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ON THE DYNAMICS OF BIRATIONAL
MAPPINGS OF THE PLANE

Eric Bedford

Abstract. In this paper we discuss how the dynamics of certain
birational maps of the real plane may be studied using complex
methods.

1. Introduction

A map of the plane f : R2 → R2 is rational if its coordinate functions
are given by rational functions. And it is birational if there is a rational
mapping g : R2 → R2 such that the compositions f ◦ g and g ◦ f are
the identity transformation on a dense open subset of R2. While f is
invertible as a meromorphic map, it can fail to be a homeomorphism for
two reasons. First, there can be exceptional curves that map to points
under f , i.e. curves on which f is constant, wherever it is defined. We
write the set of exceptional curves as E(f). Second, there can be points
where f is indeterminate. We write the indeterminacy set as I(f). A
point p belongs to I(f) if the fraction representing one of the coordinates
of f has the form 0

0 at p, even after common factors have been removed
from numerator and denominator. Geometrically, the point p ∈ I(f) is
blown up to a curve, which is an exceptional curve for f

−1.
Let X be a compact, complex surface which is a complexification of

R2. Then f : R2 → R2 extends to a birational map F : X → X.
In Section 2 we discuss the paper of Diller-Favre [11] which develops
the approach of studying F : X → X in terms of invariant currents.
Positive, closed (1,1)-currents are a generalization of complex curves
(which have real dimension 2). Thus the approach of studying the action
of F

n∗ on (1,1)-currents may be viewed as a generalization of the action
of F on complex curves.
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Why would it be natural to start by mapping complex curves? For
one thing, whenever the orbit of a point encounters a point of indeter-
minacy, it gets blown up to a curve, so we necessarily find ourselves
iterating curves. For another thing, it is well known in the case of dif-
feomorphisms that volume growth, cohomology growth, and entropy are
closely related. For instance, if ρ denotes the spectral radius of F

∗ on
H

1,1, then by Friedland [13], log ρ is an upper bound for the entropy of
F , which is in turn an upper bound for the entropy of f .

In Section 3, we discuss a joint paper with Diller (see [4]) which gives
a sufficient condition for the existence of an invariant measure under F .
The main result is the following:

Theorem 1.1 [4]. Let F : X → X be a bimeromorphic mapping
which satisfies conditions (3), (6) and (7) below. Then there is an invari-
ant measure µ which is mixing. Further, one of the Lyapunov exponents
of µ is strictly positive, and the other is strictly negative.

In Section 4 we discuss two families of real, birational maps. The
first of them is:

(1) fa(x, y) = (y
x + a

x− 1
, x + a− 1),

which have been studied in a series of papers by Abarenkova et al.;
see [1]-[3] and the references therein. If fa is given as in (1), then the
exceptional curves are E = {x = 1} ∪ {x = −a}, a pair of vertical lines
which are mapped to points: f(x = 1) = (∞, a) and f(x = −a) =
(0,−1). The indeterminacy locus is I(f) = {(−a,∞), (1, 0)}, and f

blows them up to a pair of horizontal lines: f(−a,∞) = {y = −1} and
f(1, 0) = {y = a}.

In the complex case, the current of integration over a compact, com-
plex curve defines a positive, closed current. The real analog to the
approach discussed in Section 2 is to consider the action of f on curves
rather than points. This is the approach taken in the paper [5], where
the main result is:

Theorem 1.2 [5]. If a < 0, a �= −1, then (3), (6) and (7) hold.
The support of the measure µ from Theorem 1.1 is contained in R2 and
coincides with the nonwandering set of f . Further, the restriction of f

to the nonwandering set is (essentially) conjugate to the golden mean
shift.

We also study the family of birational maps given by the formula:

(2) gα,β(x, y) = (1− x +
x

y
, α + y − y

x
+ β(1− x +

x

y
)).
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The behavior of this map is more complicated. However, we are able to
show:

Theorem 1.3 [6]. If β > 0 and α < −1, then the support of the
measure given by Theorem 1.1 is contained in R2. Further, the entropy
of gα,β is equal to log ρ, where ρ ∼ 2.1479 is the largest root of the
equation

ρ
3 − ρ

2 − 2ρ− 1 = 0.

We might compare families (1) and (2) with the Hénon family of
diffeomorphisms of R2:

ha,b(x, y) = (x2 + a− by, x).

It is known (see [9], [15], [16]) that for certain values of the parameters
(a, b), the mapping ha,b generates a horseshoe. The horseshoe mappings
are those for which the entropy of ha,b is maximal (and equal to log 2),
and these maps seem to play a role of special importance within the
family {ha,b}. In joint work with John Smillie (see [7], [8]), we have
studied the real mappings of maximal entropy, which include both the
horseshoe mappings and the maps that are limits of horseshoes. The
fact that these mappings of maximal entropy have such rich structure
indicates that the maximal entropy mappings may be a good starting
place for understanding the families {fa} and {gα,β}.

2. Basic properties: invariant currents

A densely defined map F : X → X is meromorphic if there is a
2-dimensional subvariety Γ ⊂ X × X (the graph of F ) and a pair of
holomorphic projections π1 : Γ → X and π2 : Γ → X such that π1 is
proper and generically one-to-one, and if F = π2 ◦ π

−1
1 holds on a dense

subset of X. F is bimeromorphic if both π1 and π2 may be taken to be
generically one-to-one. We let Ej denote the exceptional set for πj , i.e.
Ej is the union of all pure one-dimensional varieties which are mapped to
points under πj . Without loss of generality, we may assume that E1∩E2

is a finite set. It follows that I(f) = π1(E1) is the set of indeterminacy,
and E(F ) = π1(E2) is the exceptional set for F . We may consider F

−1

by interchanging the roles of π1 and π2.
If α is a smooth (p, q) form on X, then π

∗
2α is a smooth form on Γ.

By duality, we may consider this to be a current on Γ, and we may push
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it forward under π1. Thus we have a mapping F
∗
α = π1∗ ◦π

∗
2(α), which

induces a mapping on cohomology:

F
∗ : H

p,q(X) → H
p,q(X).

For the study of F , we work only with the case p = q = 1. In general, it
can be shown that if α is a positive, closed current on X, then there is
a well-defined pull-back f

∗
α, which is again a positive, closed current.

We consider the condition

(3) I(f−1) ∩ f
−n(I(f)) = ∅ for all n ≥ 0.

If (3) holds, then I(fn) =
�

n≥0 f
−nI(f). Further, (3) is equivalent to

the condition that

I(f) ∩ f
n(I(f−1)) = ∅ for all n ≥ 0.

Thus we have
�

n≥0

f
−n(I(f)) ∩

�

n≥0

f
n(I(f−1)) = ∅.

One consequence of (3) is that for all x ∈ X, either the forward orbit
{x, fx, f

2
x, . . . } or the backward orbit {x, f

−1
x, f

−2
x, . . . } is defined

in the “classical” sense, i.e. the orbit does not encounter a point of
indeterminacy.

The interest in this condition is that if F : X → X be a bimeromor-
phic map which satisfies (3), then the passage to the map on cohomology
is natural: (F ∗)n = (Fn)∗.

Theorem 2.1 [11]. If F : X → X is a bimeromorphic map, then
there are a compact, complex surface X̂ and a bimeromorphic map h :
X̂ → X such that F̂ = h

−1 ◦ F ◦ h : X̂ → X̂ satisfies (3).

Replacing X by X̂, we may assume that (3) holds. Let ρ denote the
spectral radius of F

∗ on H
1,1. The spectral radius is the same for any

X̂ satisfying (3).

Theorem 2.2 [11]. If ρ > 1, then there is a cohomology class ω
+

(unique up to scalar multiple) such that F
∗
ω

+ = ρω
+. Further, there is

an essentially unique, positive, closed current µ
+ such that F

∗
µ

+ = ρµ
+.

The invariant cohomology class ω
+ is easy to find. How do we get

from ω
+ to µ

+? Since ρ
−1

F
∗
ω

+ is the same cohomology class as ω
+, it

follows that there is a function γ
+ on X such that

(4) ρ
−1

F
∗
ω

+ = ω
+ + dd

c
γ

+
.
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In fact, ρ
−n

F
∗n

ω
+ converges to µ

+. Thus if we apply higher powers of
ρ
−1

F
∗ to (4), we end up with µ

+ = ω
+ + dd

c
g
+, where

(5) g
+ =

�

n≥0

γ
+ ◦ F

n

ρn
.

3. Invariant measure

We consider F : X → X such that condition (3) and

(6) ρ(F ∗) > 1

hold. Since F∗ = (F−1)∗ is dual to F
∗ under the intersection pairing

on H
1,1(X), we have that ρ(F ∗) = ρ(F−1∗). Thus we have an invariant

cohomology class ω
− and an invariant (1,1)-current µ

− for F
−1. We

would like to obtain an invariant measure µ. Note that if µ is to be an
invariant measure, it must put no mass on any point of indeterminacy,
and it must put no mass on the exceptional set.

If we could define a wedge product µ := µ
+ ∧ µ

−, there is a very
tempting (formal) identity:

F
∗(µ) = F

∗(µ+ ∧ µ
−) = F

∗(µ+) ∧ F
∗(µ−) = ρµ

+ ∧ ρ
−1

µ
− = µ.

We will use the following condition which is stronger than (3):

(7)
�

n≥0

log(dist(F−nI(F ), I(F−1)))
ρn

> −∞.

This has an important connection with the potential g
+ of the invariant

current µ
+:

Theorem 2.1 [10]. Condition (7) holds if and only if g
+(p) > −∞

for all p ∈ I(F−1).

Further, (7) is equivalent to the corresponding statement with F re-
placed by F

−1 (see [10]). Favre [12] has given an example of a mapping
which does not satisfy (7); we give some variants of this in Example 5
of Section 5.

Theorem 2.2 [10]. If (7) holds, then g
+ is continuous on X −�

n≥0 F−nI(F ).

It is instructive for us to consider also the condition

(8)
�

n≥0

F−nI(F ) ∩
�

n≥0

FnI(F−1) = ∅.
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Since ρ > 1, and since the distance function is bounded on X, it follows
that (8) ⇒ (7). Applying Theorem 2.2 in the case where (8) holds, we
see that every p ∈ X is contained in a neighborhood where either g

+ or
g
− is continuous.

If g
+ is a continuous function for which dd

c
g
+ is essentially positive,

then we may define the wedge product with a positive, closed current
T , which we write as µ = dd

c
g
+ ∧ T . This is done as follows. If ϕ is a

test function, we define

�µ, ϕ� = �(dd
c
g
+ ∧ T ), ϕ� =

�
g
+

dd
c
ϕ ∧ T,

where the far right hand side defines the left. Note that if g
+ is smooth,

this just corresponds to an integration by parts. This defines µ as a
distribution. Now if dd

c
g
+ is essentially positive, then µ is an essentially

positive distribution and is thus represented by a signed Borel measure.
Since (8) holds, we may assume (locally) that g

+ is continuous and
we may set T := µ

−. So we may define dd
c
g
+ ∧T and thus the measure

µ = (ω+ + dd
c
g
+) ∧ T .

For the sake of discussion, let us assume that ω
+ is smooth and

positive. Thus F
∗
ω

+ ≥ 0, and from (4) we see that dd
c
γ

+ ≥ −ω
+. This

means that dd
c
γ

+ is essentially positive. Further, there are constants
A,B,C such that

A log dist(z, I(F ))− C ≤ γ
+(z) ≤ B log dist(z, I(F )) + C.

In [4] we show that if (7) holds, then the potentials g
± given by formula

(5) are sufficiently tame that we may define dd
c
g
+ ∧ dd

c
g
−, which in

turn allows us to define µ := µ
+ ∧µ

−. This gives the analytic definition
of the measure µ that appears in Theorem 1.1. We also have another,
perhaps more dynamical, characterization of µ:

Theorem 2.3 [4]. Let η1 and η2 be smooth, closed, real (1, 1)-forms
on X. Then there is a constant c such that

cµ = lim
m,n→∞

1
ρm+n

F
m∗

η1 ∧ (F−n)∗η2.

4. Families of real, birational maps

Let P1 = C ∪ ∞ denote the Riemann sphere, which is a compact
complexification of R. If fa is defined as in (1), we let Fa denote the
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extension of fa to a birational map Fa : P1 ×P1 → P1 ×P1. It follows
that (∞,∞) is a parabolic fixed point. Condition (3) holds unless

(9) a =
1
n

for some n ≥ 1, or a =
n

n + 2
for some n ≥ 0.

We also require a �= −1 because fa is affine in this case. The cases where
(3) fails have been analyzed in [11] and are found to be more tame than
when (3) holds. In case (3) holds,

�

n≥0

F
−n
a (I(Fa)) ∩

�

n≥0

Fn
a (I(F−1

a )) = (∞,∞),

and so (8) does not hold. On the other hand, (7) does hold (since
dist(F−nI(F ), I(F−1)) is bounded below for n ≥ 0). The cohomology
group H

1,1(P1×P1) has dimension two, and F
∗
a may be represented by

the matrix
�

0 1
1 1

�
. Thus the spectral radius of F

∗
a is given by ρ =

√
5+1
2 .

It follows that the entropy of fa is no greater than log
√

5+1
2 .

In fact, the entropy of fa is equal to log
√

5+1
2 when a < 0, a �= −1.

One approach to this is to consider the real horizontal h = {y = y0} for
fixed y0 ≤ −1 and vertical lines v = {x = x0} for x0 ≤ −1. The measure
µ, described in Theorem 1.1 is also generated by pushing h forward and
pulling v back:

Theorem 3.1 [5].

µ = lim
m,n→∞

1
ρn+m

�

a∈fmh∩f−nv

δa,

where δa denotes the point measure supported at a.
The set f

m
h∩f

−n
v contains an (�, n+m)-separated set with approx-

imately ρ
n+m points, and so it follows that the entropy of µ is at least

as large as log ρ. Since log ρ was an upper bound, it must be equal to
the entropy of µ.

The family {gα,β}. We will require that β �= 0; the case β = 0
has lower entropy. Let us start with the complexification X = P2, and
let Gα,β : P2 → P2 denote the extension of gα,β to a birational map
of complex projective space P2. The indeterminacy set is I(G) = {[0 :
0 : 1], [0 : 1 : 0], [1 : 0 : 0]}. These points are given in homogeneous
coordinates on P2, so [x : y : 1] denotes the point (x, y) ∈ C2 ⊂ P2;
and [1 : 0 : 0] and [0 : 1 : 0] are the points at infinity at the ends of the
x- and y-axes, respectively. The exceptional set is E(G) = X ∪ Y ∪ C,
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where X = {y = 0} is the x-axis, Y = {x = 0} is the y-axis, and
C = {(x−1)(y−1) = 1}. The condition (3) fails for G for three reasons:

G(C) = (0, α + 1) ∈ Y, and G
2(C) = [0 : 1 : 0] ∈ I(G),

G(Y ) = [0 : 1 : 0] ∈ I(G),
G(X) = [1 : β : 0] and G

2(X) = [1 : 0 : 0] ∈ I(G).
By Theorem 2.3, there is a complex surface X̂ such that Ĝ : X̂ → X̂

satisfies (3). In [6] we construct such a space X̂ with a projection π̂ :
X̂ → X, by performing two blow-ups over [0 : 1 : 0] and one blow-up over
each of the points [1 : β : 0] and [1 : 0 : 0]. Write D0 = π̂

−1([0 : 1 : 0]),
E0 = π̂

−1([1 : β : 0]), and F0 = π̂
−1([1 : 0 : 0]). The projection

π̂ : X̂ − (D0 ∪E0 ∪ F0) → P2 − {[0 : 1 : 0], [1 : β : 0], [1 : 0 : 0]}
is biholomorphic, and thus nothing has been changed over any point of
C2.

The indeterminacy set for the new map is I(Ĝ) = {[0 : 0 : 1], p̂},
where p̂ ∈ F0, and the exceptional set is now E(Ĝ) = X ∪ C. We have
Ĝ(C) = (0, α + 1) as before, but now Ĝ(X) = q̂ ∈ E0 is a point in the
fiber over [1 : β : 0]. One effect of the modification is that Y is no longer
exceptional, and the indeterminacy at [0 : 1 : 0] has disappeared — there
is no point of indeterminacy in D0. Condition (3) is now equivalent to
the condition that

Ĝ
n(0, α + 1) �= (0, 0) and Ĝ

n(q̂) �= p̂ for all n ≥ 0.

This is equivalent to the condition that β �= 0 and α �= n−1
n+1 and α �= 1−n

2n
for n ≥ 0.

We compute that the spectral radius ρ of Ĝ is as in Theorem 1.3. Ĝ

thus has an invariant measure µ according to Theorem 1.1. In order to
prove Theorem 1.3, we find lines h and v for which #(Gn

h ∩G
−m

v) ∼
ρ

n+m. It follows as in Theorem 3.1 that µ is given by the distribution
of point masses on G

n
h ∩ G

−m
v. Thus µ is supported on R2 and has

entropy log ρ.

5. Examples

Perhaps it is useful to illustrate the preceding discussion with a num-
ber of examples.

Example 1. (Complex Hénon map) We start with the mapping

h : C2 → C2
, h(x1, x2) = (x2, x

2
2 + x1), h

−1(x1, x2) = (−x
2
1 + x2, x1).
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Let P2 = {[x0 : x1 : x2] : (x0, x1, x2) �= (0, 0, 0)} denote complex projec-
tive space, where we use the notaton [x0 : x1 : x2] = [λx0 : λx1 : λx2]
(when λ �= 0) for homogeneous coordinates. We choose the imbedding
C2 ⊂ P2 given by the mapping (x1, x2) �→ [1 : x1 : x2]. Thus P2 is
a compactification of C2, and we have P2 = C2 ∪ {x0 = 0}, where
{x0 = 0} = {[0 : x1 : x2], (x1, x2) �= (0, 0)} is naturally equivalent to P1

and appears as the complex line at infinity of C2.

We define the extension ĥ : P2 → P2 by asserting that its graph must
be the (topological) closure Γ̂h of the graph Γh of h. The graph of h is
given by

Γh = {(x, y) = (x1, x2, y1, y2) ∈ C2 ×C2 : y1 = x2, y2 = x
2
2 + x1}.

To write Γ̂h as a variety, we add the (redundant) equation y
2
1 + x1 = y2

to the definition of Γh and then convert the defining equations to ho-
mogeneous coordinates. This is done by replacing the (inhomogeneous)
coordinates by the quotient of homogeneous coordinates: xj is replaced
by Xj/X0 and yj by Yj/Y0, and then we clear denominators. We obtain

Γ̂h = {(X, Y ) = ([X0 : X1 : X2], [Y0 : Y1 : Y2]) ∈ P2 ×P2 :

X2Y0 = X0Y1, Y2X
2
0 = X

2
2Y0 + X1X0Y0, Y

2
1 X0 + X1Y

2
0 = Y2X0Y0}.

The third equation, which was redundant for Γh, is necessary for Γ̂h. It
gives us X0 = X2 = 0 ⇒ Y0 = 0. Without it, we would have {[0 : 1 :
0]}×P2 ⊂ Γ̂h, but {[0 : 1 : 0]}×P2 is clearly not in the closure of Γh. We
note that Γ̂h is singular at points lying over [X0 : X1 : X2] = [0 : 1 : 0].

The induced mapping on P2 is written in homogeneous coordinates
as

ĥ([X0 : X1 : X2]) = [X2
0 : X0X2 : X

2
2 + X1X0].

It will now be convenient to write our variables in lower case letters. We
note that this formula gives a well-defined element ĥ(x) ∈ P2 unless all
three coordinates vanish, which happens if x0 and x2 both vanish. Such
a point x is in the indeterminacy locus: I(ĥ) = {[0 : 1 : 0]}. The critical
locus is C(ĥ) = {x0 = 0}, which is the hyperplane at infinity. We see
that ĥ(C) = [0 : 0 : 1], which is a fixed point of ĥ. Thus the critical
variety is blown down to a fixed point, which is not indeterminate, and
so (3) holds. It follows that P2 is a natural compactification for h in the
sense that (ĥ∗)n = (ĥn)∗.

Note that in homogeneous coordinates ĥ
−1[x0 : x1 : x2] = [x2

0 :
−x

2
1 + x0x2 : x0x1]. Thus ĥ ◦ ĥ

−1 = [x4
0 : x

3
0x1 : x

3
0x2], so ĥ ◦ ĥ

−1
x = x

if x0 �= 0, but ĥ ◦ ĥ
−1 fails to be defined on {x0 = 0}. This is related
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to the fact that we had to add an extra equation in the definition of Γ̂h.
Note, too, that deg(ĥ) = deg(ĥ−1) = 2 > deg(ĥ ◦ ĥ

−1) = 1.
The cohomology of complex projective space is given by H

1,1(P2;Z)
= Z. The class of any complex line serves as a generator. It is convenient
to use the line (= hyperplane) at infinity {x0 = 0}. The pullback under
ĥ is ĥ

−1({x0 = 0}) = {x2
0 = 0}, which is the same hyperplane but

with multiplicity 2. Thus ĥ
∗ multiplies the cohomology class of the

hyperplane at infinity by 2, so the spectral radius ρ(ĥ∗) = 2.
On the other hand, we might have taken X = P1 × P1 as our com-

pactification of C2. Let h̃ : X → X denote the induced birational map.
In this case, we have I(h̃) = {(∞,∞)}. Further, h̃(I(h̃)) = {∞} × P1,
and h̃({∞} ×P1). The critical locus is C(h̃) = P1 × {∞}. We have

h̃(C(h̃)) = (∞,∞) ∈ I(h̃),

so X is not a natural compactification for h.

Example 2. (Fatou map) Let us consider

F : C2 → C2
, F (x1, x2) = (x2, x

2
2 + x1x2 − x1),

F
−1(x1, x2) = (

x2 − x
2
1

x1 − 1
, x1).

We extend to P2 by writing (x1, x2) ↔ [1 : x1 : x2] = [1 : X1/X0 :
X2/X0] in the formula for F :

[1 :
X1

X0
:
X2

X0
] �→ [1 :

X1

X0
:
X

2
2

X
2
0

+
X1X2

X
2
0

− X1

X0
]

= [X2
0 : X2X0 : X

2
2 + X1X2 −X1X0].

It follows, then, that F̂ defines a point of P2 unless X ∈ I(F̂ ) = {X0 =
0} ∩ {X2(X2 + X1) = 0}. Thus

I(F̂ ) = {[0 : 0 : 1], [0 : 1,−1]}.
For the critical locus, we first note that the line at infinity is critical:
F̂ ({X0 = 0}) = [0 : 1 : 0]. For the critical locus in C2, we take the
derivative in (usual) affine coordinates:

F
� =

�
0 1

x2 − 1 2x2 + x1

�
.

The determinant of F
� vanishes at x2 − 1 = 0, and we have F ({x2 =

1}) = (1, 1). Thus

C(F ) = {X0 = 0} ∪ {X2 = X0}.
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To see that (3) holds, observe that [0 : 1 : 0] is a fixed point, and that
(1, 1) ∈ C, so that F

n(1, 1) ∈ C2 for all n ≥ 0. Thus F
n(C) ∩ I(F ) = ∅

for all n ≥ 0.
Now let us write F

−1 in homogeneous coordinates:

[X0 : X1 : X2] �→ [1 :
X2
X0
− X2

1
X2

0

X1
X0
− 1

:
X1

X0
]

= [X0(X1 −X0) : X0X2 −X
2
1 : X1(X1 −X0)].

Thus I(F−1) = {[0 : 0 : 1], [1 : 1 : 1]}, and C(F−1) = {X1 − X0 =
0} ∪ {X0 = 0}. We have F

−1({X1 − X0 = 0}) = [0 : 1 : 0] and
F
−1({X0 = 0}) = [0 : 1 : −1]. This information about F

−1 tells us
what F does to its points of indeterminacy: F [0 : 1 : 0] = {x1 = 1}, and
F [0 : 1 : 0] = {X0 = 0}.

Blowing-up. A compactification may be thought of as a way of
adding points at infinity. For the one-point compactification of C2, the
lines

Lα,β = {x2 = αx1 + β} = {[X0 : X1 : X2] : X2 = αX1 + βX0}

all intersect at the point at infinity. For the compactification P2, Lα,β

intersects the line at infinity in the point [0 : α : 1]. Thus we may
consider α ∈ C as a parameter on the portion of the line at infinity
given by {[0 : α : 1] : α ∈ C} = {x0 = 0} − [0 : 1 : 0].

Let us describe how to modify a compactification by blowing up.
Recall that the blow-up of C2 at the point (0, 0) is defined as

Ĉ2 = {((x1, x2), [ξ1 : ξ2]) ∈ C2 ×P1 : x1ξ2 = x2ξ1},

with the projection π̂ : Ĉ2 → C2 given by π̂(x, ξ) = x. It follows
that Ĉ2 is a complex manifold, that the exceptional fiber over (0, 0) is
π̂
−1(0, 0) = P1, and that

π̂ : Ĉ2 − π̂
−1(0, 0) → C2 − (0, 0)

is a biholomorphism.
The blowing up construction involves only a neighborhood of (0, 0)

in C2, so it may be performed at any point of a complex manifold. For
instance, let us denote by π̂α : X̂ → P2 the blow up of P2 at the point
[0 : α : 1] (in the line at infinity). It follows that the lines Lα,β all
land at different points of the fiber of π̂

−1([0 : α : 1]). Thus we may use
C � β �→ Lα,β∩ π̂

−1([0 : α : 1]) as a coordinate on (most of) the blow-up
fiber π̂

−1([0 : α : 1]).
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Example 3. (Shears) Let us next consider

s : C2 → C2
, s(x, y) = (x, y + x

2), s
−1(x, y) = (x, y − x

2).

These mappings are dynamically trivial because s
n(x, y) = (x, y + nx

2).
Let us see how they fit into the framework we have described above.
Here we use coordinates (x, y) in C2 and [x : y : t] on P2, and we imbed
C2 into P2 by the map (x, y) �→ [x : y : 1]. Thus the line at infinity is
now {[x : y : 0]} = {t = 0}. By s we denote the extension s : P2 → P2 of
s to X = P2. As above, we see that s

±1 may be written in homogeneous
coordinates as [x : y : t] �→ [xt : yt ± x

2 : t
2]. The sets of indeterminacy

are I(s) = {[0 : 1 : 0]} = I(s−1). The line at infinity is critical since
s(t = 0) = [0 : 1 : 0] is a point; and since s is a diffeomorphism of C2,
line at infinity is all of C. Observing that s(C) = [0 : 1 : 0] belongs to
I(s), we see that (3) fails.

To find a space on which (3) holds, we start by blowing up s(C). Let
η : X1 → P2 denote the blow-up of P2 at the point [x : y : t] = [0 : 1 : 0],
the point where the y-axis intersects the line at infinity. Let D1 = η

−1[0 :
1 : 0] denote the exceptional fiber. Thus D1 is equivalent to P1, and
η : X1 − D1 → P2 − [0 : 1 : 0] is biholomorphic. Let s1 : X1 → X1

denote the bimeromorphic extension of s to X1. We will find the set of
indeterminacy and critical locus of s1.

For β ∈ C, let Vβ denote the closure of the vertical line {(x, y) ∈
C2 : x = β} inside X1. Thus Vβ is a complex curve which intersects
D1 in a point, which we denote by β̂. A neighborhood in C2 of a point
β̂0 ∈ D1 is given by {(x, y) : |x − β0| < �, |y| > �

−1}, where � > 0
is taken small. It follows that s(x, y) = (x1, y1) satisfies |x1 − β0| < �

and |y1| > �
−1 − o(�−1). We conclude that s(x, y) converges to β̂0 as

(x, y) → β0. Thus s1(β̂) = β̂ for all β ∈ C.
Let T denote the closure of {[x : y : 0] : x �= 0} ⊂ X1−D1 in X1. Thus

T coincides with the line at infinity in P2 over all points different from
[0 : 1 : 0], and D1 ∩ T = {∞̂}. We have seen that s1 : D1− T → D1− T

is the identity map. It follows that I(s1) = {∞̂} = T ∩D1.
Since s is a diffeomorphism, the critical locus of s1 does not intersect

C2. We have seen that D1 − ∞̂ is not critical. It remains to check
T−{∞̂}. For α ∈ C, let Lα denote the closure of the line {y = αx} ⊂ C2

in X1. Thus Lα ∩ T ∈ X1 is a point which we denote by [1 : α : 0].
If we parametrize Lα by t �→ (t, αt), then s1(Lα) is parametrized by
t �→ (t, αt + t

2). If we set τ = t
2 + αt, then we may parametrize this

curve by τ �→ (o(τ), τ), which intersects D1 in the point 0̂. Thus for
all α̂ ∈ T − D1, we have s1([1 : α : 0]) = 0̂. In other words, s1(C) =
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s1(T − D1) = 0̂ ∈ D1. Thus we have C(s1) = T − ∞̂. Since 0̂ is fixed
under s1, we have

s
n
1 (T −D1) = 0̂ /∈ I(s1) for all n ≥ 0,

and so (3) holds.
Next let us compute the action of s

∗
1 on H

1,1(X1). Perhaps it is
useful first to make a couple of comments on cohomology. And for this
we discuss the general problem of transfering a curve from P2 to a curve
of X1. Given a curve Γ in P2, there are two curves in X1 that correspond
to Γ. The first (which is minimal) is called the proper transform of Γ and
is simply the closure of η

−1(Γ− [0 : 1 : 0]) in X1. The second one (which
is maximal) is called the total transform and is η

−1(Γ). An advantage of
the total transform is that it is continuous with respect to the topology
of currents. If L is a line in P2 that does not meet [0 : 1 : 0], then the
proper and total transforms of L coincide, and without ambiguity we
can say that L is a line in X1. On the other hand, the proper transform
of the line {t = 0} ⊂ P2 is T , but the total transform is T ∪D1.

We will find it useful to view the cohomology of X1 from the point
of view of the pullback map η

∗ : H
1,1(P2) → H

1,1(X1), which corre-
sponds to the total transform. Recall that H

1,1(P2) is generated by
the cohomology class determined by a general line L in P2, and the
pullback η

∗(L) determines a cohomology class in X1. Taking the line
L = {t = 0}, we have η

∗(L) = T +D1. This is not equal to T ; H
1,1(X1)

is two-dimensional, and we may take T and D1 as a basis.
We compute that s

−1(T ) = T , and s
−1

D1 = s
−1(0̂) ∪ s

−1(D1 − 0̂) =
T ∪D1. Thus, with respect to this basis, we have

s
∗ =

�
1 0
1 1

�
.

We see that the spectral radius is ρ(s∗) = 1.
The reader may have observed already that if we use the compact-

ification Y1 := P1 × P1, then (3) holds. The reason we avoided the
“obvious” compactification and proceeded via P2 and X1 is because it
illustrates a procedure that works in greater generality.

Let us conclude this example with the observation that P2 and P1×
P1 are equivalent via a birational map. To see this, let η2 : X2 → X1

denote the blowing up of X1 at the point [1 : 0 : 0], and let π2 : Y2 → Y1

denote the blowing up of Y1 at the point (∞,∞). The spaces X2 and Y2

are biholomorphically equivalent: the map ι : C2 → C2, ι(x, y) = (x, y)
extends to a biholomorphic map ι : X2 → Y2. Thus η ◦ η2 ◦ ι

−1 ◦ π
−1
2 :

P1 ×P1 → P2 is birational.
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Example 4. (Recurrence Equations) We consider mappings of the
form

p(x, y) = (y, ay +
b

ym
+

m−1�

j=0

bj

yj
− cx)

with b �= 0 and c �= 0. Note that conjugation by the map (x, y) �→
(δx, δy) leaves a and c unchanged but changes b in the formula to bδ

−m+1.
Thus if δ is any (m − 1)-st root of b, then we have conjugated p to a
mapping in which b = 1.

Before discussing these examples, let us remark that this and Exam-
ple 1 are special cases of the family of birational mappings which arise
from two-term recursion formulas. Specifically, for a map of the form
p(x, y) = (y, f(y) − cx), then we may consider p

n(x, y) = (xn−1, xn) as
arising from the recurrence xn+1 + cxn−1 = f(xn), n ∈ Z, with x−1 = x,
x0 = y. Thus p

−1(x, y) = (c−1(f(x) − y), x). If c = 1, then p is re-
versible, which is to say that there is an involution τ which conjugates f

to f
−1, i.e. f

−1 = τ ◦f ◦τ ; in the case here we may take τ(x, y) = (y, x).
In homogeneous coordinates, p takes the form

[x : y : t] �→ [ym+1 : ay
m+1 + bt

m+1 +
m−1�

j=0

t
j+1

y
m−j − cxy

m : ty
m].

It is evident, then, that I(p) = {[1 : 0 : 0]}. Checking the line at infinity,
we find that p([x : y : 0]) = [ym+1 : ay

m+1 − cxy
m : 0] = [y : ay − cx : 0]

for y �= 0. Thus {t = 0} is not critical. The x-axis {y = 0} is critical,
however, since p({y = 0}) = {[0 : 1 : 0]}. Thus C = {y = 0}.

Arguing similarly with p
−1, we find that I(p−1) = {[0 : 1 : 0]} and

C(p−1) = {x = 0}. It follows that p([1 : 0 : 0]) = C(p−1) = {x = 0}.
Let us determine p

∗ : H
1,1(P2) → H

1,1(P2). We recall that H
1,1(P2)

is generated by a generic line L = {Ax + By + Ct = 0}. The preimage
p
∗
L = p

−1
L = {Ay

m+1 + B(ay
m+1 + bt

m+1 + . . . ) + Cty
m = 0} is a

curve of degree m + 1, which is equal to (m + 1)L in H
1,1(P2). Thus p

∗

acts as multiplication by m + 1.
The condition (3) is equivalent to the condition that p

n+1(C) = p
n[0 :

1 : 0] �= [1 : 0 : 0] for all n ≥ 0. Let us set M =
�

0 1
−c a

�
. Then

p
n[x : y : 0] = [xn : yn : 0], where [xn : yn] = M

n[x : y] corresponds to
matrix multiplication. The lower left hand entry of M

n is a polynomial
qn(a, c) of degree n+1. The condition (3) is equivalent to the condition
that qn(a, c) �= 0 for all n ≥ 0, which is a condition on a and c alone and
requires that (a, c) avoid a countable family of varietes.
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Example 5. (Failure of Condition (7)) Let us consider a mapping p

as in Example 4, with c = 1. It follows that p|{t=0} is given by the matrix

M =
�

0 1
−1 a

�
. Thus M acts as a linear (fractional) transformation on

{t = 0}. If −2 < a < 2, then M is conjugate to a rotation of the
Riemann sphere. This conjugacy takes the real line to a circle, which is
rotated through an angle of 2πχ. The points [0 : 1 : 0] and [1 : 0 : 0],
respectively, are taken to points with angles 2πθ0 and 2πθ1 on this circle.
Thus M acts on the circle by translation: θ �→ θ+χ mod 1. It is evident
that the distance from M

n[0 : 1 : 0] to [1 : 0 : 0] in P2 is comparable to
the distance from θ0 + nχ (mod 1) to θ1 in the circle. As was shown in
[12], we may choose χ so that (7) diverges. Observe that this depends
only on a, and the values of a for which (7) fails are dense in the interval
[−2, 2]. On the other hand, observe that if c �= 1, or if a /∈ [−2, 2], then
(7) holds.

Example 6. We consider a special case of Example 4:

p(x, y) = (y, y +
1
y
− x).

(This is closely related to the so-called discrete Painlevé II map.) For this
map we have p|{t=0} = [y : y − x : 0], so (p|{t=0})3 = id. Condition (3)
fails because p([0 : 1 : 0]) = [1 : 1 : 0], and p([1 : 1 : 0]) = [1 : 0 : 0] ∈ I(p)
i.e. p

3(C) ∈ I(p).

We may obtain a compactification for which (3) holds by performing
a series of blowups. We start with the modification η0 : X0 → P2 which
is obtained by blowing up P2 at the orbit of the critical locus, i.e. the
points [1 : 0 : 0], [1 : 1 : 0], and [0 : 1 : 0]. We denote the fibers by: D0 =
η
−1
1 ([0 : 1 : 0]), E0 = η

−1
1 ([1 : 1 : 0]), and F0 = η

−1
1 ([1 : 0 : 0]). Let us

introduce a complex parameter β on the each fiber: β̂ ∈ D0 corresponds
to the point where the closure of the line x = β intersects D0; β̂ ∈ E0

corresponds to the point where the closure of the line y = x+β intersects
E0; and β̂ ∈ F0 corresponds to the point where the closure of the line
y = β intersects F0.

By p0 : X0 → X0 we denote the mapping induced by p. Where
is the indeterminacy locus of p0? The set {|x| > �

−1
, |y| < �} is a

basic neighborhood of 0̂ ∈ D1 inside C2. With such neighborhoods, it
follows that p0 cannot take a limit as (x, y) → 0̂ ∈ D0 inside X0. Thus
0̂ ∈ I(p0). It is easy to see that p0 is well behaved away from this point,
so I(p0) = {0̂ ∈ D0}.
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Now we describe the behavior of p0 on D0 ∪ E0 ∪ F0. Curves of the
form {y = β} are taken to {x = β}. Thus

F0 � β̂ �→ p0(β̂) = β̂ ∈ D0.

Similarly, the path s �→ (β, s), which approaches β̂ ∈ D0 as s → ∞,
is taken under p0 to the path of s �→ (s, s − β + o(1)). Thus we have
D0 � β̂ �→ p0(β̂) = �−β ∈ E0, and a similar consideration shows that
E0 � β̂ �→ p0(β̂) = �β ∈ F0.

It follows that none of the exceptional varieties D0, E0 or F0 is critical.
Now we check where p0 sends {y = 0}. A point (x, 0) is the limit of a
path � �→ (x, �) as � → 0. Applying p to this path, we find that it is
mapped to � �→ (�, � + a�

−1 − x). Writing s = � + a�
−1 − x, we have

s → ∞ as � → 0. This path may be written as s �→ (s−1 + o(s−1), s),
which tends to 0̂ ∈ D0 as s → ∞. Thus {y = 0} is critical for p0. We
may summarize:

C(p0) = {y = 0}, p0({y = 0}) = 0̂ ∈ D0,

p0(0̂ ∈ D0) = 0̂ ∈ E0, and p
3
0({y = 0}) ∈ I(p0).

In particular, p0 does not satifsy (3).
It is a useful exercise at this stage to determine the action of p

∗
0

on H
1,1(X0). Let L

� ∈ H
1,1(P2) denote the class of a complex line.

Let L0 = η
∗
0(L�) be the class in H

1,1(X0) defined by the pullback map
η
∗
0 : H

1,1(P2) → H
1,1(X0), i.e. the total transform. Note that if L

� is
represented by a line in P2 which is disjoint from the blown up points
[0 : 1 : 0], [1 : 1 : 0], and [1 : 0 : 0], then the total and proper transforms
of L

� coincide and define the same element of H
1,1(X0). On the other

hand, the total transform of the critical locus {y = 0} ⊂ P2 is η
∗
0({y =

0}) = C + F0. Since all lines in P2 are equal in H
1,1(P2), we have

L0 = C + F0.
Now let us determine the class p

∗
0L0. The pullbacks commute: p

∗
0η
∗
0 =

η
∗
0p
∗
0. Thus we have p

∗
0L0 = p

∗
0η
∗
0L

� = η
∗
0p
∗
L
�. We may represent L

�

by a generic line in P2. Thus L
� intersects the y-axis {x = 0} with

multiplicity 1. Since the y-axis is the image of the point of indeterminacy
[1 : 0 : 0] ∈ I(p) ⊂ P2, it follows that [1 : 0 : 0] ∈ p

−1
L
� is a point with

multiplicity 1. Now by Example 4, p
−1

L
� = 2L

� ∈ H
1,1(P2), so p

∗
0(L0) =

η
∗
0(p−1

L
�) = 2L0 + F0, the coefficient of F0 being the multiplicity of

[0 : 1 : 0].
We have seen that p0(C) = 0̂ ∈ D0. Thus p

∗
0(D0) = F0 + C = L0.

Since there is no critical locus outside of C, the other exceptional curves
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are easier: p
∗
0(E0) = D0, and p

∗
0(F0) = E0. We take D0, E0, F0, L0 as a

basis of H
1,1(X0), and with respect to this basis we have

p
∗
0 =





0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 2



 .

In order to have a space for which (3) holds, we need to continue this
process, performing blow-ups at two more levels. We define the space
η1 : X1 → X0 to be the space X0 blown up along the critical orbit
1̂ ∈ E0, 1̂ ∈ F0, 0̂ ∈ D0. Condition (3) does not hold for the induced
map p1 : X1 → X1. Now we let η2 : X2 → X1 be the space X1 blown
up along the critical orbit of p1. It now turns out that the induced map
p2 : X2 → X2 is biholomorphic. The space H

1,1(X2) has dimension 10,
and the spectral radius of p

∗
2 is 1. This construction is described in [18].

Example 7. (Hietarinta-Viallet map [14]) This is like Example 6
but with the y

−1 replaced by y
−2:

(x, y) �→ (y, y +
1
y2
− x).

This may be analyzed along the lines of Example 6, except that two
more levels of blowing up are involved. This is carried out in [17]-[19].
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