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Abstract. In this expository note, we discuss the mathematics behind the computer pro-
gram, SaddleDrop. Based upon ideas of a group at Cornell University, this program draws
parameter space pictures for the complex Hénon map. The difficulty of this task is explained
as we contrast the well-developed theory of one variable complex dynamics with the two
variable Hénon case.

Introduction

Some of the most beautiful results of complex dynamics arise from studying families of maps
which depend on parameters. One such example is the quadratic family fc(x) = x2+c, which
is parameterized by the complex plane; for each c ∈ C, there is a map fc : C → C. We can
color each point c in the parameter space according to different dynamical properties of the
map fc. For this particular example, coloring the parameter space generates the Mandelbrot
set, one of the most important objects in complex dynamics. There is a simple algorithm to
draw this set, but it requires a crucial theorem from one variable dynamics.

The Hénon map Ha,c(x, y) = (x2 + c − ay, x) is a polynomial diffeomorphism of C2, where
(a, c) ∈ C2, a 6= 0, are complex parameters. We can color the parameter space for this
family just as before for the quadratic polynomials fc: we color each pair (a, c) ∈ C2 based
upon certain dynamical properties of the map Ha,c. However, it is much more difficult to
know what to draw in this case. We not only face the issue of drawing in C2, but the theory
from one variable dynamics that was so important in the Mandelbrot set example, begins to
break.

As an undergraduate at Cornell University, K. Papadantonakis worked with J. H. Hubbard,
J. Smillie, and E. Bedford to write a computer program called SaddleDrop which was one of
the first to draw parameter space pictures for the Hénon map. In this note, we explain the
mathematics behind the algorithm used by the program.

We first introduce some preliminaries from the field of complex dynamics, and a key result
from the one variable case. We then discuss the Mandelbrot set in greater detail and explain
the simple algorithm used to draw it. The remainder of the paper is devoted to two variable
complex dynamics: we discuss the analogs of the theory of one variable dynamics when
they exist, the challenges that arise when they do not, and the program SaddleDrop which
conquers some of these difficulties.

The author would like to heartily thank J. H. Hubbard for his contagious enthusiasm about
Hénon maps, J. Smillie for invaluable SaddleDrop discussions, and the organizers of the

author is supported by a National Physical Science Consortium Fellowship.
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International Workshop on Teichmüller Theory and Moduli Problems at the Harish-Chandra
Research Institute in Allahabad, India. Special thanks to Sudeb Mitra for the invitation
to participate in the workshop, and for the opportunity to visit India which was a truly
remarkable experience.

One Variable Preliminaries

We are interested in iterating maps and asking questions about what happens to certain
points in the domain as we continue to iterate. For this section we suppose that f : C → C
is a polynomial. Many of the following definitions and remarks hold for arbitrary spaces and
maps, but we will not discuss those here.

To any point p ∈ C, we can associate the sequence of all forward images of p: fn(p), where
fn is the composition of f with itself n times.

Definition 1. Let p ∈ C. The sequence of all forward images of p is called the orbit of p
under f , and we denote it as O+(p). That is, O+(p) := {fn(p) : n > 0}. If f is invertible,
we can define O−(p) to be the sequence of inverse images of the point p.

It is quite reasonable to wonder how the sequences O+(p) behave for a given p. For example,
there may be some special values of p where O+(p) is periodic. These points are naturally
called periodic points of the map f . To every periodic point, we associate the corresponding
periodic cycle.

Definition 2. A point p ∈ C is periodic if fn(p) = p for some n > 1. The smallest such n
is called the period of p.

Definition 3. If p ∈ C is periodic of period n, then the set {p, . . . , fn−1(p)} is called a
periodic cycle of length n, or a periodic n-cycle.

There are different types of periodic n-cycles. Their dynamical properties are classified by the
value of the derivative of fn, at a point pi in the cycle. Note that the chain rule guarantees
that the value of (Dfn)(pi) = (Dfn)(pj), where pi and pj both belong to the periodic cycle.
Hence this classification of periodic cycles is well defined.

Definition 4. If p is a periodic point of period n and |(Dfn)(p)| < 1, then {p, . . . , fn−1(p)}
is called an attracting cycle.

An attracting cycle attracts an open set of points called a basin. Not all cycles are attracting
of course; some are repelling.

Definition 5. If p is a periodic point of period n and |(Dfn)(p)| > 1, then {p, . . . , fn−1(p)}
is called a repelling cycle.

We omit the case where p is a periodic point of period n and |(Dfn)(p)| = 1. This is
significantly different from those listed above and will not be discussed here.

As p varies, we can partition C into two subsets based upon whether the sequence O+(p) is
bounded.
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Dynamical Space

Definition 6. Let K+(f) := {p ∈ C : O+(p) is bounded}. If f is a polynomial, the set
K+(f) is called the filled Julia set.

The filled Julia set and its complement are dynamically interesting; these sets are both
forward invariant; that is, f(K+(f)) ⊂ K+(f), and f(C \ K(f)) ⊂ C \ K(f), so we can
consider f restricted to each as a separate dynamical system.

Example 1. Let f(z) = z2, and suppose p ∈ C. We can compute a formula for |fn(p)|,
namely

fn(p) = p2n

, and if p = reiθ, then |fn(p)| = r2n

.

As n →∞ there are three possible outcomes:

• If p ∈ D, then r < 1 and |fn(p)| → 0

• If p ∈ ∂D, then r = 1 and |fn(p)| = 1

• If p ∈ C \ D, then r > 1 and |fn(p)| → ∞

We see that if p ∈ K+(f) ⇐⇒ p ∈ D, so K+(f) = D. Note for this example that p = 0 is
an attracting fixed point of f , and p = 1 is a repelling fixed point. The basin of attraction
for the fixed point at p = 0 is D.

One may be tempted to think that the formula for fn(p) always lends itself so nicely to
determining K+(f); this example is deceptive. The set can be amazingly complicated and
almost always has fractal boundary. We can easily draw pictures of K+ on the computer.
For each point p ∈ C we ask if O+(p) is bounded. If yes, we color the p black, and if no, we
color p grey1. This generates what is known as a dynamical space picture for f .

Figure 1. Above are the sets K+(f) for two different quadratic polynomials.
One is connected and the other is a Cantor set. The one on the left contains
an attracting 3-cycle given by the vertices of the triangle. The set on the left
is called the “Douady rabbit”.

1In this paper, we use grey for our pictures, but the computer program used to generate the pictures uses
other colors.
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It is quite natural to wonder what K+(f) looks like, and we can ask questions of a topological
nature: Is it connected? If not, how many connected components does it have? We could just
draw the computer picture to get a visual answer, but there is a very important theorem (due
to Fatou) which is the key to rigorously answering the connectedness question question.

Theorem 1. Let f be a polynomial of degree d > 2. If the filled Julia set K+(f) contains
all of the finite critical points of f then both K+(f) and ∂K+(f) are connected.

This theorem is incredibly useful. In the case where f is a quadratic polynomial, there is
only one critical point to consider, so determining whether K+(f) is connected in that case
is precisely asking what happens to the critical point under forward iteration. This lays
the foundation for drawing parameter space pictures for polynomials; we will focus on the
quadratics.

The Mandelbrot Set, M

We would like to draw a parameter space picture for the family of quadratic polynomials. It
may appear that a quadratic polynomial, f(x) = a1x

2 + a2x + a3, depends on three complex
parameters, however, this polynomial is topologically conjugate to a unique polynomial of
the form g(x) = x2 + c through an affine change of variables. Dynamically, it suffices to
consider conjugacy classes of maps since orbits are preserved under conjugation. Hence the
parameter space for the entire family of quadratic polynomials is C.

Let fc(x) = x2 + c. As discussed in the introduction, it is desirable to color parameter
space according to the dynamical properties of the map fc. In particular, we would like
to color the parameter plane according to properties of K+(fc). Color c ∈ C black if the
corresponding K+(fc) is connected and color c ∈ C grey if the corresponding K+(fc) is
disconnected. The theorem above provides an easy algorithm for this task: we must follow
the critical point of fc, which is z0 = 0. For each c ∈ C we have a polynomial fc, and we
must determine if O+(z0) ⊂ K+(fc). This simple procedure generates the Mandelbrot set
M := {c ∈ C : K+(fc) is connected}.

Figure 2. The Mandelbrot Set M with two parameters marked.
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Figure 3. The set on the left is K+(fc) for the polynomial fc(x) = x2 − 1.
There is a white dot marking this parameter value in figure 2. The set on the
right is K+(fc) for the polynomial fc(x) = x2 + 0.23 + 0.91i. There is a white
‘x’ marking this parameter value in C \M above.

Notice that there are grey curves in C \ M drawn above in figure 2. If c ∈ C \ M , then
O+(z0) →∞; we can color c according to how quickly z0 escapes to infinity. Color c ∈ C\M
dark grey if z0 escapes to infinity quickly, and color c ∈ C\M light grey if z0 escapes relatively
slowly. We therefore have a “rate of escape” function defined on C \M in parameter space.
The grey curves in C \M are level curves of this function.

In the quadratic case, there is a nice dichotomy: either K+(fc) is connected or it is a Cantor
set. If the filled Julia set is a Cantor set, then the dynamics of fc on K+(fc) is conjugate
to the horseshoe dynamics of the one-sided shift map σ on the space of infinite sequences of
two symbols. We mention this as an interesting fact; the theory behind it is omitted, and
we will not require this result for any future discussion. More information can be found in
[BuS] or [BH].

The Green Function

We refer the reader to figure 3 for this portion of the discussion. Consider the complement
of K+(fc); it is shaded in grey in both pictures. This set contains all points p that escape
to infinity under iteration of fc. Similar to the case of C \M above, it is natural to ask how
quickly these points escape: the darker the grey, the faster the point escapes to infinity. We
therefore have a function, G : C \ K+(f) → (0,∞), which measures the rate of escape of
these points. This function is called a Green function, or a potential function for K+(fc).
Notice that there are curves faintly drawn in the grey regions of both figures; these are level
curves of G. If we set G := 0 on K+(fc), the Green function is defined on all of C. For the
polynomial fc(x) = x2 + c, the following gives a formula for G.

Definition 7. The map G : C → [0,∞) associated to the filled Julia set K+(fc) is defined
as

G(x) = lim
n→∞

1

2n
log+ |fn

c (x)|, where log+ |z| = max{0, log |z|}
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and is the Green function of K+(fc). This function is subharmonic everywhere and harmonic
on C \ ∂K+(fc). The level curves of this function discussed above are called equipotentials.

Critical points of G

From the formula for G, one can derive the equation G(fc(x)) = 2G(x), which implies that fc

maps equipotentials to equipotentials. The function G has critical points, and this equation
reveals exactly what they are. The critical points we consider are contained in C \K+(fc).
We do not consider critical points of G for z ∈ K+(fc) since G = 0 there.

G(fc(z)) = 2G(z) =⇒ DG(fc(z))f ′c(z) = 2DG(z)

Suppose z ∈ C \K+(fc) is a critical point of G. We then have DG(z) = 0. Therefore if z is
a critical point of G, then either of the following holds:

• f ′c(z) = 0, which implies z = z0

• DG(fc(z)) = 0, which implies fc(z) is also a critical point of G

Note that the first possibility implies z0 = 0 is a critical point of G; this is indeed true if
z0 /∈ K+(fc).

Proposition 1. If z ∈ C \K+(fc) is a critical point of G, then there exists m > 0 such that
fm

c (z) = z0.

Proof. As mentioned above, if z is a critical point of G, then either z = z0, or fc(z) is also
a critical point of G. If z = z0, then the proposition is true with m = 0. Suppose then
that z 6= z0. We therefore must have that fc(z) is also a critical point of G. Since fc(z) is a
critical point of G, then either fc(z) = z0, and the proposition holds for m = 1, or fc(z) 6= z0,
and fc(fc(z)) is a critical point by the second possibility above. We can continue in this way,
and we see that if there is no m such that fm

c (z) = z0, then we must have that fm
c (z) is a

critical point of G for every m. Since z ∈ C \K+(fc), O+(z) is unbounded and fm
c (z) →∞

as m →∞. We therefore have a sequence of critical points of G which are arbitrarily close
to infinity. However, analysis of the formula for G reveals that G(w) ∼ log |w| as w → ∞.
The function log |w| does not have critical points arbitrarily close to infinity, and we have
arrived at a contradiction. �

The equation G(fn
c (z)) = 2nG(z), and proposition 1 imply that the critical points of G are

precisely the critical point, z0 = 0 of fc as well as all inverse images of this point under the
polynomial fc as long as these points are not in K+(fc). If one of these points were contained
in K+(fc), then all of them would be, and G would have no critical points. We therefore
observe that for the case fc(x) = x2 + c, K+(fc) is connected if and only if G has no critical
points, by theorem 1. This is a very important fact.
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Figure 4. An example of a disconnected K+(fc). The white marks are placed
at a few critical points of G.

Two variable preliminaries

We now advance to complex dynamics in two variables. The map we consider is the Hénon
map, given by the formula

Ha,c : C2 → C2, where Ha,c

(
x
y

)
=

(
x2 + c− ay

x

)
.

The Jacobian of Ha,c equals a, and H−1 is given by

H−1
a,c

(
x
y

)
=

(
y

y2+c−x
a

)
.

Note that this map is a polynomial diffeomorphism of C2 as long as a 6= 0. We can define two
variable analogs for the Hénon map of the one variable objects previously discussed.

Definition 8. Let p ∈ C2. The sequence of all forward images of p is called the orbit of
p under Ha,c , and we denote it as O+(p). The Hénon map is invertible, so we can define
O−(p) to be the sequence of all inverse images of p.

Definition 9. A point p is periodic if Hn
a,c(p) = p for some n > 1. The smallest such n is

called the period of p.

Definition 10. If p is periodic of period n, then the set {p, . . . Hn−1
a,c (p)} is called a periodic

cycle of length n.

Definition 11. Let p be a periodic point of period n, and let λ1 and λ2 be the eigenvalues
of DHn

a,c(p). If |λ1| < 1 and |λ2| < 1, then {p, . . . Hn−1
a,c (p)} is an attracting cycle.

Definition 12. Let p be a periodic point of period n, and let λ1 and λ2 be the eigenvalues
of DHn

a,c(p). If |λ1| < 1 and |λ2| > 1, then {p, . . . Hn−1
a,c (p)} is a saddle cycle.

We can also define repelling cycles as those periodic cycles where the eigenvalues λ1 and λ2

are greater than 1 in modulus. We shall be most concerned with saddle cycles. We can again
partition our dynamical space into different sets depending upon the orbits of points.

Definition 13. Let K+(Ha,c) := {p ∈ C : O+(p) is bounded}.
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Definition 14. Let K−(Ha,c) := {p ∈ C : O−(p) is bounded}.

Definition 15. Let K(Ha,c) := K+(Ha,c) ∩K−(Ha,c).

As in the one variable case the sets above and their complements are invariant sets and are
therefore dynamically interesting, and we can ask topological questions: for a given pair of
parameters (a, c), which of these sets above is connected? The answers to these questions
are a bit complicated. Previously, we saw pictures of K+(fc) for some quadratic polynomial
examples (see figures 3 and 4). In the one variable case, the sets K+(fc) and its complement
were contained in C; we could draw this copy of C on a computer screen, and observe visually
whether these sets were connected.

The Algorithm: Dynamical Space

The dynamical space for Ha,c is C2. We face two challenges. The first is how do we draw
computer pictures in C2? One possible way is to slice C2 with a complex line, say l, and just
as in the one variable case, we could examine which points in this line escape to infinity under
forward iteration of the Hénon map. This line is a one-dimensional object and thus lends
itself nicely to computer pictures. We could then color the points in our computer picture
based on whether or not they escape. This provides us with a picture of the intersection of
K+(Ha,c) with the complex line.

Figure 5. Both pictures depict the set K+(Ha,c) for the parameter values
a = 0.3, c = −1.17. On the left is a slice of C2 with the line y = 1 and on the
right is a slice of C2 with the line y = 4.

The pictures above are a little disconcerting. In one picture, K+(Ha,c) appears to be con-
nected, but in the other picture it does not. It is possible for a set to be disconnected in a
complex line l but to be connected in C2. And it is equally possible for a set to be connected
in a complex line l but to be disconnected in C2. These pictures reveal nothing about the
connectedness of K+(Ha,c). This is our second challenge: is there a one-dimensional object
in C2 we can draw, which provides topological information about any of the sets above? We
will focus our attention on the set K(Ha,c).
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Definition 16. If p is a saddle fixed point of Ha,c, then the unstable manifold of p is the

set W u(p) :=

{(
x
y

)
∈ C2 : H−n

a,c

(
x
y

)
→ p as n →∞

}
.

This set is an immersed one-dimensional manifold in C2. Moreover, note that it is an
invariant set for Ha,c and for H−1

a,c , and is therefore a dynamical object of interest. Such a
set exists for all Ha,c that have a saddle fixed point.

Proposition 2. For every pair of parameters (a, c), with |a| 6= 1, Ha,c has a saddle fixed
point, except for those on the curve (a + 1)2 = 4c.

This result in [HP] guarantees that there is a saddle fixed point for practically any parameter
pair (a, c), and for each saddle fixed point p, there is an unstable manifold W u(p). This is a
one-dimensional object, but it is all wound up in C2; drawing it with a computer would be
rather difficult if it were not for the following result due to J. H. Hubbard.

Proposition 3. Let p be a saddle fixed point of Ha,c. Let (λ,v) be the eigenvalue-eigenvector
pair of DHa,c(p), where |λ| > 1 is the expanding eigenvalue. The map γ : C → W u(p), given
by

γ(z) = lim
n→∞

Hn
a,c

(
p +

z

λn
v
)

is an analytic injective immersion, where Ha,c(γ(z)) = γ(λz).

This has been a tremendously useful fact. For any saddle fixed point p, the map γ gives a
parameterization of W u(p) by C. We can draw this copy of C on a computer. For each point
z ∈ C, we calculate γ(z) ∈ W u(p). We then examine Hn

a,c(γ(z)) as n → ±∞ (since we are
attempting to draw K(Ha,c), we must consider both forward and backward orbits). We color
the original point z grey if either O+(γ(z)) or O−(γ(z)) is unbounded, and color z black if
O+(γ(z)) and O−(γ(z)) are both bounded, or equivalently if γ(z) ∈ K(Ha,c). Note however,
that W u(p) ⊂ K−(Ha,c), so O−(γ(z)) is necessarily bounded; in fact, O−(γ(z)) → p since
γ(z) ∈ W u(p). We therefore need only investigate whether O+(γ(z)) is bounded.

Figure 6. This is a copy of C colored as described above. In black we see
γ−1(K(Ha,c)), for the parameter values a = 0.3, c = −0.375 + 0.6125i.
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We have found another one-dimensional object to draw in C2. Observe that in the figure
above K(Ha,c) ∩ W u(p) is disconnected. But is K(Ha,c) disconnected inside C2? How
does the connectedness of K(Ha,c) ∩ W u(p) relate to the connectedness of K(Ha,c) inside
C2? Moreover, it is certainly possible for a Hénon map, Ha,c to have two saddle fixed
points. We may wonder how the connectedness of K(Ha,c) ∩ W u(p1) compares with the
connectedness of K(Ha,c) ∩W u(p2), where p1 and p2 are the two points in question. The
following two theorems by Bedford and Smillie provide very promising answers to these
questions in [BS6].

Theorem 2. The set K(Ha,c) is connected if and only if K(Ha,c) ∩W u(p) is connected for
some saddle point p.

Theorem 3. K(Ha,c) ∩W u(p1) is connected for the saddle point p1 if and only if
K(Ha,c) ∩W u(p2) is connected for the other saddle point p2.

We have succeeded: we found a one-dimensional object to draw that provides topological
information about K(Ha,c). The first part of the algorithm is complete.

The Algorithm: Parameter Space

Drawing a parameter space picture for the Hénon map is quite difficult. It is unclear where
to even begin. The parameter space is C2, so again we face challenges of drawing in this
space on a computer. In this case, slicing the parameter space C2 with a complex line will
suffice. We choose to fix a = a0, (where 0 < |a0| < 1) and examine a c parameter plane,
which is just a copy of C. We color each c ∈ C according to the properties of K(Ha0,c).
Alternatively, we could have fixed c = c0 and examined a parameter planes as well, however,
the c parameter planes provide analogs of the Mandelbrot set. Recall the formula for the
Hénon map

Ha,c

(
x
y

)
=

(
x2 + c− ay

x

)
.

Notice that if we fix a = a0, and vary c, the parameter we are changing is the translation;
this translation parameter space is the analog of the parameter space C for the polynomials
fc(x) = x2 + c. Indeed, if a = 0, we obtain the Mandlebrot set M in the c parameter
plane.

Ideally, we would like to color points in C2 according to the properties of K(Ha0,c). We could
color a point (a0, c) ∈ C2 black if K(Ha0,c) is connected, and we could color it grey if K(Ha0,c)
is disconnected. But is there a systematic way to determine if K(Ha0,c) is connected?

This is where we encounter one of the fundamental differences between complex dynamics in
one variable and complex dynamics in several variables. Theorem 1 provided a very simple
algorithm for drawing the Mandelbrot set: the connectedness of K+(fc) was precisely related
to the orbit of the critical point z0 of the polynomial fc. Unfortunately, we cannot even hope
that such a statement will be as helpful to us for Ha,c. One immediate observation is that
Ha,c is a diffeomorphism and therefore has no critical points. Regardless of this, there is no
direct analog of theorem 1 in higher dimensions. We must find another criterion with which
to draw parameter space.
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Fix a parameter pair, (a, c). Consider W u(p); let z ∈ W u(p). Either O+(z) is bounded or
it is not, so either z ∈ K(Ha,c) or it is not. If it is not, then ||Hn

a,c(z)|| → ∞ as n → ∞,
and we can therefore measure how quickly z escapes, providing an analog of the Green
function.

Definition 17. The map G+ : C2 → [0,∞) associated to K+(Ha,c) defined as

G+

(
x
y

)
= lim

n→∞

1

2n
log+

∥∥∥∥Hn
a,c

(
x
y

)∥∥∥∥
is the Green function of K+(Ha,c). This function is plurisubharmonic everywhere and pluri-
harmonic (harmonic on any complex line) on C2 \ ∂K+(Ha,c).

Note that this function is identically 0 on K+(Ha,c). We can examine G+ ◦ γ where γ
is the parameterization of W u(p) by C. Observe that K+(Ha,c) ∩ W u(p) ⊂ K(Ha,c); in
fact, K+(Ha,c) ∩ W u(p) = K(Ha,c) ∩ W u(p), so G+ restricted to W u(p) is defined on
W u(p) \K+(Ha,c) = W u(p) \K(Ha,c). In our computer pictures, we color γ(z) /∈ K(Ha,c)
according to how fast it escapes under forward iteration. In the pictures below, we see faint
grey curves drawn in the complement of K(Ha,c). These are level curves of the function G+.
Remember that these pictures are really γ−1(W u(p)).

Figure 7. These are unstable manifolds for two different pairs of parameter
values. For the map on the left, it appears that K(Ha,c) ∩W u(p) is a Cantor
set, and for the map on the right, K(Ha,c) ∩W u(p) is disconnected but not a
Cantor set.

Although there are no critical points of our map Ha,c, there are sometimes critical points
of G+ ◦ γ; that is, for some parameter values there are critical points of G+ restricted to
W u(p). Recall that for the case fc(x) = x2 + c, K+(fc) is connected if and only if there
are no critical points of the Green function G in the dynamical space C. This suggests that
the critical points of G+ in W u(p) may be related to the connectedness of K(Ha,c). This is
indeed the case; Bedford and Smillie assert in [BS6] that K(Ha,c) is connected if and only
if for µ almost every p, G+|W u(p)\K+(Ha,c) contains no critical points. The measure µ is a
special harmonic measure that will not be discussed here.
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This result is somewhat encouraging; it provides a preliminary criterion for drawing a pa-
rameter space picture. Fix a parameter pair (a0, c0) and find a saddle fixed point, p. Draw
the dynamical space W u(p). In W u(p), find a critical point of G+ if there are any. Color
(a0, c0) in parameter space according to the ‘behavior’ of this critical point. Note that these
critical points of G+ are contained in W u(p) \ K(Ha0,c0) = W u(p) \ K+(Ha0,c0), which
means that they have unbounded forward orbits, but bounded backward orbits. We can
therefore measure how quickly these critical points escape forward to infinity. More specifi-
cally, color (a0, c0) according to how fast the critical point escapes. Move through parameter
space, coloring each parameter pair (a, c) according to how fast a critical point of G+ in
W u(p) \K(Ha,c) escapes.

There are some issues that arise with this algorithm, namely, if there are any critical points
of G+ in W u(p), then there are infinitely many. How can we be sure that this algorithm is
well defined? If α1 and α2 are two critical points in W u(p), how do we color (a0, c0) according
to behavior of the critical points if the critical points display two different behaviors? The
way we color the parameter pair fundamentally depends on which critical point we choose;
the algorithm is not well defined. In fact, essentially different parameter space pictures can
arise if a different critical point is chosen. This is actually part of the richness of the subject:
we do not fully understand this phenomenon yet, but it is very tantalizing and continues to
create more and more questions about Ha,c.

Figure 8. On the left is a picture of W u(p) for a parameter pair (a, c) such
that W u(p) \ K(Ha,c) contains no critical points of G+. On the right is a
picture of W u(p) for a parameter pair (a, c) such that W u(p)\K(Ha,c) contains
infinitely many critical points of G+. Two of them are marked with a white
‘x’.

Another issue that surfaces with this algorithm surrounds the idea of ‘moving around in
parameter space’, coloring each pair (a, c) according to how fast a critical point of G+

escapes. Let p1, p2 be saddle fixed points for the parameter pairs (a1, c1) and (a2, c2)
respectively. As we move from parameters (a1, c1) to (a2, c2) does the critical point we select
for (a1, c1) in W u(p1) influence the choice of the one we select for (a2, c2) in W u(p2)? Is there
any continuity of the critical point selection as the parameter pair is varied? Is there any
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systematic way of choosing a corresponding critical point as we move in parameter space?
The answer is yes: one systematic approach is to use Newton’s method. This is the algorithm
in the program SaddleDrop.

SaddleDrop

The program SaddleDrop was written by Karl Papadantonakis in 2000 at Cornell University.
He collaborated with J. H. Hubbard, J. Smillie, and E. Bedford to draw a parameter space
for the Hénon map using the algorithm outlined above. To summarize the points above and
to be a bit more precise, we outline the algorithm:

GOAL : Draw parameter space pictures for the Hénon map.

• Fix a parameter. Suppose we fix a = a0.

• Choose a single value of the other parameter; suppose we pick c = c0.

• For the parameter pair (a0, c0), find a saddle fixed point p of Ha0,c0 .

• Draw W u(p) as discussed in the dynamical space algorithm.

• Find a critical point, α, of G+ in W u(p) \K(Ha0,c0). If there are no critical points,
change the initial parameter pair recalculating p and W u(p) until a critical point of
G+ is found in W u(p) \K(Ha0,c0).

• For the parameter pair (a0, c0), measure how fast α escapes to ∞. Color (a0, c0)
accordingly.

• Move to new parameter pair (a0, c
′), keeping a0 but changing c0 to c′. Let p′ be the

saddle fixed point for this new parameter pair.

• Use Newton’s method to find a corresponding critical point α′ in W u(p′).

• Color (a0, c
′) according to how fast α′ escapes.

• Do this for all parameter pairs (a0, c), where c ∈ C.

The end result will be a c parameter space picture for Ha0,c.
13



Figure 9. Above is the c parameter space picture for a = −0.2 obtained with SaddleDrop.

Notice that the above picture somewhat resembles a squished Mandelbrot set. This is not so
surprising as the Hénon map can be viewed as a two variable perturbation of the polynomial
fc(x) = x2+c, for small enough values of |a|. The picture is colored according to the behavior
of one particular critical point. For the grey c values surrounding the black set in the middle,
the critical point found by Newton’s method escapes to infinity.

The black and white c parameters are rather interesting. For the black c values in the
middle, Newton’s method converged to a critical point that escaped very slowly; slower
than some set tolerance. For the parameter values that are colored white, Newton’s method
did not converge to a critical point of G+, so the program could not color these parameter
values according to the behavior of a critical point since it could not find one. Perhaps two
critical points of G+ coalesced for these c parameter values, thus confusing Newton’s method
there. Note also there are lines of discontinuity visible in part of the grey region; these are
byproducts of Newton’s method which is used as we move through parameter space.

Figure 10. Above are two c parameter space pictures for a0 = 0.37 + 0.04i.
Each was obtained by following around a critical point of G+ in W u(p).
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The pictures above appear to be very different. The picture on the left was obtained by
following around a critical point in W u(p), while the picture on the right was obtained by
following around a different critical point. The parameter pictures vary greatly with the
critical point originally chosen. How the parameter space picture depends on the critical
point is quite interesting. We do not understand this yet but have some conjectures. This is
one of the many questions that have arisen as a result of this program. We have also found
some strange phenomena in parameter space; an example of this is fingering, see figure
11.

Figure 11. A zoom-in of a c parameter space; note the finger-like appearance
of the black set.

SaddleDrop has been an extremely important contribution to the study of Hénon maps.
There is still much to understand about the program; it has given us some of the first
glimpses of parameter space for Ha,c and continues to raise many fruitful questions about
complex dynamics in more than one variable.2

2SaddleDrop is available for download at http://www.math.cornell.edu/∼dynamics.
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