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RECENT RESULTS AND SOME OPEN QUESTIONS
ON SIEGEL’S LINEARIZATION THEOREM OF GERMS OF
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INTRODUCTION.

We propose to survey some of the classical and recent results on the li-
nearization of germs of analytic diffeomorphisms.

The main point will be the analytic difficulties due to small divisors, and we
will concentrate on the case where all eigenvalues have modulus 1. The results are
illustrated by many open questions and numerous examples which, for the sake of
simplicity, will not be studied in the most general setting. Some new results are .
stated without complete proofs ; the details will appear elsewhere.
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Chapter I

THE PROBLEM AND THE STATEMENT OF THE RESULTS ;
SIEGEL’S AND BRJUNO’S THEOREM

1. Let f € (Cllz1,-*-,2n]))"* 2 germ of formal diffeomorphism of (C™,0). With
z=(21,""+,2n), Wwe write :

f(2) = Az + O(2%) (1)
with A € GL(n, C), and denote by Ay, -+, A, the eigenvalues of A.

For k = (ky, -+, k) € N", we write Ak for )\’1“ .o+ Ak and |k| for Y k.
We say that the matrix A satisfies condition (*) if we have :

A~ #0 ()

forany 1 <j<n,any ke N* with |k|> 2.
The following proposition is elementary.
PROPOSITION 1.  If A satisfies condition (*), there exists a unique germ of
formal diffeomorphism h of (C™,0) of the form :
h(z) = z + O(2?) (2)

which satisfies (formally) :
foh(z) =h(Az) . (3)

2. Example : For n = 1, Az = Az, with A € C* ; then condition (*) means
that A is not a root of unity.
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3. Let g: C — C be a holomorphic function (entire function) of the form
9(z) = z+a32® + - -- such that :

g(z) # = . (4)
For A€ C, let fy = Ag. If A\? = 1, one has :
f3(2) # 2, (5)

so one cannot find h satisfying (3) if (*) is violated.
When one has :

A=Aq =exp(2mia), acT!'—(Q/Z), T' =R/Z, (6)

Proposition 1 applies and there exists h.a (2) = 2+ by2% + -+ such that (formally)
we have f3, 0 ha(Aa2) = ha(Aa2).
The following proposition is easy ((H 7], [L 4], see also [C 7)), [C 10], [C 11]).

PROPOSITION 2. : There is a Gy-dense set of « € T! — (Q/Z) for which the
radius of convergence of hy is 0.

In [H 4] we constructed, for a Gs-dense set of o € T! ~ (Q/2), rational
functions f, of degree d > 2 such that fa(2) = Aoz + O(2?) at 0 and fa has a
dense orbit on the Riemann sphere. LN. Baker and P.J. Rippon (|B 1]) showed
that, with g(z) = e* — 1, fxa has a dense orbit in C for a Gs-dense subset of
a€ T! -(Q/Z).

4. STATEMENT OF THE PROBLEM OF CONVERGENCE.

4.1 We suppose in the following that f is a germ of C-analytic diffeomorphism
of C™ at 0, with f(0) = 0 and

A=Df(0) satisfies (*) (7}

where Df(z) denotes the complex derivative or tangent map of f at the point
ze CH,
In the following, analytic will always mean C-analytic.

4.2 One asks whether f can be linearized in a neighbourhood of 0, that is whether
the formal conjugacy A defined by Proposition 1 defines a germ of analytic diffeo-
morphism at 0. When n = 1, this problem is also called the Schréder equation

(s 0]).
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4.3 Tt is an easy result due to H. Poincaré ([P 5, t. I, p. XXX VI-CXXIX], see
also [K 2], [F 3], [P 4] for references before 1912, and for other references D 1]),
that the problem has a positive answer if (7) holds and :

sup |A;| <1 or sup[AJ-_1| <1. (8)
J 7

A matrix A satisfying (8) is said to be in the Poincaré domain. The proof is
elementary, using, for instance, majorant series. It does not require that A is
diagonizable. Moreover, if (8) holds, (7) is violated but nevertheless f is formally
linearizable, then f is analytically linearizable. When (8) is violated, the matrix
A is said to be in the Siegel set, which have non empty interior for n > 2. For
n = 1, the Siegel set is {A,|A| = 1}.

4.4 When (7) holds and :
Ml#1,1<5<n, (7')

then, by Sternberg’s theorem ([S 8], {S 9]) and its generalization by Chaperon
([C 4]), f is C*°-linearizable.

When (7°) holds (but not necessarily (7)), f is topologically linearizable by
Hartman-Grobman's theorem ([{C 4], [P 10]). Note that when (7) and (7°) hold
but (8) is violated, the germ of conjugacy (as a C°°-diffeomorphism) is not unique.

When n = 1 and Az = Az, with |A| = 1, then f is analytically linearizable
if it is topologically linearizable (see §13 and §23).

4.5 When (7) holds but (8) is violated, the question of analytic linearization
is much more delicate. The problem was certainly known by H. Poincaré ([P 5,
t. IV, p. 36-59 and especially p. 43]), and probably, when n = 1, by many other
mathematicians at the end of the last century {[P 4]) ; the question was explicitly
asked by Kasner ([K 1]) in 1912. See [W 1], and [C 7] to [C 11] for other historical
references.

Proposition 3 shows that arithmetical conditions on the A;’s are certainly
necessary when A is in the Siegel set.

4.6 We assume that A satisfies (*}. For m € N, m > 2, we define :

N = i kE_ . .
()= i,
1<j<n

Condition (*) means that Q(m) is non zero for m > 2. If A is in the Siegel set,

one has :
lim Q(m)=0. (9)

m-—++oo -

This relation, which gives birth to the so called “small divisors”, is what makes it
difficult to prove the convergence of 2~ when A is in the Siegel set.
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4.7 When n =1 and (7) is satisfied, the first published example of a germ f with
a non convergent h was given by Pfeiffer in 1917 ([P 3]).

The known cases where, given A, one can find a germ f with a non con-
vergent h are summarized in the following proposition. It follows from a simple
and elegant result of II’yachenko (|I 1]). The divergence of h under the hypothesis
(10) was first obtained by H. Cremer ([C 11]}) when n = 1, and then generalized
by Brjuno (|B 6]). The divergence under the hypothesis (11) follows from a result
of J.C. Yoccoz ([Y 5]) and requires no other hypothesis on A; than [A;|=1.

PROPOSITION 3. Suppose that A satisfies (*) and one of the conditions (10), or

(11) :

limsup (——Log ﬂ(m)) = 400 ; (10)
m—4-00
A1 .
A has a Jordan block 0 with |A;|=1; (11)
1

then there exists an analytic germ f with f(0) = 0, Df(0) = A, such that the
formal conjugacy h defined by Proposition 1 has radius of ¢+ »nvergence equal to 0.

Using [I 1], it is sufficient, to prove Proposition 3, to check that the linear
operator
n—An—noA - (12)

on the space of holomorphic germs n from (C",0) to itself which satisfy
n{0) = Dn(0) = 0, is not surjective. Observe that (12) is the linearization of (3)
at f =A, h=id.

The non surjectivity of (12) is immediate when (10) holds. The matrices A
satisfying (10) form a Gs-dense subset of the Siegel set.

5. ARITHMETIC CONDITIONS,
(For diophantine approximation, the reader can consult [S]).

5.1 Let A € GL(n,C) satisfying condition (*).
DEFINITION. The matrix A satisfies the Brjuno condition if :

Z 2-* Log(1~1(25+1)) < 400 . (13)
We refer to [B 6] and [R 4] for numerous equivalent formulations of (13).
If there exists # > 0, 4 > 0 such that :
QY m) <~y 'mf,Vm>2 (14)

we say that A satisfies a diophantine condition (of exponent 8).
When 8 > n, almost every n-tuple (Ay,*++,An) € C" satisfies a diophantine
condition of exponent 8.
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5.2 Let n=1; we write A = exp(27ia), with a € R — Q.
Let @ = ag+1/(a1+1/(az+:-+)) the continued fraction of a, and (%ﬁ’) n>—2

the convergence of e : p_o =0,9g_s =1, p.1 =1, g_1 = 0, and pn = @nPnr-1 +
Pr—2s dn = @nGn—1 + gn_2 for n > 0 ; one alway has

¢ >2°7 ,n>1. (15)

The continued fraction of a determines its approximation by rationals (cf. [H 3,
ch. V]} ; one has :

(@nt1+2)7 g2 < |a— Z——'f-l <a,}.q72,n>0. (16)
xn

The Brjuno condition on A is equivalent to :

+o0
> g7t Loggni1 < +00, (17)

n=0

and we then say that o is a Brjuno number, writing B for the set of Brjuno
numbers. Condition (10) is equivalent to limsup,,_,, ., ¢ Loggniy = +0o . A
diophantine condition of exponent § for A is equivalent to ¢,41 = O(¢?) (so
B > 1) ; we write DC for the set of @ € R such that A satisfies a diophantine
condition,

We say that « is of constant type, and write « € CT, if A satisfies a
diophantine condition of exponent 1.

Theset L = R—(DCUQ) is by definition the set of Liouville numbers ; it is
a Gg-dense subset of R and has Haussdorfl dimension 0 (hence a fortiori Lebesgue
measure 0).

5.3 When n > 2, nothing as simple as continued fractions exists. The construc-
tion of matrices A which satisfy (13) but not {14}, with all eigenvalues of modulus
1, is left to the reader.

When n = 1, one has a € DC (resp. « € B) if and only if —a € DC (resp.
—a € B). For n > 2, however, we only take into account for (13) or (14) the
quantities |A*¥ — A;], with & € N* (|k| > 2) ; this is different from considering all
quantities [A* — A;|, with k € Z", and [k| = 3] |k;| > 2.
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6. -

THEOREM 1. Let f be a germ of analytic diffeomorphisms of (C™,0), of the
form : ‘

flz) = Az +0(2%), A€ GL(n,C).

We assume that A is diagonalizable, and satisfies (*) and Brjuno condition (13).
Then the formal conjugacy h of Proposition 1 defines a germ of analytic diffeo-
morphism in a neighbourhood of 0.

The above theorem was first proved by C.L. Siegel in 1942 ([S 4]), when
n = 1 and A satisfies a diophantine condition (i.e. (14)). Still under the diophan-
tine condition (14), it was generalized by Siegel ([S 5, Band 1II, p. 178-187]) to
vector fields in C" near singular a point, and by S. Sternberg ([S 7]) and Gray
([G 4]) to germs of diffeomorphisms of (C",0). Under Brjuno condition (13), it
was first proved by Brjuno ([B 5, [B 6]), and afterwards, when n = 1, by H.
Riissmann ([R 2]).

" Both Siegel’s and Brjuno’s proofs use majorant series ; this is the most
natural method, and gives the best results : the estimates of the radius of con-
vergence are very reasonable, with the right weights for the contributions of the
diophantine approximations. The key point, and probably the whole problem, is
of arithmetical nature.

These are many other proofs using rapid iteration methods and the so-
called KAM techniques, For Newton’s method (i.e. the existence of an inverse up
tb a quadratic term) see H. Riissmann ([R 3]) and E. Zehnder ({Z 1]} ; for rapid
iteration techniques with an infinite number of change of coordinates, see Brjuno
([B 6]), Riissmann ([R 2]), Siegel and Moser ([S 6]) and Arnold ([A 1]).

We refer to Brjuno ([B 6]), Rissmann ([R 5]) and J. Pdschel ([P 9]) for
various generalizations of Theorem 1.

Theorem 1 was generalized to non-archimedean complete valued fields of
characteristic O {instead of C) by Sibuya-Sperber ([S 1]) and Herman-Yoccoz
([H 12]) ; we refer to S 2], [S 3] for applications.
it e e gt thovrom from ebils o
normal forms of analytic diﬁ'(;omorphisms of ?.l"‘le?i ; A::Iem rOm,resuIts -

, Le, old-Moser’s theorem
(A 2], [M 7},and also [H 3, Annexe] and [Z 2]) : see [H 4, VIII] and [H 6] for the
precise statements. This requires KAM techniques and is very useful to study the

bougdlz;ries of Siegel singular disk and the global properties of radii of convergence ;
see . ,

Histor'{cal comments. To the best knowledge of the author, the first to use
fo‘r s:ol'vmfg non linear equations in the complex analytic ca,tegory, the technique %
diminishing domains together with Cauchy estimates (which an,lounts esselgtiali)
to the same thing as smoothing operators), was M. Gevrey in 1914 ({G 1]) Th'y
method of Gevrey is very standard in complex analysis ; it was for instance 1;sed ilrsl
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1940 by H. Cartan ([C 2|) in combination with Newton’s method (without bemg
explicitly stated). A.N. Kolmogorov in 1954 ([K 4]) was the first to state' that
Gevrey’s method in conjunction with Newton’s method could be used for questions
related to small divisors ; various proofs, due to V.I. Arnold and J. Moser, were
given in the sixties ; see [B 4] for a recent survey. The technique of introducing
an infinite number of change of coordinates was used, in a different context, by
Newlander and Nirenberg in 1957 ([N 3]).

In 1919, G. Julia claimed, in an incorrect paper {[J 1]}, to disprove Siegel’s
theorem ; it was rapidly known that this was in fact an open problem (see H. Cre-
mer’s paper) until C.L. Siegel settled it in 1942. Most of the difficult questions of
convergence involving small divisors where known to H. Poincaré ; he frequently
made the incorrect “conjectures” (for example, about the convergence of pertur-
bation series with fixed frequencies, i.e. the existence of KAM invariant torii), but
to the best knowledge of the author, never claimed to disprove the convergence.
I take the opportunity to quote H. Poincaré about the existence of invariant torii
([P 6, t. I, § 149, p. 104-105)) :

“Ne peut-il pas arriver que les séries (2) convergent, quand on donne aux
certaines valeurs convenablement choisies ?

Supposons, pour simplifier, qu’il y ait deux degres de 11berte ; les séries
ne pourraient-elles pas, par exemple, converger quand z et 3 ont été choisies
de sorte que le rapport Yo soit incommensurable, et que son carré soit au con-
traire commensurable (ou quand le rapport 71 est assujetti & une autre condition
analogue & celle que je viens d’énoncer un peu au hasard) ?

Les raisonnements de ce chapitre ne me permettent pas d’affirmer que ce
fait ne se présente pas. Tout ce qu'il m’est permis de dire, c’est qu'il est fort
invraisemblable,”

See also [P 5, t. XI, p. 69-78].

0
Ly

TX,N. Kolmogorov never published a complete proof of [K 4].
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7. SOME CONIJECTURES.

CONJECTURE 1. The Brjuno condition is necessary for Theorem 1 to hold ; in
other words, assuming A diagonalizable and satisfying condition (*), the Proposi-
tion 3 holds when (10) is replaced by :

(10") A does not satisfy Brjuno condition.

Observe that for the linearized equation (12), the condition (10) is the best
possible (i.e. surjectivity of (12) is equivalent to the negation of (10)).

For very reasonable support of this conjecture, the reader should look at
(11.3). Part of the conjecture was claimed (in a stronger form) by T. Cherry
(IC 5]) ; but no proof has appeared, and the claim of [C 5] might well be incorrect.

CONJECTURE 2. If one replaces C by a locally compact non-trivial complete
valued field of strictly positive characteristic, Siegel’s theorem is usually false,
even for polynomials of one variable.

What goes wrong in such a field is that there are no Brjuno numbers (i.e.
satisfying (13)), cf. [H 12].

For lack of space, we refer the reader to the partial survey of V.I. Arnold
({A 1)) about I’yachenko’s, Pyartli’s and his own work on the geometric material-
izations of resonances when A has no eigenvalues of modulus 1. Other references
are [A 3], [L 2], [1 3], [M 1], [M 4], [M 5], -

We also will not discuss here the infinite dimensional versions of Theorem 1 ;
we only give references to N.V. Nikolenko ([N 4], [N 5], [N 6]) and E. Zehnder

(2 8)).
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Chapter 11

THE IDEA OF THE PROOF, BY MAJORANT SERIES,
OF SIEGEL’S AND BRIUNO’S THEOREMS ; VARIOUS REMARKS

8. IDEA OF THE PROOF OF THEOREM 1.

8.1 We describe here the main ideas of the proof, due to Siegel ([S 4]). We only
consider the case n = 1 ; the case n > 2 is essentially similar : see [B 6], [P 9].

Let f(z) = 3_,5;¢;2%, with ¢; = exp(2mia) = A, the germ of holomorphic
diffeomorphism we are considering ; replacing if necessary f(z) by %— f(tz) with
small ¢ # 0, we can assume that :

lesl<1,Vi>1; (8-1)

in particular, f is holomorphic on {|z{ < 1}.

The (formal) conjugacy h(z) = ¥ h;z7,¢; = 1, satisfies :
=1

R(A2) = f(h(z) = Xz + 3 s (h(2))’ .

i=2

Forj > 2,let s; = |AY—)|, and wj a strictly positive number such that 0 < w; < s;.

Consider then the formal germ g(2) = > j>1 8527, with b = 1, which satisfies :

D wibjzl = D (alz)y . (8.2)
722 iz2

This gives for j > 2 :
bj =witY b, - by, ‘ (8.2

the sum being taken for { > 2, ks >1and ) k, =j.

L) - p
By induction, one sees that, for y > 1 :

lh;| < b5 . (8.3)
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8.2. By Dirichlet principle, we know that :

liminf ns, < 400 .
n—+-4-00

However, if we take w; = j—#, for some § > 0, then g diverges ; this illustrates
the difficulty, due to the small divisors s; (or w;), in proving the convergence of h
(or g).

By (8.6) and (8.8) a necessary (but not sufficient, see (11.3)) condition for
the convergence of ¢ is : '

limsup (w2 ---w;) "7 < 400 . (8.4)

J—++o0

Tambs Lyche ([T 1]) and Hardy and Littlewood ([H 2]) have shown that, for any
aeT! —(Q/Z) :

limsup(s; - -+ ;)7 = limsup 941 tai (8.4)

j—+4oo j—+00

When e is 2 Brjuno number, both lim sup are limits and equal to 1 (but this is
not equivalent to the Brjuno condition).

The result (8.4’) of Tambs Lyche and Hardy and Littlewood is not a con-
sequence of Birkhoff’s ergodic theorem for a.e. a. It is related to the following
question asked by A.Y. Khintchine :

QUESTION 1. For which ¢ € L?(T™,df) does one have, for almost all o« € T™ :

1
lim —th (7a) / w(0)do ?

I+ 39

By Marstrand ([M 2]), this may be false, even when n = 1 and ¢ is bounded ;
it i true, by [K 3], when n = 1 and () = Log ||0]} or Log|sin2x8]| ; see also
H 2].
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8.3 We take wp, = spn, 61 = 1, and define é; for 7 > 2:
6 = t.uj_1 sup bk, Ok, » (8.5)
" the supremum being taken for { > 2, k, > 1, Zp kp, = 3. We certainly have :
6; > (we-r-wj) b, 72>2. (8.6)
Define I(z) = 3,5, };2° by ! =1 and

O

lj=zlk;'“lk, ,

the sum being taken as in (8.2). Induction shows that :
bn < 6nln ; (8.7)
6 < by - (8.8)

We conclude that ¢ is convergent if and only if :

which gives :

sx}pj’“l Log §; < +oo . (8.9)
J

8.4 To obtain (8.9), Brjuno uses the following property of the sequence (wy) :
there exists a sequence (v;);>1 in ]0,1/2], with the v; all distinct and having 0 as
accumulation point, and constants ¢ €]0,1/2], ¢ > 0 such that :

Uy < CWj541 j >1 3 (8.10)
0o
Z ~t7 1 Log(fv,) = d < +oo . (8.11)
k=1
I v; < fvgy , 1 < | <tgy1, then wvj_;2>0vy , (8.12)

where the numbers ¢ are defined inductively by ¢; = 1 and :
lgt1 = mf(l l‘Uz < 'Utk) y k>1.

Indeed, from (8.10), (8.11), (8.12), one gets, using a counting lemma and clever
(but elementary) manipulations of majorants series, that :

sup 5! Log 6; < C1d+Cs , (8.13)
721

with positive universal constants C;, Ca.
Remark ¢ Instead of g, Brjuno works with n(z) = 2z~ 'g(2) — 1 which gives a
slightly different inductions (but also (8.13)).
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8.5 In our case, we take, for J 2 1, v; = ||jel|, where ||z|| = inf,ez |z + p| for
r € R. We then have : '
Sjp1 =wjer = [N A >4v;, F>1. (8.14)

On the other hand, one has :
liell + 117 = t)all = (i .

So {8.10), (8.12) hold with & = 1/2, ¢ = 1/4. One has ty = ¢;_; if « € (0,1/2),
and tx = g if @ € (1/2,1) ; hence (8.11) follows from (17), using (16).

Let R(g), R(h) the radii of convergence of g, h ; we finally conclude from
(8.3), (8.13) that :

Log[R(k)™!] < Log[R(g) '] < C3 (i % Log(llqrcall'l)) +Cy,  (8.15)
k=0

where C3, Cy are universal constants, under the assumption (8.1) on f.

9. In the special case :
fa(2) = ™% (2 + 2°) = Aoz + 27)
2 slight modification of Brjuno’s proof ([B 6]) gives :

Log{R(hq)™'] € Log[R(ga)™!] < Logi—-{—zz gt Log[(Zsing-”qkaH)"I] , (9.1)

where the sum starts with k =0for0, o, 1/2and k=1if1/2<a< 1.

Idea of the proof : The term Log 1/4 comes from the special type of induction
for ho ; in order to get better constants, one uses the counting argument of [B 6],
but with the fuction Log[(2|sin x8])~!}.

When a = 3@511-, (9.1) gives, up to a factor less than 50, the correct value
for R(h,) ; this is very reasonable.

) To get estimates from above for R = R(h,), one observes that

h(2) = Lh(Rz) is univalent on {|z| < 1} (see §13). The critical value —Xq/4 of
fa cannot belong to the image of this disk, so we obtain an elementary bound for
E by Koebe’s 1/4-theorem :

R<1. (9.2)

“A much better estimate is obtained by considering :

- 4R ~ -1 n 3
h(2) 1+rh(z) =z + baz” + 0(2°%),
[#
which is univalent on {|z| < 1}, and applying Bieberbach’s inequality (|bz| < 2)
to get :
R ——— < -, 9.3
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10. RELATION BETWEEN THE RADIUS OF CONVERGENCE AND THE DIOPHAN-
TINE PROPERTIES OF a.

If there exists 8 > 0, 4 > 0, the estimate (8.15) shows that :
R(g)"'<Cyt, (10.1)

for some universal constant C > 0.

Actually, one can get from (8.15) a much better result, giving up to constants
the right contribution of the various rational approximations of «.

Suppose that the continuous fraction 1/(a; +1/(a2 + - --)) of a is such that
all a; are 1, except one, say a,41, which is large.

Then we get from (8.15) :

Log[R(g) '] < C1 + C2q;' Log gn+1 (10.2)

for some universal constants Cy, Ca.

10.3 The following example shows that this type of estimate is optimal. Consider
f(2) = Az + 29*1, where XA = exp(2nia), o is above, and ¢ = ¢,. The conjugacy
h has the form :

h(z) =24 hq+1zq+l -+ hq+2zq+2 + ¢

with hq+1 = (A‘H'l — A)ﬁl.
The image by h of its disk of convergence D(h) is contained in {|z| < 21/9},

because limp— 400 [f™(2)] = +00 when |2| > 2Y/9, As h is injective on D(k) (see
§13), we obtain :

Area (R(D(R))) = 'JTZ |hj|2j[R(h)]2J' < 1229,
i21
and therefore :

LoglR(R) ™) 2 3 Log(g2=x7 - 1]2)

2 C3 + Cyq, ! Log In41

for universal constants Cg, Cy.
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11. For @ € T —(Q/Z),A = exp(27ia), let () be the radius of convergence of
the function g, defined by (8.2), with w, = [A™ — )|
It is not difficult to see that :

I{(a) =0 on a dense G subset of T! . (11.1)

the measurable function :a — [I(a)]~!is in the weak L'-space of (T!,d0) .
(11.2)
Indeed, with |E| denoting the Lebesgue measure of E € T!, we have, for 8 > 0,
¥>0:

st (/o) < b forsome p/a}| <c(en1, o(6) >0,

and from this and (10.1), we deduce that :
o€ T, {a) <} < Cr.
J.C. Yoccoz has shown ([Y 4]) that :
if I(a) #0, then aisa Brjuno number . (11.3)

This strongly supports Conjecture 1 (at least if one does not believe in wild can-
cellations due to the fact that A™ — A are complex).

In counterpart, determining exactly /(a) seems to be, in view of (11.1),
(11.2), an untractable and unreasonable problem. It probably requires the exact
knowledge of the continued fraction of & and of all possible cancellations !

We let the reader try to calculate R(ho) or even give a reasonable lower
bound for it, when a = or a = 2¥+(1/F) k>3 k € N.

QUESTION 2. Is it possible to find an algorithm to decide, given a small ¢ > 0,
if R(ga) > € from the base 2 expansion of o (as computers suggest) ?

For numbers « of constant type, we found [H 8] a very simple general method
which applies to almost all small divisors problems ; it gives in particular a very
simple proof of Siegel’s theorem ([H 4]), and yields, for more difficult problems,
very reasonable constants ([H 8, vol. 2, ch. VII]). The constants depend only on
the calculation of the logarithms and sines of a couple of numbers, and a pocket
calculator is more than enough !

For a remarkably simple minoration of R(h), due to J.C. Yoccoz, in the
special case f(2) = e2™**(z + 22), we refer to 18.4 ; see also [, 1] when « is the
golden mean.

Using the simple idea that one can calculate the Taylor coefficients of & and
then conjugate f by appropriate truncations of h, various authors ([L 2|, [L 3]) have
claimed much better estimates for R(h) when a is the golden mean. Unfortunately,
this approach requires large computers and a huge amount of numerical work, so
the claims are not easily checked. These authors have also used the fact that one
can follow Newton’s method on computers, a point of view which was first adopted

by O. Hald and Braess and Zehnder ([B 7).
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12. GENERALIZATIONS AND REMARKS ON THE PROOF.

The conditions (8.11), (8.12) we have required in 8.4 on the sequence
(v;);>1 may be replaced by the following less restrictive conditions, due to Brjuno
(IB 6], see also [P 9]) : there exists # < 1/2 and integers 1 = po < p1 < pz < -
such that we have, with {3(m) = infi<k<m vk :

+o0
> —py * Log[0f)(pk+1)] = d1 < +o00 ; (8.11')
k=0

If Uy < aﬁ(pk) and I< Pk41, then Upn—1i 2 an(pk) . (8.12’)

These conditions together with (8.10) imply :
Log[R(g)—l] < Cadi +C4, (8.13’)

for universal constants Cs,C4 > 0. When v, = |[nal|, {(8.11°) is equivalent to the
Brjuno condition, see [B 6]. One uses the sequence (v;) instead of {w;) because
(8.12) might not hold for (w;).

C. L. Siegel, in [S 4], makes the following assumptions : there exist v €]0, 1]
and v > 0 such that :

O<wyl<y ' n—-1)% for n>2; (12.1)
min(w,?,wy') <77 ¢—~p)¥ for 1<p<yq. (12.2)
He then shows that : :
supn”' Log 6, < ’Y#IL, (12'3)
n>1

where §, is defined by (8.5) and L is a universal constant.

The conditions (12.1) or (8.11°) alone are not sufficient to obtain (12.3) ;
the conditions (8.12°) or (12.2) imply that the w_ ! are not frequently large, and
this is the crucial point.

The conditions (8.11°) and (8.12°) (or (12.1) and (12.2)) appear in many
other problems of small divisors.

12.4 Both Siegel and Brjuno prove that g converges and therefore (by (8.3})), so
does h. The other existing proofs of the convergence of h (for instance, using rapid
iteration methods, [S 6]) do not show that g converges !! See § 32 and § 34.
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Chapter III
THE BOUNDARIES OF SIEGEL SINGULAR DISKS

13. STUDY OF THE BOUNDARIES OF SIEGEL SINGULAR DOMAINS.

13.1 For this study to make sense, we will require global assumptions on f.

D. Sullivan asked the following question : |
Assume that U is a simply connected domain with compact closure U, containing
0, and that f is an analytic diffeomorphism of U, extending continuously to U,
such that f(0) = 0 and f'(0) = e*>™**, with a € T' — (Q/Z) ; does this imply that
dUis a Jordan curve ?

Couterexamples were given by Moeckel ([M 6], see also [P 7]) and indepen-
dently in [H 5]. In the example of [H 5] (which is adapted from one of M. Handel
[H 1]), f extends to a C°°-diffeomorphism of C and AU can be taken as the
“pseudo-circle”.

13.2 For the sake of simplicity, we assume that f = fy, = Ag, with g as in § 3
and :

(13.3) | A=e?" geT! - (Q/Z') :

We assume that f is linearizable at O ; this is the case if « is a Brjuno number.
Let U (# @) be the maximal connected open set containing 0 on which the
family (f"),>0 is normal. We have f(U) = U, and, by a result of P. Fatou (see
[F 2]), U +# C. By the maximum principle, U is simply connected.
Let hy : D = {|z| < 1} — U the conformal representation of U which
satisfies hy(0) =0, h}(0) =t > 0. By Schwarz’s lemma, we have :

hilo fohi(z) = Az,

50 h(z) = hy (£) is univalent and satisfies the same equation on {|z| < t} ; more-
over h'(0) =1 and ¢ is the radius of convergence of h.

We call U a singular domain (or disk). (We add “singular” because “Siegel
domains” classically refer to the symmetric spaces Sp(R?")/U(n).)

QUESTION 3.
a) If U has compact closure, does there exist a critical point of f on U ?
b) If f has no critical points, is U unbounded ?

Clearly a positive answer to a) implies a positive answer to b).
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QUESTION 4. IfU has compact closure, is it true that :
a) 9U is a Jordan curve (i.e. a simple closed curve)?
b) 8U is a quasicircle?

(A quasicircle is the image of the standard circle 8! = {2z € C, |2| = 1} by
a quasi-conformal homeomorphism of C, hence is a Jordan curve.)

When f is polynomial, U has always compact closure. These questions were
first asked by A. Douady {1980) and D. Sullivan (1981) for rational functions
([S 10]).

One of the reasons for asking Question 3.2} is the following result of P, Fatou
((F 1], [H 7]) : let SV be the set of singular values of f, i.e. the critical or
asymptotic values of f ; then the w-limit set of SV by f (i.e. Np>oUr>nf*(SV))
contains the boundaries of all singular domains of f. When f is a polynomial, SV
is just the set of critical values of f.

14. We assume in this section that :

a € DC (see (5.2)) . (14.1)

14.2 Under hypothesis (14.1), E. Ghys (|G 2]) has shown that a positive answer
to Question 4.a) implies a positive answer to question 3.a). This was generalized
by the following theorem ([H 7]) :

14.3

THEOREM 2. If U has compact closure, flav is injective and (14.1) holds, then
there is a critical point of f in 8U.

Hence, to answer positively to Question 3.a), under the hypothesis (14.1),
supposing that there is no critical point of f on U, one has to check that fjsy
is injective ; curiously enough, it is not easy at all, and we have only been able to
do that in special examples : see [H 7] where the following theorem is proved.

. THEOREM 3. If f is a polynomial with only one critical point ¢, and (14.1) holds,
then ¢ € aU.

One an take for instance, f(z) = %((z +1)"* — 1), n > 2 ; the theorem also
applies for periodic elliptic points.
We also obtained in [H 7] many examples with a critical value of f on aU.

14.4 Consider the case where f(z) = A(e? — 1). It was shown in [H 7] that, when
(14.1) holds, U is unbounded ; this implies that 8U is not, in the Riemann sphere,
a Jordan curve and is rather complicated : {oo} is contained in the impression of
every prime end of U.

This example is the reason why we asked in Question 4 for U to have
compact closure.

In the following questions, f(z) = A(e® — 1).
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QUESTION 4.
c) When U is unbounded, does the omitted value —A of f belong to U ?
d) When f is still linearizable at 0, but (14.1) does not hold, is U always
unbounded ?

14.5 After [H 7) was obtained, L. Carleson and P. Jones gave a simpler proof
of Theorem 3, showing that ¢ € AU for a.e. A € S! ; they use the ingredients of
J.C. Yoccoz’s proof of Siege!’s theorem for this particular class of polynomials (see

§ 18).

15. In both Ghys’ partial result ([G 2]) and in the proof of Theorem 2, the main
ingredient is the following result.

THEOREM 4. Let f be a R-analytical diffeomorphism of the circle, with ro-
tation number @ € DC ; then f is R-analytically conjugated to the rotation
R, : 8 50+a.

This theorem was first proved by the author in 1975 for « € CT', in 1976 for
a.e. o ([H 3]), and was generalized to « € DC by J.C. Yoccoz in 1982 ([Y 1], see
also [Y 2[). By Denjoy’s theorem, f is topologically conjugated to Ry. One first
shows that the conjugacy h is C?, then that it is C™® ; the proof is more direct
and natural than the usual techniques in KAM theory (which, anyway, give only
perturbative or local results). Finally, one shows that if & is C® and a.€ DC
then h is R-analytic : for this we used in [H 3| an improvement of a theorem of
f&rnold and Moser {[H 3, annexe|), but this can be avoided for a.e. a by adapting
H 6].

The author does not know of any other global result than Theorem 4 in
small divisors theory ; in fact, it could well be the only simple one, cf. {H 9] and
(H 3, X111].

QUESTION 5. Does Theorem 4 hold when « is a Brjuno number ?

A positive answer would imply that Theorems 2 and 3 are still valid when
a € B, The local conjugacy theorem, for a € B, is true and is proved by adapting
[R 3] and [H 3, annexe].
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16. AN EXAMPLE OF APPLICATION OF THEOREM 3.

Let f(z) = A(z + 2%), with A = exp(2mie) ; we assume that « € DC
Let ¢ = —1 the critical point of f) ; a theorem of Fatou {[F 1]) says that 8U i
contained in the closure of the orbit of ¢ under f.

Using Theorem 3 we conclude that :

(16.1) (f3(€))n>0 isdensein QU .

This, as the following example shows, can force U to be geometrically compli-
cated.

16.2 Example: Let n > 1, p € N*U{oo} ; suppose that the continued fraction of
o satisfies a; = 1 if 7 # n and a, = p (when p = oo, this means that the continued
fraction stops at stage (n —1)). We suppose that n and p are very large, and write
fp to indicate the dependance on p of f(z) = e2™%(z + 22).

When p = 1, a is the golden mean. Given € > 0 and h € N*, if n is very
large (independently of p), the distance between fI(¢) and f;’,(c) will be less than
eforl <k

On the other hand, « is rational when p = o0, so by a result of G. Julia and
P. Fatou ([F 1]) we have lim;_, .00 f(¢) = 0. Given k; € N* and € > 0, the orbit
(féo(€))i<k, is e-close to (f(c))i<k, is p is large enough (note that here, “large”
depends on n). As p is still finite, « is of constant type and {16.1) applies, showing
wild oscillations for oU.

This example shows that one cannot conclude anything from the numerical
computations of (f™(c))n>0 if one does not control the error terms ; on the other
hand, to keep track of these terms seems difficult, as ¢ is on the boundary of the
basin of oco.

17. ARITHMETIC CONDITIONS ARE NECESSARY.

17.1 Recall that in the result of E. Ghys (14.2) as well as in Theorems 2 and 3,
we assume that a € DC.

The following theorem ([H 10]), which is obtained using Ghys’s construction
(|G 2]), shows that an arithmetic hypothesis is necessary.

THEOREM 5. There exists a € T! — (Q/Z) such that f(z) = €2"**(z + 2?) is
linearizable at 0, and its singular Siege] disk U satisfies :
i} OU is a quasicircle ;
ii) no point f™(c), n > 0 lies on 9U.

17.2 Fatou’s theorem says that U C {f"(c),n > 0}. By Theorem 3, the number
a in Theorem 4 cannot belong to DC. In [H 10}, it is also shown that Question 3.b)
has a negative answer. Theorem 5 shows that Ghys’s result 14.2 is false for some
Liouville number «, and that most results of [H 7] are false without arithmetic

assumptions.
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17.3 Taking into account § 15, at least one of the following statements is true :
a) Question 5 has a negative answer ;
b) The number a in Theorem 5 is not a Brjuno number.
If b) holds, Cherry’s claim in [C 5] is incorrect.

QUESTION 6. Which of these statements is true 7

QUESTION 7. In Theorem 5, can one find a such that one can replace i) by one

of the following statements :
a) AU is a C*-submanifold for some 1< k < oo ?
b) AU is a Jordan cruve, but not a quasi-circle?

17.4 Ghys’s result 14.2 shows that U cannot be a C!-submanifold when a € DC

For any a such that f is linearizable at 0, and any zo € U, the inter-
section of QU with a neighbourhood of z; cannot be an analytic arc. Otherwise,
using Schwarz’s reflection principle, the conjugacy equation, and the minimality of
z — Az on |z| = constant, one would be able to extend the conjugacy to a bigger
disk, in contradiction with the maximality of U.

18. YOCCOZ’s PROOF OF SIEGEL’S THEOREM FOR f(z) = A(z+22) ([Y 3]).
For |A| < 1, let fa(2) = A(z + 2%). Let hy(2) = z + O(2?) the formal

conjugacy :
frohr(z) = hA(Az) . (18.1)

Poincaré’s result shows that for |A| < 1 (including A = 0}, the radius of convergence
R(A) of hy is strictly positive ; the image Ly by hj of its circle of convergence is
a Jordan curve, analytic except at ¢ = —1/2 where it has a right angle. One has,
for |A| < 1, the following elementary facts :

ha({lz] < B(A)}) € {J=| < 2} . | (18.2)
w(d)= lim AT"R(e) exists; (18.3)
u is analyticin {|A] < 1}; (18.4)
lu(A)| < 2; (18.5)

ha(u(A)) =c¢; (18.6)

lu(A)| = R(}) ; (18.7)

u(0) = -7 (18.8)

(To show (18.5) one uses the maximum principle and that (f3(€))n>0 is bounded
(by P. Fatou’s and G. Julia’s result), which imply |f§(c)] < 2 when |A| = 1.)
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18.9
LEMMA 1. If(X;)i>0 is a sequence such that.:

) il <1, lim X;=1;
t—4co
11) R(X\;)> 6 >0, forsome &,

then a subsequence of (hy,)i>o converges to a function Hx(2) =2+ O(2?) analytic
on {|z| < §} which satisfies on this disk fa o Hx(2) = Hxr(A2).

~ Using (18.2) it is a straightforward application of Montel’s theorem. Unicity
shows that Hy = hy and R()) > 6.

By P. Fatou’s theorem, there is a function U € L*°(T?,dd) such that the

radial limits :

i}im u(te*™) = U(a), forae. a. (18.10)
0<t<1

By a theorem of F. Riesz, the function Log |U| belongs to L*(T!, dd), so we have :
U(a) #0, for a.e o. (18.11)

Siegel’s theorem, for a.e. a, now follows from (18.7), (18.10), (18.11) and
Lemma 1. We actually conclude from Lemma 1 that :

R()) 2 limsup R(X;). (18.12)
Ai—+A
[Ail<1

J.C. Yoccoz proves more ([Y 3]) : for every A with |A| = 1 one has that radial
limit : |
th_r’x% |u(tA)] exists and is equal to R(A). (18.13)
0>t>1

The function u has curious properties, see [Y 3]. By (18.5), it belongs to H*>*(D) ;
by (11.2) it is an outer function.

18.14 From (18.8), the remarkably simple following observation follows :

there exists a subset of S! of positive Lebesgue measure for which R(A) > 1/4.
On the other hand, by Proposition 2 and (8.12), {U(«)| = R(A} vanishes on

a dense G subset of S!,
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19. PROPERTIES OF THE RADIUS OF CONVERGENCE.

19.1 Let A = e***>, with o € DC ; we denote O} the space of entire functions f
which satisfy f{0) = 0, f’(0) = A equipped with the compact open topology ; it is
a complex codimension 1 affine subspace of the space of all entire functions.

For f € O,, let hy the analytic function defined near 0 by :

fohs(z) = hf(A;), hf(0) =0, h%{0) =1 (19.2)

let R(hs) the radius of convergence of k¢, and g(f) = Log[R(hs)™].
We have ¢g(f) = —oo if and only if f(2) = Az.

THEOREM 6. The function g on O, is continuous and plurisubharmonic (i.e.
subharmonic on any complex line in O)).

Idea of the proof :
Lower semi-continusty : this is proved as in Lemma 1, using that the functions Ay,
univalent on a disk {|2| < r} and satisfying k7(0) = 0, h%;(0) = 1, form a compact
set for the compact open topology.
Upper semi-continutty : this is more delicate and requires the appropriate gener-
alization of the theorem of Arnold and Moser on diffeomorphisms of the circle :
see [H 4], [H 6].
Plurisubharmonicity : the Taylor coefficients h,(f) of ks depend analytically on
f and one has :

9(f) = limsup = Log [hn(f)] - s

n—-+t+oo N
19.3 Define :

Ue={fe0,] ls?g\f(z) — Mz +2%)| < e}

If ¢ is small enough, g is pluriharmonic on U, ; to see this, one uses Douady-
Hubbard’s theory of polynomial-like mappings and adapts, using [H 4, VIIIj,
Yoccoz’s proof (§ 18).
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19.4 An example :

Let f, = Az + b22) + 23, for b € C, and denote g(/3) simply by g(b). One
has g{b) > —oo for any b € C.

PROPOSITION. The function ¢ is not harmonic.

Proof : The conjugacy hy has the form :
hy = 2+ ha(8) 22 + O(°) ,

with kz (b) = b(A—1)~? satisfying |h2(b)| < 2¢9(*) by Bieberbach’s inequality. This
shows that Log [b| — g(b) is bounded from above ; if g were harmonic, one should
have g(b) == Log |b| + constant, in contradiction with g(0) > —co . »

From 19.3, considering bf,(b~12), one sees that g is harmonic for large b
and that :

Lim(g(6) — Log [b]) = ¢(/3) ,
—00
with fi(2) = Az + 22).

By F. Riesz’s theorem ([T 2]}, one can write :

() = 1(5) + [ Log|o - uldu(u)

where p is a Radon measure with compact support and / is harmonic ; ! is actually
constant, because {(b) < ¢; Log |b| where [b| is large (then, an entire function k
with modulus ¢! is a polynomial and does not vanish). The measure u has no
atoms, and its support K has strictly positive capacity.

CONJECTURE 3. K is not a countable union of C-embedded arcs.

Possibly K is not even locally connected. The structure of K is related to
the set of parameters b where the orbits of the two critical points of f;, interact
with each other.
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20. A FORMULA FOR THE RADIUS OF CONVERGENCE.

Let f € Oy ; we assume that the Siegel singular domain of f is bounded.
From (19.1) we have :

n--l

X Lo (0] = LY kiz)

where u € U—{0}, v = h¢(z) and k(z) = Log |h(2}| is harmonic and bounded from
above on {0 < |z| < R(hs)}. As z — Xz is uniquely ergodic on {|z| = constant},

the right-hand side converges to fo (e2™%% |2])df = Log |2| when n — +o0. Taking
radial limits, and applying the ergodic theorem to lim;-.; k(t2), |z| = R(ky), we
conclude :

n—1
ol 3
nEl_Il}lw ~ Z Log lf (u)l < Log R(hf)
for every u E U, and :
—1
Lim - Z Log |f?(v)| = Log R(hy) , (20.1)

n—-4o00 n

for almost every u € U, with respect to harmonic measure.
QUESTION 8. When does (20.1) hold for every u € U 7

If Question 4.a) has a positive answer, the unique ergodicity of z — Az on
{|2| = R(hs)} implies that question 8 has a positive answer. If moreover Question
4.b) has a positive answer (with estimates on the quasiconformal constants), one
can use (20.1), [H 3, VI 3.2] and the classical estimates on univalent functions
([P 8]) to get numerical values for R(h) (see remarks at the end of § 16).
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21. SOME QUESTIONS ON NON LINEARIZABLE FIXED POINTS.

21.1 Consider the special case f(z) = fo(2) = e2™*(2+22),for a € T' - (Q/Z) :

there exists a dense Gs-subset of T! — (Q/Z) such that f, is not linearizable at 0.
A. Douady ([D 3]) has shown that one can find a such that f, is non

linearizable at 0 and the Julia set J(fo) (which here consists of the points with

bounded orbits) is not locally connected. In his example, the critical point

¢ = —1/2 is not accessible in C — J(f,). He asked :

QUESTION 9. Can J(f,) have positive Lebesgue measure when f, is not lin-
earizable at 0 7

One can also ask Question 9 when f is linearizable. The following question
seems to be important in order to understand the Siegel singular domain of f,.

QUESTION 10. Can one find o € T! — (Q/Z) such that the orbit of the critical
point is dense in the Julia set ?

PROBLEM. Calculate, or at least find, reasonable estimates of
sup sup | f2(c)-
a n20

21.2 We mention that, in the general problem of classification of the germs of
the form f(2) = ¢?™*2 4 0(2?), a € T! ~ (Q/Z), Naishul’ has shown ([N 1]) that
*a is an invariant of topological conjugacy.

22. A NON-ARCHIMEDEAN EXAMPLE

Let (Qa,] {,) be the 2-adic field with its standard absolute value, defined
by [2], = -;- and [p|, = 1 for every odd prime, '

For A € Qz, with |A] = 1, consider fy(z) = A(z + 2%) ; the critical point
¢ = ~1/2 satisifes :

. n _
nE‘Pm 173 (c)ly = +oo .

By [H 12], f» is linearizable at 0 if A is not a root of unity. This shows that the
answers to Questions 3 and 4 certainly depend on the base field.
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Chapter IV
SOME EXAMPLES ON C*, n>2.

23. We consider an entire mapping f : C* — C" ; we assume that f(0) =0 and
Df(0) = A is unitary.

If f is linearizable at O (in particular, if A satisfies Brjuno condition (13)),
one can define as in § 13.2 the Siegel singular domain U of f at 0. Then one defines
forzeU:

n—1 :
h(z) = Lim 1 AT fI(2), (23.1)
n—+400 N i=o

(a standard formula due to Bochner and Martin ([B 3], see also [P 1])), and onc
has :
h(0) =0, Dh(0) = id

h(f() = Ah(z) , z€ U .

Adapting Fatou’s arguments ([F 1], see also [D 0]), one concludes that fjy is a
diffeomorphism of U. The closure of ( fan)"'ZD for the compact open topology is

a compact group, isomorphic to T™ when A satisfies condition (*).
QUESTION 11. Is h: U — h(U) a diffeomorphism ?

I have only been able to prove this when the jacobian of f is constant and
A satisfies (*) ; then the jacobian of h is constant and equal to 1.

23.2 When A is diagonal and satisfies condition (*), the (A"),cz form a dense
subgroup of the standard action of T" on C", defined by :

(Bls"' ,on) ’ (zls' * 'azn) = (32#':91211" ) sezwwnzn);

hence h(U) is a Reinhardt. domain.

QUESTION 12. Describe which Reinhardt domains one can obtain in this way,
up to biholomorphic diffeomorphisms.

23.3 A theorem of Cartan and Thullen, solving a conjecture of G. Julia, says
that U is polynomially convex (i.e. a Runge domain) : see [V 1, § 24.8, p. 207].

When A is diagonal, and Question 11 has a positive answer, h(U) is the
domain of normal convergence of A~! ; then h(U) is a pseudoconvex complete
Reinhardt domain ; complete means that (Ay21,-++,Ap2n) € A(U) if (21,---,2,) €
h(U) and |};] < 1).
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24. One can have U = h(U) = C™ even when f is not linear. Indeed, C" has
a large group of biholomorphic diffeomorphisms by which one can conjugate A to
define f. Examples of such diffeomorphisms are :

h(zly' . szn) = (EXP(SO]_(Zg, Tt szn))zl + {02(22,‘ ' ':Zn):z2s . 'azn)

where ©1, @2 are entire functions.

25, Example 1 : Let A1, A2 € C, P\].! = IAzl =1,and F € (—2,2). Define a
biholomorphic diffeomorphism of C3 by :

f(21,22,23) = (1\13(33) (2) ,Azzs) ,

where B(z3) = (E _*1- “s :)1) We have :
ME =X 0
DfOy=A=] 2 0 0
0 0 Az

For a.e. (A1,X2,E) € S! x 8! x (~2,2), A satisfies Brjuno condition and we
showed in [H 9] that U = {(z1,22,23) € C? | |23] < 1} ; in this case 3U is an
analytic manifold, whose Levi form vanishes (we recall that this is not possible in
one variable, cf. 17.4).

Example 2 : Let n > 2, ¢ : C*~1 — C an entire function satisfying ¢(0) = 0,

Dp(0) = 0, and Ay, - - -, A, complex numbers of modulus 1. Define a biholomorphic
diffeornorphism f of C" by :

f(zla' ’ 'ﬁzn) = (‘\lzl + @(22, e ,zn): A222a"':|‘\i’lfzi'w.) .

We assume that condition (*) is satisfied by the A;’s. The unique formal conjugacy
of Proposition 1 has the form :

h(zlazh'“azn) = (31 +ﬂ(22,"',2n),22,"‘,zn)
and 7 is solution of :
f)(AzZz,' * '!Anzﬂ) - Alﬂ(z%' * "zﬂ-) = (p(Zg, - '?zﬂ) .

Using Baire category arguments (cf. [H 12]) one can consruct the ();) and a
sequence (kj);>o in {0} x N™~! with |k;| — +oco such that :

A =AM < k"M >0,
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If we then choose :

o(2) = S — Ag)b
J
(with z = (24,--+,2,)) we will have :

JOEDIELE

The Siegel singular domain of f at 0 in this case has the form C x V', where V is
a Reinhardt domain different from C"™1,

26. Example 3 : For A\;,A; € C, with |A;] = |A2] = 1, we consider the
biholomorphic diffeomorphism of CZ :

f(z1,22) = (Mz1 + 22, A225 + (A121 + 22)?).

We assume that A; # Ao and that (A(, A2) satisfy Brjuno condition. Then f has
a Siegel singular domain U at 0.

PROPOSITION. The closure of U in C? is compact.

Idea of the proof : As f has constant jacobian, we know from 23.2, 23.3 that
there exists a biholomorphic diffeomorphism ¢ from a pseudoconvex complete Rein-
hardt domain R onto U which satisfies :

- fl9(2)) = g(A121, Ae2) for 2 = (21,22) E R ;

- The Taylor series of g at 0 is normally convergent. With ¢ = (¢1,92), we obtain :

g2(2) + A191(2) = g1(A121, A223) ; (26.1)
(91(A 121, A222))? = g1 (M 221, A% 22) — (A1 + A2)g1(A121, A222) + A1 dagi (21, 22) )
(26.2

IfR= {(Zl,zz) | |21] < r1,]|22] € 72} is included in R, we get from (26.2) that
l91] < 4 on R and then from (26.1) that |g;| < 8 on R ; we conclude that
UcC{(21,22) | |o1] £ 4,]22| <8} .

Keeping the same notations, R is logarithmically convex ([V 1]) and g1,92
are bounded and analytic on R ; for each complex line L passing through 0, at
least one of g;,g; has non constant restriction to L N R, so this intersection has
the form {|z| < r}, with r < +o0 and z a coordinate on L (vanishing at 0). We
conclude that R is bounded and 8RN {(z1, 22), 1 22 # 0} is a topological manifold.

QUESTION 13. Is 83U a C®-submanifold of C2 ?

QUESTION 14. Is dU a topological submanifold of C% ? When it is, is it a locally
flat submanifold ?

CONJECTURE 4. For almost every (A1, A2) (with |Mi| = |[A2] = 1), 8U is not a
C°-submanifold of C2.

Observe that f is a diffeomorphism, so has no critical point. J. H. Hubbard
([H 13}) has a more geometrical approach to examples where the proposition holds.
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The fact that OU is compact is probably related to the fact that normal forms for
diffeomorphisms of ‘I'? are only local (cf. [H 9]).

27. REMARKS ON FATOU-JULIA THEORY ON C*, n>2.
(See also [N 7] ; this paper claims, p. 367, using [J 1], that Siegel’s theorem
is incorrect !)

27.1 For an entire mapping f : C* — C®, one defined the Julia set J(f) as
follows : £ € C™ — J(f) if and only if there is a neighbourhood U of z such
that (f{"y)n>0 is normal with values in C™ U {oo} (i.e. we allow {oo} as a limit

function). It follows from the definition that J(f) is closed and that one has :
FI(N cIf);
I =)

27.2 The reader should consult [H 7] for the properties of J(f) when n =1 ; for
n > 2, the properties of J(f) are quite different :

- J(f) can be empty even if f is not linear : see § 24.

- Periodic points are not always dense in J(f) : see Examples 1 and 2 above.

- One can have int(J(f)} # 0 but J(f) # C", and f| y(5) does not always
have a dense orbit : Examples 1, 2.

- J(f) can have isolated points : for instance, take for f a Cremona dif-
feomorphism of C?, with a repulsive linearizable fixed point at 0, whose
basin B of attraction of 0 by f~1 is a Poincaré-Fatou- Bierberbach domain
(i.e. C% — B has non-empty interior) ; see [D 1], [P 5, t. IV, p. 537-582| ;
observe that for any small neighbourhood V' of 0, Up>of™(V') is not dense
in C2.

27.3 If f is a biholomorphic diffeomorphism of C%, and zy is a fixed point of f
not in J(f) or J(f~!), then f is linearizable at xo and Df(z,) is conjugate to a
unitary matrix : this is implied by Bochner-Martin’s formula (23.1) and the fact
that ((Df(z0))")nez is bounded in L(C™,C").

27.4 One can construct ([H 11]) a biholomorphic diffeomorphism f of C? with
the following properties :

- f(0) =0;

- Df(0) is a diagonal, unitary and satisfies condition (*) :

- 0 is the unique periodic point of f ;

- [ has a dense orbit in C2.

QUESTION 15. Does there exist a polynomial Cremona diffeomorphism of G2
which preserves Lebesgue measure and has an infinite number of periodic points
outside its Julia set ?

Using S. Newhouse’s techniques ([N 2]} one can probably construct polyno-
mial Cremona diffeomorphisms f of C2? (preserving R?%) with an infinite number
of periodic sinks.
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Chapter V

CENTER MANIFOLDS AND THEIR RELATION
TO INVARIANT CIRCLES OF TWIST-MAPS. EXAMPLES

28. CENTER MANIFOLDS.

Let f(2) = Az + O(z®) a germ of analytic diffeomorphism of C™. When
the matrix 4 does not satisfy condition (*), usually f is not formally linearizable ;

Al
0 A

formally linearizable but usually not analytically linearizable.

Nevertheless, under suitable arithmetical hypotheses on the eigenvalues of
A, one can frequently find, even when condition (*) is not fulfilled, germs of
analytic submanifolds through 0 which are invariant under f and on which f
acts like a diagonal matrix. We refer to J. Poschel ([P 9]) for some general results
and other references.

We want here to give some examples (slightly different from Pdschel’s) and
show the strong relation between these invariant submanifolds and the invariant
torii of symplectic diffeomorphisms.

when, for instance, 4 = with |[A] = 1, X is not a root of unity, f is

29. POINCARE-LINDSTEDT PERTURBATION SERIES!.

We only look at simple examples and refer to H. Poincaré ([P 6]) and
J. Moser ([M 9]) for a more general (but elementary) approach.

Let © a Z-periodic real valued C* function, satisfying fol w(0)d0 = 0. We
consider, fot ¢ € R, the diffeomorphism f; of T! x R defined by :

fa(0,7) = (0 + 7,7 +ap(0+71)) . (29.1)
Let @ € DC, and C, a C® simple closed curve, homotopic to {r = 0}, such that

fa leaves C, invariant and fy)c, has rotation number «. One can then (as fajc, is
smoothly conjugated to a rotation) choose a parametrization of C, of the form :

0 — {0 +n.(0), ¢ + 1,(6))
where 14, Il € C°(T1) satisfy :

Na(0 + o) = n,(0) +1.(0) ; (29.2)

1H, Poincaré attributes to Lindstedt the discovery of these series ; but most of Poincarés attri-
butions are not quite correct, since he frequently forgets his own contributions.
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La1a(8) = ap(0+14(6)) , (203)

the linear map L, being defined by :
Lana(a) = 2770(0) - na(a + a) - %(9 - C!) .

One can expand 7, as a formal power series :

na(8) = D _ ba(0)a™ ,

n<l1

with the b, in C°(T1), [ ba(6)d# = O : these are the Poincaré -Lindstedt per-
turbation series (with fixed frequency).

We restrict ourselves to the standard map, obtained by taking p(8) =
—21—Nsin(27r0). One shows inductively that b, is an odd trigonometric polynomial
of degree n. D. Goroff showed me, and many authors have noticed, ([G 3], [G 5],

[R 1]) how to calculate inductively the b,. We define :

exp(27i(0 + n4(8))) = Z cn(f)a”™ ; (29.4)
n>0
then we have : _

co(f) = 2™ ; (29.5)
¢ = 2min~1 E kbgen—-k, for n>1; (29.6)

k=1
b, = —}--L"l(c — €p—1), for n>1 (29.7)

n 471 & n—1 n—1}, -~ . .

Relation (29.6) is obtained from (29.4) differentiating with respect to a ; in (29.7),
L, is invertible because « is irrational and ¢,_; — é,_; is a trigonometric poly-
nomial without constant term.

When a € DC and ¢ is R-analytic, the series for n, converge ; in fact, for
¢ > 0 sufficiently small, the function : (8,a) — n4(0) extends to an analytic map
on {|Imé| < ¢} X {|a| < €} (where § € C/Z,a € C). This is shown adapting 2
proof of E. Zehnder ([Z 2], see also (M 8]).

The most natural proof (for the standard map) of the convergence of the
Poincaré-Lindstedt perturbation series (with fixed frequency) would be to deduce
it directly from the relations (29.4)-(29.7).

Unfortunately, this is a delicate problem, as explained now.

The relations (29.6), (29.7) allow to express the coefficients of the trigono-
metric polynomial ¢, as polynomials in the coefficients of the ¢; with j < n. These
polynomials have real coefficients. If one replaces these real coefficients by their ab-
solute value (as one does in Siegel’s theorem), the majorant series obtained in this
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way for 7, are divergent ! The reason is the following : for I(6) = 3, £0 [ e2mikd

one has : _
L;lt(a) = Zlk‘!);lﬂm"ka :

with vx = sin® kre, and in particular :

-1 2\—1 2
ve, = (47%) gk ,
if gx is the denominator of a convergent of . In the expressiori for the coeflicient
of ¢y, with g1 < n < gry1, vq‘k1 appear in some terms with an exponent which is

larger than approximately %(n — g), and this is too much for convergence,

This means that to prove the convergence of the Poincaré-Lindstedt pertur-
bation series (with fixed frequency), one has to take into account the cancellations
due to the signs of the different terms in the induction. Eliasson claims ([E 1],
|E 2]} to overcome in part this difficulty. His arguments are (and have to be) very
delicate ; the author of these lines is far from understanding the whole story, but
is convinced that eventually this type of approach will give a remarkably simple,
natural and beautiful new proof of the results of KAM-theory in the R-analytic
case.

30. We indicate how some of the coeflicients of the b, (for the standard map)
are closely related to the Siegel’s theorem and the induction (8.2).

Let u,, be the coefficient of e2™"0 ip 27ib,, (this is the higher degree term).
Then one has :

1 _
Untl = é-vn_*l_ltn, for n>0, (30.1)

. 1
with tg=1,¢, = ;Zkuktn_k, n>1.

k=1
This gives :
1 n—1

Uy = o kupu, rvn_k . 30.2
i (n—1)v, ; i i ( )

This implies :
tn >0, u, >0 for n>1; (30.3)
Up > (20p) lup_; for n>2; (30.4)

1
Uy > Evnv;,fui for n2>1. (30.5)
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31. THE STANDARD MAP (cf. [G 5]).
We consider the biholomorphic diffeomorphism G of {C/Z) x C defined by :

G, r)=(0+r,7r - (2mi)~1e2mil0+0)y

Let o € R — Q ; we define the u,, for n > 1, by (30.1), (30.2) and put :

9al2) = 2m) 7 3 " up2,

n>1 (31.1)
ﬁa(ﬂ) = qa(e21ri9) .

Then, we obtain :
Lofia = (4m5) 162w @+7(6)

which we rewrite, with A = e2™?, as :

20a(2) ~ 0a(12) = Ga(A"12) = Z2e%e ) (31.2)

When o is a Brjuno number (see [B 6], the remark after (8.13), and (12.3) when
a € DC), the series (31.1) for ¢, define an analytic function. Let R{a) be its
radius of convergence, §(a) = — Log R(e) and D} = {8 € C/Z,Im(8) > 6(a)} :
then #j, is defined on DY ,which is a biholomorphic image of D* = {0 < |2| < 1}.
The mapping S, defined by :

Sa(0) = (0 + 71a(0), & + 7ia (0 + @) ~ 7ia(0))
from D% to (C/Z) x C, satisfies :
G(5a(8)) = Sa(0 + @) . (31.3)

As o is irrational, S, is injective on DY and 7j, cannot be extended beyond Dy,
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31.4 Relation with center manifolds.
Consider the biholomorphic diffecomorphism F of (v defined by :

: 1
Fli(zhz?) - (zlezng,zz - 47!.1'21&2"-{23)

Then, with h{6,r) = (e*"*,r), the diagram :

(c/z)xCc 5 (C/Z)xc

hl lh
2 — C?
F
is commutative. Each point (0, z;) is fixed by F ; the image §, (D}) is associated
to the center manifolds passing through the point (0, &), and tangent at this point
to {22 = a}.

The analogy between S, (D) and.a R-analytic invariant curve R of rotation
number e, for a R-analytic twist diffeomorphism f of T! x R, appears when one
complexifies 2 and f to'some domaim {(21,22) € (C/Z) x C,max; |Im(z;)| < 6} ;
this is possible for'small 6 > 0, giving f;, B; and a ring R, invariant under fy,
satisfying B C Rz C Ry, on which f; is conjugate to the translation by a.Observe
that the restriction to Ry of Df; is parabolic : R, is a center manifold of f1 just
as Sq{D%) is for F.

PROBLEM. To describe globally in the complex domain the (complexified) inva-
riant curves of twist maps (29.1), when ¢ extends to an entire function.

‘There:are delicate questions of global analytic continuation.

32. We list here some of the properties of the center manifolds So(D}), which
may ‘be tonsidered as a simple model for the invariant circles of twist maps (with
power:series involved instead of trigonometric series).

32,1 For every Brjuno number «, the series defining g, converge and the center
manifold exists.

32.2 For a dense Gs-subset of a € T! — (Q/Z), the series defining ¢, has radius
of convergence O ; this follows from (8.4’) since we have from (30.4) :

u}/“ Z %(01 "‘”n)_I/n y (32.3)
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32.4 An a priori estimate.

Let a be such that R = R(a) > 0 ; for 0 < r < R, let M, be the maximum
modulus of ¢, on {|z| < r}. By (30.3), we have M, = g(r) ; from (31.2), we
obtain :

4 Mr _.>_ %reMr '." (325)
from which we deduce :

r < 8M,e M < 8maxze *=8e"!,
z>0

R(a) < 87!

R(a) € 8sup M,e M
r<HR

Moreover M, increases with r, so we get from the above relations :

Mp = sup M, < 400 ; (32.6)
r< it
R < 8Mpe~Mr - (32.7)

We conclude from (30.3), (32.6) and Abel’s elementary Tauberian theorem that
the series defining ¢, converge absolutely uniformly on {|2| < R} ; using (31.3)
we see that S, ({z € C/Z,Imz = §()}} is an embedded Jordan curve.
32.7 For any € > 0, the set {&, R(a) > ¢} is nowhere dense. Indeed, if R(a) > ¢
we get from (32.7) : |

MR(O:) < C(E),

un < c'{e)e™™

where c(¢), ¢/(€) only depend on . But the last inequality is violated on an open

and dense set of o (see (32.3)).
This property is analogous to the fact that generic tW1st maps have invariant

curves only for a nowhere dense set of rotation numbers : see [H 8, chap. I].
32.8 It is not difficult to show that R(e) < C'|a|?, using (30.4) and (30.5). For
the similar property property for twisp maps, see [H 8, ch. II].

32.9 One can adapt J.C. Yoccoz’s proof ([Y 4]) of (11.3) to show that if R(a) >0

then « is a Brjuno number.
From this, we conclude that if the perturbation series for the standard map

define an R-analytic function :
a — 1, € L*(T!,df)

for swmall |a|, then « is a Brjuno number.
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(For twist maps an Aubry-Mather sets of fixed rotation number «, 7, is of
bounded variation so is in L*).

The reader should not conclude that this implies that the standard map
admits only Brjuno numbers as rotation numbers of its invariant circles (J.C.
Yoccoz actually remarked that this is false for the generic C* twist map) ; the
only thing one can say is that these invariant circles whose rotation numbers are
not Brjuno numbers cannot be obtained by analytic perturbation techniques.

33. Remark : Most of what we have said for the standard map is still true
when in (29.1) the function ¢ is R-analytic, extends to an entire function and its
Fourier series has the form :

w(8) = Z ansin(2rnd), a, > 0.
n>1

34. AN EXAMPLE WITH A PARABOLIC (for related examples, see [P 2]).

For a € T! — (Q/Z) and X = exp(2nia), we consider the biholomorphic
diffeomorphism f, of C? defined by :

falz1,22) = (Mz1 + 22), Azz — A% (21 + 22)%) . (34.1)

We look for an invariant (complex) curve through 0, tangent to {2z, = 0} at O,
invariant under f and such that the restriction of f to it is linearizable. This
means that we look at a germ Sa = (fa,la) of analytic map from (C?,0) with
ne(z) = z + 0(2?), lo(2) = O(2*) and satisfying :

Na(Az) = A(na(z) + la(2)) ; (34.2)

(na(2))? = 2na(2) = Ana(Az) — Ana(X2) . (34.2")

With n4(z) = )51 bn2", b1 =1, we obtain the induction relation :

n—1

bp = ('Uﬂ——l)_1 Z bbn—x, n 22, (34.3)
k=1

where v, is as in 29.

We see that :
b, >0 for n>1. (34.4)
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34.5 Tt follows from (8.9) and (11.3) that the radius of convergence of the series
defining 1, is strictly positive if and only if @ is a Brjuno number. Let R(ca) be
this radius of convergence, and for r € [0, R(a)), define :

M = 11a(r) = max na(z)]  (see (34.4)) .

From (34.2°), we have M? < 4M,, hence :

M, <4. (34.6)

34.7 A consequence of (34.6) is that R(a) is finite and the series defining 7, are
absolutely uniformly convergent on the closed disk {|z| < R(a)}. Furthermore,
from (34.2) and (34.5), S, is an embedding of this disk into C2.

34.8 The set of a € T! — (Q/Z) for which R(a) > ¢ is nowhere dense in T, for
any € > 0. This follows from (34.6), Cauchy’s inequality and the estimate :

by > (vy---vn)” .
Caution : If one replaces in (34.1) A by tA, with 0 < ¢ < 1, we obtain an infinite
radius of convergence for the series defining n ; compare with §18.

QUESTION 16. Is n, univalent on {|z| < R(a)} 7 In other terms, is the image
of S, a graph over {z; =0} 7

A similar question occurs for the semi-standard map.
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