bi-disk is not necessarily a singleton. However, if the absolute values of the

slopes of each are never unity, then their intersection must be a singleton.

Hubbard and Oberste-Vorth go on to show the following theorems:

Theorem 6.4 (Hubbard-Oberste-Vorth). pr1 ◦ f |W1∩(U1×y) and pr2 ◦ f −1|W2∩({x}×V2) must

have the same topological degree which is called the degree of the crossed mapping.

Theorem 6.5 (Hubbard-Oberste-Vorth). Let

. . . , B−1 = U−1 × V−1, B0 = U0 × V0, B1 = U1 × V1, . . .

be a bi-infinite sequence of bi-disks, and fi : Bi −→
×

Bi+1 be crossed mappings of degree 1

with Ui
′ of uniformly bounded size in Ui and Vi

′ of uniformly bounded size in Vi. Then

for all m ∈ Z,

1. The set

WS
m = {(xm, ym)|∃(xn, yn) ∈ Bn for all n > m such that fn(xn, yn) = (xn+1, yn+1)}

is a closed vertical-like Riemann surface in Bm, and pr2|WS
m

: WS
m → Vm is an

isomorphism.

2. The set

WU
m = {(xm, ym)|∃(xn, yn) ∈ Bn for all n < m such that fn(xn, yn) = (xn+1, yn+1)}

is a closed horizontal-like Riemann surface in Bm, and pr1|WU
m

: WU
m → Um is an

isomorphism.
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3. Moreover, the sequence

(xm, ym) := WS
m ∩WU

m for m ∈ Z

is the unique bi-infinite sequence with (xm, ym) ∈ Bm for all m ∈ Z, and

fm(xm, ym) = (xm+1, ym+1).

Additionally, the map fn|WS
n

: WS
n → WS

n+1 is a strong contraction of Poincaré metrics

and fn| f −1(WU
n+1) : f −1(WU

n+1)→ WU
n+1 is a strong expansion of Poincaré metrics. The strong

contraction and expansion is due to the fact that Ui
′ and Vi

′ are relatively compact in U

and V , respectively. Moreover, the expansions and contractions are uniform for all n

because of the uniform sizes of the Ui
′’s and Vi

′’s.

[HOV94b] guarantees that the tangent spaces of stable and unstable manifolds are

respectively in the vertical-like and horizontal-like cone fields. We will need a mild

extension of this result, which was already known to Hubbard and Oberste-Vorth:

Theorem 6.6. Given the same setup as Theorem 6.5, the slopes of the stable and un-

stable manifolds are uniformly bounded in absolute value away from 1. Moreover, this

bound depends only on the sizes of the Vn
′’s in the Vn’s and the sizes of the Un

′’s in the

Un’s, and this dependency is continuous.

Proof. Any unstable manifold WU
n is the forward image of WU

n−1 ∩ Wn−1 by fn−1.

Therefore it is completely contained in Un × Vn
′. Pick any point (x, y) ∈ WU

n with

(ζ, η) ∈ T(x,y)(WU
n ). WU

n is the graph of a conformal map from Un to Vn
′, and so by

Schwarz’s lemma , |(ζ, x)|Un
≥ |(η, y)|Vn′

. Because the Vn
′’s are of uniformly bounded

size in Vn, then there exists some κ > 1 so that the inclusion map ι : Vn
′ → Vn contracts

the Poincaré metric by at least a factor of κ. Hence |(ζ, x)|Un
≥ κ · |(η, y)|Vn

. The uniform

bound guarantees that κ does not depend on n, but note that κ depends continuously on

the maximum of the sizes of the Vn
′ ’s in the Vn’s.

54



The proof for stable manifolds is analogous. �

6.2 Horizontal Disk Contraction

We need to show that horizontal disks get closer to each other under iteration of crossed

mappings, but in order to do this we will need a definition of distance for horizontal

disks that is adapted to this particular situation.

Definition 6.7. In a bi-disk, the distance between two horizontal-like disks D1 and D2

whose slopes never have absolute value 1 relative to a vertical-like disk V is defined as:

dV(D1,D2) = d
(
pr2(D1 ∩ V), pr2(D2 ∩ V)

)
where d in the previous equation refers to Poincaré distance in the disk.

Definition 6.8. The distance between two horizontal-like disks D1 and D2 whose slopes

never have absolute value 1 is defined as:

d(D1,D2) = sup
V is a vertical-

like disk

dV(D1,D2)

This definition of a metric on horizontal disks satisfies the triangle inequality and

the equivalence d(D1,D2) = 0⇐⇒ D1 = D2.

Theorem 6.9. The distances between horizontal-like disks are uniformly contracted by

a 1-crossed mapping.

Proof. Let f : B1 −→
×

B2 be a 1-crossed mapping. Let D1
′ and D1

′′ be any two hor-

izontal like disks in B1. Then their images are, respectively, D2
′ and D2

′′, which are

two horizontal-like disks in B2. Choose any ε > 0. Let Z2 be any vertical-like disk in
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B2 with
∣∣∣dZ2(D2

′,D2
′′) − d(D2

′,D2
′′)

∣∣∣ < ε. Let Z1 = f −1(Z2), which must be a vertical-

like disk in B1. Because of the strong expansion for f −1 on vertical-like disks, then

dZ1(D1
′,D1

′′) ≥ κdZ2(D2
′,D2

′′) for some κ > 1. So,

d(D1
′,D1

′′) ≥ dZ1(D1
′,D1

′′) ≥ κdZ2(D2
′,D2

′′) ≥ κ
(
d(D2

′,D2
′′) − ε

)
Since this is true for every ε > 0, then d(D2

′,D2
′′) ≤ 1

κ
d(D1

′,D1
′′). �

Theorem 6.10. The metric d on the space of horizontal-like disks is equivalent to the

metric d′ defined as:

d′(D1,D2) = sup
x∈D

d{x}×D(D1,D2)

Proof. d′(D1,D2) ≤ d(D1,D2) is clear because d′ considers only a subset of the vertical-

like disks that d does.

Choose any x1 ∈ D. Suppose a vertical-like disk Z intersects D1 at (x1, y1) and

D2 at (x2, y2). Because Z is vertical-like, then d(x1, x2) ≤ d(y1, y2). There is another

point (x1, y3) on D2 and because D2 is horizontal-like, then d(y2, y3) ≤ d(x1, x2). The

triangle inequality gives that d(y1, y3) ≤ d(y1, y2) + d(y2, y3) ≤ d(y1, y2) + d(x1, x2) ≤

2d(y1, y2) = 2 · dZ(D1,D2). If we take the supremum over all Z that intersect D1 at a

point with x-coordinate x1 and then take the supremum over all x1 ∈ D, then we get that

d′(D1,D2) ≤ 2 · d(D1,D2). �

Theorem 6.10 tells us that convergence of horizontal disks under our metric is equiv-

alent to uniform convergence in vertical slices.
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6.3 Perturbations of One-Dimensional Orbit Portraits

Fix any one-dimensional quadratic wakeW, and choose any c ∈ int (W). We have an

actual orbit portrait O of fc associated withW. We have the non-fattened puzzle pieces

{Πi} with their associated Markov graph Γ. We also have the fattened puzzle pieces {∆i}

associated with O, along with the relations that ∆ j is relatively compact in fc(∆i) when

we have containment of the corresponding non-fattened puzzle pieces: Π j ⊂ fc(Πi). If

fc
′ is a small enough perturbation of fc in the C1-topology, then it is clear that ∆ j is

relatively compact in fc
′(∆i).

We will define puzzle pieces in two dimensions that will code some, but not all of the

points in the Julia set. This coding will be valid throughout an open region of parameter

space, which we will describe.

The one-dimensional fattened puzzle pieces are bounded. Let D(0,Rc) be an open

disk centered at zero that is large enough to contain the closures of all of the fattened

puzzle pieces.

Definition 6.11. For every fattened puzzle piece ∆i, define Bi = ∆i × D(0,Rc). The Bi’s

will be called the two-dimensional (fattened) puzzle pieces.

Theorem 6.12. There exists some positive constant εWc , depending only on c and W

(and continuously on c), such that whenever 0 < |b| < εWc and Πi → Π j is in Γ (and Πi

is non-critical), then Hb,c : Bi −→
×

B j is a one-crossed mapping.

Proof. Suppose Πi → Π j is in Γ. Because there are finitely many arrows in Γ, it suffices

to prove the statement for a single pair of fattened puzzle pieces.

The degenerate Hénon mapping H0,c maps all of C2 to the co-dimension 1 complex

parabola x = y2 + c and reduces to the one-dimensional dynamical system x 7→ x2 + c in
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the first co-ordinate. Thus pr1(B j) = ∆ j is relatively compact in pr1 ◦ H0,c(Bi) = fc(∆i).

H−1
0,c(B j) is the union of two infinitely tall open cylinders. They each have the form

f −1
c (∆ j) × C, where one cylinder has one branch of the inverse image f −1

c and the other

cylinder has the other branch. Exactly one of these cylinders intersects Bi, and in fact,

the projection to the first coordinate of this cylinder is the appropriate branch of f −1
c (∆ j)

and is relatively compact in ∆i = pr1(Bi).

Also the disk D(0,Rc) was chosen precisely so that pr2 ◦ H0,c(Bi) = ∆i is relatively

compact in pr2(B j) = D(0,Rc).

pr2 ◦ Hb,c is uniformly continuous in the C1 topology in b and c inside a bounded

region of dynamical space. Note that pr1 ◦ H−1
b,c(x, y) = y, and does not depend on the

parameters at all.

We have shown that these relations of relative compactness are preserved under

small perturbations of parameters. Thus, there is some small open domain around

(0, c) so that (b′, c′) in this domain implies that pr1

(
H−1

b′,c′(B j) ∩ Bi

)
is relatively compact

in pr1(Bi), pr2

(
Hb′,c′(Bi) ∩ B j

)
is relatively compact in pr2(B j), Hb′,c′ maps the vertical

boundary of Bi outside the closure of B j, and H−1
b′,c′ maps the horizontal boundary of B j

outside the closure of Bi.

For any (b′, c′) in this region, we will show explicitly how Hb′,c′ : Bi −→
×

B j is realized

as a crossed mapping. Let W1 = Bi ∩ H−1
b′,c′(B j). Let W2 = Hb′,c′(W1) = Hb′,c′(Bi) ∩

B j. Let U1
′ = π1(W1) = π1

(
Bi ∩ H−1

b′,c′(B j)
)
. Let V2

′ = π2(W2) = π2(Hb′,c′(Bi) ∩ B j).

We’ve already shown that U1
′ is relatively compact in ∆i and V2

′ is relatively compact

in D(0,Rc). Hb′,c′ : W1 → W2 is a holomorphic isomorphism.

Pick any y ∈ D(0,Rc). Take any compact set K1 ⊂ ∆ j. Then K1 is closed and

there is some annulus A1 that separates K1 from the boundary of ∆ j. Because Hb′,c′
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maps the vertical boundary of B1 outside B2, then pr1
(
Hb′,c′(W1 ∩ (∆i × {y}))

)
= ∆ j. Call

the projection from Hb′,c′(W1 ∩ (∆i × {y})) to its first coordinate ρ1. ρ−1
1 maps K1 and

A1 to the disk Hb′,c′(W1 ∩ (∆i × {y})), with ρ−1
1 (A1) separating ρ−1

1 (K1) from the bound-

ary. Then H−1
b′,c′(ρ

−1
1 (A1)) separates H−1

b′,c′(ρ
−1
1 (K1)) from the boundary of W1 ∩ (∆i × {y}).

H−1
b′,c′(ρ

−1
1 (K1)) is closed because it is the inverse image of a closed set under a con-

tinuous map. Hence H−1
b′,c′(ρ

−1
1 (K1)) is compact in W1 ∩ (∆i × {y}). This implies that

pr1 ◦ Hb′,c′ |W1∩(∆i×{y}) : W1 ∩ (∆i × {y}) → ∆ j is proper. This map is, in fact, an isomor-

phism.

Pick any x ∈ ∆ j. Take any compact set K2 ⊂ D(0,Rc). Then K2 is closed and there

is some annulus A2 that separates K2 from the boundary of D(0,Rc). Because H−1
b′,c′

maps the horizontal boundary of B2 outside B1, then pr2

(
H−1

b′,c′(W2 ∩ ({x} × D(0,Rc)))
)

=

D(0,Rc). Call the projection from H−1
b′,c′(W2 ∩ ({x} × D(0,Rc))) to its second coordinate

ρ2. ρ−1
2 maps K2 and A2 to the disk H−1

b′,c′(W2 ∩ ({x} × D(0,Rc))), with ρ−1
2 (A2) separat-

ing ρ−1
2 (K2) from the boundary. Then Hb′,c′(ρ−1

2 (A2)) separates Hb′,c′(ρ−1
2 (K2)) from the

boundary of W2 ∩ ({x} × D(0,Rc)). Hb′,c′(ρ−1
2 (K)) is closed because it is the inverse im-

age of a closed set under a continuous map (H−1
b′,c′ is continuous). Hence Hb′,c′(ρ−1

2 (K))

is compact in W2 ∩ ({x} × D(0,Rc)). This implies that pr2 ◦ H−1
b′,c′ |W2∩({x}×D(0,Rc)) :

W2 ∩ ({x} × D(0,Rc))→ D(0,Rc) is proper. This map is, in fact, an isomorphism.

Hence (W1,W2,Hb′,c′) is a degree one crossed mapping from B1 = ∆i × D(0,Rc) to

B2 = ∆ j × D(0,Rc). We have shown that Hb,c : Bi −→
×

B j is a one-crossed mapping

in a small neighborhood around each (0, c) with c ∈ int (W), and the statement of the

theorem follows. �

Definition 6.13. Let RW =

{
(b, c)

∣∣∣∣∣c ∈ W and 0 < |b| < εWc
}
.

Lemma 6.14. Given any bi-itinerary I adapted to Γ and any (b, c) ∈ RW, there is

exactly one point which has this itinerary under Hb,c relative to the two-dimensional
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puzzle pieces.

Proof. There is a one-crossed mapping between any two consecutive pairs of puzzle

pieces in an itinerary adapted to Γ, so a bi-itinerary adapted to Γ gives a bi-infinite se-

quence of 1-crossed mappings. By [HOV94b], there is exactly one point which satisfies

this bi-itinerary. �

Definition 6.15. Let I be a bi-itinerary adapted to Γ. Then for (b, c) ∈ RW, define

ΨWb,c(I) to be the unique point with this bi-itinerary for the map Hb,c.

Definition 6.16. Define XWb,c = ΨWb,c

({
I
∣∣∣I is a bi-itinerary adapted to Γ

})
.

Theorem 6.17. For (b, c) ∈ RWb,c, then XWb,c ⊂ Jb,c.

Proof. It is clear that XWb,c ⊂ Kb,c. We will show that arbitrarily close to any point of

XWb,c, there are points which escape to infinity in forwards and backwards time.

Fix (b, c) ∈ RWb,c. Define

S + =

{
(x, y)

∣∣∣∣∣|x| ≥ Rb,c and |y| ≤
|x|2 − |c| − |x|

|b|

}
S − =

{
(x, y)

∣∣∣∣∣|y| ≥ Rb,c and |x| ≤ |y|
}

Some algebraic manipulation gives us that if (x, y) ∈ Hb,c(S +), then |x| ≥ |y| ≥ Rb,c and

hence Hb,c(S +) ⊂ V+
b,c ⊂ U+

b,c. Thus S + ⊂ U+
b,c. It is also clear that S − = V−b,c ⊂ U−b,c.

Choose y0 ∈ R
+. Let

r+ =
1 +

√
1 + 4(|c| + |b| y0)

2

r− = y0
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For large enough y0, then S +∩ (C × {y0}) is a plane with a disk of radius r+ cut out of

it and S − ∩ (C × {y0}) is a disk of radius r−. Also for large enough y0, then r− > r+, and

in fact the ratio r−/r+ goes to infinity as y0 increases. For large enough y0, we see that

S + ∩ S − ∩ (C × {y0}) is an annulus entirely in Ub,c with a modulus as large as we please.

fc is conjugate near infinity to x 7→ x2 with a conjugating Böttcher map that is

tangent to the identity at infinity. Let Cg be the level curve where the Green’s func-

tion is equal to g. Because of the tangency of the Böttcher map at infinity, then Cg

approximates a circle as g → ∞ and there must exist some y0 > Rb,c and g so that

Cg ⊂ int (π1(S + ∩ S − ∩ (C × {y0}))), where π1 is projection to the first coordinate.

The choice to make the one-dimensional fattened puzzle pieces of fc have an outer

boundary where the Green’s function is 1 was arbitrary. We can choose for the outer

boundary the level curve Cg. The choice for the vertical component of the two-

dimensional fattened puzzle pieces to have radius Rc was also arbitrary. We could have

chosen any disk that contains all of the one-dimensional fattened puzzle pieces. Let

us choose for the vertical component of the two-dimensional fattened puzzle pieces the

disk D(0, y0). Notice that we ensured that Cg is relatively compact in D(0, y0).

The entire vertical portion of the boundary of each two-dimensional puzzle

piece is contained in the closed set S +. Because for any y ∈ D(0, y0), Cg ⊂

int (π1(S + ∩ (C × {y}))) and Cg is compact, then there exists a finite distance Th so that

the Poincaré distance in any unstable manifold in any two-dimensional puzzle piece

between any point of XWb,c and S + is less than Th.1

1This depends on the fact that the set all points of XWb,c whose itinerary at the 0th index is the fattened
puzzle piece Bi is relatively compact in Bi. This property is due to the fact that whenever Πi → Π j is in
Γ, then we have a 1-crossed mapping Hb,c : Bi → B j, and the corresponding V2

′ (see Definitition 6.1) for
this crossed mapping is relatively compact in the corresponding V2. Also there are finitely many arrows.
We also depends on the fact that the space of vertically-bounded horizontal-like disks is compact, and we
know that the unstable manifolds occupy a relatively compact subset of the disk when projected to their
second coordinate (see the proof of Theorem 6.6 for details).
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Choose any ε > 0. There is a uniform expansion λh > 1 on the unstable manifolds.

Let n be an integer larger than logλh
(Th/ε). To realize a point of U+

b,c which is ε-close

to any x ∈ XWb,c, we need only to look in the two-dimensional puzzle piece Bi which is

at index n in the itinerary of x. Bi contains a point u ∈ U+
b,c which is in the unstable

manifold of H◦nb,c(x) and is at distance at most Th from H◦nb,c(x). Hence x is at most a

distance of ε from H◦−n
b,c (u) ∈ U+

b,c.

The entire horizontal portion of the boundary of every two-dimensional puzzle piece

is entirely contained within S −, and in fact, there is some finite distance Tv so that for

every x in the closure of any of the one-dimensional fattened puzzle pieces, then the

Poincaré distance in any stable manifold in any two-dimensional puzzle piece between

any point of XWb,c and S − is less than Tv.

As we did for U+
b,c, using the uniform contraction on stable manifolds, one can show

that points of U−b,c are arbitrarily close to every point of XWb,c.

Hence we see that XWb,c ⊂ Kb,c ∩ U−b,c ∩ U+
b,c. �

6.4 Continuity of XWb,c

Lemma 6.18. If I1 and I2 are distinct bi-itineraries adapted to Γ, then ΨWb,c(I1) ,

ΨWb,c(I2).

Proof. We will give a proof by contradiction. Let x0 = ΨWb,c(I1) = ΨWb,c(I2) with I1 ,

I2. Let xi = H◦ib,c(x0). I1 and I2 differ at some index n. Thus xn is in the intersection

of two distinct two-dimensional fattened puzzle pieces which must be of the form D j ×

D(0,Rc), where D j is one of the small one-dimensional disks around a point of the
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repelling cycle of fc associated with the wake W and D(0,Rc) is a disk as defined

earlier.

So I1 and I2 must differ for every index m > n. For indexes after n, one of these

must consist of only open puzzle pieces, and these puzzle pieces must be adjacent to the

successive points in the periodic orbit. Hence, one of I1 and I2 has a degenerate tail

and is not adapted to Γ. �

Corollary 6.19. XWb,c is isomorphic to the space of bi-itineraries adapted to Γ.

Proof. Since XWb,c is the image under ΨWb,c of all bi-itineraries adapted to Γ, and we know

this map is injective. �

Theorem 6.20. XWb,c is continuous in b and c for (b, c) ∈ RW.

Proof. Every point of XWb,c corresponds to a bi-itinerary I of puzzle pieces adapted to Γ.

We will show that ΨWb,c(I) is continuous in b and c.

Choose some point (x, y) ∈ XWb,c with an itinerary of two-dimensional puzzle pieces

(. . . , Bi−1 , Bi0 , Bi1 , . . .) adapted to Γ (where every Bin is a two-dimensional fattened puzzle

piece for the map Hb,c). Let V be an open subset of RW that contains (b, c) such that

all of the 1-crossed mappings between the puzzle pieces for the parameters (b, c) are

still 1-crossed mappings under Hb′,c′ . Let V ′ be a relatively compact open subset of V

which contains (b, c) and is also bounded. It is clear that such an open sets exist. Choose

(b′, c′) ∈ V ′.

We have a bi-infinite sequence of 1-crossed mappings for Hb′,c′ . Thus, there is

vertical-like topological disk WS
b′,c′ ⊂ Bi0 of points which have a forward itinerary

(Bi0 , Bi1 , . . .) under the dynamics of Hb′,c′ . There is also a horizontal-like topological

disk WU
b′,c′ ⊂ Bi0 of points which have a backwards itinerary (. . . , Bi−1 , Bi0) under Hb′,c′ .
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There is a unique point (x′, y′) ∈ WS
b′,c′ ∩WU

b′,c′ with the same bi-itinerary under Hb′,c′ as

(x, y) has under Hb,c. We will show that these disks and their intersection cannot be far

away from (x, y).

Let WU
b,c, j be the unstable manifold in B j for the map Hb,c. Similarly let WU

b′,c′, j be

the unstable manifold in B j for the map Hb′,c′ . Define D j,k = H◦kb′,c′(W
U
b,c,− j), which is the

forward image under Hb′,c′ of an unstable manifold of Hb,c. This is analogous to mapping

backwards by H−1
b,c and then forwards by Hb′,c′ as if we were attempting to conjugate the

two maps by invoking the standard limit construction of the conjugating map.

Every D j,k is a horizontal-like disk in Bik− j . Also WU
b′,c′,0 = lim j→∞ D j, j in the met-

ric we defined for horizontal disks. Because Hb,c is a Lipshitz function of b and c on

compact subsets of parameter space and because the Euclidean metric is equivalent to

the Poincaré metric on Bi− j on compact subsets of the latter, then the distances between

D j,0 and D j+1,1 are uniformly bounded by some q0 · ‖(b, c) − (b′, c′)‖ for all (b′, c′) ∈ V ′.

Mapping forward contracts distances between horizontal-like disks (uniformly so on

V ′), so there is some q1 < 1 so that d(D j,k+1,D j+1,k+2) < q1 · d(D j,k,D j+1,k+1). Hence

d(D j, j,D j+1, j+1) < q j
1q0 · ‖(b, c) − (b′, c′)‖ and so

d(WU
b,c,0,W

U
b′,c′,0) < q0/(1 − q1) · ‖(b, c) − (b′, c′)‖

An analogous argument for stable manifolds gives:

d(WS
b,c,0,W

S
b′,c′,0) < q0

′/(1 − q1
′) · ‖(b, c) − (b′, c′)‖

The two disks WU
b′,c′,0 and WS

b′,c′,0 have a single intersection point (x′, y′) which is the

unique point with bi-itinerary (. . . , Bi−1 , Bi0 , Bi1 , . . .) under the map Hb′,c′ . So Ψb′,c′(I) =

(x′, y′). Let dBi0
be the Kobayashi metric in Bi0 . The geometry of the situation forces:

dBi0

(
(x, y), (x′, y′)

)
≤
√

2 · d(WU
b,c,0,W

U
b′,c′,0) +

√
2 · d(WS

b,c,0,W
S
b′,c′,0)
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Let q′′0 = max {q0, q0
′} and q′′1 = max {q1, q1

′}. q′′0 and q′′1 do not depend on (b′, c′). We

get for all (b′, c′) ∈ V ′ the inequality:

dBi0

(
(x, y), (x′, y′)

)
≤

2
√

2 · q′′0
1 − q′′1

‖(b, c) − (b′, c′)‖

Because the Kobayashi metric is equivalent to the Euclidean metric on compact

subsets, this shows that Ψb,c(I) is locally Lipshitz and hence a continuous function of

(b, c) ∈ RW. �

6.5 Coding XWb,c

Theorem 6.21.

lim
b→0
XWb,c =

{
(x, y)

∣∣∣∣∣y ∈ fc

(
XWc

)
and fc(y) = x

}
In particular:

pr1

(
lim
b→0
XWb,c

)
= pr2

(
lim
b→0
XWb,c

)
= fc

(
XWc

)
And points with bi-itineraries adapted to Γ (. . . , Bi−1 , Bi0 , Bi1 , . . .) in XWb,c will limit as

b→ 0 and then project to a point of XWc with itinerary (Πi0 ,Πi1 , . . .).

Proof. Take any bi-itinerary I = (. . . , Bi−1 , Bi0 , Bi1 , . . .). We will show that ΨWb,c(I) has

a continuous extension to {0} × int (W), which is essentially a one-dimensional wake

living inside of parameter space for Hénon mappings.

Choose c ∈ int (W). Let M be larger than the radius of the Julia sets in some neigh-

borhood of (0, c). The first coordinate of orbits of XWb,c by Hb,c in this neighborhood are

(M · b)-pseudo-orbits of fc. Hence, because the one-dimensional fattened puzzle pieces

are open (and fc’s derivative is bounded on compact subsets), then the smaller b is, the

longer that ΨWb,c(I) and pr1(ΨWb,c(I)) will have corresponding forward itineraries under
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the actions of Hb,c and fc, respectively. Hence pr1

(
limb→0 ΨWb,c(I)

)
will have an itinerary

of (Πi0 ,Πi1 , . . .). Therefore, it must be the unique point of XWc with this itinerary. The

rest of the statement of the theorem follows easily. �

Theorem 6.22.
(
XWb,c,Hb,c

)
� lim
←−−

(
XWc , fc

)

Proof.
(
XWc , fc

)
is isomorphic to one-sided itineraries adapted to Γ.

(
XWb,c,Hb,c

)
is iso-

morphic to bi-itineraries adapted to Γ . �

The union of the non-critical one-dimensional puzzle pieces has two connected com-

ponents. Non-critical one dimensional puzzle pieces can be coded by which side of the

critical puzzle piece they lie on. The two-dimensional puzzle pieces inherit this coding,

so points in XWb,c have two-symbol codings coming from their two-dimensional puzzle

piece itineraries.

In one dimension, Julia sets taken from the exterior of the Mandelbrot set have a

two-symbol coding derived from cutting up the plane along the inverse image of the

dynamical ray that hits the critical value. If, additionally, we remove from our consid-

eration R+, then we can unambiguously label the side of this cutting which contains the

β-fixed point with an A and the side with the α-fixed point with a B.

Points in Jb,c for (b, c) ∈ HOV also have a two-symbol coding arising from their

realization as the inverse limit system of a one-dimensional Julia set taken from the

exterior of the Mandelbrot set. If we remove the hypersufaceC×R+, then on the negative

real axis we can unambiguously label the region where x is positive with A and where x

is negative with B and extend this coding unambiguously toHOV\R+×C continuously.

Inside of HOV ∩ RW, these two codings agree on XWc . To see this, note that the

dynamical ray that hits the critical value must lie inside the critical value puzzle piece.
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Therefore, its inverse image must lie inside the critical puzzle piece, so for points inXWc ,

the two codings are identical, because XWc has no points in the critical puzzle piece.

Theorem 6.23. A point of XWb,c is determined by its two-sidedW-itinerary.

Proof. A bi-infinite itinerary on two symbols gives a point in the inverse limit system of

XWc , which is isomorphic to XWb,c. �

We see here that the itinerary relative to puzzle pieces has much redundant informa-

tion. It is possible to identify points using a far more coarse partition of space.

While it is true that there is not a well-defined two-symbol encoding on the whole Ju-

lia set throughout RW, we can give a two-symbol coding to the points ofXWb,c throughout

RW. Theorems 6.22 and 5.6 together guarantee that the same set of two-symbol codings

is realized by XWb,c everywhere throughout RW. Hence everywhere inside RW, XWb,c has

exactly one point with a particular bi-infinite AB-coding if and only if that coding has

no substring equal to the characteristic kneading sequence of a wake conspicuous toW.

The reason we need multiple codings is that W-itineraries are valid in HOV, but

not in RW, but paths adapted to Γ give a coding in RW, but not inHOV.

Definition 6.24. Let ΣW be the set of two-symbolW-bi-itineraries realized by points of

XWb,c.

Theorem 6.25. ΣW is a subshift of finite type where the forbidden strings are the char-

acteristic kneading sequences for the wakes conspicuous toW.

Proof. Theorem 6.22 and Corollary 5.24. �
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6.6 Relationships Between Points and Itineraries

The following commutative diagram illustrates relationships between points ofXWb,c,W-

itineraries, and itineraries and multi-itineraries relative to the fattened puzzle pieces.

ΣW

}}{{
{{

{{
{{

{{
{{

{{
{{

{

XWb,c

d

��

f

=={{{{{{{{{{{{{{{{{
Bi-itineraries of fat 2-D puzzle

pieces adapted to Γc
oo

b

��

g

bbEEEEEEEEEEEEEEEEE

Multi-bi-itinerary of fat 2-D
puzzle pieces adapted to Γ

e // Bi-itinerary of puzzle
pieces adapted to Γ

OO

We describe these maps:

b) The correspondence between puzzle pieces and their 2-D counterparts gives a

trivial correspondence between bi-infinite sequences adapted to Γ.

c) An itinerary of 2-D puzzle pieces gives a unique point of XWb,c using crossed map-

pings.

d) Points of XWb,c have multi-itineraries with respect to the 2-D puzzle pieces.

e) Theorem 5.9.

f) XWb,c → ΣW is given by itineraries relative to the unions of the two-dimensional

puzzle pieces on each side of the critical puzzle piece. ΣW → X
W
b,c is given by

Theorem 6.23.

g) Two-dimensional puzzle pieces are on one side or the other of the critical puzzle

piece.
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CHAPTER 7

MONODROMY INVARIANT

Definition 7.1. LetUW = HOV ∪ RW \ (C × R+).

We are definingUW to be the region where we either know we have a horseshoe by

[HOV94a] or we know that we have the structurally stable sparse set XWb,c, but we are

disallowing the class of loops homotopic to γc by removing the hypersurface C × R+.

The reason for disallowing this is that γc has the nontrivial action on the Julia set in

HOV of permuting the two symbols. We wish to isolate a region of parameter space

where there is a trivial monodromy action on a particular subset of the Julia set.

Points of the Julia set can be followed continuously through HOV. XWb,c is a sub-

set of the Julia set for (b, c) ∈ RWb,c ∩ HOV. These points can be followed smoothly

throughoutUW.

Definition 7.2. Define YWb,c = XWb,c for (b, c) ∈ RW and continuously extend YWb,c ⊂ Jb,c

for (b, c) ∈ UW.

We can extendYWb,c because it is part of the Julia set, and the Julia set can be followed

continuously inside of HOV. Also this extension is well-defined because YWb,c has a

trivial monodromy around γb, the loop that generates the fundamental group ofUW.

Lemma 7.3. If we fix a wake W, the W-itineraries realized by YWb,c are constant for

(b, c) ∈ UW.

Proof. They are constant in RW because theW-itineraries of points in XWb,c are constant

in this region. In HOV, points of J are identified with their itinerary and move con-

tinuously with respect to the parameters, and the A and B regions do not interchange in

UW. �
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Choose any class of loops γ ∈ Π1(UW ∩ HC, p0), where p0 = (b0, c0) ∈ HR is a

parameter value for a real horseshoe map.

Lemma 7.4. γ has a trivial monodromy action on YWb0,c0
.

Proof. YWb,c is structurally stable in UW. The fundamental group of UW is generated

by γb, which has a trivial monodromy action. �

The monodromy action ρ(γ) gives a continuous automorphism ρ(γ) of the full 2-

shift.

Theorem 7.5. If α ∈ Σ2 does not contain as a substring the characteristic kneading

sequence of any of the finitely many wakes conspicuous to W, then ρ(γ) acts trivially

on α.

Proof. For any (b, c) ∈ UW, the set YWb,c is precisely the set of points of Jb,c whose

itinerary does not include the characteristic kneading sequence of any wake conspicuous

toW as a substring. Since γ has a trivial monodromy action onYWb0,c0
, then ρ(γ) must act

trivially on any point which does not contain as a substring the characteristic kneading

sequence of any wake conspicuous toW. �

A somewhat stronger statement than theorem 7.5 is actually true. The points in YWb,c

exist and are a subset of J throughout UW whether or not the parameter values are

inside the horseshoe locus. We can thus follow some points of J as we pass through

non-hyperbolic parameter values.
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CHAPTER 8

MONODROMY CONJECTURES

In order to describe our conjectures for the monodromy action, we will need some

background and vocabulary arising from Koch’s computer-assisted investigation of

Hénon parameter space ([Koc05] and [Koc07]).

8.1 Speculative Structure of Hénon Parameter Space

When the Jacobian of a quadratic Hénon mapping is zero, the first co-ordinate of the

mapping reduces to the one-dimensional quadratic mapping. Koch discovered using

Karl Papadantonakis’ program SaddleDrop that when taking c-plane slices of complex

Hénon parameter space, as one moves away from the degenerate b = 0 case, then differ-

ent renormalized Mandelbrot sets strictly contained in the Mandelbrot set break off and

move in different directions. Moreover, she found that the direction they move in is tied

to the kneading sequence of the polynomials whence they originated in the Mandelbrot

set. Specifically, the direction depends most on the digits immediately preceding ?, or

in other words at the end of the finite representation of kneading sequences. Renor-

malized Mandelbrot sets with a kneading sequence ending in an A generally move in

the direction in the c-plane that the parameter value b is perturbed in, and those with a

kneading sequence ending in B generally move in the opposite direction as b does.

As one perturbs b away from 0, then in c-plane slices, the Mandelbrot set seems

to split into two different “herds”. One contains all renormalized Mandelbrot sets that

have a kneading sequence ending in A and the other those that end in B. As one perturbs

b even farther away from zero, then each of these herds split up based on the digit

in the kneading sequences second from the end. Then these split by the third to last
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digit in the kneading sequences. This dyadic splitting phenomenon has been witnessed

experimentally using SaddleDrop to a depth of 5 splits. Misiurewicz points split into

a Cantor set worth of points and appear in every herd. This is in direct contrast to the

hyperbolic components, which follow only one herd. This is because in parameter space,

the boundary of the region where there is an attracting periodic point is the solution of

an algebraic curve and thus can only interect a plane in finitely many points.

As noted earlier, the herd of Mandelbrot sets with a kneading sequence ending in

A moves in the general direction that b does, and the herd of Mandelbrot sets with a

kneading sequences ending in B moves in essentially the opposite direction. The herd

of Mandelbrot sets with kneading sequence ending in AA moves a bit farther in the

direction of b than does the herd with sequences ending in BA. Additionally, the two

herds associated with AB and BB also move differentially, but the presence of the first

B in the kneading sequence flips the direction that the hierarchically lower-level herds

move in, so the BB herd is perturbed slightly more in the direction of a than is the AB

herd. If one perturbs b slightly in the positive real direction, reading from left to right,

one would expect to see the eight herds obtained after three splittings associated with

kneading sequences in the following order: AAB, BAB, BBB, ABB, ABA, BBA, BAA,

AAA.

8.2 Monodromy Conjecture

In order to describe our conjecture for the monodromy action, we will need to develop

a language for conveniently describing a class of continuous automorphisms of the full

2-shift that commutes with the shift operator.

Definition 8.1. A compound marker endomorphism is a mapping on Σ2 described by a
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finite collection of finite strings on two symbols as well as a ?. Each string has a single

?. We use this finite collection of strings to define a mapping on Σ2 by the following

algorithm: If the sequence matches any of the strings at any location (where the ? can

match anything), then the image of this sequence will have the opposite letter in the

position that matched ?. If a letter at a position does not match any string at the ?

position, it is left unchanged.

A compound marker endomorphism is always a continuous endomorphism of Σ2

that commutes with the shift. It is not always bijective, though.

Definition 8.2. If a compound marker endomorphism is an automorphism, we call it a

compound marker automorphism.

Compound marker automorphisms are a generalization of marker automorphisms.

Interestingly enough, there are compound marker automorphisms whose component

strings are not individually compound marker automorphisms themselves. The author

knows of no automorphism of the full 2-shift that is not a composition of compound

marker automorphisms and the shift. It would be of great interest to either prove or

disprove that these generate the automorphisms of the full two-shift.

We conjecture the following on the basis of computer experimentation:

Conjecture 8.3. Suppose that γ ∈ Π1

(
HC0 , (b0, c0)

)
is such that γ winds around a herd

corresponding to a given string x, and this herd comes from a wakeW1 with conspic-

uous sub-wakes W2, . . . ,Wn. Let yi = K(Wi). Then ρ(γ) is the following compound

marker endomorphism:

x ? y1, . . . , x ? yn

Note that in this conjecture, another way to view the yi’s is as the initial segments of
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the kneading sequences of polynomials in the region of the Mandelbrot set whence the

herds originated.

If Conjecture 8.3 were true, then no point of J could be permuted by a loop inUW

unless that point had in its itinerary the characteristic kneading sequence ofW or that

of some wake contained inW. That is what we proved in Chapter 7.

As the herds split and move away from each other, hyperbolic components from

the Mandelbrot set will follow one herd, and create a gap in the herd that they do not

follow. These gaps give rise to loops in the Horseshoe locus. It is unknown if all loops

in the horseshoe locus are generated by going through these gaps (along with the two

generators fromHOV).

We have another conjecture, which we also make on the basis of computer experi-

mentation:

Conjecture 8.4. If the compound marker endomorphism predicted by Conjecture 8.3 is

not an automorphism, then no loop could wind around the herds in question and only

those herds while staying inside the horseshoe locus.

We are conjecturing a connection between the algebraic structure of automorphisms

of the full 2-shift and the topological structure of the horseshoe locus in parameter space

of Hénon mappings.
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CHAPTER 9

EXAMPLES

We will conclude with a few examples which demonstrate various aspects of Theo-

rem 7.5, Conjecture 8.3, and Conjecture 8.4. All of the following pictures of parameter

space were created using the computer program SaddleDrop, written by Karl Papadan-

tonakis. The program is available at the website http://www.math.cornell.edu/ dynam-

ics/ and is an accompaniment to [HP00].

Generically for quadratic Hénon mappings, there are two fixed points, and the map

has a larger eigenvalue (in absolute value) at one of these fixed points. Saddledrop

displays a parameterization of the unstable manifold at this fixed point, and allows the

user to select critical points of G+ restricted to this unstable manifold. Saddledrop then

smoothly follows these points throughout parameter space wherever it is possible to

continue them. Saddledrop draws planar slices of parameter space and colors points

according to the value of G+ at the identified critical points. In the following pictures,

we follow the 16 most prominent critical points. There is no good way to chromatically

represent the 16 rates of escape in one picture, but Saddledrop gives us three ways to

combine this information to color points. In the following pictures, the rate of escape of

the slowest escaping critical point is represented as a color at that pixel. This “slowest

escaping” way of coloring parameter space colors non-hyperbolic parameter values in

darker hues. We do not catch all non-hyperbolic points with our 16 test critical points,

but at this resolution, the pictures do not change significantly with the addition of more

critical points.

Definition 9.1. We say that a marker string matches a bi-infinite sequence if some shift

of the marker string is such that in each position where the marker string has an A or a

B, then the symbol in the marker string matches the symbol in the bi-infinite sequence.
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We say that the marker string matches the sequence at the position where the ? symbol

is.

Definition 9.2. We say that a marker string matches another marker string at a given

position if a shift of the first string is such that in each position where both marker

strings have either an A or a B, then the two marker strings have the same symbol. We

say that the first marker string matches the second marker string at the position on the

second marker string where the ? symbol is.

9.1 B ? BAA

In the following pictures of c-plane slices of Hénon parameter space, we will perturb

the Jacobian in the positive imaginary direction, and we will see that the “tail” of the

Mandelbrot set splits into two parts and that the airplane follows the top part (Figures 9.1

to 9.7). The Jacobian in this sequence of pictures goes from 0 to .05i.
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Figure 9.1: Parameter slice with b = 0
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Figure 9.2: Parameter slice with b = 0.005i
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Figure 9.3: Parameter slice with b = 0.01i
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Figure 9.4: Parameter slice with b = 0.015i

80



Figure 9.5: Parameter slice with b = 0.02i

81



Figure 9.6: Parameter slice with b = 0.03i
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Figure 9.7: Parameter slice with b = 0.05i
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LetWair be the one-dimensional parameter wake with boundary rays at angles 3/7

and 4/7 and which is associated with the airplane polynomial. The only wake conspic-

uous toWair is itself, and K(Wair) = BAA. There is a gap in the bottom herd left by the

airplane because the airplane traveled with the top herd. Every polynomial inWair (ex-

cept for the airplane component itself) has an initial kneading sequence BAA, and this

region is where the herd we loop around comes from. The airplane follows the A-herd,

because its kneading sequence is ?BA, which ends in A, so the herd we are looping

around is the B herd. Conjecture 8.3 implies that the monodromy action around the loop

in Figure 9.8 is B ? BAA.

Figure 9.8: Loop around B herd ofWair with b = 0.05i

The black loop in Figure 9.1 is not in UWair , but if this loop is homotopic to a loop

in UWair , then by Theorem 7.5, the monodromy action of this loop would have to be

trivial on every sequence which did not include the substring BAA. This is a necessary
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condition for the monodromy action of this loop to be B ? BAA.

9.2 BB ? BAA and AB ? BAA

The B-herd is composed of the AB- and the BB-herds. As we perturb b farther, the BB

and the AB herds split up. In the Figure 9.9, we can also see the AB and the BB herds

splitting further into the AAB, BAB, ABB and BBB herds.

Figure 9.9: Loops around BB and AB herds ofWair with b = 0.2 + 0.3i

The automorphism B ? BAA is the composition of AB ? BAA with BB ? BAA, and

85



these two automorphisms commute. Conjecture 8.3 implies that the monodromy action

of the purple loop around the AB herd of Wair is AB ? BAA and that the monodromy

action of the red loop around the BB herd ofWair is BB ? BAA.

9.3 A ? BAA

Lemma 9.3. A ? BAA is not an automorphism of the full 2-shift.

Proof. A?BAA maps both of the sequences BAA and BAB to the sequence BAB, so this

endomorphism is not injective. �

The author is unable to find a a loop in the horseshoe locus that travels only around

the A-herd ofWair (see Figure 9.7). There is no obvious gap to go through, because the

airplane travels with the A-herd. Conjecture 8.4 implies that such a loop does not exist

in the Horseshoe locus.

To find a loop that goes around the A-herd of Wair, the computer experimentation

suggests that one must find a gap created by some other hyperbolic component which

travels in the other direction.

9.4 A ? BAA, A ? BABBA

There is a period 5 renormalized Mandelbrot set on the real axis of the Mandelbrot

set to the right of the airplane at the landing point of the 13/31 and 18/31 parameter

rays whose kneading sequence is BABB?. Call the parameter wake associated with this

componentWBABB. The only two wakes conspicuous toWBABB are itself andWair, and
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Figure 9.10: Loop around A herd ofWBABB

K(WBABB) = BABBA. The loop in Figure 9.10 goes through the A herd corresponding

to where this period 5 component left a gap.

The polynomials inM between this period 5 component and the airplane all have an

initial kneading sequence of BABBA. So this loop goes around the A herd of polynomi-

als in the Mandelbrot set with initial kneading sequences of either BAA or BABBA.

Lemma 9.4. The two-string compound marker endomorphism A? BAA, A? BABBA is

a compound marker automorphism.

Proof. We will say that a marker string matches at a particular position when that posi-

tion is where the ? matches.

Let φ be the compound marker endomorphism A ? BAA, A ? BABBA. It is clear

that φ is continuous and commutes with the shift. We will show that φ is bijective by

showing that φ is an involution. Choose any x = (xi) ∈ {A, B}Z. Let y = (yi) = φ(x) and

z = (zi) = φ(y). We will show that z = x by showing that x and y differ at an index if and
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only if y and z differ at the same place.

Suppose x and y differ at index 0. Then x−1 = x2 = A and x1 = B. Also either x3 = A

(case 1) or x3 = x4 = B and x5 = A (case 2).

Let us consider case 1 first. In this case, neither A? BAA nor A? BABBA can match

x at position −1, 1, or 2, so y−1 = x−1 = A, y1 = x1 = B, and y2 = x2 = A. Either string

could potentially match x at position 3. Let 1a be the case where there is no match and

let 1b be the case where one of the two marker strings matches x at position 3.

Let us consider case 1a. Then, in addition to the information we have for case 1, we

know that y3 = x3 = A. Hence the marker string A ? BAA matches y at index 0. Thus,

z0 , y0.

Let us consider case 1b. We know that y3 = B. We also know that no matter which

string matches x at index 3, x4 = B and x5 = A. Neither marker string can match x at

index 4 or 5, so y4 = x4 = B and y5 = x5 = A. This forces the string B ? BABBA to

match y at index 0, and we see that z0 , y0.

Now let us consider case 2. Neither marker string can match x at index −1, 1, 2, 4,

or 5, so y1 = x1 = B, y2 = x2 = A, y4 = x4 = B, and y5 = x5 = A. However, either marker

string can match x at index 3, so y3 may be either A or B. If y3 = A, then y matches the

marker string A ? BAA at index 0. If y3 = B, then y matches A ? BABBA at index 0.

Either way, z0 , y0.

We have proven that if x0 , y0, then y0 , z0. Now, let us assume that y0 , z0. Then

either y matches B ? BAA at index 0 (case 3) or y matches B ? BABBA at index zero

(case 4).

Let us consider case 3. Suppose that x−1 = B , A = y−1. Then x must match one of
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the marker strings at index −1. This implies that x0 = B and x1 = A , y1. So x must

match a marker string at index 1 as well, but x0 = B contradicts this. So we know that

x−1 = A. Now suppose that x1 = A. Then because x1 , y1, then one of the marker strings

must match x at index 1, so x2 = B and x3 = A. Because x2 , y2, then a string must

match x at index 2 as well, which implies that x3 = B, a contradiction. Thus, x1 = B.

Since x1 = B, then neither string can match at index 2, so y2 = x2 = A. Let 3a be the

case that x3 = A and let 3b be the case that x3 = B.

Let us consider case 3a. In this case, x matches the marker string B ? BAA at index

0, so x0 , y0.

Let us consider case 3b. In this case, since x3 , y3, then we know that x4 = B and

x5 = A. Hence x matches the string A ? BABBA at index 0, and x0 , y0.

Let us consider case 4. Suppose that x5 = B. Because x5 , y5, then a marker string

must match x at index 5, so x4 = A. Because x4 , y4, then a marker string must match x

at index 4, so x3 = A. Because x3 , y3, then a marker string must match x at index 3, so

x4 = B, a contradiction. Hence we know that x5 = A. Neither string can now match x at

index 4, so x4 = y4 = B. Similarly, the fact that x4 = B keeps either marker string from

matching x at index 2, so x2 = y2 = A. Neither string can match x at index 1 because

x2 = A, so x1 = y1 = B. Because x1 = B, then neither string can match x at index −1,so

x−1 = y−1 = A. If x3 = A, then x matches A ? BAA at index 0, and x0 , y0. On the other

hand, if x3 = B, then x matches A ? BABBA at index 0, and x0 , y0.

Thus, we see that in all cases, z0 , y0 implies that x0 , y0. So x0 = y0 if and only

if y0 = z0. In either case, x0 = z0. Marker endomorphisms commute with the shift, so

x = z = φ(φ(x)) for any x ∈ Σ2. φ is its own inverse and is an automorphism. �

As mentioned earlier A?BAA by itself is not an automorphism. However, A?BAA,
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A ? BABBA is in fact a compound marker automorphism, and Conjecture 8.3 implies

that this automorphism describes the monodromy action of the loop in Figure 9.10.

9.5 A ? BAA, A ? BABBA, B ? BAA

If we could move the two gaps from the loop that generated A ? BAA, A ? BABBA

and the loop that generated B ? BAA on top of each other, then we might expect given

Conjecture 8.3 that a loop going through the combined gap to generate the compound

marker endomorphism A? BAA, A? BABBA, B? BAA. However, this action fails to be

an automorphism (Lemma 9.6). Figures 9.11, 9.12, and 9.13 show an attempt to move

these gaps on top of each other.
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Figure 9.11: Parameter slice with b = −0.03 + 0.02i
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Figure 9.12: Parameter slice with b = −0.03 + 0.01i
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Figure 9.13: Parameter slice with b = −0.03
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This is not to say that there are not loops that go through both gaps.

The monodromy action on such loops would be the two-string compound marker

automorphism A ? BAA, A ? BABBA composed with the simple marker automorphism

B ? BAA, which would be an automorphism. This loop could be contained in the b =

−0.03 + 0.02i slice of parameter space, as is illustrated in Figure 9.11.

Complex conjugacy is a symmetry of parameter space. If it were possible to homo-

tope such a loop to a real Jacobian, then it would therefore also be possible to homotope

that same loop to the b = −0.03 − 0.02i slice of parameter space. Conjecture 8.3 would

then imply that the monodromy action of this loop would simultaneously have to be

A? BAA, A? BABBA post-composed with B? BAA as well as B? BAA post-composed

with A ? BAA, A ? BABBA. However, the action A ? BAA, A ? BABBA does not com-

mute with B ? BAA (Lemma 9.5). Therefore, if Conjecture 8.3 is correct, then it is not

possible to move these two gaps on top of each other.

Lemma 9.5. The two-string compound marker automorphism A ? BAA, A ? BABBA

does not commute with the one-string simple marker automorphism B ? BAA.

Proof. Let ψ be the action of the compound marker string A ? BAA, A ? BABBA, and

let ϕ be the action of the compound marker string B ? BAA. Let x be the bi-finite string

AABABBABA. Then:

ψ(x) = ABBABBABA

ϕ(ψ(x)) = ABBABBBBA

And we also see that:

ϕ(x) = AABABBBBA

ψ(ϕ(x)) = AABABBBBA

Hence we see that ψ ◦ ϕ , ϕ ◦ ψ, because they disagree on x. �
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Lemma 9.6. The three-string compound marker endomorphism A ? BAA, A ? BABBA

, B ? BAA is not an automorphism.

Proof. This compound marker endomorphism maps both of the bi-infinite sequences

BAABABBA and BABBABBB to BABBABBB, so it cannot be injective. �

9.6 ABAAB ? BAA and BBAAB ? BAA

Figure 9.14 shows the ABAAB and the BBAAB herds of Wair. Here the Jacobian is

−0.1 + 0.9i.

ABAAB ? BAA and BBAAB ? BAA are compound marker endomorphisms that are

not compound marker automorphisms.

When b is large enough to separate the BBAAB herd from the ABAAB herd ofWair,

other nonhyperbolic components come in between them from other parts of the Man-

delbrot set.

Figure 9.15 shows the same region of parameter space, but following different criti-

cal points.
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Figure 9.14: ABAAB and BBAAB herds ofWair with b = −0.1 + 0.9i

Overlaying Figures 9.14 and 9.15 yields Figure 9.16.
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hi
hi

Figure 9.15: Other herds near the ABAAB and BBAAB herds of Wair with b =

−0.1 + 0.9i
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Figure 9.16: Other herds obstructing loops around ABAAB and BBAAB herds of
Wair with b = −0.1 + 0.9i

xx

The author is unable to find a loop inside the horseshoe locus that loops only around

the BBAAB herd ofWair. Conjecture 8.4 claims that such a loop does not exist.
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APPENDIX A

MONODROMIES OF INVERSE LIMIT SYSTEMS

A.1 Inverse Limit System Setup

This chapter will show some results that relate monodromy actions of inverse limit sys-

tems with those of the base dynamical system.

Let S X and S Y be locally trivial fiber bundles with totally disconnected fibers over

base spaces X and Y , respectively with natural projections τX : S X → X and τY : S Y →

Y , each of which takes a fibre to its basepoint. For every x ∈ X, let sx ⊂ S X be the

fiber over the point x. For every y ∈ Y , let sy ⊂ S Y be the fiber over the point y. We

let π : X → Y be a continuous map and π̃ : S X → S Y also be continuous, so that the

following diagram commutes:

S x
τX //

π̃
��

X

π

��
S y

τY // Y

π̃ maps fibres to fibres. In particular it maps a point z ∈ S X in the fibre above x ∈ X to a

point in S Y in the fibre above π(x).

Also, for any y ∈ Y , we have some dynamical system gy : sy → sy, defined

continuously with respect to y ∈ Y . We also assume that gy : sy → sy is surjec-

tive for all y. We insist that there is a dynamical system fx : S x → S x which is

the inverse limit of gπ(x). (S x, fx) = lim
←−−

(S π(x), gπ(x)). In particular S x is isomorphic

to
{
(. . . , z−1, z0, z1, . . .)

∣∣∣∀i ∈ Z, zi ∈ S π(x) and gπ(x)(zi) = zi+1

}
. Define π̂ : S x → S π(x)

be the natural projection associated with the inverse limit construction that takes

(. . . , z−1, z0, z1, . . .) to z0.
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For every x ∈ X and y = π(x), We have the following commutative diagram:

sx
fx //

π̃
��

sx

π̃
��

sy
gy // sy

Define f : S X → S X by f (z) = fτX(z)(z). Similarly define g : S Y → S Y by g(z) =

gτY (z)(z). f and g are dynamical systems on S X and S Y , respectively, for which every

fibre is invariant. So we also have:

S X
f //

π̃
��

S X

π̃
��

S Y
g // S Y

This setup describes a situation where we have an inverse limit of a hyperbolic dy-

namical system. Y should be thought of as the parameter space for the hyperbolic dy-

namical system, and X should be thought of as the parameter space for the inverse limit

system. S x and S y are the dynamical spaces for our maps with respective parameter

values x and y.

A.2 Coding Setup

Fix any basepoint x0 ∈ X and let y0 = π(x0) ∈ Y . Let (∆1, . . . ,∆d) be a partition of S y0 .

The pull-back by π̃ induces a partition (Θ1, . . . ,Θd) on S x0 . Θi =
{
z ∈ S x0 |π(z) ∈ ∆i

}
.

We do not insist that these partitions have the Markov property.

Points in S x0 and S y0 have itineraries relative to these partitions under the actions of
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fx0 and gy0 . For z ∈ S x0 , let I(z) be the two-sided itinerary of z. For x ∈ S y0 , let I(z)

be the one-sided itinerary of z. For any z ∈ S x0 , the right-infinite tail of I(z) starting at

index 0 is identical to I(π(z)).

A.3 Monodromy Actions

In each of the spaces X and Y , the fact that we have locally trivial fiber bundles which are

completely disconnected implies by the path-lifiting property that we have monodromy

actions on the fibre above any basepoint, in particular x0 and y0. Let ρx : Π1(X, x0) →

Aut(S x0 , fx0) and ρy : Π1(Y, y0) → Aut(S y0 , gy0) be these monodromy actions. Here

Aut(S x0 , fx0) and Aut(S y0 , gy0) represent the group of continuous automorphisms on S x0

and S y0 that commute with fx0 and gy0 , respectively. Every loop in X projects to a loop in

Y under π, so there is a homomorphism from Π1(X, x0) to Π1(Y, y0), which we will also

denote by π. (This map is a homomorphism when we consider a composition of loops

such as (γ1 ◦ γ2) to mean first going around γ2 and then going around γ1, as will be the

convention here. The map is an anti-homomorphism if one makes the alternate choice.)

Fix some particular loop γ ∈ Π1(X, x0) for the remainder of this appendix. Iterating

a point of S x0 under the dynamical system fx0 and then computing its monodromy action

by γ is the same as finding the monodromy of the point and then iterating it under the

dynamics. This is because if a particular path ω through S X (which projects to a loop γ

in X based at x0) connects w with z, then f (ω) must connect fx(w) with fx(z). The same

argument also shows that the monodromy action of a loop in Y commutes with gy0
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S x0

ρx(γ) //

fx0
��

S x0

fx0
��

S x0

ρx(γ) // S x0

S y0

ρy(γ)
//

gy0
��

S y0

gy0
��

S y0

ρy(γ)
// S y0

Similarly, it does not make a difference if we compute the monodromy of a loop γ

acting on z ∈ S x0 in the top space, and then project ρx(γ)(z) down by π̃ or if we first

project down both z and γ and compute the monodromy action of π(γ) on π(z) ∈ S y0 .

This is because if some path ω in S X connects z to ρx(γ)(z), then π(ω) in S Y connects

π(z) with ρy(π(γ))(π(z)). We have the following commutative diagram:

S x0

ρx(γ) //

π̃
��

S x0

π̃
��

S y0

ρy(π(γ))
// S y0

Putting these commutative diagrams together gives:

S x0

ρx(γ) //

fx0

!!B
BB

BB
BB

B

π̃

��

S x0
fx0

!!B
BB

BB
BB

B

π̃

��

S x0

ρx(γ) //

π̃

��

S x0

π̃

��

S y0

ρy(π(γ))
//

gy0

!!B
BB

BB
BB

B
S y0

gy0

!!B
BB

BB
BB

B

S y0

ρy(π(γ))
// S y0

Theorem A.1. ρy(π(γ)) = 1 if and only if ρx(γ) = 1.

Proof. ( =⇒ ) Suppose that ρy(π(γ)) = 1 and ρx(γ) , 1. Then there is some z ∈ S x0 with
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ρx(γ)(z) = w , z. Since S x0 is an inverse limit system of S y0 , there is some n ∈ Z such

that π̃( f n
x (z)) , π̃( f n

x (w)).

Since ρy(π(γ)) = 1, then ρy(π(γ))(π̃( f n
x (z))) = π̃( f n

x (z)), but

ρy(π(γ))(π̃( f n
x (z))) = π̃(ρx(γ)( f n

x (z))) = π̃( f n
x (ρx(γ)(z))) = π̃( f n

x (w))

These equations together imply that π̃( f n
x (z)) = π̃( f n

x (w)), a contradiction, so the

assumption that ρx(γ) , 1 must have been mistaken.

( ⇐= ) Suppose that ρx(γ) = 1, but that ρy(π(γ)) , 1. So there is a z ∈ S y0 so that

ρy0(π(γ))(z) = w , z. Because the dynamical system (S y0 , gy0) is surjective, then the

inverse limit system of it, (S x0 , fx0), must surjectively map to it by π̃. Hence, there must

be a point u ∈ S x0 so that π̃(u) = z. Since ρx(γ) = 1, then ρx(γ)(u) = u, and we get:

w = ρy0(π(γ))(z) = ρy0(π(γ))(π̃(u)) = π̃(ρx(γ)(u)) = π̃(u) = z

This contradicts w , z. �

Lemma A.2. Every itinerary realized by S y0 is the right-infinite tail of some itinerary

realized by a point of S x0 .

Proof. gy0 : S y0 → S y0 is surjective, so given any point z0 ∈ S y0 , we can construct a

bi-infinite sequence (. . . , z−1, z0, z1, . . .) so that zi ∈ S y0 and gy0(zi) = zi+1. This bi-infinite

sequence can be considered as an element of S x0 and right-infinite tail of its itinerary is

the same as that of the arbitrarily chosen z0. �

Lemma A.3. The right-infinite tail of any itinerary of S x0 is realized by some point of

S y0

Proof. Given any bi-itinerary realized by some z ∈ S x0 , it is clear that its right-infinite

tail is the same as the itinerary of π̃(z) ∈ S y0 . �
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Corollary A.4. The itineraries of points in S x0 and S y0 have the same allowed and

forbidden finite strings as well as right-infinite sequences.

Proof. By Lemmas A.2 and A.3, given any finite string or right-infinite sequence, if it

is realized as the itinerary of any point of either S x0 or S y0 , then it must be realized by a

point from the other. �

Theorem A.5. ρy(π(γ)) acts on itineraries by some index-wise permutation if and only

if ρx(γ) acts on itineraries by the same permutation.

Proof. Let δ be any permutation on the set {1, . . . , d}.

(⇐= )

Suppose that ρx(γ) acts on itineraries by δ, that is to say that ρx(γ) sends points with

itineraries
(
. . . ,Θe−1 ,Θe0 ,Θe1 , . . .

)
to points with itineraries

(
. . . ,Θδ(e−1),Θδ(e0),Θδ(e1), . . .

)
.

For every i, ρx(γ) gives a bijection from Θi to Θδ(i). π̃(Θi) = ∆i, so

ρy(π(γ))(∆i) = ρy(π(γ))(π̃(Θi)) = π̃(ρx(γ)(Θi)) = π̃(Θδ(i)) = ∆δ(i)

Hence a point in S y0 with itinerary (∆ f0 ,∆ f1 , . . .) will be sent to a point with itinerary

(∆δ( f0),∆δ( f1), . . .).

( =⇒ )

Suppose that ρy(π(γ)) acts on itineraries by δ. For every i, ρy(π(γ)) gives a bijection

from ∆i to ∆δ(i). Then a point in Θi must be sent to a point in Θδ(i) by the action of

ρx(γ), and we see that ρx(γ) must induce the permutation δ on the itineraries of points in

S x0 . �

Definition A.6. A one-sided marker string on d symbols is a finite string on d symbols,

104



except for the left-most index, which will be considered as an element of the symmetric

group on d symbols. 1

One-sided marker strings on d symbols act on one-sided and two-sided sequences

on d symbols by implementing their permutation on a particular index of a particular

sequence when the rest of the string matches the sequence to the right of that index.

Definition A.7. A one-sided marker string is called a one-sided marker automorphism

if the action it induces on one-sided sequences is an automorphism and it commutes

with the shift operator.

Theorem A.8. ρy(π(γ)) is a one-sided marker automorphism if and only if ρx(γ) is the

same one-sided marker automorphism.

Proof. Suppose ρy(π(γ)) is a one-sided marker automorphism of length n. Let us con-

sider a new partition of S y0 indexed by {1, . . . , d}n constructed as follows:

∆(e0,...,en−1) =

n−1⋂
i=0

g◦−i
y0

(∆ei)

Again, we can lift this partition to get a partition
{
Θ(e0,...,en−1)

}
.

Whether or not a symbol in the original itinerary is permuted depends only on that

symbol and the next n − 1 symbols in the itinerary, so ρy(π(γ)) acts as a permutation on

the itineraries under the new partition. By Theorem A.5, ρx(π(γ)) acts as a permutation

under its new partition, so under the original partition, it must induce the same one-sided

marker automorphism as ρy(π(γ). The same argument works in the other direction. �

At first glance, since the identity is a one-sided marker automorphism, it may seem

that Theorem A.8 is a strictly stronger statement than Theorem A.1, but the former is
1It is possible to extend this definition to one-sided compound marker strings parallel to Definition 8.1,

and the resulting theorems go through without difficulty.
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valid even without a partition of dynamical space or an action that respects a partition in

any meaningful way.
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locus and real parameter values. Contemporary Mathematics, 396:21–36,
2006.

[DH82] Adrien Douady and John Hubbard. Itération des polynmes quadratiques
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Hénon mappings. preprint, 2000.
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