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Abstract, Let H : C2 - C® be the Hénon mapping given by

Bt
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defined in terms of p alone.
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1. Introduction

This paper continues the study, begun with [HO], of the Hénon family of map-
pings as a family of mappings of two complex variables. Let p(z) be a polynomial
in one variable and @ # 0 a complex number. A Hénon mapping is one which can

be written
- Bt 7] [P0 ],
Y T

Such a mapping has Jacobian a, and if a 5 0, it is invertible:

Bt 5] o Lo Loy

The key invariant subsets under such a mapping are

e ([ e [

Jo=0Ky, K=K.nK_, and J=JynJ.

‘ bounded as n = $oo }

as well as

When a = 0, the degenerate Hénon mapping
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The mapping p induces a mapping 5 : Cp — (f‘? by
(... 22 2-1,20) = (.., p(z=2), P(2-1) p(20)) = (.- ., 2-1, 20, P(20))
which is of course }I:>ijective:
B 2 21, 20) = (11, 22y Zu).

In section 7, we will give a description of this space which makes it reasonably
understandable when p is hyperbolic.

THE INDUCTIVE LIMIT INDUCTIVE LIMIT CONSTRUCTION
Recall that if f: X — X is a mapping from a space to itself, then the inductive
limit 5
Xy =l (X, f)

is the quotient (X x N)/ ~, where ~ is generated by setting (x,n) ~ (f(z),n 4+ 1).

o [ 2
is not invertible, but maps all of C* to the curve C, of equation z = p(y), and
reduces to = — p(z) in the first coordinate.

According to the theory that hyperbolic dynamics is stable under perturbations,
you would expect that H,, could be understood as a perturbation of p for o suf-
ficiently small when p is hyperbolic. Many pecple (e.g., Holmes, Whitley, and
Williams, cf., [Ho], [HWh], and [HWi] for further references) have done this in the
real domain, at least for |a| small. Benedicks and Carleson have gone further in this
direction [BC]. In this article we will do the same in the complex domain. By the
techniques used here we can only deal with perturbations of hyperbolic polynomials,
and not the much more difficult ones studied by Benedicks and Carleson.

There is a fundamental conflict between the Hénon mapping and polynomials:
polynomials are not injective and Hénon mappings are. We will describe two ways
of creating from a polynomial p objects which do carry bijective dynamics; both
appear as invariant subsets of €* for Hénon mappings which are sufficiently small
perturbations of hyperbolic polynomials.

THE PROJECTIVE LIMIT CONSTRUCTION
Let A
G = lim(C,p):
A point of this projective limit is a point zp € C and a history of the point zp under
the iteration of p. More precisely,

@TJ =2 {( i B2, Z_1+%0) | Pzeim1) =z forali=..., -2, —1,0}.

X x {1} X x {2} X x {3} X x {4} X x {5}

Fig. 1.1. Inductive limit as an increasing union

Inductive limits are pathological objects in general, and will be Hausdorff only
when f has some nice properties. We will consider them only when f is open
and injective, in which case the inductive limit is an increasing union of subsets
homeomorphic to X, hence locally as nice as X.

The inductive limit comes with a map to itself: f:X; — X; induced by

(man) - (f(:ﬂ),'n) ~ (m:n - 1)

This mapping is obviously bijective, as an inverse is induced by (z,n) » (z,n +1).
‘We will now apply this construction to polynomials. Our construction only makes

sense for polynomials p with no critical points in the Julia set; however, we will only

apply it to hyperbolic polynomials, which all have this property. Let D C C be a

disk of radius R sufficiently large so that J, C D, where J, is the Julia set of p.
Consider the mapping fpor: Jp X D = Jp x C given by

hmd@ﬂ=(MQ£+aE%ﬂ,

which is well defined since p'(¢) # 0.
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Lemma 1.2. If p is hyperbolic, and if |a| # 0 is sufficiently small, then the image
Foe,r(Jp x D) is contained in J, x D and f, o r is open and injective.

Proof. Recall that if p is hyperbolic, there are no critical points of p in J, (in fact,
this is the only property of hyperbolic polynomials this lemma requires). Thus the
formula is well-defined, and clearly if || is sufficiently small, the image lies in J, x D.
Moreover, if there are no critical points in J,, then there exists € > 0 such that when
C1 7 G € Jp and p({1) = p(¢2), then |(; — G| > &. If we choose

el

0< o €< —————
|P o¥

then fp o g is clearly injective. The mapping is open because it is a local homeo-

morphisnt. O

Thus when p is hyperbolic and || is sufficiently small and R is sufficiently large,
we may set ) )
G =Guar= lllﬂ(']p % D, fpa,R):
and we will denote by } ) )
ﬁz‘fp,oj,R:Cp _>CP
the bijective mapping above.
If¢: X =Y is a homeomorphism conjugating f: X — X and g: Y —+ Y, then
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Lemma 1.3. This is o nested sequence of embedded disks, and the intersection is a
single point.

Proof. The nesting is obvious. As we have defined it, there exists a dlsk D rela-
tively compact in D such that

Joe,r(Jp X D) C J, x Dy.

There are infinitely many disjoint conformal copies of the annulus D — D, surround-
ing the intersection above. This shows that the intersection is a point. O

Let us call 9 : fp — Cp the mapping which associates to ¢ the unique point in
the above intersection. Clearly the diagram

>

SN

-]

b=
P

Nl

— G
|
— G,

commutes.

1 induces a homeomorphism ¢+ X7 ="V, CORfUgAting 1 : X7 = X707 V= T,
Thus the following proposition, which is proved in Section 6, shows that we can drop
the indices @ and R, and speak simply of 5: G, — &;.

Proposition 6.13. For all oy, az sufficiently smell and all By ond Ry sufficiently
large, there is a homeomorphism

wiJpx Dy = J, x Dpg,

conjﬂgatiﬂg fp,&l,Rl to fP,OﬁZ,R2'

This justifies writing simply f, and Cp The space Q, is quite difficult to un-
derstand. The only case where it is anything familiar is when .J, is a Jordan curve;
in that case (flp is homeomorphic to the complement of a solenoid in a 3-sphere.
Proposition 6.1 gives some important information, and much more is shown in Sec-
tion 7. In Section &, we show that when p is a real hyperbolic polynomial, the real
part IR, is often the common separator of Lakes of Wada. This illustrates some of
the unavoidable complexity.

AN EMBEDDING OF J, INTO G,

The inductive and projective limits above are related: the projective limit fp is
naturally an invariant subset of both. This is obvious for C,; let us see why it is
true for ;.

Let {=1{..,¢-2,{-1,%0) € Jp, and consider the intersection

({G} x D) n p({¢1} x D) 0o+ 0 " ({Gen} x D) N

We will see in section 1 some examples of the objects abave. In particular, we will
see that the construction above corresponds to seeing the solenoid as a projective
limit of circles or a decreasing intersection of solid tori.

RIEMANN SURFACE LAMINATIONS

It is rather difficult to find any category to which C, and C, belong. A first
attempt is to say that they are are (or have large subsets which are) Riemann
surface lominations. For future reference, we define this category to have:

Objects: Hausdorfl spaces which are locally products of Riemann surfaces by
topological spaces, glued together by local isomorphisms;

Morphisms: Continuous mappings, analytic on each Riemann surface

You should imagine the topological factor to be like a Julia set, either a Cantor
Julia set (for (flp) or a connected Julia set (for C,). This category has recently turned
up in several fields, and Sullivan’s paper [S] contains some basic material about this
category. Pictures of the Hénon attractor [Hé2] or of basin boundaries show that
such structures should be relevant to dynamical systems.

THE MAIN RESULT

Both of the constructions above give objects which arise in the dynamical plane
C? of Hénon mappings.

Theorem 1.4. Let p be a hyperbolic polynomial. There ewists A such that if 0 <

la| < A, then there exist homeomorphisms

e_:C—»J and &G =Ty
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such that the diagrams

2 &_ “ &

C, —— J- C —— Jy

ﬁl lH and ﬁl lH
G G

commute, On jp, the mappings & and ®_ coincide, i.e., we have

$_ Ij!,= (I)+ Q "P

OUTLINE OF THE PAPER

The proof we will give of Theorem 1.4 is an adaptation of the technique of tele-
scopes, which we learned from Sullivan many years ago.

In section 2, we will review Sullivan’s construction. This will serve several pur-
poses: it will motivate our construction; it will provide us with some constructions
which we need; and it will provide a written account of Sullivan’s proof, which was
never published.

In section 3, we will define our 2-dimensional analogs of expanding maps, which
we call crossed moppings. It seems clear that these are going to be of interest in
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where dq is the Poincaré metric on Q. (The number 1 in the definition is arbitrary;
everything would go through for any positive constant.)

Further set X, = p~™™(X). The X, form an increasing collection of compact
subsets of (} which exhaust €}, and they are strictly increasing in the sense that X,,_;
is contained in the interior of X,. Similarly, the sets U, = C — X, form a basis of
nested open neighborhoods of J,, each relatively compact in the previous.

Let N be the smaliest index such that a}] the critical points of p are in Xy. Such
an NV exists since there are only finitely many critical points, all in 0.

Proposition 2.1. The mapping p: Uy, = Un_y is a covering map forn > N. In
particular, it is strongly infinitesimally expanding for the Poincaré metric of Up1.

Proof. Clearly p : U, — U,_; is proper and a local homeomorphism, hence a
covering map and a Jocal isometry from the Poincaré metric of U, to the Poincaré
metric of Un_1. Since U, is relatively compact in U,_, the inclusion is strongly
contracting for the Poincaré metric of U,,_;. O

We will call U = U, and U’ = Uy, so that p : U' — U is a covering map.
Choose € > 0 sufficiently small that for any z € I7, the set;

U, ={z1 el |dU(z1,z) <E,‘}

many other settings, and we have proved the basic results concerming them with,
considerable care.

In section 4, we show that for Hénon mappings which are small perturbations
of hyperbolic polynomials, the mappings analogous to the telescope mappings are
crossed mappings. This will give us a homeomorphism @ : J, — J conjugating the
Hénon mapping to P, and locally the stable and unstable manifolds will also drop
out of the construction. X

In section 5, we identify the unstable manifold of J with C,, and in section 6 we
identify the stable manifold with C,. This last step is quite delicate, and is surely
the hardest proof in the paper.

Finally, in sections 7 and 8, we show in some examples exactly what these results
give us for the topology of Hénon mappings, including Lakes of Wada.

2. Telescopes and Hyperbolic Polynomials

Many years ago, we learned from Sullivan that hyperbolic polynomials (and ra-
tional functions) are structurally stable on their Julia sets. Sullivan used telescopes
in his proof, and we are planning to adapt this construction to Hénon mappings.

Let p(z) be a hyperbolic polynomial. In fact, everything we will say goes over to
rational functions without modification. We will take ag our definition of hyperbolic
that all critical points are attracted to attractive periodic cycles. As we will see
below, this is equivalent to saying that p is strongly expanding on the Julia set Jp.

Call () the Fatou set of p, C the set of attracting periodic points of p (including
o0 ), and :

Xo={ze0|da(z,C) <1},

is homeomeorphic to a disk, and that p restricted to U, is a homeomorphism to its
image.
For any z € Jp, define U = U,, and recursively set

Uz’."!. = U;_l n p_n(Upun(z)).

It is easy to show that each U7 is homeomorphic to a disk.

Proposition 2.2. We have

{z} = U

Proof. Clearly z is in the intersection; the only problem is to show that the inter-
section is a single point. This follows from the strong expansion: if p expands by a
factor of K > 1, then the diameter of UP is at most ¢/K™. |

Sullivan defines a p-telescope to be a sequence of disks Wp, W, ... such that
Wi 18 relatively compact, in p(W,).

Example 2.3. If z € Jp, the sequence of disks U,, Upz)s- .- 15 a telescope, and
Proposition 2.2 says that a telescope defines a point. But clearly a telescope for p is
also a telescope for a small perturbation of p, so that going from points to telescopes
to points provides a conjugacy between the Julia set of a hyperbolic polynomial and
that of a small perturbation. This is the idea behind Sullivan’s proof.
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Theorem 2.4. For any neighborhood V' of the Julia set of p, there exists a neigh-
borfwod of p in the C'-topology such that any py in that neighborhood is conjugate
to p on a neighborhood of the Julia set.

Sketch of proof. Define ¢: J, =V by
QD(Z) = m pIn(Up“(z))'

Just as above, for p; sufficiently close to p in the C*-topology, this intersection is a
single point. A similar construction gives an inverse for ¢ on

Iy ={2€V [p"(z) e Vioraln}.

Thus ¢ : J; =+ Jp, is a homeomorphism conjugating p t0 p1 on the Julia sets.
We leave to the reader to verify that this homeomorphism can be extended to a
neighborhood of J, which still conjugates p to p1. O

3. Crossed Mappings

In one dimension, the mappings useful for structural stability are those which
map a disk strictly outside another. In higher dimensions, we will be interested in
bijective mappings defined on bidisks which map the “vertical boundary” outside
itself, and the inverses of which map the “horizontal boundary” outside itself. Thus,
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To make the notation less cumbersome, we will often write f : By = Bs for a
X
crossed mapping, leaving the precise W, and W; to be determined by the context.

Proposition 3.3, Iff W1 — Wy is a crossed mapping from By to Bs, then all
maps

Prio flwnxiyy) s W1n (U x {y}) = U

and

Pr2 o f wunterxw) 1 W ({2} x Vo) = W
have the same degree, which will be called the degree of the crossed mapping.

Proof. Choose & € Us, and consider Z, = £~ (W, N ({z} x V%)), which is a closed
analytic curve in By (i.e., a Riemann surface closed in B:). The mapping prq : Z, —
V1 is proper, hence a finite ramified covering map, of some degree k(z). For every
y € V1, the line Uy x {y} cuts Z. in precisely k(z) points, counted with multiplicity
(where the multiplicity is almost by definition the local degree of the projection
above). But for each such y, these k(z) intersection points are mapped by f exactly
to the intersections of f(Wi N (Uy x {y})) with the line {z} x V4; these count the
degree of
pr1o flunnnx iy : Wi N (U1 x {y}) = Ua.

Thus these maps all have the same degree, and the same argument applied to f—1

they “look lilkke” Figure-3.1. - -- —- oo —

Fig. 3.1. A l-crossed mapping
We need to formalize what this means. Let By = U; x Vi and By = Uy x V5 be
bidisks.

Definition 3.2. A crossed mapping from By to Bz is a triple (Wy, Ws, f), where

(1) Wy Cc U] x Vi where U] C Ui is a relatively compact open subset,

(2) Wy C Uy x Vi where Vi C V; is a relatively compact open subset,

(3) f:W; — W is a holomorphic isomorphism, such that for all y € V1, the
mapping

Pr1o flwanwxiyh - Wan (U x {y}) = Uz
is proper, and the mapping
prso f_1|Wgﬁ({a:}sz) Wan({z}xW)=+W

is proper.

ahamma-that +11n m,apc

W TIOWa=trlleltr

Pr2 o f wang{erxva) : Wa ({2} x Vo) = V4

also all have the same degree; i.e., k(z) does not depend on z. It is clear from the
proof that the two classes of mappings have the same degree. O

Figure 3.1 represents a 1-crossed mapping, i.e., a crossed mapping of degree 1.

Proposition 3.4. If f: Wi — W is a crossed mapping from By to Bo and X € B,
is an enalytic curve such thet pry : X — Uy is proper of degree I, thenpryo f :
XNWi = Uy is proper of degree K.

Remark 3.5. The case where X is a horizontal disk is part of the definition of a
crossed mapping.
‘We require the following lemma, which is classical.

Lemma 3.6. Let X and Y be curves in a bidisk B=U xV such thatpr1: X = U
and prz : Y =V are proper of degrees kx and ky, respectively. Moreover, suppose
that pr1(Y) is relatively compact in U. Then X and Y intersect in kxky points
counted with multiplicity.

Proof of Proposition 3.4. For each z € Us, the curve X and the curve
Yo =7 (W n ({z} x V)

satisfy the hypotheses of Lemma 3.6. So these curves intersect in &l points indepen-
dent of . But this means that every vertical line in B; intersects f(X NW;) in the
same number of points. Since f(X N W) is clearly closed in W5, this shows that it
maps by a proper map to . O (Propaosition 3.4)
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Proposition 3.7. (a) Let f : W; — Wy be a crossed mapping from By to Bs of
degree k. Then f~1: Wy — Wy is also a crossed mapping if all the coordinates are

flipped. ~ _
(b) If B1, Ba, and By are bidisks, Wi C By, Wa C Bz, W2 C By, and W3 C B,
and fi : Wiy — We and f2 : Wa — Wy are k- and kz-crossed mappings, then

fao fi: Wan frH(We) = W3 N fa(W2)

is o kyko-crossed mapping from By to Bs.

Proof. Part (a~) is obvious. For (b), observe that the sets 51 = Wi n fi l(Wg) and
Sz = W3 N fo(W2) clearly satisfy conditions (1) and (2) of the definition; it remains

to show (3). For any y € Vi, the curve X, = f: (Wi N (T x {y})} satisfes Ehe

hypothesis of Proposition 3.4, with respect to the crossed mapping fo : W — Wa.
So the projection pry : foa(WanX,) — Us is proper. Proposmon 3.4 also shows that
this-preper projection has degree ki k;. : . O

A bidisk B = U x V carries, like all bounded domains, the Kobayashi metric,
which in this case is easy to describe: it is the product of the Poincaré metrics of
UV and of V. Crossed mappings of degree 1 have special ¢ expamsmn and contraction
properties with respect to this metric. If £ € T, U, we Wﬂl denote by [{z,£)|v the
length of the tangent vector for the (infinitesimal) Poincaréimetric of U.

A first observation about this metric is the following:
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an invariant cone-field is automatic; in the real it needs to be verified in each case
[Yocl], this is often quite difficult.

Proof of Proposition 3.9. A vector in the cone Cig, 4,) is tangent to a curve X
in By proper of degree 1 over U;. The curve f{X N W;) is then proper of degree 1
over UUs by Proposition 3.4. Thus the tangent to f(X N W) at f(z:,71) is in the
cone C(e,,y,)- This proves the first part.

For the second part, observe that pry o f : X N W, — U is an isomorphism, so
that
xaw, ) " Us — Uy

prio(priof

s an analytic mapping with relatively compact image. Thus it stricfly contracts
Poincaré lengths, and its derivative maps £2 to £;. O (Proposition 3.9)

We will refer to smooth curves and surface in a bidisk B = U % V as horizontal-
like or wertical-like if their tangent spaces are in the horizontal or vertical cone
respectively at each of their points.

Suppose B1, ..., Bnyi are bidisks such that B; = U; x V;. Suppose also that
W; C B; (i = 1,...,n) and W; C B; (i = 2,...,n+ 1) are open subsets so that
fi : Wi — Wiy are crossed mappings of degree 1. Let

S1=Win W) Nt e o £l ) (W)

and

Lemma 3.8. A tangent vector (€,7) 'érT{x,y)Brz:é ta:ﬁéent to a da.sk which is the groph
of an injective mapping g : U =V if and only if |(z,&)|v = |(y,0)|v. This mapping
can be taken to have relatively compact image in 'V if and only if |(z,&)lv > |(v.7)|v-

Proof. In one direction, this is Schwarz’s Lemma. such a g contracts in the Poincaré
metrics and contracts strictly if the image is relatively compact. In"the other direc-
tion, by a biholomorphic isomorphism, we may suppose the bidisk is the standard
bidisk D x D, and that (z,y) = (0,0). Then the line containing (£,7) intersects the
bidisk in an appropriate graph. : A

This gives us the appropriate tool to study crossed mappings of degree 1. For
any bidisk U x V, consider the horizontal cone field C; .y C Tiq B deﬁned by

Clay = { &:1) € Te gy B| (. Olu 2 | )lv } -

Reversing the inequality gives the vertical cone field.
Proposition 3.9. Let f : W, — Wa be a crossed mapping from By to Bs of degree
1. Then for all (z,y) € W1, we have

(1) F(Clay) C Criay)-
Moreover, if (€1,m) € Cley,py), F(T1,11) = (B2,y2) and dig, 40) F(E,m) = (&2, M),
then |($2=§2)|U2 > |($1:£1)]U1'

Remark 3.10. This proposition illustrates the principle that in complex analysis,
inequalities often follow from topology. In the complex setting, the existence of

Sy = ﬁfn+1 n fn(ﬁ/n) (fn -e f2)(TV2)

so that Proposition 3.7 and an obvious induction shows that the restriction g of
foo---of1 to Sy makes g : §1 — S a crossed mapping of degree 1 from By to Byy.

We want to say that horizontal disks in B; intersect S: in regions with small
diameter. It is a bit harder to do this from Proposition 3.9 than one might expect:
the contraction there is infinitesimal, and a domain U/ C I/ may have small diameter
in U although the shortest curve joining points of U’ in U" may still be long. We
will take a different tack, using complex analysis and moduli of annuli. Note that
such methods, in a more complicated confext, have had great success recently in
one-dimensional dynamics [BH], [H], [Yoc2].

Let U be a simply connected Riemann surface isomorphic to the disk, and U’ a
relatively compact open subset. Define the size of U’ in U to be the 1/M, where
M is the largest modulus of an annulus separating I/ from the boundary of U. We
will really be interested in the case where I/’ is connected and simply connected; so
that the size of U in U is the inverse of the modulus of U — T".

Note that the size is related to the Poincaré diameter by a double inequality;
after conformal mapping of U to the disk, the extreme cases for a given diameter
are a line segment and a round disk.

Proposition 3.11. Suppose that the size of the projection pr 1(W;) in U; is 1/M;.
Then for any y € V1, the size in Uy of 51 0 (Uh x {y}) is at least

n—l1
l/;ﬂ{'
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Proof. Consider the subsets
Wi =f" oo 7 (W),
which are nested so that
BioWi =Wl O>W!>---2Wr=25.

For any y € V1, the annuli (V] x {g})n (Wf - Wf+1) are disjoint nested annuli for

Jj=1,...,n—1, and the jth maps by pric f;c---o fi to an annulus which contains
Ujs1 — Ujyy. hence has modulus at least 1/M;.,. The result now follows from the
additivity of moduli. |

Corollary 3.12. Let By = Uy x Vg, B1 = Uy x V1,... be an infinite seguence of
bidisks, and f; + B; — Bit1 be crossed mappings of degree 1, with Ul of uniformly
. ‘

bounded size tn U;. Then the sef
W{SBn,fn} = { [;] EBy | fao---0fs ([;]) €EB, foraln } '

is a vertical-like analytic disk in Bo, which maps by pro isomorphically to Vo, which
we will call the stable disk of the sequence of crossed mappings.

Similarly, when we have baclwards sequence of crossed mappings
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Proposition 3.14. If U, = U, UUy with U, NUL # 0 and U!, and U, homeo-
morphic to disks. Set B, = U], x Vi, and BY, = U x V,,. Suppose

f.m : Um X Vi — Um+1 = Vm+1
is an analytic map defined on an appropriate subset, such that the resirictions
Bl —X-;‘»B:M_l and f!' :BI —x:—JB’,L’,L_}_1

are crossed moppings of degree 1, then the stable sets of the sequences

ByB B Bp . and By S B By

x

coincide.

Proof. In the proof of Corollary 3.12 above, the sequence u,, could be chosen

- arbitrarily, in particular in U, N UL D

Corollary 3.15. Let
...B_1=U_1XV_]_,B():UQX%,Blelxvl:---

be o bi-infinite sequence of bidisks, and f; : B; < Biy1 be crossed moppings of degree

...= B_1 = By
X X
with uniformly bounded sizes, it will have a unsteble disk, which will be horizontal-
like. )
Remark 3.13. Rather than requiring that the sizes 1/M; of the U] in U; be uni-
formly bounded, it would be enough to require that Y~ M; = co.

Proof of Corollary 3.12. For any u, € Un, we can consider the set

T ={{z,y) €Bo | fm-10---0 folz,y) € {um} x Vi }.

This is a vertical-like analytic disk, so that there exists an inverse v, : Vo = By of
pro which parameterizes if.

If ug,u1,... I8 any sequence with 4y, € U, and vy @ ¥ — By is constructed
as above for each m, then Proposition 3.11 says that the sequence «,, converges
uniformly. Clearly the limit is a parameterization of an vertical-like analytic disk
contained in Wan a3 Clearly by Corollary 3.12, it is all of Wme IRe

O (Corollary 3.12)

We will refer to W{SBM fu} 38 the stable set of the sequence of crossed mappings
By 8B 4B,y
X X

This vertical set only depends on the underlying hidisks in a fairly crude way, as
the following Proposition shows.

feiibh-LE—efuniformly-bounded-size in Uh—Fhen-for all m-eFrm— —

(1) the set

W3 = {(Tm,ym) |there ezist (2, yn) € By,
for all n > m such that fo{Tn, yn) = (Tny1,Ynt1) }
is o elosed vertical-like Riemann surface in By,, and pro : WS — Vi, is an isomor-
phismy; :
(2) the set
Wg = { (%m. Ym) {there ezist (Tn,Yn) € By
for all n < m such that fo(®n,yn) = (Tny1, Ynt1) }
is a closed horizontal-like Riemenn surface in B, and pri : W,ﬁ — U, is an

isomorphism.
(3) Moreover, the sequence

(Zm,Ym) == Wrﬁ n Wg , mekZ,

is the unigue bi-infinite sequence with (Zm,Ym) € By for allm € Z, and fou (#m, Ym)
= (Tmt+1, Ymr1)-

Proof. The first statement is immediate from Corellary 3.12, and the second also
by considering the mappings g, = f,. _&l, which also define a bi-infinite sequence of
crossed mappings by Proposition 3.7(a). The third part follows immediately from
the first two. 0
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4. Perturbations of hyperbolic polynomials

Let p(z) be a hyperbolic polynomial of degree & > 2, which will be fixed for the
next three sections. We will drop the subscript p, and write

= ()=

Choose as in section 2 a neighborhood U of J, such that p: U/ = p~X(U) — U
is a covering map. Set U = p~1(U").
Recall that when a = 0, the Hénon mapping

e 1)

maps all of €2 to the curve C, of equation 2 = p(y), and reduces to = — p(z) in
the first coordinate. Thus we can think of the polynomial p as a mapping Cp, — Cy;
when we think of U as a subset of Cp, we will denote it by U, and its projection
onto the y-axis simply by U.

First let us recall the crudest properties of Hénon mappings; we will suppose |a| <
1. If p(z) = ap2® +---+ap = axz* +g(2), denote by [¢|(r) = |ax_1|r*~t +-- -+ |aq],
and let R be the largest root of the equation |ax|r* — |g|(r) — 2r = 0. We will call
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QOur construction will depend on two numbers § > 0 and A > 0, which will be
chosen to satisfy Requirements 1, 2, 3, 4, and 5, which are given below. Consider
the neighborhood

Ngz{ [Z] e@‘ |p(y)—a:|<6}

of C5.

Fig. 4.2. The curve C, and its neighborhood Ng, drawn in R?.

m={ [}] <

All of the interesting dynamics of H, occurs in Bp, because Figure 4.1 roughly
describes the orbits of points.

}m|<R,|y|<R}.

vl | Hen({z,3)|| monotone

increasing to infinity

‘ || Hon(z,y) || monotone
increasing to infinity
T, :
R |}

—

Fig, 4.1. Crude picture of the dynamics of H,.

PR TPR S

Our first requirement concerns only 4.

Requirement 1. The number § > 0 is sufficiently small that Nj intersects the
boundary of Bg only in the “vertical” boundary |z| = R, and moreover for any
zg € U, each component of the intersection L, N Ny, where L, is the vertical line
of equation & = %o contains a unique point of C,, which will belong to 0. We will
further require that

z é
p(c+5t) - w0 +a| <3
for all { € Jp and |2} < 4.

Choose, for the rest of the paper, a number § satisfying Requirement 1.

Requirement 2. Now choose a number ¢ > 0 such that the sets U,,z € U are
all homecmorphic to disks, as in Section 2. In Section 6, we will require a bit more:
for all z € Jp, the image p(U.) C Dj/2{p(2)), is contained in the Euclidean disk of
radius 8/2 centered at p{z). This will clearly be the case if ¢ is sufficiently small.

Our next requirements all concern the size of |a|.

Requirement 3. We have H,(Bg) C Ns when |a] < A.

This will clearly be satisfied as soon as A is sufficiently small.

Let

. V' =pr(U) N N;.
be the union of these components. There is a well-defined function v : V' — U’ given
by u(z,y) = p~*(x), the branch of the inverse image being precisely the intersection
with Cp above, which one can also understand as the branch “close to y”.
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U’ the projection of | ¥
V"’ onto the y-axis W 1)

p /

Py /
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For every z € U’ consider the neighborhood

e={[y]ev

of the point (p(z),z) € U".

u(z,y) € U, }

Lemma 4.5. Under Requirement 8, the mapping

ﬁy*ﬁﬁﬁ]

is o biholomorphic isomorphism of V, onto the bidisk U, x Dj.

The proof is left to the reader.
For all z € U", set

W, =V, nH (Vo)) and W, = Vi N Ho(V2).

Proposition 4.6. There exists A > 0 such that if |a] < A, then for all { € U", the
mapping Hy : W, = W, is a crossed mapping V, = Vitzy of degree 1.

Praaof. Choosed c C w_ii‘.h4§_|._<_5,_and, considex

"is t‘he shaded region z
i
’ ) z =p(y)
r
Py

Fig. 4.3. The neighborhood ¥/ of the Julia set jp CCp
The pair of functions (u,v) : ¥V — € given by the formulas
u(z,y) =p " (z), v(z,y)=p{y}—~z

parameterize V.

Requirement 4. We will require that H, should map the vertical boundary of
' outside of V when {a| < A.

Again this will occur whenever |a| is sufficiently small.

Proposition 4.4. (o) For each attroctive periodic paint 2o of p, there is an analytic
function z(a) defined for |a| < A, such that 2(0} = =g and z(a) is an attractive cycle
of Hy.

(b) The points of compact components of N5y — V' are attracted to these cycles, and
the points of the unigue non compact component iterate to infinity.

Proof. The union of the compact components of N5 — V' is mapped into itself by
Requirement 3. Thus the sequence of iterates of H, is normal. On the other hand

any limit function has compact image. So the sequence of iterates is accumulating

on finitely many attracting cycles. The proof shows that these depend analytically
on a for |a| < A. O

woHa:Von{ply) —z=¢} =+ C

The disk V; N {p(y) — = = ¢} is parameterized by ¥, and when the Jacobian a of
H, is zero, this map is simply { — p(y), and in particular maps the boundary of
U, strictly outside Up(,), with degree 1. This remains true for a sufficiently small
perturbation, in particular for {a] < A when A > 0 is small enough, and it is casy
to see that if @ is sufficiently small, then this will be true for all z € U" and ( with
|¢] < 8. Tt follows that for such sufficiently small A, condition 1 of Definition 3.2 of
a crossed mapping is satisfied, and the first half of condition 3.

For condition 2 and the second part of 3, we use the inverse mapping. For any
fixed z € U and w € p (Uy(,)), consider the vertical disk

e (Bemal

\
v

which the coordinate function v maps isomorphicaly to the disk of radius §: on its
boundary, we have p(y) —w = 8. Let us compute:

(o 5D - (252

This takes 9A,, to a large curve when |a] is small, since |(p(y) — w)/a| = 6/la| is
large, and p takes large values there. O
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This particular subdisc

is close to (p{z),2) These are close to

(p(2),21) for some 2
with p(z1) = p(z)

Fig. 4.8. How the image of a vertical disc intersects Ng

Remark 4.7. We do not need to calculate the degree of this mapping restricted
to W, N A,. By Proposition 3.3, this must be one. It is not obvious from our
computation: we might rather have expected k = deg p. This is because the set
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Therefore a point (z,y) € J defines a bi-infinite p-telescope Utz (z,y))- We

have seen that such a bi-infinite telescope defines a point of z € Jp. The mapping
¥ : (z,y) = z is obviously continuous, We leave it to the reader to check that it is
an inverse of @. . O

This construction endows J with a “stable” and “unstable” manifold: set WV
{respectively W) to be the union of all the unstable {respectively, stable) disks of
the families of 1-crossed mappings defining 9.

Proposition 4.10. (o) We have the equalities

IOV = [VH™V) and J_0V= () H2(V).
n=0 n>0

(k) Moreover, the forward orbit of any point in Jo is eventually contained in V, and
the backwards orbit of any point in J_ is also eventually contained in V, except for
the attracting cycles described in Proposition 4.4.

Proof. The inclusions

(- "(V)C KNV and HE:V)CK_nV=J.nV
n>0 n>0

=ul<s)

{ ["‘;’] € Au)

has &k components, one for each inverse image of p(z) under p. Figure 4.8 illustrates

this phenomenon. .
Reguirement 5. The number A is sufficiently small that the conclusion of

Proposition 4.6 is satisfled when 0 < |a| < A.
For any point z = (..., 2-3,2-1,20) € Jp, consider the bi-infinite family of erossed
mappings which we will denote, by abuse of notation

H H, Hg H H,
v F Ve F Vag F Vatan) F Vet F oo

We can now define the mapping ®: by Proposition 3.11, there is a unique point
&(z) € V,, such that

| form <0
form>0"

H™(3(2)) € {
.‘/pok(zo)

Theorem 4.9. The mapping ® : jp ~+ 2 is o homeomorphism onto J which
conjugates p to H,.

Proof. The mapping @ is obviously continuous. We will construct an inverse ¥ :
J = fp. :

Observe first that J C, V. Indeed, J C Bg, hence J C N; N Bg. But by
Proposition 4.4, we know that the points-in N; M Bg and not in V' tend to co or
attracting cycles, hence cannot be points of J.

are obvious.

Tosee [),5o He " (V) C JLNV, we need to know that no interior point of Ky can
have its forward orbit entirely in V. This follows from Proposition 3.14. On such
an open set, the sequence HZ",n > 0 is normal, and we can extract a subsequence
HZ™ convergent on compact subsets. Given any two points (z1,71) and (z2,v2),
and extracting a further subsequence if necessary, the infinite sequences of bidisks

Vo @) 20 Ve (og,0))

connected by the mappings Hy (Rera=na) oo equivalent, hence define the same stable
set, which is a vertical-like disk in V,, e (e1,5:)) Lhis contradicts the assumption
that (z1,y1) and (@2, y2) could be chosen in an open set.

To see the opposite inclusions, consider a point of V. If its forward orbit ever
leaves V, we know what it does: it is either attracted to one of the attracting cycles
described in Proposition 4.4, in which case it is in the interior of K., or it iterates
to infinity, in which case it isnot in K. Thus Ju NV = 5, H;™(V).

Now, suppase a point in V' has an inverse image not in V. Then since H. (Nsn
Bpr) C Ny, the inverse image is not in Nj, and a further inverse image is not in Bg.
By the discussion of Figure 4.1, this means that the backwards orbit of the point
tends to infinity. This proves (a).

For (b), consider the forward image of any point in K. It will eventually be
contained in Ny N Bgr, and if it is not eventually in V, then it is attracted to an
attracting cycle, by Proposition 4.4. Similarly, the backwards orbit of any point in
J_ will eventually be contained in Ny N Bg. If it is in the basin of attraction of one
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of the attracting cycles of Proposition 4.4, then its backwards orbit will enter and
remain in V' unless it is one of the attracting cycles itself. a0

Remark. Proposition 4.10 is where we eliminate the possibility of wandering do-
mains. In one dimension, we have Sullivan’s No Wandering Domains Theorem to
eliminate this possibility, but this uses quasi-conformal mappings, and there does
not appear to be an analog in several dimensions. For hyperbolic polynomials (or
rational functions), one can also eliminate the existence of wandering domains by
using the expanding metric on a neighborhood of the Julia set. The proof above is
a natural extension of that proof.

5. Characterization of J_
In this section we will prove the following result.
Theorem 5.1. There is o homeomorphism
- @p — J_
which conjugates p to H,. This homeomorphism coincides with @ : jp =+ J on jp.

Remark 5.2. This result can be slightly improved: ®_ can be chosen analytic on
€, — K,. But it cannot be made analytic on K.

Proof. We will begin by finding the restriction
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Sublemma 5.5. A real hyperplane F in a complex vector space E contains o unique
complex hyperplane [F| = FniF.

The statement contains the proof.

Proof of Lemma 5.4. Consider the radial vector field £ = —r3/3r on the disk Dj.

This vector fleld lifts canonically to a vector field f on the “vertical boundary”® of
8% (V' — V"), both inner and outer. This boundary is a 3-dimensional real manifold
in €2, so at each point

($’ y) e aver(vr _ V”),
the tangent space _
T(m,y)aver(vl _ VH)

contains a unique complex line
[T(m,yjaver(vr _'V”)]v

which maps isomorphically to C by the derivative d(, ,v. The vector field E is the
unique lift of £ to this bundle of complex lines. _

Let £ be a C lifting of £ to ¥/ — V", which extends £, and everywhere points
into the vertical cone. Such a lifting exists, since local liftings exist, and can be
patched together by partitions of unity.

g U WY
which conjugates f to H, there, then we will extend it to the remainder of @p This
requires the following.

Proposition 5.3. There ezists o mapping vy : V' — U’ which semi-conjugates
H,:HI3 VYNV =V" =V to p:U' U
This mapping can be chosen so that for every (z,y) € V', we have
7 (2, 4) € Un(z gy,
and so that the fibers are vertical-like.

Proof. We will begin by constructing our mapping on V! — V",

Lemma 5.4. There exists a continuous mapping mge = V! — V" — U — U" which
semi-conjugates H, to p as maps from the inner boundary to the outer boundary,
and such that the fibers are vertical-like disks.

We have found this lemma surprisingly difficult to prove. Note that v : V' —V" —
D; is a locally trivial fibration, and our leroma says that there exists a trivialization
with special properties. Of course trivializations exist, since the base is contractible.
But the requirement that the induced sections be vertical-like does not seem to be
accessible by topological techniques. Instead, we will use differential equations.

Before doing this, we require a fundamental statement about complex vector
spaces.

Denote by o 57t thesotntion curve of the differential equation defined by
with ©(s,4)(0) = (z.).

Sublemma 5.6. The lift £ can be chosen so that

fa) The limit w(z,y) := iMoo Yo,y (£) of this solution exists.

(6) The set w™' (%) is a vertical-like “disk” for all 5 = (p(2),2) € U'— U", although
this disk is not an analytic disk in general unless z is in the boundary 8(U' — U").

Proof of Sublemma 5.6. We will work in the real oriented blow-up of V' along 7'
This is a set in which every point of 7' is replaced by a circle. It is easy to describe
in this case. Consider ¥/ = U” x ([0, 8) x §1); the map V' — V' which sends (2, 7, )
to the point (z,y) € V' with u(z,y) = 2z and v(z,y) = re realizes V' as such
a blow-up. In V', we can lift not just —rd/8r but also —8/8r, and the existence
and uniqueness theorem applies even to points on the boundary U’ x {0} x S1,
Now our disks are precisely the solutions which end on a circle {z} x {0} x St.
O (Sublemma. 5.6)

The disks which foliate the vertical boundary of ¥ — V" are collapsed to points
under w, in fact the point at which such a disk intersects C,.
Thus it is now encugh to choose a homeomorphism of

T —0" with O —U"
which extends the identity on the outer boundary, and maps a point (z,y) of

the inner boundary to the point in p~'(u(Ha(z,y))} which is close to (x,y).
O (Lemma 5.4)
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To prove Proposition 5.3, we need to extend myr, and there is an obvious way to
do so on V' — W5: define

my (2, y) = 9 (o (HY (2, 1))

where N is defined so that HoN(z,y) € V' — V", and the branch of p°~ ¥ being
chosen recursively so that

o™ (myr (H2Y (z,y))) is the inverse image of o (o (HEN ()

in Upen—m(u(a,y))- _
This defines 7y on V! — WS, On W¥ it is defined by the telescope csmstrucmos:}.
We still need to show that 7y is continuous; this is only an issue at points of W=,
Tf (2, ys) is a sequence in V' approaching (z,y} € W:g , then the nur_nb_er Ny
of mives it takes to escape V' tends to oc. Then the point my (zk,yx) is in the
intersection of the nested sequence

NL:
() P~ Vu@e (arsn)

m=0

which is a set with diameter tending to 0 as k — oo. Moreover, the sets
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Notice that the construction of ®_ did not use the hypothesis that H, was
injective, and works even if @ = 0. In fact, it is especially easy in that case, giving
the canonical projection U’" — U, perhaps perturbed by a homeomorphism of U/’
which commutes with p. Only the construction of the inverse, i.e., the statement
that ®- is injective, really uses the fact that H, is an automorphism.

Now to extend &_ to the remainder of ,. Any sequence of inverse images
under p tends to the Julia set, except for those finitely many periodic sequences
consisting entirely of points of the attracting cycles. Take a sequence (..., z_q, Z0)-
If it is not one of these exceptional periodic histories, there exists N such that
(...h2-N-1,2-n) € U'. Map such a point to

q)_(. . .,2._1,.20) = H:N‘I’_(. . .,Z_N_l,z._N).

If the sequence (..., 2_1, zo) is periodic, consisting of points of an attracting cycle,
map it to the attracting periodic point of H, corresponding to zg.

We need to check that this is continuous at these exceptional points. Suppose
that (...,z_1,%0) is such an exceptional point, and that (..., 2" |, z}) is close to it.
Let N be the first index suck that 2’ 5, € U'; the number N is large. The point
@_{(...,2_n_1,2_n) i5in V = V" and we have seen that such points have the same
fate under H, as z_n has under p, whether tending to infinity or to an attracting
cycle. In fact, we have seen further that the distance of HSV(®_(...,2_y—1, 2_ N))
%o the attracting cycle is arbitrarily small, by a quantity which depends only on N.

Ny

Ny R
ﬂ P U (wem)) 2D ﬂ P Su(H (2y)
m=0

m=0
are close for k large (in the sense that the Hausdorf distance of their closures
are close, for instance). Moreover, the second intersection converges my (z,y).
’ O (Proposition 5.3)
We can now construct our mapping
d_:U WY,

Given a point (..., 2_1,2) € 17, let us consider the intersection

NEF Vi),

which we have seen in Corollary 3.15 is a Riemann surface isomorphic to a horizontal-
like disk, in fact a section of the projection v : Vzq — Uy, This section will intersect
w5+ (20) in a single point: this point is ®_(.. : JZ-1,%0)

With this definition, ®_ is obviously continuous. And it is easy to construct an
inverse: simply associate to (z,y) € WY the sequence

Zon(2,y) = My (He " (=, y)), neEN

This is clearly a point of U7, and ®_(2){z,y) = (2, ¥).

o 45 i dxr
LD ]_JLUVCTD LaUAJ.UJ.J..lu.l.UJJ.

The only thing remaining is to check that the mapping ®_ : C’,, — J-. is surjec-
tive. We invite the reader to check that if HS~"(z,y) is bounded as » — oo, then
either the sequence is eventually contained in V', or it is the orbit of a repelling
cycle for H; L. O (Theorem 5.1)

6. Characterization of J,.

We are going to show that for |af sufficiently small, the set J, is modeled on C,.

First, we need to know a little mare about this space: Cp is foliated by surfaces,
in fact by Riemann surfaces isomorphic to C, each of which is dense. For each { € Jp,
let L be the inductive limit of

le f: o fp
{xDS O} x DS PO xDS
which is an increasing union of discs,

Proposition 6.1. Each L; is a Riemann surface isomorphic to C, and s dense in
C,. The foligtion is compatible with the dynamics in the sense that

L) = Ly(g).-
Proof. The space L¢ is a Riemann surface since the inclusions

(D8 Oy <D B 2y xD
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are analytic inclusions; it is simply connected since it is a union of discs. The union
is isomorphic to C by Proposition 7.3 of [HO]. The formula 5(L¢) = L) is obvious,
and it implies the density as follows.

If p*(¢1) = p*(¢z) = ¢, then L¢, = L, since both are equal to §~*(L¢). Thus
given any point ¢, we see that Ly = L¢ for all {' € p~*(»°*({)), 5 =1,2,3,.... But
such points ¢ are dense in J,, so the leaf L. is dense in J, x D, which it intersects
in infinitely many discs {¢'} x D. It is then easy to show that it is till dense in all
the ((J, x D),n) in the inductive limit describing C,. m|

Now, let us see the third part of Theorem 1.4.

Theorem 6.2. (a) If p is a hyperbolic polynomial and la| is sufficiently small, there
exists a homeomorphism

‘I’+:Cp—>J+

congugating p to Hy |y, . ‘ i}
(b) The mapping 4 maps the leaves of the foliation of C, to Riemann surfoces
isomorphic to C immersed in C*.

Proof. We will construct € first on J, x D = (J, x D) x 0 C C;,, and even then
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such that the following diagram commutes.

Fy

Jpx D

Jp X

WS

AN

/

This is a fairly difficult result and will require several steps, of which the first is
the hardest.

P

p
m
1
JP
R
JP

Proposition 6.5. There exists a homeomorphism

B Lo x D= f(J,x D)= WS _ H, (W5

we will define it on larger and larger parts. The restriction of ®37t6J, XD aid sl
its further restrictions will be called Fy. '

The first step (and the hardest) is to get started. We have already constructed
J and its stable manifold W,

Lemma 6.3. There is o unique projection w : WS — J,, such that the diagram

WS Ha 3 WS

J, £ I,
commutes, and the fibers of © ave stable disks of the crossed mappings.
Proof of Lemma 6.3. This is precisely what telescopes are for. Given a point
(z,y) € W*, we can consider the p-telescope Uw(He¥(z,y)» Which defines a unique

point w{z,y) € Jp. 0 Lemma 6.3

Proposition 6.4. There exists a homeomorphism

Py:JyxD—=WS

B —— _

such thot the diegram above commutes on the boundary.

Proof of Proposition 6.5. Before embarking on the proof, we will want to write
our mapping f, in a different way, more convenient for the rather delicate argument
in Lemma 6.10. Temporarily write

gp(¢, 2) = (P(C)uﬂ (C-%'E,(—z&-)")) , where |z| <34

This mapping is conjugate to our original one: set w == Rz/4, so that in the coordi-

nate w we find
(¢w) = (p@’?:? (‘5 * %{Jc))) '

Thus if we choose R = é/a, we find that this linear change of variables conjugates
the two mappings.

Note that both J, x D and W* are trivial bundles of disks of radius § over Jj,.
They are canonically homeomorphic, although that homeomorphism is not compat-
ible with the dynamics and is not the one we are trying to find. But we will use it
to define

Fi:J,xdD — dW"

to be the “identity” (i.e., the map which takes (¢, 2) to the unique point (., %) above
¢ such that p(y) — z = z). We can immediately define F; on the interior boundary

Ey t folJp x D) — H,(8WF)
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by the formula
F.|. =Ha°F+°fp_1-

To extend it to the region in between, we will use some heavy-duty topology. We
define the space

Homeoy, (J, x D — p(J, x D), W= — Ho(W5); Fy)

to be the fiber bundle over J,, the fiber of which over { € .J, is the space of homeo-
morphisms of the fiber of J, x D — #(J, x D) above ( to the fiber of W¥ ~ Ho (W¥)
above (, which agree with F. (as defined so far) on the boundaries. )

Remark 6.6. This space is pretty wild: it is a fiber bundle over .Jp, the fiber of
which is an infinite-dimensional space of homeomorphisms of a surface with bound-
ary, in fact a disk with holes, to another. More precisely, the fiber of J, x D —
fo(Jp x D) — J, is the disk of radius § with & disks of radius ad removed:

D- |J Dasat).
Gep~ i)
The fiber of W< — H,(W5) — J, is similar.
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Lemma 6.8. The fibers of the fiber bundle
Homeoy, (J, x D = fo(Jp x D), W* — H,(W%); F,)

are contractible.

Proof of Lemma 6.8. This is an immediate consequence of a hard theorem from
topology, due to Hamstrom [Ha]. This theorem asserts that if S is a compact surface
with non-empty boundary, then the components of the group of homeomorphism
which are the identity on the boundary are contractible. In our case, we can choose
a homeomorphism

D= |J Dastats) = 7 (C) — Ha(W")
G1ep~ ()

which extends F on the beundary by the classification of surfaces. Then the space
of hemeomorphism homotopic to that one is acted on freely by the group of homeo-
morphisms of the domain which are the identity on the boundary. '

O Lemma 6.8

Remark 6.9. We are making this assertion for homeomorphisms. It is also true of
¢ diffeomorphisms [EE], and there might be good reasons to prefer them. We are
going to pull back the mapping F.. repeatedly by diffeomorphisms, and eventually

(Jy x D) — £,(J, x D)

Jp

Fig. 6.7. ‘The two fiber bundles. All homeomorphisms which commute with the projection are
the identity on the boundary and transform fp into H.

The statement of Proposition 6.5 says exactly that the fiber bundle
Homeoy,(Jp % D = fo(Jy x D), WS = H,(W*); Fy)

has a continuous section. As a first step to proving this, we will require the following
Lemma. ‘

ecternd—to—a—Cantor-set—The J.U:yuiﬁus u.J.cx]_Jylus will-not—be differentiable-on the
Cantor set, but it will be quasi-conformal. The mapping F would then be a quasi-
conformal map from the leaves of the foliation of Q to the leaves of J.., showing
that these Riemann surfaces are isomorphic to €. We will get this result by other
means; but it might be nice to know that as dynamical systems Q and J, are
quasi-conformally isomorphic, in the sense of Riemann Surface Laminations.

It follows that it is enough to show that there is section of the covering space of
connected components of the fibers, or alternately, that it is enough to show that
there is a preferred homotopy class of homeomorphisms from fibers to fibers, and
there is: those which are homotopic to a homeomorphism close to the identity. This
requires a bit of elaboration.

Lemma 6.10. In the coordinates above, H, is close to f, when a is small.

Proof of Lemma 6.10. Let us start with a point ((,2) € J, x D, and consider
H;'o f,(¢, 2), where implicit in the composition is the parameterization of WS by
the (u,v)-coordinates. Let (z1,31) be the point of W% with w(z1,11) = p(¢) and
(@1, 1) = a(( + 2/P'(()).

This has the very pleasant consequence that
o1 T1 _ | %2
“ 1 Y2
where the y2-coordinate can be expressed exactly:

Y2 = é(p(yl) - 931) = %‘U(mlayl) = C + E%
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Thus
?_)(fl?g,yz) =p (C"“Iﬁ) — Xy 2

and we need to evaluate how good the approximation is. There are two approxima-
tions to consider: p({) = x5 +err; and p (C + ﬁ) = p(¢) + z + erra.

We have that |erra| < /2 by Requirement 1 of Section 4. Moreover, we have
u(zz,y2) € U, 50 z2 € Upy), and by Requirement 2 of Section 4, this is smaller
than 6/2 DO Lemma 6.10

Thus we can consider those homeomorphisms
heJyxD— fo(Jp x D) = WS — H, (W)

which coincide with F. on the boundary, and which are homotopic with boundaries
fixed to homeomorphisms h' which move all points by at most |a}d. All such home-
omorphisms are homotopic, and this set is not empty, so it does define a homotopy
class of homeomorphisms as required. O Proposition 6.5

The next step is much easier.

Proposition 6.11. The mapping Fi extends to a homeomorphism

Fy:dyxD—Jp= W5 —J.
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We can now complete the proof Theorem 6.2. Any point ((¢,2),n) € Cp has a
forward image in J; x I}, namely

((¢,2),0) =5°"((¢, 2), n).
So simply define
‘§+{(C5 Z),ﬂ,) = Hg_ﬂ (F+(C, z)) .

This clearly defines an injective mapping & : @p — Jy. It is surjective because
JynNg = ws by Proposition 4.10. O Theorem 6.2

Finally, we will prove the following result, promised in the introduction.

Proposition 6.13. For all sufficiently small oy, and as end for all sufficiently large
R; and R, there is a homeomorphism

W:Jp x Dp, = Jp x Dp,

congugating fF:C\thl to fp,n’z,Rz -

Proof. This is a consequence of Theorem 6.2: We proved that H, : W& — W5 ig
conjugate 10 fpa,r : Jp X Dr — Jp % Dg independent of o and R, so long as they
are respectively sufficiently small and sufficiently large. This certainly shows that
Ipen Ryt Jp X Dry = Jp x D, and fp,as,R, : Jp X D, = Jp X Dy, are conjugate
to each other under the same requirements.

It is also possible to prove this directly, by a proof very analogous to that of

Proof of Proposition 6.11. Just map any point on J, x D — J, backwards by f,
until it is in the region J, % D — fp(Jp x D7), then map over by Fl. and back inwards
by iterating the Hénon H, mapping the same number of times. [ Proposition 6.11

Proposition 6.12. The map Fy defined above end the map ® from Theorem 4.9
together give a homeomorphism

Fy:Jy,x D - W53,

Proof of Proposition 6.12. The only thing to prove is continuity, which is an issue
only at points of J,. Suppose a sequence ((n,#n} In J, x I} converges to a point
(¢, 20) € J». Then the point (s comes with a history, namely the first coordinates
of

F2 7o, %0), F5 % (C0s 20)5 - -

which determines the point ({o, zp). Clearly the points Fy ((n,zs) have long back-
wards orbits H°~"™(Fy.({n,2n)) contained in W, and the histories

wy (Hy ™ ™ (Fi(Gns 2n))

are close to that of (.

The result follows from Proposition 3.11, which says that these long backwards
orbits restrict z,, to a small disk, and Proposition 3.14, which says that this disc is
close to zg. [0 Proposition 6.12

Theorem 6.2. But we do not think thaf there 15 a much easier prool. Indeed, each
of fpeir: ¢ Jp X Dr, =+ Jp x Dpg, has infinitely many cycles, each of which has
multipliers in the vertical direction which depend on «;. Thus any conjugating map
cannot be differentiable, so cannot be “given by a formula”, and some construction
involving infinite processes must occur. (]

7. Examples

ExampLzs or C,

It is rather hard to find any particular category that @3, belongs to in general.
However, when p is hyperbolic, it is not too difficult to understand its structure.
Except at the periodic histories corresponding to the attracting cycles, the canonical
projection @P ~+ € is a “ramified covering lamination”, with fibers homeomorphic
to Cantor sets, and ramified above the forward orbits of the critical points. The
exceptional points have neighborhoods homeomorphic to cones over solenoids.

The following statement is a first step towards seeing this.

Proposition 7.1. If QﬁC C is a subset which does not intersect the orbit of the
critical point, then wq : Q0 — Q is a locally trivial fibration with fiter a Cantor set.

Proof. Let 2 = {...,2_5,2_1,%) € {1 and choose a connected, simply connected
neighberhood €' of zp in Q. Then for each ¢ there exists a branch g; of p°~* defined
on £ with g;(2n) = z_;. Then the mapping

(2,1)} = ( e 792(3)791(0)790(0))
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is a homeomorphism 75" () x © = Q. O

Recall from the introduction that a Riemann surface lamination is a Hausdorff
space locally isomorphic to a product of a topological space with a Riemann surface.
So long as a critical point is not periodic, @p is still a Riemann surface lamination
above the orbit. The only problem is that the projection to C is ramified there.
Indeed, let = be any point not on an attracting cycle, and choose & such that all the
points ¥ € p~*(z) contain no post-critical points. If p is hyperbolic, then such a k&
exists unless z is a point of an attracting cycle, since the orbits of the critical points
are all attracted to the attracting cycles. Choose a connected, simply-connected
neighborhood Q of z such that there are no post-critical points in @ — {z}.

Now consider the following commutative diagram.

ao—k

AN U v
components of p~*(§))
Wnl lU Tl
Q — U &

pok companents of p~*#{2)

The top mapping is an isomorphism in the category of Riemann surface laminations,
so at any history of a point except an attracting periodic point, the set €, is a
Riemann surface lamination. And since
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where mg(X) (the zeroth homotopy set) is the set of connected components of X
and 7o (p) : mo(p~™(Q)) — (’{I_m"-l (1)) is the map induced by p. The component tc
which w = (..., w.1,wp) € () belongs is indexed by

(oo [wa], [wol)s

where the [w_;] denotes the component of p~*(Q) containing w_;. There is a distin-
guished component

0="(..,[[)-
of 0.
The same argument as above show that the other components are Riemann sur.

face laminations, but € is not; in fact it is a cone over a solenoid analogous to the
case of pp. To state this precisely, let D C C,, be the component of C,, — Jj
consisting of the histories of points in the unit disk I.

Proposition 7.2. There is o homeomorphism

)

Do

W :

conjugating  to fo.

= POk © U o Oﬁc_ka

we see that mq is a “ramified covering mapping” of Riemann surface laminations,
ramified no worse than pok.

The space C, is not a Riemann surface lamination at the periodic histories of
attracting periodic points. A

First, let us examine the case pp : z = z". In that case, {;, is the cone over
the solenoid £, = 1{1_111(,5'1, z ++ 2™). Indeed, in polar coordinates pp decouples, and
the history of the radius contains no more information than the radius, since every
positive number has a unique positive nth root. In particular, (f‘,pn is not a Riemann
surface lamination near the cone-point 0 ={...,0,0).

Next, let p be any polynomial with an attractive cycle; we will see that @p is not
much nastier than the case above. Since @P and Cpok are canonically isomorphic for
any k > 1, we may assume that z is an attracting fixed point of p. Let Q he the
component of C — J, containing z; and denote by n the degree of p mapping £l to
itself. :

Let z=(...,%,2) be the fixed point of $ corresponding to z.

The space €} is connected only if p has an attractive fixed point which attracts all
the critical points of p. In that case J, is a Jordan curve bounding §2, as in the case
of pp above. In general, {} is not connected, and the components of €} are labeled by
the totally disconnected set (projective limit of finite sets)

%El(ﬁﬂ(p—m(ﬂ))a 7TO(p))s

m

Remarks 7.3. (1) In particular, z cannot have a neighborhood which is a Riemanr
surface lamination. )

(2) We must have 1(z) = 0 since these are the unique fixed points of § in £ anc
of fp in D.

Proof of Proposition 7.2. We will first construct the homeomorphism 7 near the
boundary of 2. Take the circle I' of radius R centered at z in Q, for the Poincar¢
metric of Q, with R sufficiently large that the disk bounded by T' contains all the
critical values in Q. Let I¥ = p~1(T) N Q, and let Ag be the closed annular regior
between I and I"'. Similarly, let Bo = {w € C |r < |w| < r*/* } forsome 0 < r < 1.

Lemma 7.4. There exists a homeomorphism g + Ag — By congjugating p to pg o
the inner boundaries.

The proof is left to the reader; the details are given in [DI1].

Next extend 1g to A; = p~1(Ap), A = p~ (A1), etc., until it is defined on the
part A = UA; of 0 outside of I". These extensions exist by the lifting criterion for
covering spaces. This extended}/; now defines a homeomorphism 1 : fip — B,,n.

Now take any point w € €. If w # z, then for some m > 0 we will have
7°"™(w) € A, so we can define

Ylw) = fg o ¢ o 5" {w).

Since the construction can be made reversing the roles of p and pg, the map v above
is a homeomorphism. O (Proposition 7.2)
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ExawmrLEs oF G,
We showed, in Proposition 4.4 of [HO], that the inductive limit of

)

z

del

is a 3-sphere with a solenoid removed, and we identified the map fip : Gy ~+ Gy, as
the restriction of a certain mnap 74,0 from the 3-sphere to itself with two invariant
solenoids, one attracting and one repelling.

Moreover, we showed in Theorem 3.11 of [HO] that the conjugacy class of any
injective mapping from the solid torus to itself, with appropriate contraction and
expansion properties depended only on its homotopy class. Thus we obtain the
following result:

fro: 8 XD 8 XD, ful¢d)=("¢a

Proposition 7.5. If p is a polynomial with an eftractive fized point which attracts
all the criticol points of p, then C, is a S-sphere with a solenoid removed, and § is
conjugate to T4,0-

This gives quite a complete understanding of Jy for the small perturbations of
such polynomials. For other polynomials, even hyperbolic, the situation is more
complicated. However, there still are 3-spheres contained in Rflp

Let p be a hyperbolic polynomial with an attracting cycle; as above, by consid-
ering an iterate of p, we may assume that all attracting periodic points of p are
fixed. Let z be such an attractive fixed point, and let £_be_the.com; =
containing z. Then p |o: 2 = Q is a proper mapping of some degree k.

The boundary 8% is a Jordan curve, which is mapped to itself with degree k,
and there exist (exactly ¥ — 1) homeomorphisms yq : $* = 80 such that

1(&*) = p(v(=2))-

Call fyq : S x D = S* x D the mapping

b ——
(C,Z) = (C 3'79(C) ap;(q@(g)))

where ¢ is chosen as in Lemma 1.2.
Consider now the diagram

JoxD =2 Joxp —y poxp Ly

'mxidT ’mXidT meidT
Slx D dm gy p Fe gy p e,

Clearly this leads to an émbedding
| Bm(S* % D, frp) = Cp.
Using Theorem 3.11 and Proposition 4.4 of {HO], we can easily see that
lig(5? % D, fon)
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is homeomorphic to the 3-sphere with a solenoid removed; call (9Q) its image in @p
l Just as 9% is the boundary of the immediate basin of attraction of an attracting
| fixed point for the polynomial p, we would like to say that ®.((99)) is the boundary
i of the basin of attraction of the corresponding attracting fixed point of H,. This is
| nonsense: the basin of attraction is dense in J, and the boundary is all of J, . This
L has been proved in full generality by Bedford and Smillie [BS2], and independently
! by Fornaess and Sibony [FS], and can easily be verified directly in our case.

' But there is a refinement of the notion of boundary: the accessible boundary.
Suppose U is an open subset of a topological space X. Then the accessible boundary
of U in X is the set of # € X — U for which there exists a continuous mapping
7:[0,1] = X such a #(0) = z and »(0,1] C U.

| Example 7.6. Let X =[0,1] and U = X — C, where C is the standard Cantor set,
Of course, U is dense, so the boundary of U is all of €. But the accessible boundary
is just the set of endpoints of intervals of U: any mapping » as above must have
image in a single interval. These two “boundaries”are very different: for instance,
the accessible boundary is countable and C' is uncountable.

Theorem 7.7. If |a| is small as in the Requirements of Section 4, then Hyp o has
! an altractive fized point z(e) corresponding to z, and the accessible boundary of its
| basin is B ((8Q)).

Proof. In N; there is a projection map # : WS — J,. Our analysis in Sections 4
—1(80)_is the boundary. of the immediate domain of z{a) in. N,

| and this agrees with the accessible boundary of that component. But #71(3Q) is
i the first stage in the construction of @, ((8Q)).

! Now let 9 : [0,1] — K. be an access to a point (z,y) = n(0) € J with 7(0,1] in
the basin of z(a). Since the image of 1 is compact, some forward image will be in
Nj, and some further forward image will be in the component basin in Ns containing

! z(a), hence in & ((802)). But this set is stable under Hy,, so (z,y) € ®.((89)).
O

We will now describe what we know of the algebraic topology of C,. This is quite
difficult when J;, is not a Jordan curve. For spaces like these, which are not locally
i contractible, the only really well behaved theory is Cech cohomology; unfortunately,
we will see in Theorem 7.11 that H'(Cp,G) = 0 for all coefficients G, and Cech
! cohomology carries no information. Thus we are forced to consider homology; and

there does not appear to be any really good homology theory. We will use singular
homology “faute de mieux”; it may be that Cech or Steenrod homology are better
behaved.

Example 7.8. Consider the “Hawaiian earring” space

x=y{[f]ew] =+ (1) -4

kEN
There is a canonical mapping Hi (X, %) — ZN which associates to a cycle & the
sequence a(n},n € N where a(n) is the number of times: ¢ turns around the nth
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€

Fig. 7.9, The Hawaijan earring
circle. It is easy to show that the mapping is surjective, but it is apparently not
injective. At least, we do not see how a loop

6182...6;162_1...

in the fundamental group can be written as a commutator.
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This mapping is not surjective.

Proof. Consider the following diagram.

Hy(J, x D) Ue)s ; Hi(J, x D)
@ Hy(S* x D) &), @ Hi(S*xD)__,

XeXa XeXo
ZX< = Zx\ :
: Zx“ e an

For each face
1 @ (fyx ).
8, x DU lelx%
z%o - ZX

Suppose that p is hyperbolic, that J, is connected, and that all the attractive

[=]

cycles are fixed. Call X = me(K5), and p. : X — X the map induced by p. Let
Xy € X be the finite subset of components containing attractive fixed points. For
each X € X the integer k(X)) is the degree of p restricted to the component X.

The space J,, is very much like the Hawailan earring, and there is an analogous
mapping Hy(Jp, Z) — Z% which is surjective but probably not injective; nevertheless
we consider the kernel as pathological.

Recall from Corollary 4.5 of [HO] that when p is of degree d and J; is a Jor-
dan curve, so that X = Xy has a single element, then Cp is homeomorphic to the
complement of a solencid in 5%, and that

H(C\Z)=Z E]

The same holds for the spaces (80X ) for all X € X, with d replaced by E(X).

Theorem 7.10. The inclusion

U @xr—¢&

XXy

induces @ split injeclion

P z [ﬁ} =BG, D).

XeXo

the hoTizontal Inappngs are splitinjections—Thisisobvious for the-bottom-mapping;
and for the top mapping the inclusion
Lanu ) x
XeX—-Xyg
induces a splitting on the homology. The theorem follows by passing to the direct

limit, since the direct limit is an exact functor, and the homology of the direct limit
is the direct limit of the homology. O

‘Finally, why is Cech cohomology useless in this setting?
Theorem 7.11. If J, is not a Jordan curve, all covering spaces of (flp are trivial,

Remark 7.12. It might seem that this is just another way of saying that Cp is
simply connected, which evidently contradicts Theorem 7.10. To resolve the ap-
parent contradiction, notice that (fl,, is not locally simply connected, so it doesn’t
have a universal covering space, and the “singular” fundamental group defined using
loops ‘does not classify covers. On the other hand, its abelianization is the singular
homology, so this fundamental group is enormous.

Proof of Theorem 7.11. A covering Z — C, restricts to covers Z; — {J, x D) x
{i}, together with inclusions Z; C Z;;1 such that the following diagram commutes.

Zy — Z — e

} !

(Jp x D) x {0} -}—> (Jp x D} x {1} -f_>
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Of course, the cover Z; of J, x D restricts to a cover ¥; of J,,, and the diagram above
gives covering homeomorphisms o; : ¥; = p*Yiyg.

Ya\";‘) /le Yl\o;l pYa
JP ']ZD

Yy

Now consider the cover Yp: it is ramifled at most over finitely many of the Jordan
curves 8X, X € X. Indeed, you can find a cover U = (U;) of J, such that over every
U;,Yp is trivial, and since J, is compact, we may take the cover finite. There then
exists a numnber § for every { € Jp, the é-ball around ¢ is contained in one Uj;. Since
all but finitely many X € X have diameter smaller than §, ¥p is trivial over the
boundaries of such components X.

Denote by X' C X the set of components X such that ¥p is trivial over 8.X; notice
that there exists kg such that p°*(X’) = X for all k > kq.

Choose k > ko, any component X € X, and X’ € X’ such that p®*(X') = X. IfV
is ramified above 8%, then Y5 2 (p°*)*Y}, is ramified above 8X’. Since this is not the
case, all Yy are unramified above all 38X, X € X. But this implies that Y} is trivial
for all k, hence that all Z; are trivial, hence that Z is trivial. [ {Theorem 7.11)

Remark 7.13. This proof actually shows more than we claimed: it show that
all principal G-bundles over .J, are trivial, Since the Cech cohomology H e . &)
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covering can be non-trivial over the boundary of the tube, because it would then
also be non-trivial over tiny cross-sections of the tube near the circle, and such
cross-sections will be contained within a single open set of any open finite cover.

This is the way C, is made. There are big Jordan curves in Jp, but there are

tubes in C,, joining them to all their inverse images in J,, which become arbitrarily
small.

8. Lakes of Wada in Dynamical Systems

A famous example in plane topology, due to Wada, is that there exist three
bounded, connected and simply connected open sets in B? such that 87, = 8Us =
8U3z. We wish to show that under appropriate circumstances the components of the
basin of attraction of an attractive cycle for a Hénon mapping will form Lakes of
Wada [Y]. :

The classical construction of Lakes of Wada illustrates the perils of philanthropy.
Consider a circular island, inhabited, to the sorrow of the others, by three philan-
thropists. One has a lake of water, another of millt and a third of wine. The first,
in a fit of generosity, decides to build a network of canals bringing water within 100
meters of every spot of the island. It is clearly possible to do this keeping the union
of the original water lake and the water canals connected and simply connected,
with closures disjoint from the other lakes.

classifies such principal bundles, this shows that A* (CP,G) = 0 for all coefficient
groups G (even non-abelian, if you know how to define such things).

It certainly seems remarkable that singular homology is picking up so much more
than Cech cohomology; one might expect the opposite. The following example
should help to explain how this happens, as well as give some insight into how J4
is made.

Example 7.14. Consider a tube [0, c0) x 5! embedded in R? so that it spirals onto
a circle, as suggested in Figure 7.15.

Fig. 7.15. How a non-trivial circle may support no non-trivial covers

Let C be the union of the circle and the tube. Then the singular homology
is Hy(C,Z) = Z?, generated by the circle and the boundary of the tube. But no

NEXT The second, pernaps worried about child mmtrition, decidesto brire milk to-
within 10 meters of every spot on the island, and builds a system of canals to that
effect. She also keeps her milk locus connected and simply connected.

Not to be outdone, the purveyor of wine now decides to bring wine to within 1
meter of every spot on the island. He finds his canal building rather more of an
effort than the previous two, but being properly fortified, he carries it out.

In turn, each of the three philanthropists brings his or her product closer to the
poor inhabitants. It should be clear that the construction can be contimied, and
that in the limit the construction achieves the desired result: each of the lakes, being
an increasing union of connected, simply connected open sets, is a connected, simply
connected set, and each point of the boundary of one is in the boundary of the other
two.

We will show that under appropriate circumstances, the baging of attraction of
attracting cycles form Lakes of Wada for Hénon mappings in B2, As it turns out,
the “strategy” of these basins is remarkably similar to that of the philanthropists.

More specifically, we will worlc with dense polynomials. Let p be a real hyperbolic
polynomial with connected Julia set, and suppose all the attracting cycles of p°* are
real fixed points. We will say that p is dense if for each such fixed point z, its real
domain of attraction : NR is dense in J,NR.

There are lots of dense polynomials. The following lemma describes some of them
in degree 2. We have found this lemma to be harder to prove than we had expected.

Lemma 8.1. Let p be a real quadratic polynomial with an attracting cycle of period
k, with k an odd prime. Then the k basins Uy = 0,...,U..1 of the attracting fized
points of p°* in R are all dense in JpNR
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Proof. Denote by I the largest bounded interval invariant under the polynomial;
it is bounded by the “external” fixed point and its inverse image. Without loss
of generality we may assume that the critical point is periodic of period k; let
€0,€14...,Ck—1,€x = Cg be the critical orbit; all the interesting dynamics occurs in
the interval I = [e1,¢s] C Jp.

The polynomial p also has an “internal” fixed point a € [cp,¢1]. If J C I is any
interval containing o, then Up°”(J) = I. The alternative is that Up°™(J) = Jp is
an interval in [cp,¢;] bounded by a cycle of period 2, and there are no such cycles
in [co,¢1] (here we are using that p is a polynomial, not just a unimodal map). It
follows from this that each of the basins U; accumulates at o.

Thus to prove the lemma, it is enough to show that the real inverse images of «
are dense in the real Julia set J, N K. Let us denote by V;,...,Vi—1 the immediate
domains of attraction in R. It is known that if  is an odd prime {or more generally
simply odd) the V; have disjoint closures; let T = {T4,...,T%_1} be the bounded
components of I — UV,

Sublemma 8.2. If there is an inverse image of o in each T, then p is o dense
polynomial.

Proof of 8.2, The Julia set is
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must have both endpoints in Z, as there is one more point in Z than there are
intervals in T. That interval must return to itself in fewer that & moves. Moreover
&' divides k, sinee the map Z — 7o(A) is equivariant, i.e., the following diagram
commutes. !

VA L% To (A)

Pl lru(p)

Z T mo (.A.)

This cannot happen if k is prime. U {Lemma 8.1)

Figure 8.3 should illustrate what is going on.

Cl o7 ¢4 s Co=9 C3 Cs €8 2
el =S — o B e o
2L\ [ Za 26 2A0f 23 25 \eR [ 22
T/ T M T/ T T/
] __ A

k—1 oo
Lak=k- ) Jrrm.
... t=On=0 . _
If each compdnent of
k=1 M
Xu=h-J JrM")
=0 n=0

contains an inverse image of o, then these inverse images will accumulate on all of
Jp NIR. But if each component of X contains an inverse image of ¢, then this is
also true of each component of X741, since p maps each component of Xps4; to a
component of X . Thus it is enough to start the induction, which is the hypothesis
of the sublemma. [0 Sublemma 8.2

There is a repelling cycle Z of length k such that all endpoints of intervals T & T
are either in Z or in its inverse images. Let us denote T’ those intervals for which
at least one end-point is periodic, and 7 the others. Moreover set

A= U Upn(T)

TeT n=0

Now there are two possibilities: _

(a) If & € A, there is an inverse image of « in some T¥ € 97, But then there must
be an inverse image of « in every T € T, since each endpoint of T will eventually
land on every point of Z, in particular on an end-point of 7*; that iterate of 7" will
cover T'. Then by sublemma 8.2, p is dense.

(b) If @ ¢ A, then A is disconnected, and p permutes the components of A
circularly, with period %' with 1 < &’ < k. This is because some interval T € T*

Fig. 83. The polynomial 22 — 1.785866.. ., with an attractive cycle of length 9

For this polynomial, the critical point is periodic of period 9. We have used
heavy lines to indicate the immediate basin, and the line segments pointing down
form the repelling cycle Z = {, ..., z3}. The 8 intervals forming T break up into 6
in I, and two in 7. The forward images of the intervals in 77 form the set A which
consists of 3 intervals which are permuted circularly. The point ¢ is not in A4, and
this polynomial is not dense.

Remark 8.4. The proof above should shows that if a hyperbolic polynomial is not
dense, then it is renormalizable in an appropriate sense. We could get necessary and
sufficient conditions for a quadratic polynomial to be dense by pushing the argnment,
a bit further.

Theorem 8.5. If p is a dense polynomial and if la| is sufficiently small, then the
Heénon maepping Hy o has atiractive cycles close to those of p, and the boundaries of
all the components of the basins coincide.

Remark 8.6. General theorems of Bedford and Smillie [BS3], and independently
by Sibony and Fornaess [FS], assert that for any saddle point of & Hénon mapping
(and many other mappings besides), the stable manifold is dense in Ji. We will
use an analogous statement, in the much more restricted class of mappings to which
Theorem 6.3 applies. But Theorem 8.5 does not immediately follow from this density
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wrgument. For instance, the mapping

[w] [mz—l.OS—BSy]
|_>
i z

\as an attractive cycle of period 3 (as well as an attractive fixed point), and the
»asin of this cycle is bounded by the stable manifold of a cycle of period 3 which is
v saddle. Of course, in €2, each path component of this stable manifold is dense in
7;, and in particular each path component accumulates onto the others. But not
n B’%: in the real, each of these path components accumulates exactly on the stable
nanifold of the saddle fixed point.

Proof. The proof is contained in Lemma 6.3, Proposition 6.1 and Proposition 7.7.
_et us review how these fit together to give the result.

Notice that the proof of Lemma 6.3 is valid over the reals. Thus for |a| sufficiently
small, $o - R,, — J; NR? is a homeomorphism, where the space

- ]Rp :l‘iE}]_(JpﬂR) XI,fp |(J,,ﬁR)XI)

s obtained by the same inductive limit construction as in the complex. Pigures 8.7,
3.8, 8.9and 8.10 illustrate this construction.

Moreover, Proposition 7.7 is also valid over the reals: if 7 is a fixed point of pok
with immediate basin ©, the accessible boundary of each basin is

BE@NR)Y = Lm0 x I, 5.

HENON MAPPINGS IN THE COMPLEX DOMAIN 1

Fig. 8.8. The set ((Jp NIR) % I) % {1}; the second step in the construction

But N R is an‘intérval, bounded by a repelling fixed point£-of p**ard-omeof
its inverse images &'. As such, the inductive limit abeve is a real line, which maps by
&, to the the stable manifold of the fixed point £ (a) of Hpox ,. Thus we understand
exactly what the accessible boundary of each basin is, and what its inverse image
by ®.. is. So far, none of this required that p be dense.

If p is dense, then every pomt of J, N R can be approximated by inverse images
¢, € p~™*(£); the curves 7} (€.} are then part of (8(2 NR)}; by the argument of
Proposition 6.1. Thus (9(€ NR)J is dense in (Jp x I) x {0}, the first term in the
inductive limit defining IE&T,, and by the argument of 6.1, this shows it is dense in all
of IE&,, Thus the accessible boundary of each basin is dense in J. N &2, so they do
have common boundary. d

The following pictures carry out the construction of R, for p a real quadratic
polynomial with an attractive cycle of period 8. It is of course easy to imagine the
first step of the construction (J, NR) x I, which is a product of a Cantor set by an

S [T
] T

Fig. 8.7. The set {J, NR} x [; the first step in the construction

2

Fig. 8.8. The set ((J NR) x I} x {2}; the third step in the construction

V;flral Iiave drawn a few genuine points of the Cantor set, and others * ‘Impressior
istically”. :

How should we imagine the inclusion
(o NR) x I) x {0} = ((J, NR) x I) x {1}?

Note f, maps the two intervals through the endpoints of the immediate basi
of ¢o to two disjoint subintervals in the interval through the right endpoint of th
immediate basin of ¢;. Note also that the p'(¢) in the denominator in the definitio:
of f, is essential for the orientations to be as indicated by the arrows in Figure 8.&



130 JOHN H. HUBBARD AND RALPH W. OBERSTE-VORTH

HENON MAPPINGS IN THE COMPLEX DOMAIN 131

a subset of the sphere S%, we can apply Alexander duality, to get

A XpaoZ) =T (S? - X,2) = Z*

if p has an attracting cycle of period k. So for different k these sets are certainly not
homeomorphic. What happens when p; and p; have the same period, but belong
to different components of the Mandelbrot set? The first interesting case is k = 3,
where there are 3 different candidates. We would speculate that the space Xp,a are
not homeomorphic, but it isn’t clear what topological invariant distinguishes between
them. Perhaps something could be made from the fact that in the construction of
the basins, the sequence of lefts and rights which the “dead branches” make when
they leave the “main branch” is different for these three polynomials, essentially
reflecting the kneading sequences.
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Fig. 8.10. How the basins of the attractive cycle fit-to form Lakes of Wada

Thus in ((Jp V) x I) x {1} there must be an arc joining the two intervals above,
o that these intervals and the arc will map to the interval where the arrows end.
Similarly one sees that there must be an arc joining every pair of symmetric interx.fa,ls.

Figure 8.8 illustrates this construction. How should we contin}le the consvtructlon?
In ((J, NR) x I} x {1} we need inverse images of the arcs a.ddc?d in the previous step;
Figure 8.9 illustrates how this is to be done. Note that this time some of these arcs
do not join intervals to intervals. This is because points to the left of ¢; have no
inverse images in the Cantor set J, NR.

Making these pictures is a bit addictive, and if ene gets carried away, the result

may look like Figure 8.10.

Exercise for the Continuum Theorists. Let p be a dense quadratic polynomial,
and denote by X, o the one point compactification of Jy NR2. Since this is naturally

to finish this paper.
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