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ABSTRACT. We study the structure of  a class of  laminar closed positive currents on C ~  2, naturally 

appearing in birational dynamics. We prove such a current admits natural non intersecting leaves, that 

are closed under analytic continuation. As a consequence it can be seen as a foliation cycle a weak 

lamination. 

1. Introduction 

Positive closed currents play an important role in higher dimensional holomorphic dynamics. 
Since the very beginnings of the theory, they have served as an elementary bridge between the 
ambient complex geometry and the dynamics. Let us focus on the case of polynomial automor- 
phisms of C 2 (see N. Sibony [21] for a more thorough study and bibliographical data). In case 
f is hyperbolic on its non wandering set, the laminar structure of the Julia sets J+ and J -  is 
predicted by general Stable Manifold theory, whereas D. Ruelle and D. Sullivan proved in [19] 
the existence of foliation cycles (uniformly laminar currents) subordinate to those laminations. 
E. Bedford and J. Smillie proved in [2] that the Ruelle-Sullivan currents coincide with the invariant 
"Green" currents obtained by equidistributing preimages of generic subvarieties. 

Laminar currents were introduced by E. Bedford et al. [1] as analogues of the Ruelle- 
Sullivan foliation cycles in the general (nonuniformly hyperbolic) setting. They proved the 
invariant currents of polynomial automorphisms of C 2 are laminar and derived some dynamical 
consequences, among them the local product structure of the maximal entropy measure, as well as 
equidistribution of saddle periodic orbits. Also, the laminar structure of the Julia sets is required 
in the notions of unstable critical points and external rays (see [3, 4]). 

Our purpose here is to continue the development of the general theory of laminar currents 
with a view to new dynamical applications. We proved in [ 11 ] that laminar currents are abundant 
in rational dynamics on the complex projective plane, by exhibiting a general criterion ensuring 
laminarity of the limit of a sequence of Q-divisors on F2. We proved in [12] that these currents 
are well behaved with respect to taking wedge products. 

In this article we give a structure theorem for this class of laminar currents, which is also 
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new in the case of plane polynomial automorphisms. In the article [14], we apply these results to 
birational surface dynamics. 

Let us be more specific. Recall a laminar current in an open f2 C C 2 is a current "filled" in 
the sense of measure, by compatible holomorphic disks (see below Section 2 for more details). 
The point is that the disks are not assumed to be properly embedded in f2. On the other hand, 
a current is said to be uniformly laminar, if it is locally made up of currents of integration over 
disjoint complex submanifolds. 

There are examples showing that closed laminar currents may have somehow strange struc- 
ture; this prevents us from studying general laminar currents. Neve~heless, the currents arising 
in some dynamical situations (e.g., those constructed in [3, 11]) have an additional property: 

1 ]p2 They are limits of sequences of Q-divisors ~[Cn] on with controlled geometry. We call 
such currents strongly approximable. An important class of examples is provided by invariant 
currents of polynomial automorphisms, and more generally, birational maps. Our main result is 
the following. 

T h e o r e m  1.1. Let T be a diffuse strongly approximable laminar current on p2. Then 

1. I f  s C f2 C p2 is an embedded lamination by Riemann surfaces, then T Is is uniformly 
lain&at (analytic continuation statement). 

2. Two disks subordinate to T are compatible, i.e., their h~tersection is either empty, or 
open h~ the disk topology (non self-intersection). 

Here, the notion of disk subordinate to T is stronger than just appearing in the decomposition 
of T as integral over a measured family of disks. It appears that the good notion to be considered 
is that of uniformly lanlinar current subordinate to T (see Definition 2.3 below). Note, that in the 
case of non diffuse currents, that is currents giving mass to algebraic curves, if s is a curve, the first 
item is a consequence of the Skoda-E1 Mir Extension Theorem (see Demailly [7]). A main issue 
in this theorem is that there is no regularity hypothesis on the potentials, which seems important 
in view of wide dynamical applications. On the other hand, assuming the wedge product T/x T 
(is well defined and) vanishes, then the second item in the theorem is automatic--this was shown 
to hold in case T admits local continuous potentials in [12]. 

We use this result to show, using a construction of Meiyu Su [23], that disks subordinate to 
such T form a lamination, in a weak sense, and T induces an invariant transverse measure on 
this lamination. We believe this construction provides a useful language for treating problems 
related to strongly approximable currents. In particular, this clarifies the question of differing 
representations of a laminar current by measurable families of disks. 

As an application we prove in Section 5 that, if such a T is extremal--which is common 
in dynamical situations--then the transverse measure is ergodic. We also apply Item 2 of the 
theorem to prove (Theorem 6.7) that the potential of a strongly approximable current is either 
harmonic, or identically - ~  on almost every leaf. 

The precise outline of the article is as follows. In Section 2 we recall some basic notions 
related to laminar currents. In Sections 3 and 4 we prove our main theorem, whereas the inter- 
pretation in terms of weak lamination structure is given in Section 5. We also relate invafiant 
transverse measures on the weak laminations and closed laminar currents dominated by T. In 
Section 6 we give some applications of our study, with some pluripotential theoretic flavor: We 
study the potential of strongly approximable laminar currents along the leaves (Theorem 6.7) 
and prove such currents decompose as sums of two closed laminar currents, one not charging 
pluripolar sets, and the other with full mass on a pluripolar set (Theorem 6.8). 
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2. Preliminaries on laminar currents 
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We begin by recalling some definitions and preparatory results on laminar currents that will 
be useful to us in the sequel. Additional references are [11]-[13], [1]. A good reference on 
positive closed currents is Demailly's survey article [7]. 

The first definitions are local so we consider an open subset f2 C C 2, and T a positive (1, 1) 
current in f2. We let Supp(T) denote the (closed) support of  T, II T II the trace measure and M(T)  
the mass norm; [ V] denotes the integration current over the subvariety V, possibly with boundary. 
Also 1I) denotes the unit disk in C. 

Definition 2.1. T is uniformly laminar, if for every x 6 Supp(T) there exists open sets 
V D U ~ x, with V biholomorphic to the unit bidisk D 2 so that in this coordinate chart Tlv is 
the direct integral of integration currents over a measured family of  disjoint graphs in D 2, i.e., 
there exists a measure k on {0} • D, and a family (fa) of holomorphic functions fa : ]I) -+ D 
such that fa (0) = a, the graphs Ff ,  of  two different fa'S are disjoint, and 

Tlu = f [I ' f .  A U] dk(a) .  (2.1) 
JIo 

A family of  disjoint horizontal graphs in D 2 form a lamination. More precisely, the holonomy 
map is H61der continuous in this case: It is a corollary of the celebrated A-lemma on holomorphic 
motions [ 18], since laminations by graphs in D 2 and holomorphic motions in the unit disk are two 
sides of the same object. Another useful consequence of the theory of holomorphic motions is that 
a lamination by graphs of some vertically compact X C D 2 has an extension to a neighborhood 
of  X-- th is  is a special case of  a deep theorem of Slodkowski's, see [22, 10]. A uniformly laminar 
current induces an invariant transverse measure on its underlying lamination. 

Definition 2.2. T is laminar in f2, if there exists a sequence of open subsets ~"2 i C ~'-2, such that 
II T II (0 f~i) = 0, together with an increasing sequence of currents (T i)i>_O, T i uniformly laminar 
in f2 i. converging to T. 

Equivalently (see [1]), T is laminar in f2, if there exists a measured family (.A,/z) of holo- 
morphic disks Da C ~2, such that for every pair (a, b), Da f-) Db is either empty, or open in the 
disk topology (compatibility condition), and 

T = f [ O a ]  d # ( a ) .  (2.2) 
JA 

Notice that both representations of a laminar current as increasing limits or integral of  disks 
are far from being unique, since they may be modified on sets of  zero II T II measure. One aspect 
of the results in this article (in particular the construction in Section 5) is to provide a natural 
representation of  T as a foliated cycle on a measured lamination, which is the "maximum" of  all 
possible representations. Notice also that our laminar currents are called "weakly laminar" in [1]. 

There is a useful alternate representation of T as an integral of disks. Following [ 1, Equa- 
tion (6.5)], one may reparametrize the laminar representation (2.2) to obtain an alternate repre- 
sentation of  T as an integral over a family of  disjoint disks. Indeed, there exists a measured 
family (Jr,/~) of  disjoint disks (Da)ac ~, and for almost every a ~ .,4 a function Pa, nonnegative 
and a.e. equal to a lower semicontinuous function such that 

T = f _  pa[Da] dry(a). (2.3) 
JA 
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A basic feature here is that there is some choice to be made in choosing the collection of  disks 
that appear in this representation. We now define a non ambiguous notion of  disk subordinate to 
T. It has the advantage of  being independent of the representation of T as a laminar current. 

Definition 2.3. A holomorphic disk D is subordinate to T, if there exists in some f2' C f2 a 
uniformly laminar current S < T with positive mass, such that D C Supp(S) lies inside a leaf of 
the lamination induced by S. 

This definition is motivated by the fact that the usual ordering on positive currents is com- 
patible with the laminar structure. This is the content of the next proposition, which is implicit 
in [1, Section 6] (see [13], or [5] for a precise proof). 

Remark that, unlike the disks of representation (2.2), disks subordinate to T may intersect. 
Such examples are provided by sums of uniformly laminar currents with transversals of zero area, 
see e.g., [12, Example 2.2]. 

Proposition 2.4. Let Tt <_ T2 be laminar currents in ~2. Assume T2 has the representation 
T2 = fA pa[ Da] dl-t(a). Then T1 and T2 have compatible representations in the sense that T1 
may be written as T1 = fA qa[Da] d#(a), with qa < Pa almost everywhere. 

The currents we will be interested in this article have a crucial additional property: There is 
an explicit bound on the "residual mass" M ( T -  T i). We call such currents strongly approximable. 
We need first introduce a few concepts. 

Let us consider a sequence of (one-dimensional) analytic sets [Cn] defined in some neigh- 
borhood of ~ ,  with area dn, and such that d,TI[C,] ~ T. The disks of  T are to be obtained 
as cluster values of sequences of graphs for some linear projection zr. Let L be a complex line, 
transverse to the direction of the projection rr, and a subdivision Q of  L into squares of  size r. 
For Q 6 Q, we say that a connected component I" of  z r - l (Q)  N Cn is good, if Jr " I" ~ Q is 
a homeomorphism, and the area of F is bounded by some universal constant, bad, if not. The 
assumption on area(F) ensures that families of good components form normal families. 

Definition 2.5. T is a strongly approximable laminar current, if there exist a sequence (Cn) of 
analytic subsets of some neighborhood A/" of  ~ ,  with d,~ -t [C,,] ~ T, at least two distinct linear 
projections 7r j ,  and a constant C such that. if Q is any subdivision of the projection basis L into 
squares of  size r, and TQ.n denotes the current made up of  good components of  d~ -1 [C,,] in A/', 
one has the following estimate in f2 

(dnl[Cn]  - TQ,n, :rt';(wlL)) < Cr 2 , (2.4) 

where WlL is the restriction of  the ambient K~ihler form to the complex line L. 

We say T is strongly approximable in ~2, if the Cn are plane algebraic curves and assump- 
tion (2.4) on good components holds for a generic linear projection ~2\  {p} ~ ~1. 

Here "generic" means "for p outside a countable union of  Zariski closed subsets." An 
important consequence of the definition is that such currents are closed. The definition of  strongly 
approximable currents (locally, or on ~z2), though seeming rather inelegant, is designed to fit with 
the constructions in [11] and [3], where it is of course satisfied. 

Remark  2.6. We did deliberately state a local definition, for we believe this is the good setting 
for future applications. However, item 1 (analytic continuation) of the main Theorem 1.1, even 
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though it is a local result, requires global hypotheses. More precisely, the important fact is the 
following: We need the approximating curves Cn to have a controlled number of  intersection points 
with the fibers zr -1 (x), which is only known to hold in global situations. It would be interesting 
to extend it to the purely local case, and more generally, using only the mass estimate (2.5) below. 
De Thelin [8] has a local approach to approximation of  laminar currents, nevertheless we do not 
know, if the crucial estimate (2.5) is true in his case. 

In the remainder of  the article, we will have the occasion to deal with results that require 
the global hypothesis, and those that do not, we will then, respectively speak of  currents strongly 
approximable in i72, or in some f2. 

Equation (2.4) can be turned into a real mass estimate when combining both projections. 
For a proof of  the next proposition, see [ 12, Proposition 4.4]. 

Proposition 2.7. Let T be a strongly approximable laminar current in f2. Fix ~ '  C C f2, and 
Jrl, zr2 projections satisfying Definition 2.5. Then for any subdivisions 81, 82 of  the respective 
projection bases into squares o f  size r, i f  

Q :  [ T f l l ( s 1 ) A T f 2 1 ( S 2 ) , ( S 1 , S 2 ) E S l  X S2} 

denotes the associated subdivision of[2 into affine cubes o f  size r, there exists a current TQ < T 
in a neighborhood of  fl, uniformly laminar in each Q c Q, and satisfying the estimate 

M(T  - TQ) < Cr 2 , (2.5) 

in ~ ,  with C independent o f  r. 

3. The defect function and analytic continuation 

The aim of  this section is to prove the first part of  Theorem 1.1. We introduce a notion 
of  defect of  a laminar current with respect to a projection, analogous to the Ahlfors-Nevanlinna 
defect for entire functions: The defect measures the amount of  good components in the slice 
mass of  the current in some fiber. We already stressed in Remark 2.6 that this section uses global 
arguments; for ease of  reading we consider the case of plane algebraic curves, nevertheless the 
cases of  horizontal-like curves in the bidisk (see [13]), or curves on an algebraic surface are 
similar--what is needed is the approximating curves to have a controlled number of  intersection 
points with the fibers of  the projection. 

The way to the proof is quite simple, but precise formulation requires some care, and we 
apologize by advance for possible stylistic heaviness. 

We begin by recalling the statement of  the analytic continuation theorem. If  T is a laminar 
current in f2 there is a representation (2.2) of  T as an integral of  compatible disks 

T = fA[Da] d#(a)  o 

If  L~ C fit C fl is an embedded lamination, we define the restriction T[s as 

T[s = f [Da] dlz(a) ,  (3.1) 
d/o E,A, DaCLEs 

where the notation L E/2 means "L is a leaf of/~." The current T[z: is laminar in ~ .  
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T h e o r e m  3.1. Let T be a strongly approximable laminar current on i72. 
embedded lamination in f2 C ]p2, then T Is is uniformly laminar in ~2. 

Assume/2 is an 

It may not seem so clear why this is an analytic continuation result. Recall the alternate 
representation (2.3) 

t ~  

T = ]Jl pa[Da]d~z(a) O 

The functions Pa need not be locally constant, even, if T is closed; See Demailly's example [11, 
Example 2.3]. The assertion of the theorem is that in case T is strongly approximable, the 
functions Pa are globally constant along disks subordinate to T (in the sense of Definition 2.3). 

The scheme of the proof is quite natural. The approximating curves form branched coverings 
(global assumption) of growing degree and branching over a line in ~2. Slicing Theory provides 
a way to "count" the number of points in fibers as measures on the fibers and we try to construct 
as many local sections as possible, matching over overlapping disks in the basis--the sections of 
the covering being uniformly laminar currents subordinate to T. 

For this section let us fix a sequence of curves Cn C I~ 2 of degree dn satisfying Definition 2.5, 
T = lim dn 1 [Cn], and fix a linear projection n p :  ~2 \  {p} ~ ? l ,  such that the Lelong number 
v(T, p) vanishes. We also assume p ~ Cn for every n. For almost every line through p, one 
may define the slice TIL which is a probability measure on L, moreover, T/~ [L] is well defined 
and T /x [L] = TIL. In this case, Siu's stability property of Lelong numbers by slicing (see 
Demailly [7]) shows that for almost every L, TJL gives no mass to {p}. We also choose p such 
that the set of vertical disks for the projection rrp in the laminar decomposition of T has measure 
zero. 

We are given a lamination in f2 C ~2, and we want to prove the restriction T Is is uniformly 
laminar. Since the problem is local (on s we may assume/2 is made up of graphs over the 
unit square Q0 c C for some projection Zrp satisfying the requirements above; moreover we 
may assume/2 is vertically compact. So for now we denote Zrp by Jr and restrict the problem to 
Jr-1 (Q0) - Q0 x C. We consider the following three sequences of overlapping subdivisions of 
C, where Q is the standard subdivision (tesselation) of C into translates of Q0 and rk --+ 0- -say  
rk = 2 - k -  

QO = rkQ, Ql = rkQ + + , Q~ = rkQ + + ; 

these subdivisions induce subdivisions of Q0 that form a neighborhood basis of Q0. For each 

Q 6 Q~, we let G(Q, n) be the family of good components of Cn over Q, and 

1 
ZQ'n = Z E [I~] ; 

n F6G(Q,n) 

if Q is one of the subdivisions Q~ we also use the notation TQ,n = ZQEQ TQ,n" Also, for 

Q 6 Q~, there is a subsequence, still denoted by n, such that TQ,n ~ TO, where TO is a 
uniformly laminar current in Q x C; see e.g., [11, Proposition 3.4] and recall that by definition, 
good components form normal families. We perform a diagonal extraction so that for every j ,  k 

and every Q 6 Q~, one has the convergence TQ,n ~ TQ. Let TQ~ = ~"~.Q6Q~ TQ; from (2.4) 

one deduces the estimate 

(T - Toj ,zr*(idz A d~)) < Cry .  (3.2) 
"~--'k 
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The currents TO,n, T O have an important property of invariance of the slice mass, that we 
now describe. For a vertical fiber Fx = :r -1 (x) one has 

TQ.nlFx = TQ,n A [Fx] = ~ ~y 
yEFxA~(Q,n) 

(there are no multiplicities because the current is made of  good components). The mass of  the 
slice measures is constant and denoted by m.s.(Ta,n). The uniformly laminar currents T O do 
have the same property, and T O A [Fx] is the image on Fx of the underlying transverse measure 

of  T O . 

Now we claim that m.s.(TQ,n) ---> m.s.(TQ). Convergence on compact subsets implies 
l iminfm.s.(Ta,n) > m.s.(TQ) and we need to check the other inequality. We know that 
dnl[Cn] --~ T in Q x C, so for almost every fiber Fx, d~l[Cn] A [Fx] ~ T A [Fx], and, 
as noted before, the hypothesis v(T, p) = 0 implies T A [Fx] is a probability measure on Fx. 
Now write dnl[Cn] = Ta,n + RQ,n, and assume RQ,ne --~ RQ so that T = T O + RQ. As T is 
a current on l? 2, m.s.(T) = 1 is well defined, and so is the case for RQ. We conclude using the 
inequality lim inf m.s.(Ra,ne) > m.s.(RQ). 

Definition 3.2. For Q 6 Q~, k > 0, 0 < j < 2, one defines the defect of  Q by 

dft(Q) = 1 - m.s . (Ta) .  

The reference to T is implicit here. Since m.s.(Ta,n) ---> m.s.(Ta),  the defect is the asymp- 
totic proportion of bad components over Q. One has the following properties: 

Proposition 3.3. 

(i) k, j beingfixed, ~ dft(Q) < C; 

QEQ~ 

(ii) i f  Q' c Q thendft(Q') < dft(Q). 

Proof. For Q 6 Q~, one has the estimate 

nliIn (dn 1 [ C n ] -  ZQ,n, 1axc:r*(idz A d 2 ) ) =  dft(Q)r  2 , 

and (i) is a consequence of  estimate (3.2). 

To prove the second point, note that good components over Q are good components over 
Q', so m.s.(Ta,n) > m.s.(Ta, n), and let n ---> oo. [ ]  
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Defini t ion 3.4. For x E Qo, we let dft(x) = l imdft(Qp),  where (Qp) is any decreasing 
sequence of  squares such that {x} = Np Qp. 

The fiber {x} • C is regular, if dft(x) = O, singular (resp. e-singular) otherwise (resp. if 
dft(x) > e). 

One easily checks the definition of  dft(x) is non ambiguous using property (ii) of  the pre- 
ceding proposition. 

Proposition 3.5. There are at most countably many singular fibers; moreover, 

Z dft(x) < 3C . 
x~Qo 

P r o o f  j being fixed, the number of  squares Q 6 Q~ where dft(Q) > e is less than C/e,  
which implies the bound C/e  on the number of  e-singular fibers. The result follows. [ ]  

R e m a r k  3.6. We have no result on the structure of  singular fibers. If  a diffuse strongly approx- 
imable current has Lelong Number > e at some point p, generic slices through p have a Dirac 
mass e at p and the fiber is e-singular. On the other hand, the invariant currents associated to 
polynomial automorphisms of C 2 have no singular fibers. Here is a rough argument: Take some 
complex line L in C 2 and iterate L backwards. It is known that the iterates d -n [ f - n  (L)] converge 
to the stable current T + which is laminar; since the wedge product T + A T -  is geometric (i.e., 
described by intersection of  disks, see [1], or [12]), this implies f - n  (L) intersects many disks of  
T -  and so does L. In particular, L is not a singular fiber associated to T - .  

The following proposition is the basic link between defect and analytic continuation. 

Proposition 3.7. Let Q, Q' be two squares such that Q N Q' ~ 0, dft(Q) < or, dft(Q')  < c~', 
with et + a' < 1. Then there exists a uniformly laminar current TQUQ, in ( Q u Q') • C, such that 

rouo, I o < TQ, Touo, I o, <_ T o, 

and 

m.s.(TQuo,) > 1 - ~ - et' . 

Proof.  A s n  --+ oo, limm.s.(TQ,n) > 1 -o t ,  andm.s.(TQ,n) = ~ # G ( Q , n )  is the numberof  

good components over Q. So for n > n(e) there are at least (1 - a - e)dn (resp. (1 - ~ '  - e)dn) 
good components over Q (resp. Q'). As the total number of  components over Q N Q'  is bounded 
by dn, at least (1 - cr - a '  - 2e)dn components match over Q o Q'  for n large, giving rise to as 
many global good components over Q u Q'. Extracting a convergent subsequence of  the sequence 

1 
d7 trj 

FEG(QUQ',n) 

gives the desired TQUQ,. [] 

We inductively use this proposition to construct analytic continuation of  disks along paths 
in Q0. We assume all paths are continuous. 

Defini t ion 3.8. Let F : [0, 1] ~ Q0 be an injective path. T is said to have almost analytic 
continuation property up to e along V, if there exists an open set Ve D y and a uniformly laminar 
current Tv, < T made up of  graphs over VE, and such that m.s.(Tv~) > 1 - e. 
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T has the analytic continuation property along y, if it has the almost analytic continuation 
property up to e for all e > 0. 

Proposition 3.7 has the following corollary. The proof is left to the reader. 

Corollary 3.9. Let y : [0, 1] --~ Qo be an injective path. Suppose there exists e > O, and a 
covering of  ~, by a family o f  squares ~E satisfying 

2_., dft(Q) _< e .  
Q ~  

Then T has almost analytic continuation property up to e along • 

By definition the total defect of g is the lower bound of the sums ~ Q 6.T" dfl (Q) for families 

)c of squares in Q~ covering g. The next proposition is the crucial technical point in the proof of 
the theorem. 

Proposition 3.10. Let xl and x2 be two points in Qo. For every e > 0 there exists a path g~ 
such that T has almost continuation property along y~ up to (dft(xl) + dft(x2) + e). 

In particular, if xl and x2 are regular, T has the t-almost continuation property. For ease of 
reading we use the following notation: a ~ b means c- la  < b < ca and a < b means a <_ cb, 
with c a constant independent of r (size of the squares). The idea of the proof is to construct 
enough essentially disjoint paths joining xl and x2 in the subdivisions and apply Proposition 3.3. 

P r o o f  Assume first Xl and x2 lie on the same horizontal line. Consider "big" squares Q1 ~ Xl 
and Q2 9 x2 of size ~ ~/~, and join Q1 and Q2 by N ~ 1/.V7 disjoint horizontal paths yi 
with mutual distance > 10r. Each path Vi is covered by a family of "small" squares of size r, 

C Q0 u Q1 u Q2. The families )ri are disjoint. Complete the paths Vi by adding affine pieces 
so that the paths join xl and x2. 

We now evaluate the total defect of the family of paths, using Proposition 3.3 

Z dfl(yi) < Z dft(Q1) q- dft(Q2) d- Z dft(Q) < N(dft(Ol) + dr(Q2))  d- 3C.  
i=1 i=1 Q ~ /  

As N ~ l/x/7, the average defect is 

N 1 
Z dfl(yi) < dft(Q1) + dft(Q2) d- cw/7, 
i=1 

so at least one of the paths has total defect < dft(Q1) + dft(Q2) + c47.  

In the general case consider an affine isometry h such that h(xl) and h(x2) lie on the same 
horizontal line, and remark that, if Q is one of the squares of the preceding construction h (Q) is 
included in a square of size at most twice that of Q. [ ]  

We will prove Theorem 3.1 through the following reformulation, which is of independent 
interest. 
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Proposition 3.11. Let U C Qo be a connected open subset. Let S be a uniformly laminar 
current with vertically compact support in U x C, made up of graphs overU, and such that S <_ T 
in U1 • C, for some open U1 C U. 

Then S <_ T in U x C. 

The conclusion of  the proposition is that the relation S < T propagates to the domain of  
definition of  S; this is a continuation result in terms of disks subordinate to T. 

We first prove that this proposition implies the theorem. Recall we localized the problem so 
that 12 is a vertically compact lamination whose leaves are graphs Aa over Q0. Then one has 

TIc  = f x  pa[Aa]  dlzx(a) 

where /zx  is a positive measure on the global transversal X and for every a,  Pa is a.e. equal to 
a lower semicontinuous non negative function. We have to prove the functions pa are constant 
for a.e. t~. The idea is as follows: If  pa takes the value P0 at some point, then the preceding 
proposition forces p~ > P0 on Aa. 

Indeed, consider the measurable function 

X ~ o t l  ~ in f (pa ) ,  

where inf denotes essential infimum. Then for e > 0, 

Ae~ = {x E Aa, pa(x) > inf(p~) -t- e} 

is either empty, or an open subset up to a set of  zero area. We prove A~ has area zero for a.e. or. 

Assume the contrary. There exists Y C X of  positive transverse measure such that A~ has 
positive area. Hence, the current 

TE = fy  1agpa[Aa]  d/zx(ot) 

is a laminar current of  positive mass. By a monotone convergence argument and the Fubini 
theorem (see e.g., [1, Proposition 6.2]) there exists a square R and a set YR of positive transverse 
measure such that for ot ~ YR, zr-1 (R) N Aa C A~ up to a set of zero area. In particular, 

0 < s = ( f y  (inf(pa)+e)dlzx(ot))lRxC<TElRxC<_TlRxC. 
R 

Since S is uniformly laminar, by Proposition 3.11, this relation propagates to Q0 x C, contradicting 
the definition of  inf p~. 

Proof o f  Proposition 3.11. Without loss of  generality, assume U1 is a disk. We use the 
representation (2.3) over families of  disjoint disks T = fA Pa [Da] dlz(a). Using Proposition 2.4 
one gets 

S : I qa [Da] dlz(a) 
JA Iul 

where ,Air1 is the set of  restrictions to U1 • C of  the disks of A, and qa is a constant on every 
O a E .At I U1 since S is uniformly laminar; moreover qa <- Pa a.e. For a square Q let ,AQ C ,ml a be 
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the set of  disks that are graphs over Q. The uniformly laminar currents T O previously considered 
have the form 

TQ = ] .  pa,Q[Oa]d#(a) 
dA Q 

where Pa, a is a constant function. 

L e m m a  3.12. For almost every x E U1 • C there exists a decreasing sequence of squares Q p, 
Ap>_oOp = {x}, and for every p a uniformly laminar current SQp < S, in ap • C, such that 
SQp <_ Tap etm.s.(SQp) ~ m = m.s.(S) asp --+ oo. 

Proof. Recall that, if Qk is one of  the three3 sequences of  subdivisions Q~, the sequence 
TQk = Y~QcQk TQ increases to T. Let 

SQk= QEQkzfAin f (qa 'Pa 'Q)[Da]d#(a)=fAin f (qa 'Z1QxCPa'Q)  [ D a ] d # ( a ) ' o  QEQk 

The current SQk is uniformly laminar in each Q • C, Q E Qq, and since 

Pa,Q = Z 1Q• 
Q~Qk 

increases II T II a.e. to Pa > qa, one gets inf(qa, Pa, Qk) /7 qa and the sequence of  currents SQk 
increases to S as k --+ c~. From this one easily deduces the conclusion of  the lemma. [ ]  

We continue with the proof of  Proposition 3.11. The basic idea is to transport the relation 
S O < T O by using analytic continuation along paths. Fix s > 0 and x0 E U1 such that the 
conclusion of  the lemma is satisfied and dft(x0) = 0. For x0 E Q E Qk, k large enough, one has 
a uniformly laminar S O < TO, such that m.s . (Sa)  > m.s.(S) - e = m - e. 

On the other hand, by Proposition 3.10 for every x l c U, there exists a path Ys joining x0 and 
Xl, such that T has (dft(xl) + e)-almost analytic continuation along Ye, i.e., there exists V ~ y e ,  
and Tv <_ T uniformly laminar, such that m.s.(Tv) > 1 - dft(xl) - e. Applying Proposition 3.7 
to Q, V, and the square Q1 E Qk containing Xl yields the existence of  a uniformly laminar 
current TO, Q!, simultaneously subordinate to TO, Tv and TQ~, with 

m.s.(TQ,Q1 ) > 1 - dft(Q) - dft(Q1) - e - dft(xl) > 1 - dft(Q) - 2dft(Q1) - e .  

By construction the graphs of  TQ, Q! over Q 1 are the analytic continuations along Ye of those over 
Q. 

We then prove the sum of TQ,QI, with varying Qa, approximate T in U • C: 

T - Z TQ, Q,, 1u•  7r*idz A d~) < Z (dft(Q) + e + 2dft(Ql))area(Q1) 

alCQk QiCQk 

_< (dft(Q) + e )  + 2 dft(Q1) r k 

\QIEQk 

and the right-hand side is less than 3e, if k is large and Q small. 

We now claim there exists for all Q1 a cur ren t  SQ, QI such that in Q • C 

SQ,Q! < TQ,Q! < T, SQ,Q1 ~ SQ < S, and m.s.(SQ,Q!) > m - d f t ( Q ) - 2 d f t ( Q 1 ) - 2 e .  (3.3) 



36 Romain Dujardin 

Let us see first why this implies the proposition: The current S being uniformly laminar, we can 
use the holonomy to extend the current SQ,QI, which is originally defined in Q x C, to Q1 x C, 
and get a current we still denote by SQ,QI, subordinate to both S and T in Q1 x C and satisfying 
the last estimate in (3.3). So we get as before the following estimate in U x C 

Z S Q , Q l ' l u • 2 1 5  - 4 e '  
QI~Qk 

that is, ZQIEQk SQ.QI increases to S. On the other hand, ZQICQk SQ, Q1 ~ T and we conclude 
that S < T in U x C. 

It remains to prove our claim. The data are 

SQ ~ TQ, m.s.(SQ) > m - e and TQ,Q1 ~ TQ, m.s.(Ta,Q1 ) > 1 - dft(Q) - 2dft(Q1) - e ,  

all these currents being uniformly laminar in Q x C. Fix a global transversal {c} x C, c ~ Q, and 
consider the respective slices ms o, m T o, m TO, o~ of S 0, T O and Ta,al. By the Radon-Nikodym 
Theorem there exists a function 0 < f s  o < 1 (resp. 0 < fro.Q~ < 1) such that ms o = f s o m r  o 
(resp. mTQ,QI = fTo.olmTO). 

Let f = in f ( f s  o , fTO,Ol ), then one has the estimate 

f fdmTQ > m -- dft(Q) - dft(Q1) - 2e .  

Define SQ. QI as the uniformly laminar current in Q x C subordinate to S, and having transverse 
measure f d m T  o in {c} x C. SQ,QI has the required properties (3.3). [ ]  

R e m a r k  3.13. The definition of  laminar currents may be relaxed to let the disks intersect. One 
obtains the class of  web-laminar currents, considered by Dinh [9], which seems to be of  interest. 
For instance, the cluster values of  a sequence of  curves in ~2 with degree dn and geometric genus 
O(dn) and no assumption on the singularities are of  this form--such a statement may easily be 
extracted from [11], and is explicit in [9]. Moreover, such currents are strongly approximable in 
the sense that estimate (2.4) holds, with the TO,n being sums of  intersecting graphs (web-uniformly 
laminar currents). 

One may then define disks subordinate to a web-laminar current, and prove an analytic 
continuation theorem in the strongly approximable case, in the same way as above. 

R e m a r k  3.14. The estimate (2.4) plays of  course an important role in this section. However, 
a careful reading of  Proposition 3. l0  shows it can be relaxed by replacing O (r 2) by O (r l+e); in 
particular the analytic continuation statement holds in this case. 

4. Non self intersection 

In this section we prove the second part of  Theorem 1.1, which asserts that disks subordinate 
to a diffuse strongly approximable T are compatible. Due to our Definition 2.3 of  disks subordi- 
nate to a laminar current, this is equivalent to saying that uniformly laminar currents subordinate 
to T do not intersect non trivially. 

In contrast to the preceding section, the result here is purely local, and only uses the mass 
estimate of  Proposition 2.7. We first recall the statement. 
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Theorem 4.1. Let  T be a strongly approximable and diffuse laminar current in ~2 C C 2. Then 
two disks subordinate to T are compatible, i.e., their intersection is either empty, or open in the 
disk topology. 

A few comments are in order here. First there are simple examples of  laminar currents with 
intersecting subordinate disks, given by sums of  uniformly laminar currents with transversals of  
zero area (see e.g., [12, Example 2.2]). Thus, such currents cannot be strongly approximable. 

On the other hand, if one weakens the definition of  disks subordinate to T to the following 
"a disk is subordinate to T, if it is the union of disks appearing in the laminar representation (2.2), 
up to a set of  zero measure," then disks subordinate (in this sense) to a strongly approximable 
T may intersect. For example, a pencil of  lines with any transverse measure satisfies (2.5). We 
nevertheless believe this is not a workable definition of  disks subordinate to T. 

In case T has continuous potential, the theorem is a consequence of  the results of  [12]. 
Indeed, we proved that T /x  T = 0 in this case, so if S1 and $2 are uniformly laminar currents 
subordinate to T in f2 t C f2, one has $1 A $2 = 0 (currents dominated by T also have continuous 
potential). One interesting point here is that no potential is involved; the result may thus appear 
as a "geometric version" of  the equation T/x  T = 0. 

Proof .  The proof is by contradiction. Therefore, assume that $1 and $2 are uniformly laminar 
currents in f2 t C f2, with non trivial intersection, and such that Si < T. It is no loss of  generality 
to assume f2 t = f2. Most intersections between the leaves of the associated laminations/2(S1) 
and s are transverse by [1, Lemma 6.4], so focusing on a neighborhood of  such a transverse 
intersection point and reducing f2, $1 and $2, if necessary, we assume $1 and $2 are made up of  
almost parallel disks and that any leaf of  S1 is a global transversal to E(S2). 

Next, recall that T is the increasing limit of  sums of  uniformly laminar currents in cubes 
T O given by Proposition 2.7. The approximation is increasing, so i fa  disk subordinate to, say, 

$1 appears at some stage of  the approximation, it will persist in all finer subdivisions. Moreover, 
the approximating currents are uniformly laminar, so in the approximation, disks do not ever 
intersect non trivially. 

In what follows the notation Q denotes subdivisions by families of  affine cubes in f2, as 
given by Proposition 2.7. Recall also from this proposition that subdivisions may be translated 
since only the projections rrl and :r2 are fixed, and estimate (2.5) still holds. 

There are two mutually disjoint cases. 

Either at some stage of  the approximation, one obtains a current T 0, with S' 1 < T O < St, 
such that Supp(S~) f3 Supp(S2) 7~ 0 - - the  case where 1 and 2 are swapped is similar. In 
this case, the disks subordinate to St1 persist in finer subdivisions, and the corresponding 
intersecting disks subordinate to $2 never appear. 

Or such a current never appears. 

In both cases, some disks subordinate to $2 will never appear in the approximation process. More 
precisely, these correspond to the set of disks in subdivisions by cubes of  size r, subordinate to 
$2, and intersecting some fixed S'1 < $1. We wish to prove that this contradicts estimate (2.5). 
Without loss of generality, we put St1 = $1, we also renormalize the transverse measures so that 
the measure induced by $2 on the leaves of  $1 is of  mass 1, and make an affine transformation so 
that the projections yr 1 and zr2 become orthogonal. 

For a given subdivision by affine cubes Q, and Q 6 Q, we denote by a the image of  Q by 
scaling of  factor 1/2 with respect to its center. 
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Lemma 4.2. For evety r > O, there exists a subdivision Q by cubes o f  size r, and N (r ) leaves 

(Li)iN2~) o f  /2(S1), with mutual distance >_ 5r, such that i fmi  = $2 A [Li] denotes the transverse 
measure induced by $2 on Li, one has 

mi) > 0<3.  
r----~0 

Let us see first why the lemma implies the theorem. By the reductions made so far, we know 
that no disk of T O traced on a leaf of/2 ($2) intersects the N (r) leaves L i. Moreover, for every cube 

Q of size r, there exists a constant c such that any subvariety of Q intersecting a has area at least 

cr 2 (Lelong's Theorem). Thus, if L is any leaf of/2($1), the total mass of the uniformly laminar 
current subordinate to $2, made up of the disks through a is at least ($2/x [L])(O)cr 2. Since 
leaves at 5r distance cannot hit the same (affine) cube of size r, the preceding lemma provides us 
with a sum of uniformly laminar currents, subordinate to $2, with mass greater than ~2N(r)r  2, 
that will never appear in the approximation process. This is a contradiction since N(r )  --+ o0. [] 

P r o o f  o f  the  l e m m a .  First recall that the holonomy of/2(S1) is HNder continuous, so if a 
transverse section of/2(S1) is fixed, for appropriate constants C and r,  points mutually distant 
of Cr r in the transversal give rise to leaves distant of 5r in f2. Pick N(r )  such points in the 
transversal; as r --+ O, N( r )  --~ cx~ since S1 is diffuse. 

For the associated leaves Li, let mi be the measure induced by $2, and m = ~ i  mi, which 
is a measure of mass N(r )  by the normalization done before. It is an easy consequence of the 
translation invariance of Lebesgue measure and the Fubini Theorem (see [ 12, Lemma 4.5]) that 
there exists a translate of Q such that the mass of m concentrated in U Q is larger than 

1 v ~  N(r )  
N( r )  -- 

2 volume(Q) 32 

which yields the desired conclusion. [ ]  

5. Measured laminations 

In this section we will reinterpret the preceding results in a more geometric fashion, by 
constructing a weak measured lamination associated to a strongly approximable current in ~2. 
This has the advantage of clarifying the question of representation of laminar currents, since the 
measured lamination is the "largest" possible representation. We emphasize that this construction 
is more generally valid for currents satisfying the conclusions of Theorem 1.1. In analogy with 
Cantat [5], we define those as the strongly laminar currents. Theorem 1.1 paraphrases then as 
"strongly approximable currents are strongly laminar." 

Next we relate closed currents subordinate to T and invariant transverse measures on its 
associated weak lamination (Theorem 5.7); this result really needs the mass estimate (2.5). 

Weak laminations 

We first define a notion of weak lamination adapted to our setting. The definitions are ad 
hoc so we assume the ambient space is a two-dimensional complex manifold. We fix a diffuse 
strongly laminar current T. 
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Def in i t ion  5.1. A flow box for T is the (closed) support of a lamination/2 embedded in U --~ D 2, 
such that in this coordinate chart s is biholomorphic to a lamination by graphs over the unit disk, 
and moreover satisfying T[s > 0 and Supp(Tls = / 2 .  

The regular set R is the union of the disks subordinate to T, or equivalently the union of  
flow boxes. 

The condition on the support of  TIs  insures that we do not consider disks not subordinate 
to T. By definition, for any laminar current, the regular set has full measure in T. 

Def in i t ion  5.2. Two flow boxes are said to be compatible, if the associated disks intersect in a 
compatible way. 

A weak lamination is a union of  a family of  compatible flow boxes. We say it is a-compact,  
if there are countably many flow boxes. 

It turns out that this definition fits well with the theory of laminar currents, where no transverse 
topology is a priori involved; see, however, the density topology below. After this article was 
written, we realized that a similar definition already appears in Zimmer [25]. Given a weak 
lamination, one easily define leaves, as in the usual case; if the weak lamination is a-compact  
then the leaves are a-compact  (see e.g., [6], or [13]). 

We say a closed set z 9 x is a local transversal to the weak lamination at x, if it is a local 
transverse section in a flow box. Due to the compatibility condition, this is independent of the 
choice of  the flow box containing x. One then defines holonomy maps between transversals as in 
the usual case, and one may speak of  holonomy invariant transverse measures, that is, a collection 
of measures on all transversals, invariant by holonomy (see Sullivan [23], Ghys [15]). 

The following proposition is a reformulation of  Theorem 1.1. 

Proposition 5.3. Let  T be a laminar current satisfying the conclusions o f  Theorem 1. l - - a  
strongly laminar current. Then the regular set 7B has the structure o f  a weak lamination, and T 
induces a holonomy invariant transverse measure on ~ .  

P r o o f  The only non trivial statement is the existence of  the invariant transverse measure. Note, 
first that T induces an invariant transverse measure on each flow box/2, since T]s is uniformly 
laminar. Now if two flow boxes /21 and s have non trivial intersection--compatible due to 
the non intersection of  disks subordinate to T - - ,  the transverse measures coincide on common 
transversals: Just construct a flow box/2  from this transversal, subordinate to both 121 and/22, 
and apply the analytic continuation theorem again. [ ]  

Notice that this result gives a natural representation of  T as an integral over families of  disks, 
since the definition of 7~ does not involve any choice: We take all disks subordinate to T. This 
means the class of  strongly laminar currents should be a reasonable intermediate class between 
general and uniformly laminar currents. 

The following intuitive proposition asserts the transverse mass of  a flow box is computed 
using wedge products. We know that, if E is a flow box, TIs  is uniformly laminar, so if r is any 
global holomorphic transversal, the transverse mass of/2 is given by m = M (TIc  A [r ]), which is 
easily proved to be a well-defined wedge product. The expected thing is that m = (T A[r ] )  (E f~ r) 
provided the wedge product is well defined, which is almost true: This is the content of  the next 
proposition. Note, that using the techniques of  Section 6 one may replace the smooth uniformly 
laminar currents in the proof by uniformly laminar currents not charging pluripolar sets. 
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P r o p o s i t i o n  5.4. Let (rx)x~D be a smooth family of  disjoint global holomorphic transversals 
to s Then for almost every ~. a D, T A [rz] is a well defined positive measure and the transverse 
mass o f  s is (T /x [rz])(s N rD. 

Proof. Let r be any positive test function in D and let S be the smooth uniformly laminar 
current S = f~[rz]~r(~.) d~.. Since S is smooth, the wedge product S A T is well defined and 
described by the geometric intersection of disks constituting S and T (for more details on this 
topic see [12]), i.e., there is a laminar representation of T, T = f.A[Da] d#(a) such that 

S A T = [ [rz A Da]~r(~.) d)~d#(a) o 

JA xD 

Indeed, since S is smooth one has 

r A s  = fA([Oo1As)aF,(a)  = f A  ( f  ~ S) dtz(a) , 
a 

and S being uniformly laminar, [Da]/x S is a geometric intersection. 

It is a classical fact that for a.e. ~., the wedge product T/x [rx] is well defined, and by the 
preceding argument it is geometric. We conclude by using the fact that disks subordinate to T are 
compatible, so through every point in 12 N rx, the only disk subordinate to T is the corresponding 
leaf of s [ ]  

Su's construction 

In the specific case of strongly approximable currents in i72 one has a little bit more infor- 
mation, since the slices by generic lines give probability measures, yielding the notion of defect. 
These "reference" measures allow one, following Meiyu Su [23], to produce a topology--the 
density topology--in which ~ becomes a genuine lamination. This actually does not give more 
structure on the weak lamination, since the topology is canonically associated to the measurable 
structure. We do not give full details, the reader is referred to [23] and [13] instead. 

We fix a diffuse strongly approximable T in ]?2, and a linear projection Jr such that the 
condition on projections described in Definition 2.5 holds for Jr and the set of vertical disks has 
zero measure. Therefore, we can define the defect function as before, and the slice m z of T by 
the fiber ~r-1 (z) for every fiber of zero defect (by an increasing limit process; note that in general 
slicing is only defined for fibers outside a polar set). By definition of the defect, the regular set 
T~ has full transverse measure in regular fibers. 

Now pick a regular fiber Jr-1 (z), and A a measurable subset of zr- 1 (z). Recall w is a density 
point of A, relative to m z, iff 

mZ(A fq B(w, r)) 
> 1 ;  

mZ(B(w, r)) r~ l  

Lebesgue's Theorem asserts that, if mZ(A) > 0, almost every point in A is a density point; it 
holds in the case of Radon measures in Euclidean space, see [17]. 

We can now define the density topology by specifying its open sets. 

Defini t ionS.5.  AsubsetA 6 zr-l(z) isd-open, i f i t isempty,orifAismeasurable,  mZ(A) > 0, 
and every w 6 A is a density point. 

One easily checks this defines a topology in jr-1 (z). Given a flow box made of graphs for the 
projection 7r, we define the density topology on the flow box as the product of the usual topology 
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along the leaves and the (restriction of the) density topology on a given vertical transversal. Since 
holonomy maps are continuous and preserve the measures m z restricted to the flow box (thus 
preserve density points), this is independent of the transversal chosen. Moreover, the density 
topologies on intersecting flow boxes coincide by compatibility and invariance of the transverse 
measure. 

We collect the following simple facts pertaining to the d-topology: 

Sets of measure zero are d-closed sets of empty interior. In particular, removing (possibly 
countably) many sets of zero measure does not affect the d-open property. 

Open sets of positive measure are d-open, so that the d-topology refines the ambient 
topology in flow boxes. 

The d-topologies induced by distinct generic linear projections zr coincide. 

We can now formulate Su's Theorem in our setting. 

Theorem 5.6, There exists a lamination f_. and an injection i : s ~-* Supp T continuous along 
the leaves and respecting the laminar structure, with image o f  full measure, and full transverse 
measure on each transversal. 

The lamination • has an invariant transverse measure, and i f  T (s  denotes the associated 
foliated cycle, one has i, (T  (f_.) ) = T. 

Proof .  We construct a d-open subset ~ r  C ~ of full transverse measure, and saturated with 
respect to the weak lamination on ~ .  Let (Bm)m>_O be a covering of ~ by flow boxes of positive 
measure. The d-interior of Bm is denoted by d-int (Bin). For each box B~, one removes from 
d-int (Bk) all the plaques corresponding to leaves containing plaques of Um>_OBm\d-int (Bm) 
(k itself is included in the union since a leaf may intersect Bk several times). The set of removed 
plaques has zero transverse measure so it remains a d-open subset B'k C B~. Let T~ ~ = UB~, 
which is d-open and saturated by construction. 

Now for every x ~ ~1, x E B I for some k, and B I is a foliated d-neighborhood of x, so ~ i  k k 
supports a natural lamination s  which has the desired properties. [ ]  

Subordinate transverse measures 

In this paragraph we relate subordination at the levels of transverse measures and closed 
laminar currents. 

Theorem 5.7. Let  T be a strongly approximable current on ~2, and # be the induced transverse 
measure on its associated weak lamination 7~. Then to every invariant transverse measure iz I <_ Iz 
on ~ ,  the foliation cycle induced by #i on T~ corresponds to a closed strongly laminar current 
T 1 <_ T i n ~  2. 

Corollary 5.8. I f  T is an extremal current, the transverse measure lz is ergodic. 

Recall that "ergodic" means every saturated set ~ i  C R has either zero, or full measure. 
This corollary has non trivial dynamical consequences that will be developed in further work. The 
theorem means that there is a good (one way) correspondence between closed positive currents 
on the weak lamination R and closed positive currents on the ambient space. We do conjecture 
the converse also holds, that is, every closed positive current T t < T is the foliation cycle o f  some 
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invariant transverse measure lz I < Iz. This would imply for instance that T is extremal, if and 
only if its transverse measure is ergodic. This conjecture seems to raise rather delicate problems 
of analytic type. 

Proof. The result is local in some open f2. Pick two linear projections ~1 and zr2 satisfying 
Definition 2.5, and for each basis of projection, consider three overlapping subdivisions by squares 
of  size r, as in Section 3. We then form nine overlapping subdivisions Q1 . . . . .  Q9 by affine cubes 
of  size r from the projections and the squares, as in Proposition 2.7. For each Qi, one gets a 
current TQ,, uniformly laminar in each cube, and such that M ( T  - TQi) = O (r2). 

We are given a measure #i on the weak lamination ~ ,  with/z  / < /z. This means that for 
each local transversal r (in a flow box by definition of the transversals), there exists a function 
f r ,  0 < f r  < 1, with #1 = fr /z .  Since/~1 is invariant by holonomy, the functions f r  patch 
together to a global 0 < f < 1 on ~ ,  constant along the leaves. The associated foliated cycle is 
the current fT.  We have to prove it is closed. 

So let q~ be a test 1-form in f2. We consider a partition of unity (Oa) Q~Q subordinate to the 
coveting Q = Q1 u .  �9 �9 to Q9 of ~ .  It is easily seen that since the cubes have size r, the functions 
Oa may be chosen to have derivatives uniformly bounded by C/r, with C independent o f r .  Now, 

and for each of the nine terms of the sum, we replace f T  by fTQ, + f (T  - TQi ), The important 
fact is that since f is constant along the leaves, for each Q ~ Qi the current fTQi Ia is closed in 
Q, so we get 

( f rQi ,d (  ~ OQ~)II: ~ (fT~ilQ, d(OQ~P)):O, 
" QE~i " l QE~i 

since OQ has compact  support in Q. On the other hand, 

(f(T-TQi),d(Q~QOQCp). < M ( f ( T -  ZQi))QE~isup IId(Oa4~)l[ <_M(T-TQ,)O(!)= O(r) . 

This implies (fT, dq~) = 0 and the theorem follows. [] 

6. Pluripotential theory and laminar currents 

We give in this paragraph a few applications of  the foregoing study. More precisely, we 
first prove that the potential of  a strongly approximable laminar current T is either harmonic, or 
identically - ~  on almost all disks subordinate to T (leaves of  the induced measured lamination). 
We also exhibit a decomposition of a strongly approximable laminar current into a sum of two 
closed laminar currents, one essentially supported on a pluripolar set and the other not charging 
pluripolar sets. 

Some results on uniformly laminar currents 

We first collect some useful results on uniformly laminar currents. The proofs only use a few 
simple ideas from 1-variable classical potential theory. Our first goal is the following proposition, 
although the intermediate lemmas may be of independent interest. 
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Proposition 6.1. Let T be a uniformly laminar current, given as the integral of  holomorphic 
graphs in the bidisk, T = f [F~]  dix(o0. Assume T does not give mass to pluripolar sets. Then 
T can be written as a countable sum T = ~ Tj, where the Tj = f [ F a ]  dixj(ot) have continuous 
potential and disjoint support. 

The main ingredient of  the proof is the following 1-variable result, which may be found for 
instance in Hrrmander ' s  book [16, Theorem 3.4.7]. 

Proposition 6.2. Let ix be a positive measure with compact support in C. Assume the logarith- 
mic potential G u (z) = f log Iz - ~l dix(~) satisfies Ga > - c o  ix-a.e.; this is true in particular 
i f  ix does not charge polar sets. Then there exists a sequence of  disjoint compact subsets (K j) 
such that ix = ~ ix IKj and for each j ,  IX IKj has continuous potential. 

The proposition is a consequence of Lusin's Theorem, together with the "continuity princi- 
ple" for logarithmic potential. 

We proceed, in several steps, to the proof of  Proposition 6.1. We denote by s the lamination 
by horizontal graphs in the bidisk, associated to T. The family of  (vertical) disks {z} • ]I9 is 
a family of  global transversals to the lamination. Let h z : h ~ be the holonomy map from 
/: n ({0} x/D) to/~ n ({z} • and similarly h z,z'. We identify an abstract transverse measure 
# on s with its image in {0} x D, so that the parameter ot is identified with the point (0, or), and 
let ixz = (hZ).ix be the push forward of ix in {z} x D. 

L e m m a  6.3. Let T = f [F~]  dix(c~) as above. Then the function 

UT' (Z ,W)  t > f ~ z l • 1 7 6  

is a plurisubharmonic potential for T. 

Proof. Classical, we include it for completeness. Let w = ~0a (z) be the equation of the graph 
F~. Then 

u(z, w) = f log Iw - ~P~(z)l d # ( a )  (6.1) 

is a potential for T. Now the holonomy map h z maps (0, or) to (z, ~0~ (z)), so for any continuous 
function F on {z} x D 

~ l x D  F(ot) dixZ(ot) = f{0lxD F(~oa(z) ) d#(ot) 

and writing log I w - �9 I as a decreasing sequence of continuous functions, we get u = u 7". [ ]  

There is a good correspondence between continuity properties of  the potentials of  the 
transversal measures and the current itself: This is the content of  the next lemma. 

Lemma 6.4. Assume # has continuous potential as a measure on {0} • ]D. Then for every z, 
ixz has continuous potential. Moreover, the above defined potential UT is continuous. 
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Proof. The first assertion is a consequence of the following: The class of  plane measures with 
continuous potentials is preserved by bi-Htlder continuous homeomorphisms. Indeed, let/z be a 
plane positive measure with compact support, and 

ku(z, r) = fs(z,r)log Iz - r d# ( r  . 

Let c > 2; using the fact that B(w, c Iz - w[) C B(w, (c + 1) Iz - w[) and the mean value 
inequality for the logarithm one easily gets 

1 
[Giz(z ) - Gtz(w) [ < - + k(z, c]z - w[) + k(w, (c + 1) Iz - w[) . 

C 

Taking for example c = Iz - w1-1/2, one deduces the following result: If  k (z, r) --+ 0 lo- 
cally uniformly in z as r --+ 0, then G u is continuous. Using similar estimates it is proven by 
Shvedov [20] that the converse is also true. 

Assume now/z  has continuous potential in {0} x D. Then k , (x ,  r) ~ 0 uniformly by the 
Shvedov result; moreover, the holonomy map h z associated to E is Htlder continuous, as well as 
its inverse, say of  exponent or, and we get k~  (w, r) < Cktz((hZ) -1 (w), CRY). This implies/z z 
also has continuous potential; note that the modulus of  continuity is uniform. 

It remains to prove continuity of  u T as a function of (z, w). First, we extend the lamination s 
to a neighborhood of  Supp(T) using Slodkowski's Theorem. Now it follows from formula (6.1) 
that the potential UT is harmonic, or identically - ~  along the leaves. Under the hypothesis of  the 
theorem we know that the restrictions to the slices are continuous and using the Htlder  property 
of  holonomy again, one easily gets that UT is bounded. Then we split 

u (z, (z,, (z + (z, 

where the first term on the right-hand side is small because of  the continuity of  ~ w-~ UT(Z, r 
and the second because z w-> u T (z, h" ,z (wt)) is a uniformly bounded harmonic function, hence 
uniformly Lipschitz. [ ]  

Recall that X C C (resp. X C C 2) is polar (resp. pluripolar) if X C {u = -cx~} where u is 
a subharmonic (resp. plurisubharmonic) function, not identically equal to - ~ .  

L e m m a  6.5. Let X be a subset of  {0} x D, and X the set saturated from X by the lamination 
s (i.e., the set of  leaves through X ). Then X is polar i f f  X is pluripolar. 

Proof. First, note that the holonomy map preserves the class of closed polar subsets of  the 
fibers {z} x D. A way to prove this is to use the following characterization of  polar sets (transfinite 
diameter zero, see Tsuji [24]): X is polar iff 

su lrI xi x, I--0 
n ----~ o o  

This condition is stable under bi-Htlder homeomorphisms. Another method is to use Lemma 6.4 
and the fact that a non polar compact set carries a measure with continuous potential [16, Theo- 
rem 3.4.5]. 

If  X is not closed (polar sets are G6 sets in general), use the fact that X is polar iff for every 
compact K C X, K is polar, and rather transport the compact subsets. 
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Now assume ~" is pluripolar. Then ~" C {u = -o~}  for some non degenerate p.s.h, function 
in IX) 2. Hence, for almost every slice {z} x D, u l izl • ~ - c ~  and (u [ {z)..xD) (~'N ({z} x D)) - - o o ,  

so ~" A ({z} x D) is polar. The preceding observation implies X = X A ({0} x D) is polar. 

Conversely, assume X is polar. Then by [ 16, Theorem 3.4.2] there exists a positive measure # 
supported on X such that X C { G u = - c ~  }. Consider the following plurisubharmonic function 

u(z, w) = f log Iw - (I dlzZ(() 
alz }• 

On each leaf, u is harmonic, or identically - o o .  We thus get .~ C {u = - ~ } .  [ ]  

From these lemmas one easily deduces the proof of  Proposition 6.1. Assume T does not 
charge pluripolar sets. Then the transverse measure does not charge polar subsets of  {0} • D 
by Lemma 6.5. Write # = ~ # j  as given by Proposition 6.2, and T = y~ Tj according to this 
decomposition. By Lemma 6.4, Tj has continuous potential. 

The next proposition gives a decomposition of  a uniformly laminar current in the bidisk as a 
sum of two parts, one giving mass to pluripolar sets, the other not. It will be used in Theorem 6.8. 

Proposition 6.6. Let  T be a uniformly laminar current, integral o f  holomorphic graphs in the 
bidisk, T = f [P~]  d/z(c0. Then T admits a unique decomposition as a sum T = T I + T"  o f  
uniformly laminar currents, with T I not charging pluripolar sets, and T" giving full mass to a 
pluripolar set. 

Proof .  Uniqueness is obvious: If  T = T( + T(' = T~ + T~', just write T( - T~ = T~ I - 7"( I. 

We first decompose the transverse measure, and then apply the preceding lemmas. Let /z  ~ be the 
slice of T by {0} x D, as before, and u0 = uT(O, .) be the logarithmic potential of /z  ~ Then 

#0 = #,  + #i, = #01{u0>_~} + #01{u0=_~} . 

Let v be the logarithmic potential of/z ' .  Since #i _</_to, u0 - v is subharmonic, so v > u0 + O(1), 
and v is finite #1-a.e. By Proposition 6.2 above,/z I does not charge polar sets; moreover # '  is a 
sum of measures with continuous potential. On the other hand, ~Ii gives full mass to the polar 

set {u0 = - ~ } .  

Now decompose T = T'  + T" according to this decomposition o f / z  ~ By Lemma 6.5 
above, T n has full measure on a pluripolar set. Moreover, since/z I is a sum of measures with 
continuous potential, we get an analogous decomposition for T I by Lemma 6.4, and T I does not 
charge pluripolar sets. [ ]  

The potential along the leaves 

Recall that a disk A is subordinate to T, if it is subordinate to a uniformly laminar S _< T in 
f2 / C f2. Notice in the following theorem that the condition of  being harmonic, or - c ~  on A is 
clearly independent of  potential chosen for T. 

Theorem 6.7. Let  T = ddCu be a diffuse strongly approximable laminar current in f2. Then 
for almost every disk A subordinate to T, with respect to the transverse measure, either ulzx is 

harmonic, or ul A = --cx~. 

We remark that there are disks on which u is harmonic, without being subordinate to the 
current in our sense. For example, if T is a current made up of  a measured family of  disjoint 
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branched coverings of degree 2 over the unit disk, say branched over 0, and accumulating on the 
horizontal line (this is called a folded uniformly laminar current in [13]), then the estimate (2.5) 

is satisfied, and the potential of  T is harmonic on the horizontal line, even if  there is no laminated 
set of  positive measure containing it. 

It would be interesting to understand more about the disks in Supp(T)  such that ulzx is 
harmonic. It seems that such disks should be "tangent" to T in some sense. 

Also, we believe the result should be true for every disk subordinate to T. Of course this is 
true if u is continuous. 

P r o o f  We have to prove that, if S _< T is a uniformly laminar current, for a.e. disk A 
subordinate to S, u[lx is harmonic or -cx~. Reducing f2', if  necessary we may assume S is made 
up of  graphs over some disk. We apply Propositions 6.6 and 6.1 to S and get S = S I + S ' ;  
moreover, S I = ~ S j ,  with the uniformly laminar currents Sj of disjoint support and continuous 
potential. 

We proved in [12, Remark 4.6] that if Sj is uniformly laminar with continuous potential, 
the wedge product Sj A T is geometric, i.e., described by the geometric intersection of  the disks 
constituting the current; moreover, by Theorem 1.1, disks subordinate to T do not intersect. So 
Sj A T = 0. This means exactly that u is harmonic on a.e. disk of Sj. 

On the other hand, we claim that u = - c ~  on S ' -a .e .  leaf. Indeed, S II gives full mass 
to a pluripolar set, so if  us,, denotes the logarithmic potential of S II as in Lemma 6.3, one has 

us,, -- - c ~  on a.e. leaf of S ' ,  for if us,, was finite on a set of  positive measure on some transverse 
section, say {z} x D, we could construct a measure with continuous potential subordinate to 
(/z:) II ---- S" A [{Z} • D], which is impossible. We conclude that u - -cxz on almost every leaf 
of S" because T > S" implies u < us,, + O(1). [ ]  

A canonical decomposition 

The following result is reminiscent of both the Skoda-E1 Mir extension theorem and Siu's  
decomposit ion theorem for positive closed currents. It takes in our case a particularly complete 
form. 

Theorem 6.8. Let  T be a strongly approximable laminar current in p2. Then there exists a 
unique decomposition o f T  as a sum o f  positive closed laminar currents T = T I + T ' ,  where T I 
does not charge pluripolar sets, and T II gives full measure to a pluripolar set. Moreover, T t and 

T" correspond to foliation cycles on the weak lamination filduced by T. 

In particular, if the current T is extremal, only one of  T I and T" can appear. 

P r o o f  Note, first that uniqueness is obvious. The proof  actually implies T" gives full mass 
to a countable union of  locally pluripolar sets, which is globally pluripolar in the special case of  
p2, due to a theorem of  Alexander. 

The result is an easy consequence of Theorem 5.7. Indeed, we saw in Proposition 6.6 that a 
uniformly laminar current S in a flow box admits a canonical decomposition S = S'  + S ' ;  this 
decomposit ion corresponds to a decomposit ion of  the transverse measure. So for each transversal 
r (as defined in Section 5), the measure/Zr induced by T has a decomposition/zlr + / z ~ ,  which 
is holonomy equivariant. Thus, the transverse measure writes as # = #i  + it1,, and applying 
Theorem 5.7 gives the result. [ ]  
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