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Abstract

Let f : X — X be a rational mapping in higher dimension. The complexity of (f, X)
as a dynamical system is measured by the dynamical degrees ¢,(f), 1 < p < dim(X). We
give the definition of the dynamical degrees show how they are computed in certain cases.
For instance, we show that if the dynamical degree of an automorphism of a Kihler manifold
is greater than one, then it must be irrational.

1 Dynamical degree

Let us start by discussing automorphisms of C*. We say that

f(z,y) = (fi(z,y), fo(z,y)) : C* - C?

is a polynomial mapping if the coordinate functions f; and f5 are polynomials, and we define the
degree of f as deg(f) := max(deg(f1),deg(f2)). The degree is not invariant under conjugation.
That is, if L is linear, then the deg(L) = 1, but if f is a polynomial automorphism, then in general
deg(f o Lo f~1) > 1, and with suitable choice of f, this degree can be arbitrarily large. The
behavior of deg under composition is deg(f o g) < deg(f)deg(g). Thus we may define the
dynamical degree as

3(f) = lim deg(f™)"/"

n—o0

It follows that 6(f) = 6(h™! o f o h), so the dynamical degree is invariant under conjugation.
The condition § > 1 corresponds to exponential growth of degree under iteration, and this may be
viewed as “degree complexity.” Let us consider two examples:

h(z,y) = (y,0(y) —ax), k(z,y) = (z,y + ¢p(z)) (1.1)

where ¢ is a monic polynomial. We see that the iterative behavior of the two maps in (1.1) is
rather different: 0(h) = deg(y), and §(k) = 1. The following result from [8] gives a satisfying
characterization of the situation for polynomial automorphisms of C?:

Theorem 1.1. If f is a polynomial automorphism of C? with §(f) > 1, then f is conjugate
to a map of the form hy o --- o h;, where h; = (y,¢;i(y) — oyz). In particular, 5(f) =
deg(¢1) - - - deg(yp;) is an integer.
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The maps h; that appear in the Theorem are called generalized Hénon maps. The Hénon represen-
tation achieves minimal degree, and this representation is an essentially unique representative of
the conjugacy class. Thus if we have a Hénon representative, we know the dynamical degree. As
will be seen in Theorem 6.1 below, the fact that ( f) is an integer prevents f from being conjugate
to a compact surface automorphism.

Now let us consider maps of projective space. Let (fo, ..., fx) be a k+ 1-tuple of polynomials
which are homogeneous of degree d. We may assume that the f; have no common factor. The set
Z(f) .= {x € P*: fo(x) = --- = fr(z) = 0} (which is possibly empty) has codimension at least
2. Then f = [fo:---: fz] : P¥ — Z(f) — P* is holomorphic. At each point p € Z(f), however,
f is discontinuous and in fact “blows up” p to a set of positive dimension. A topological fact is
that the cohomology groups H?(P*;Z) and H''(P*; Z) are both isomorphic to the Picard group
Pic(X). The Picard group is the set Div(X )/ ~ of integral divisors modulo linear equivalence.
That is, a divisor D is linearly equivalent to zero if D = div(h), where h denotes a rational (or
meromorphic) function h on X, and div(h) = Zeros(h) — Poles(h) is the associated divisor.
Pic(P¥) is generated by the class of a hyperplane H = {3 c;z; = 0}. To see this, suppose that
V' = {P = 0} is the zero set of a polynomial of degree m, then for 0 < j < k, h := P/27" is a
well defined rational function, which shows that [V| = m[H] in Pic. The action of f* on Pic is
composition: f*{P =0} ={Po f=0},s0 f*[H] =d-[H].

More generally, if 7 : X — P* is a blowup space, then we have the induced map fy :=
7~ o fomon X. We have well-defined pullback maps f* on HY1(P?) and f% on HY(X). We
can use f* to define the degree of f. We can use either f* or f% to define the dynamical degree:

5() = lim [|(F7)7 " (12)
where || - || denotes any norm on H'*(X), H?(X), or in nice cases, Pic(X).

In particular if X is a compact manifold, (1.2) can be used to define §( f) for any meromorphic
map f : X — X. The following is evident:

Proposition 1.2. If ()" = (f*)" on H%! for n > 0, then §(f) is the spectral radius of f*, i.e.,
the modulus of the largest eigenvalue of f*. In this case, )(f) is an algebraic integer.
2 Finding automorphisms by blowing up space

Let us illustrate this with maps of the form

fa,b(way) = <y7 Z:Z)

for fixed constants a and b. This family is conjugate (via affine transformations) to the family
Fop(z,y) = (y,y/z) + (o, B), and we are free to work with the maps in either form. f, is a
birational map of the plane, and we may extend f, ; to a compactification of the plane. We start
by extending it to the projective space P2 = {[zg : @1 : xo]} with (z,y) < [1 : = : y]. Thus
P2 = C?U L, where Lo, = {xo = 0} is the line at infinity. In homogeneous coordinates we
have

Japlzo s z1 2 2] = [wo(x1 + bao) = w2(21 + bxo) = 2o(z2 + azo)].
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In order to understand the map f, ;, we will try to see whether there is a “better” compactifi-
cation. We start by observing that there is a triangle of lines which are mapped to points:

Lo ={20=0} =€ :=[0:1:0], {z4+b=0} ={bzog+21 =0} - ex:=[0:0:1],

{ly+a=0}={arg+22=0} = q:=(—a,0)=[1:—a:0)

We have given the lines of the triangle both in coordinates (z,y) on C? and [x¢ : 71 : 2] on P2,
The points e, ez and p := (—b, —a) are indeterminate. The point es, for instance, is contained in
both {x + b = 0} and L, so it must blow up to a connected set containing the images of both
of these lines. In this case we have the simplest possibility: ey blows up to {z¢g = 0}, the line
through e and e;.

We describe the operation of blowing up the origin (0,0) € C?. We define

—

C2 = {(z,€) = ((v1,22), [€1 : &]) € C* x P! 1 116 = 061}

and 7(x,§) = x. We say that 7 : (/3\2 — C? is the blowup map, and the blowup space (/3\2
is a (smooth) complex manifold with the properties: E := 7~%(0,0) is equivalent to P!, and
7:C2—E—C2— (0,0) is biholomorphic. C2 is covered by the open sets {£; # 0},j = 1,2.
If & # 0, then we may suppose that £ = 1 and represent this open set by the coordinate chart
C?2 > (t,n) — (x,€), where z = (t,tn) and ¢ = [1 : 5]. In this coordinate chart, we have
En{& #0p = {t=0}.

The blowup is a local operation, and we may construct a manifold 7 : X — P? by blowing
up P? at the points e; and eo. Here we use the notation E; = 77_16]-. The blowup space X is
defined by the properties: 7 : X — (Ey U Ey) — P? — {ey, e2} is biholomorphic, and E; = P1,
for j = 1, 2. To work in a coordinate chart at E» we let 7 : X — P? be given by 7((z, 1), [ :
€1]) = [xo : z1 : 1] be the blowup map over (zg,z1) = (0,0) = [0 : 0 : 1]. The coordinate chart
for &y # 0 is given by C? > (t,n) — (x,&) with x = [t : tn : 1]. Thus the inverse is given by
7 wg 21 : 1] = (t =m0, = 21/20).

Since 7 is a birational map, we have an induced map fx := 7 !o for: X — X. Now we
show that the map fx sends {z + b = 0} to Ey. For this we write

F:C2 5P fla,y) = [hy:y—l-a] _ [:L"—I—b.y(x—i—b) 1

x+b y+a y+a

so7 1 f(z,y) = (t = (x +b)/(y + a),n = y). This means that {z + b = 0} is taken to {t = 0},
ie.,to Fy.

A similar computation shows that fx is a smooth mapping from Fs to Lo, = {x¢ = 0}. This
time we write 7 (t,7) = [t : tn : 1] = [1 :  : t1]. Thus we have

F1+a}_[_ .1+aq
+b | " n+b

jk:(th+ﬂﬁ@nD=fWJ”)={ht4:

Thus fx takes Ey = {t = 0} to {xp = 0}, and fx is smooth for n # —b.

If p € P2 — {ey, ez}, we write p for its image 7~ 'p in X and we let {y + a = 0} denote the
closure in X of the image 7= '{y + a = 0}. Arguing as above, we find that {x +b =0} — Ey —
Lo — F1,and:



4 ERIC BEDFORD

Proposition 2.1. The only indeterminate point for fx is p, and the only exceptional curve (i.e.,
the only curve which maps to a point) is {y + a = 0}.

Now we define a subset of parameter space

V= {(a,b) € C*: f¥(q) = p} = {(a,b) € C*: f}(—a,0) = (=b, —a)}
The following is from [3]:

Theorem 2.2. Fixn > 0. Then (a,b) € V, if and only if there is a space w : Y — X such that
fy is an automorphism of Y .

Suppose that (a,b) € V,,. Define Q; := fg((q) for0 < j <n.Nowletw :Y — X denote
the manifold obtained by blowing up the points qg, g1, . . . , ¢,. We write ) := w_lqj. If we write
local charts as we did for the case {x + b = 0}, we see that the set {y + a = 0} is not exceptional
for fy . Similarly, working as we did at F'5 above, we see that fy is not indeterminate at P = Q),,.
We saw already that fx is a local diffeomorphism at all the intermediate points ¢;, so fy is a local
diffeomorphism at ().

3 Finding the degree

If X is a space obtained by blowing up P?, then the cohomology groups H?(X;Z) and H'(X;Z) :

HY1(X;C) N H?(X;Z) are both isomorphic to the Picard group Pic(X). The Picard group is
the set Div(X)/ ~ of integral divisors modulo linear equivalence. It is a standard fact that if
7 X — P? is the blow up of P? at distinct points p1,...,py, then a Z-basis for Pic(X) is
givenby Hy, Py, ..., Py, where Hx = 7 'L is the class of any line L which is disjoint from all
the p;, and Pj is the class of the divisor 7~ 1p;. If C C P? is any curve, then we let [C]x denote
its class in Pic(X). Thus 7*[C]x = m - Hx + ) p1;P;, where m denotes the degree of C, and
p; is the multiplicity of C' at p;. (If p; ¢ C, then p; = 0.)

If f: X — X is arational map, then the pullback map f% is a well-defined linear map of
Pic(X). We will consider f3 = (m; ;) as a matrix with integer entries with respect to the ordered
basis Hx,Pl, . ,PN. Thus

f*[L] = my 1[L] + linear combination of P,..., Py
Proposition 3.1. The entry m 1 in f is the degree of f.

In particular, we conclude that if (f%)* = (f%)", then the degree of f" is the (1,1)-entry of
the matrix (m; ;)™ and thus satisfies a linear recurrence.

Now we consider the space X obtained in the previous paragraph by blowing up e; and es.
The induced map f* on Pic(X) acts according to

Ey = Lo — By — [z +b=0]
Thus,f*:E1—>HX—E1—EgandE2—>HX—E2.

Next we need to determine what f% does to Hx. We start by looking at P?; since f has
degree 2, f ' H is a quadric. Both centers of blowup are indeterminate and blow up to lines. Thus
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a general line H C P? intersects each of these blowup images with multiplicity one, so f~'H is
a quadric which goes through both e; and es. In terms of divisors, this means that

fxHx =2Hx — E1 — F»
With respect to this basis we have

2 1 1
fx=1-1 -1 0
-1 -1 -1
Let us suppose that (a,b) € V, and let 7 : Y — X to be the blowup of the points qo, . . ., ¢n

as in the previous paragraph. Thus Pic(Y) = (Hy, Eq, E2, Qn,Qn-1,--.,Q1). As above, the
exceptional fibers are mapped as

fyiP=Qn—=Qn1— - —=Q1—={y+a=0}

In terms of divisors we have [y+a = 0y = Hy — P—FEj and [z+b = 0]y = Hy — E1 — E2— P,
and fy Hy = Hy — E1 — Ey — P. The difference between [-] x and [-]y arises because the curves
may contain different centers of blowup. Thus with respect to this ordered basis of Pic(Y'), we
have

2 1 1 1
-1 -1 0 -1
-1 0 -1 0
= 0 -1
1 0
1 0
1 O

Proposition 3.2. The characteristic polynomial of the matrix above is
Xn() =" -t -1+ 2+~ 1
If A\, denotes the largest root of xn, then A7 > 1, and A\, is increasing in n.
We conclude that if (a,b) € V,, then 6(f) = A,,and thus 6(f) > 1ifn > 7.

4 Matrix inversion and variations

Let M, denote the space of ¢ x ¢ matrices, and let P(M,) = M7 /C* denote its projectivization.
We consider the mapping J defined on ¢ x ¢ matrices by component-wise inversion: J(z; ;) =
(1/z; ;). J is clearly smooth at the matrices = for which the entries are all nonzero. We may
also write .J as a matrix of polynomials by setting J(x) = (3:;]-1 [1x), where [Tz :=[],,) Zuu
is the product of all of the entries of xz. Thus we see that .J has degree ¢ — 1 on P(M,). We
let I(z;;) = (z;;)"" be the usual matrix inversion. Recall the familiar formula for I(z) as
the quotient of the classical adjoint, formed from the (¢ — 1) x (¢ — 1) minors, divided by the
determinant. From this we see that I has degree ¢ — 1 as a self-map of P(M,). Both of the
maps [ and .J are rational involutions, defined and regular on dense subsets of P(M,). We will
be concerned with the map K = I o .J which is a birational map, and I "' o K o I = K~!, so
K is reversible, in the sense of being conjugate to its inverse. To suggest that there is subtlety in
composing these maps, we note that:
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Proposition 4.1. The degree of K = I o J is ¢*> — q¢ + 1 < max(deg(I), deg(J)).

The map K was studied by Angles d’Auriac, Maillard, and Viallet [[1], as well as the restric-
tions of K to the subspaces S, of symmetric matrices, and to C, of cyclic matrices, which have
the form

ap ar ... Q-1
ap a1
ay ag ... ap

Based on their analysis (largely numerical) of these maps, they conjectured the following:

Theorem 4.2. The dynamical degrees of all three maps coincide:
6(K) = 6(Kls,) = d(K]c,)
and this number is the largest root of t> — (¢* — 4q + 2)t + 1.

This Theorem was proved as a combination of results in [S]] and [12]. We note that passing to
a linear subspace does not increase the degree, so the inequalities §(K) > §(K|s,) and 0(K) >
§(K|c,) follow easily. The restriction K|c, introduces symmetries that make the map much easier
to deal with. On the other hand, the additional symmetries make the restriction K|s, harder to
deal with than the unrestricted K. The set of symmetric, cyclic matrices SC, = S, N C, is also
invariant under K. This introduces all of the symmetries of C, as well as S, so there are different
sorts of symmetries. The map g +— J(K|sc,) depends on ¢ in a more complicated way (see [4]).

S Themaps /,.J and K

The maps I and J are involutions, so §(I) = 4(J) = 1. We discuss the process of regularizing
them by blowing up. We define the set ¥; ; to be the set of matrices for which the (i, j)-entry
vanishes. Similarly, we let e; ; denote the matrix for which all entries are zero except in the
location (4, j). Now we consider J as a map of P(M,). J is regular at each x = (x; ;) for which
all the entries z; j # 0. We see that J(X; ; — Z(J)) = e, j. Conversely, since J = J 1, we see
that J blows e; j up to 3; ;. Given a point = (z;;), we let T'(z) be the set of all (7,j) such
that z € ¥; ;. Then J blows up z to the linear subspace generated by {e;; : (i,j) € T(x)},
which is (, ,)¢7(y) Zu,v- For instance, if @, j, = x4, j, = 0, and if all other entries of (z;,;) are
nonzero, then J blows up x to the line passing through ¢;, ;, and e;, j,. J is indeterminate at the
sets 3, 4, N X, j, for which (i1, j1) # (2, j2). In fact,

Z(J) = U iy g1 N Vg iy (5.1)
(i1,51)#(i2,52)

Now we define the space 7 : X — P (M) in which all points e; ; € P(M,),1 <1i,j < ¢,
are blown up. The fiber ﬂ_lem ~ Pe°~2 s the projectivization of the normal bundle to P(M,) at
e;,j- (The space of tangent vectors normal to a point is the space of all tangent vectors at that point.)
That is, if v is a vector normal to ¢; ;, then the curve ¢ — e, j + tv) lands at a unique point
U € E;jast — 0. The space Pic(X) is spanned by the class of a general hypersurface Hx C X
and the classes of exceptional divisors F; ;. To define the map J% : Pic(X) — Pic(X), we start
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with the observation that J_IEM = ¥ j, so the class F; ; is taken to the class of ¥; ; in Pic(X).
Since the class of X; ; is the same as a general hypersurface H x, except that it is missing the £, ,
for all (i, v) # (i,7), we have

Eij—Hx— > Eu. (5.2)
(1))

It remains to determine J*(Hx). On P(M,) we have J*H = (¢*> — 1)H. This is because if
we represent H = ) ¢; jx; ; as a linear function, then J*H = ) ¢; ;J;; = z” ci,jwl-_’jl [[xis
represented by the linear combination of the coordinates of J. At the point e 1, for instance, the
(1,1) component of .J vanishes to order to ¢> — 2, and the other components vanish to order g% — 1.
Thus if all the ¢; ; are non-vanishing, we see that the multiplicity (order of vanishing) of .J at the
point e, ;, i8 q> — 2. Thus we have

J(Hx) = (¢* — )Hx — (¢* = 2) Y _ By (5.3)
v

Proposition 5.1. (5.2-3) together determine the linear map Jx on Pic(X).

More details of proof can be found in [2].

Now we discuss the map I briefly. The matrix z = diag(0, A2, ..., ;) € P(M,) is mapped
to I(z) = diag(1,0,...,0). More generally, if x has rank ¢ — 1, then we let v € C? generate
the kernel, and we let w be an element of the dual space C?* such that its kernel is the range
of x. It may be shown that for matrices of rank ¢ — 1, the inverse I (projectively), interchanges
kernel and range, so /(z) = v ® w = (v;w;) is a matrix of rank 1. In particular, the set Ry_q :=
{x € P(My) : det(z) = 0} is the exceptional hypersurface for I, and the image I(R,—1) = Ry
is the set of matrices of rank 1. To regularize I, we construct the maifold 7 : Z — P(M,),
which blows up the set R; of rank 1 matrices. Let R! := 771(R;) denote the exceptional di-

visor. Near the point zy := diag(1,0,...,0), the set of rank 1 matrices are parametrized by

(T2, gy Y2y Yg) = 2@ G = (1,22,...,24)' @ (1,¥2,...,Y,). The fiber 712 can be
0o 0 ... 0

. o . 0 &2 .. &4

interpreted as the (projectivized) (¢ — 1) x (¢ — 1) matrices £ := 0 . |-anda
0 &2 .. &g

point near the fiber over x is given by & ® 4 + sf for some scalar s € C.

Proposition 5.2. The map I; == 7 to 1 : P(M,) — Z is a local diffeomorphism at generic
points of Ry_1. Further, Iz is regular at all points of R,_1 with rank q — 1, and 1y is a birational
map from R,_1 to RL.

Finally we turn to the map K = I o J. Let us define A4, ; to be the set of all matrices (x¢ )
whose entries are zero everywhere on the ¢-th row and the j-th column. This is a linear subspace of
P(M,). We find that K (3; ;) = A; ;. Thus we will need to work with the space 7 : X — P(M,)
in which all the subspaces A; ; are blown up, and Ry = J(R;) is blown up, in addition. We let
Kyx := 77" o K o7 be the induced map of X . In the new space X, ; ; 1s not exceptional for
Kx . Let us define the subsets A; ; := 7T_1Ai7j. We find that Kx maps A; jto B;; := A;;NX;;.
So each A; ; is exceptional. We now construct the space m : Y — X in which all the subsets
B; ; C X are blown up. Working with the induced map Ky we can determine the dynamical
degree §(K). Further details are in [5]].
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6 Intermediate degrees

In the case of projective space X = P¥, we let w denote a positive, closed (1,1)-form. Thus w
defines a Kiahler metric on P¥. We write the exterior powers as w” = w A --- A w and set Bp ==
wP/p!. Let M C P* be a compact complex submanifold of codimension p. Let us normalize w
so that [p, w*/k! = [ps B, = 1. With this normalization, the volume of a (linear) hyperplane H
with respect to the metric w is Vol(H) = [,; Br—1 = 1. Itis a classical result that the codimension
2p volume of M (with respect to the metric defined by w) is given by Vol(M) = [ a1 Bp- Thus
we have the identity between volume and cohomology class, and we use this to define degree in
codimension p. Specifically, if L, is a linear subspace of codimension p, then the class {L,}
generates HPP(P*; Z), and the classes {L,} = {3,} are equal. So the class { M} is a multiple of
this class, and we use this to define the degree:

{M} = deg,(M){L,} where deg,(M) = /M Bp

This remarkable identity between degree, volume and topology serves to extend the previous def-
inition of degree to intermediate dimensions.

For a rational map f : X — Y, there is a well-defined map on all cohomology groups
f*: HP9(Y) — HP9(X). When X = P*, we may use this to define the degree deg,, by the
equation deg,(f) {8y} = f*{Bp}. This is given as an integral:

degp(f) :/Pk Br—p N [*Bp

The quantity deg,, is not invariant under conjugacy. However, we see that deg,,(fog) < deg,(f)deg,(g),

so we can define the dynamical degree as d,(f) := lim, (degp( f")) AN T; ( is a birational
map of P¥, then we have 3,(f) = d,(¢" o f o).
For general X is it natural to define intermediate dynamical degrees by setting

0p(f) := B || ™ |gnn]| /"

In fact, if f is holomorphic, then (f™)*|grr = (f*|ar»)". Thus 0,(f) is the spectral radius
of f*|gr». In this case d, is an algebraic integer for all p. It is natural to ask whether ¢, is an
algebraic integer when f is merely rational. The material above was taken from Russakovskii and
Shiffman [11], and the reader is invited to consult the original paper.

It is clear that the same definition applies to meromorphic maps of complex manifolds. In the
case of a compact, Kahler manifold, it is classical that p — log d,(f) is concave in p. We have
do(f) = 1 and 6, (f) > 1 for all maps. Thus if d,(f) > 1 for some 0 < ¢ < k, the concavity
implies we have 6,(f) > 1 forall 0 < p < k.

The following was obtained jointly with Jan-Li Lin:

Theorem 6.1. If f is an automorphism of a compact, Kihler manifold, and if §;(f) > 1 for some
0 <l <k, then 6,(f) is irrational for all 0 < p < k.

Proof. By the remark above, we have 6,(f) > 1 forall 0 < p < k. Let us suppose that
dp(f) is rational. If f is an automorphism of X, then d,(f) is the spectral radius (modulus of the
largest eigenvalue) of f*|z».r. Since HPP is an invariant subspace of H2P(X; C), an eigenvalue
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of this restriction will also be an eigenvalue of f* acting on H?(X; C). Since f* also preserves
H?P(X;Z) we may consider f* as a matrix with integer coefficients. The characteristic polyno-
mial x(x) of f* is monic. Thus all eigenvalues of f* are algebraic integers. Let u be an eigenvalue
with maximum modulus.

If 11 is real, then po = £6,(f) is rational. It is elementary that every rational, algebraic integer
actually belongs to Z. Now, since f* is an invertible, integer matrix, its determinant is ==1. Thus
the characteristic polynomial has the form y = ™ + --. £ 1. On the other hand, since p is
an integer zero of x, (z — ) is a factor of x(z). This means that x(z) = (z — p)p(z) =

(x—p) (™ 4+ 4 cg) =a™ + - — pcg = ™ + - - - & 1. This is not possible since cg is an
integer, and |u| > 1.

If 4 is not real, then we have |uu| = |uji|'/? = 6,(f), which is assumed to be rational. Now
let s, . .., a,, denote the other roots of x. Since these are algebraic integers, it is elementary

(see [10]) that their product as - - -y, is also an algebraic integer. Since pjias - - ay = %1,
we conclude that both uj and a3 - - - oy, are rational. Since, in addition, these are both algebraic
integers, they both are integers. But this contradicts the assumption that || > 1.

7 Monomial maps

The intermediate dynamical degrees are important for understanding the dynamical behavior.
They are invariant under birational conjugacies in the following strong sense: If p : X — Y
is birational, and if g := ¢~ o f o p, then 6,(f, X) = §,(g,Y) (see [6]]). In the same paper, Dinh
and Sibony give an estimate on the topological entropy of f:

hiop(f) < logmax(61(f), ..., x(f))

In case f is holomorphic, this is known to be an equality. And if f is holomorphic, then f* on
HPP is represented by an integer matrix. The degree d,, will be the spectral radius of this matrix
and thus an algebraic integer. On the other hand, it is a different matter to try to find ,, for maps
which do not satisfy (f*)" = (f")* on HPP.

So far, the only nontrivial class on which ¢, has been computed is the monomial maps. Let
A = (a;) be a k x k matrix with integer entries. We let

falz) = Hx?l’j, . ,Hw?”’j
J

J

be the monomial map defined by A. It is easily seen that f} = fan, so the iterates are easily
given. Further, f4 is a well defined rational map of P*, and f}[L,] = deg,(f4)[Lp). In fact, this
number is given by an integral: deg,,(f) = J Br—p A f*Bp. The number 6, would then be the limit
of (deg,(f "))1/™ as n — co. Although this approach is simple to describe, it seems not to be so
simple to carry out.

A useful approach to finding the number ¢, in the case of monomial maps is to change the
space X = P* to the space Y = (P!)* = P! x ... x P!, which is birationally equivalent to X .
We may let [z : y;] be homogeneous coordinates on the j-th factor of P'. Then a basis for HP*?
is given by the classes Ly = {x;, = --- = x;, = 0}, where [ = (i1, ...,i,) is a p-tuple of indices
1 <idj < --- <, < k. (Of course, these are the same as the classes {¢;;, = --- = ¢, = 0},
where each (; is either x; or y;.) We consider {L;} as an ordered basis for HPP(Y"). Given a
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matrix M = (m, ;) let us use the notation |M | := (|m; ;|) for the matrix consisting of the absolute
values of the entries of M. The action of f} on HPP(Y") now has a simple description (see [9]):

Proposition 7.1. Let M := P A denote the p-th exterior power of the matrix A. Then when we
write the basis (Lr) suitably, the action f|pp.» is given by |M|.

While we are working with (P1)¥, it is useful to consider the degree as the matrix Deg,,(f)
1

. . -1 9 _
which represents f7;, . Forinstance, A = < o _g)ss0we have fa(z1,22) = (v1/22, 27 205 %).
In homogeneous coordinates, this becomes

. . . 2,3.,3,.2.,.5
fa: [xo:axy:xo] — [xiay : xi2) « g

o deg; (£4) = 5, and Degy (f4) = (; ;)

Now let us write the eigenvalues of A as puq,. .., ug, where |p1| > |p2| > -+ > |ug|. The
following result, obtained independently by C. Favre and E. Wulcan [7]], and J-L Lin [9], gives the
dynamical degrees:

Theorem 7.2. The dynamical degrees are 0,(fa) = |p1 - -+ 1p

,1<p<k.

The idea of why the Theorem follows from the Proposition is as follows. The exterior product
is (AP A)(v1 A -+ Awp) := (Avg) A -+ A (Auy). If v; is an eigenvector satisfying Av; = u,v;,
then (AP A)(v1 A+ Avp) = (1 -+~ pip)v1 A - - A vp. The size of AP(A™), and thus |AP(A")],
can be estimated above and below by |u; - - - 1|, which gives the claimed exponential growth.

References

[1] J.-Ch. Angles d’Auriac, J.-M. Maillard, and C. M. Viallet, 10n the complexity of some bira-
tional transformations, J. Phys. A 39 (2006), no. 14, 3641-3654.

[2] E. Bedford and Kyounghee Kim, On the degree growth of birational mappings in higher
dimension. J. Geom. Anal. 14 (2004), no. 4, 567-596.

[3] E.Bedford and Kyounghee Kim, Periodicities in linear fractional recurrences: degree growth
of birational surface maps. Michigan Math. J. 54 (2006), no. 3, 647-670.

[4] E. Bedford and Kyounghee Kim, Degree growth of matrix inversion: birational maps of
symmetric, cyclic matrices. Discrete Contin. Dyn. Syst. 21 (2008), no. 4,977-1013.

[5] E.Bedford and T. Truong, Degree complexity of birational maps related to matrix inversion.
Comm. Math. Phys. 298 (2010), no. 2, 357-368.

[6] T.C.Dinh and N. Sibony, Une borne superieure pour I’entropie topologique d’une application
rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 16371644. arXiv:math/0303271

[7] C. Favre and E. Wulcan, Degree growth of monomial maps and McMullen’s polytope alge-
bra, Indiana U. Math. J., to appear. arXiv:1011.2854

[8] S. Friedland and J. Milnor, Dynamical properties of plane polynomial automorphisms. Er-
godic Theory Dynam. Systems 9 (1989), no. 1, 67-99.


http://arxiv.org/abs/math/0303271
http://arxiv.org/abs/1011.2854

DYNAMICAL DEGREES 11

[9] J.-L. Lin, Pulling back cohomology classes and dynamical degrees of monomial maps,
Bull. SMF, to appear. arXiv:1010.6285

[10] D.Marcus, Number Fields, Springer, 1977.

[11] A.Russakovskii and B. Shiffman, Value distribution for sequences of rational mappings and
complex dynamics. Indiana Univ. Math. J., 46 (1997), no. 3, 897-932.

[12] T.Truong, Degree complexity of birational maps related to matrix inversion: symmetric case,
Math. Zeitschrift, to appear. arXiv:1005.4520


http://arxiv.org/abs/1010.6285
http://arxiv.org/abs/1005.4520

	1 Dynamical degree
	2  Finding automorphisms by blowing up space
	3 Finding the degree
	4 Matrix inversion and variations
	5 The maps I, J and K
	6 Intermediate degrees
	7 Monomial maps

