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1. Introduction

On ", write d=0+0 and d°=i(0—0) so that dd‘u=2i0cu, and let
B = (i) [1 dz,ndz,
2/ i
be the usual volume form. We study here the nonlinear Dirichlet problem
(dd°u)'=ddun---anddu=fp, on Q

u plurisubharmonic on Q 1
u=¢ on 0L,
where Q is a strictly pseudoconvex bounded open set in €" and f= 0. The operator
(d d°)"has an invariance property under holomorphic mappings,i.e.if G=(g,, ..., 2,)

is analytic, ue C2, then
dd(uo G =GP (ddu)"

where G’ denotes the Jacobian determinant of G. Furthermore, if G=(0,...,0),
then (dd° log |G|)"=0. Thus, for f=0, (1)is a natural generalization of the Dirichlet
problem for harmonic functions in the complex plane.

Other extended Dirichlet problems were studied in connection with function
theory in several variables by S. Bergman [2, 3] (on domains with distinguished
boundary surfaces) and more generally by H. Bremermann [4]. In Section 8 it is
shown that the solution of the problem discussed by Bremermann actually solves
(1), in a generalized sense, with f=0. The problem (1) seems to be a reasonable
candidate for a (nonlinear) potential theory associated with the theory of functions
of several complex variables.

The question of uniqueness for the problem (1) is related to the question of
existence of “inner functions” on the domain Q. If / is a bounded analytic function
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2 E. Bedford and B. A. Taylor

on Q such that [#| =1 almost everywhere on 62, then the function u=1log 3 (|h? + 1)
satisfies (1) with n=2, f=0and ¢ =0, and u=¢ a.e. on dQ. Thus, if it were known
that uniqueness held for (1) with ue C*(Q2)n L*(Q2) and boundary values taken
almost everywhere, then one could conclude that |k, and therefore h, must be
constant.

Another possible application to complex analysis has been pointed out by
Kerzman, Kohn, and Nirenberg [15]. They have shown that a regularity theorem
for (1) would be sufficient to show that a proper holomorphic map between
smooth, strictly pseudoconvex domains must have a smooth extension to the
boundary. The regularity theorem desired is that a solution ue C(2)n C*(Q)
of (1) with ¢ =0, f/"e CZ(Q) must satisfy ue C*(Q).

A closely related operator of Monge-Ampere type arises in the asymptotic
behavior of the Bergman kernel function of a strongly pseudoconvex domain
(see Hormander [14], Christoffers [8], and Diederich [9]). Also, Fefferman [10]
has shown how this related Monge-Ampere operator is connected with the work
of Chern and Moser [7] concerning analytic invariants of hypersurfaces in C".

Since

o%u
c ﬂ= n '
(ddeuy =4"n! det (az.azk)ﬁ"

J
the operator (dd°)" appears to be a complex version of the Monge-Ampere deter-
2

minant det ( ) For example, when n=2 and (z, w) are the variables in €2,

0x ;0%

J
the equation of (1) is

Uy Upyop _uzn‘zuéwzf(za W)

while the real Monge-Ampere equation for u=u(x, y) is

uxxuyy— u)2cy=f(xa y)

The real Monge-Ampere equations have been studied extensively in relation to
problems in differential geometry, but it seems to be difficult to solve them in a
completely satisfactory way. A.D. Alexandrov, using the theory of convex
surfaces, showed the existence and uniqueness of convex (generalized) solutions
to certain real Monge-Ampere equations (see [19] and the survey article by
Gluck [11]). Interior regularity of the solution was discussed for n=3 by Pogo-
relov [19] and more generally by S.Y. Cheng and S.T. Yau [5].

A good geometric interpretation of the complex Monge-Ampere equation
seems to be lacking, and the techniques used here for the complex case do not
have the geometric flavor of the work for the real Monge-Ampere equation.
In particular, there seem be several inequivalent ways of defining generalized
solutions of (1). For an arbitrary plurisubharmonic function u, it is known that
dd°u s a positive current of type (1, 1) ([17], p. 70), but it is not clear that the higher
powers of dd°u are well-defined. In fact (in contrast to the real Monge-Ampere
operator on convex functions) examples indicate that it is probably not possible
to define (dd“u)" as a distribution for all plurisubharmonic functions u ([22]).

For the special case where u is plurisubharmonic and ue C*(Q\ {z,}), (dd‘u)'
is well defined on @~ {z,} and one may define the “mass” of (dd°u)" at z, via
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integration by parts

dduf {zo}=lim | dun(dduy? )
£e—-0 jz—zg|l=¢
provided the limit exists. This definition, while useful for many purposes, is in
a sense too general for the Dirichlet problem (1), since uniqueness fails (see Example
III of Section 4). A method for defining (dd°u)® is provided via integration by
parts (see Proposition 2.1),

[pa(ddu}=—fdddndundu (3)

which defines (dd“u)? as a current of bidegree (2, 2) whenever Vu, the gradient of u,
is locally square integrable. If u is a bounded plurisubharmonic function, then Vu
is locally square integrable, and consequently the formula (3) defines (dd°u)* as a
positive current of bidgree (2, 2).

For bounded, C? plurisubharmonic functions u on an open set Q in C"
Chern, Levine, and Nirenberg have given in [6] the estimate

Ig(dd“U)"é Cllull o)

where K is a compact subset of Q and || u ||, =sup {|u(z)]: ze Q} With this estimate
(and its proof), it is easy to show that the operator u—{dd‘u)", thought of as a
mapping from the C? plurisubharmonic functions on € to the space of non-
negative Borel measures on €2, has a continuous extension to the space of continuous
plurisubharmonic functions. The following “minimum principle” is derived for
this extension of (d d°)".

Theorem A. Let Q be a bounded open set in C". If u, ve C(Q) are plurisubharmonic,
and if (dd°u)’ £(dd°v)", then

min {u(z)—v(z): zeQ} =min {u(z)— v(z): zedQ}.

An immediate consequence of the theorem is that continuous solutions of (1)
are unique. Furthermore, this result shows that the idea of “subsolutions” is
meaningful for the operator (dd°)". The main goal of this paper is to prove existence
of generalized solutions of (1). We are motivated by the familiar Perron method of
taking the upper envelope of the family of subsolutions

F (¢, )= {v plurisubharmonic, ve C(Q), v< ¢ on 8Q, (dd°v)"=f}

of (1). At this point, however, essential difficulties arise. For instance, it is not a
priori clear whether (dd°u)" can be defined where u=sup {v: ve #} is the upper
envelope of subsolutions.

In order to avoid this difficulty another notion of generalized solution,
introduced in Section 5, is considered. This is the operator @(u), which is essentially
(det (u;p))""". @ is obtained from dd°u via a general measure-theoretic construction
of Goffman and Serrin [12] and is thus defined for all plurisubharmonic u.
Furthermore, @ is well-behaved under convolution and weak limits. Thus, a more
natural consideration is the Perron-Bremermann family

#(d, f)={v plurisubharmonic, ®(v)2 f, lincl sup v({) £ ¢(2), ze 0Q}.
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The following “maximum principle” for (dd°) is a consequence of the good
behavior of ¢ under convolution.

Theorem B. Suppose ue C*(Q), u is plurisubharmonic on Q, and u solves (1) with
S plurisubharmonic on Q. Then if (a;)) is a nonnegative Hermitian matrix,

Puzy -
max {Zm aj zeQ}

*ulz)
=max {Zmaﬂ( : zeaQ}.

From the “uppersemicontinuity” of ¢, one may obtain the following regularity
result, proved in Section 6.

Theorem C. Let Q be the unit ball in €", and let ¢ C?(6Q), ge_Cz(Q), g=0. If
u=sup {v: ve B(¢p, )} is the upper envelope of %B(p, g), then ue C(Q) and the second
partial derivatives of u exist almost everywhere on Q and are locally bounded.

With this regularity theorem, it is possible to use real-variable arguments
to show that the upper envelope u of (¢, g) actually solves (1) with f=g" in the
special case where Q is the unit ball in €”. This allows us to make spherical modi-
fications and obtain generalized solutions for more general domains.

Theorem D. Let Q be a strictly pseudoconvex bounded domain in C". If ¢ C(0%),
feC(Q), f =0, then there exists a unique plurisubharmonic ue C(Q) such that

dduy =,
Pu)=f1"

and u=¢ on 0Q. Furthermore, if 0Q is smooth, $pe C*(0Q), and f*eLip' (Q),
then ueLip® (Q).

The organization of the paper is as follows. In Section 2, we define the ex-
tension of (d d°)" and give some of its properties. In Section 3 the minimum principle,
Theorem A, is proved, and in Section 4 several examples, including nonuniqueness
in the Dirichlet problem, are given. The operator @(u)=(det (u;))'" is defined,
and its properties are given in Section 5. The results involving the family 4,
including Theorems B and C, are proved in Section 6. Section 7 contains some
technical details concerning approximations to the Laplacian. The existence
Theorem D is proved in Section 8. Finally, in Section 9, we discuss the relationship
with Bremermann’s Dirichlet problem, and apply the regularity result Theorem C
to show some smoothness of parts of the boundary of certain envelopes of holo-
morphy.

2. The Operator (dd°u)*

For Q an open set in C”, let P(Q2) denote the space of all plurisubharmonic func-
tions on 2, and C(), C*(Q), etc. the usual spaces of continuous functions, k times
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. . . . 0%
continuously differentiable functions, etc. If ue C2(), let # (u)= [ﬁ] denote
the complex Hessian of u. Then 2;02;

4"pldet #(u) f,=ddun--- nddu=(ddu)". 2.1)

ntimes

If u is a plurisubharmonic function on Q, then the second partial derivatives
%u
02;0%;
on Q ([17], p. 70). It is not clear, however, that the higher exterior powers of
dd‘u are well-defined, since their definition involves multiplication of the measure
coefficients of dd°u. In fact, examples indicate that it is probably not possible
to define (dd‘u)" as a distribution for all plurisubharmonic functions ([22]).
However, in [6], Chern, Levine, and Nirenberg have given the definition of
(dd‘u)" for continuous plurisubharmonic functions u. Their method is to derive
norm estimates for the positive measure (dd‘u)” when u is smooth and then
define (dd‘u)® for more general functions u by approximation. We need some
continuity properties of the operator in our argument, so in this section we will
recall the arguments of [6] and note some of their consequences. In particular,
we will prove an inequality for (dd“u)", Theorem 2.4, which shows this measure
cannot be concentrated on an analytic subvariety when u is continuous. We will

use the following formulas (c.f. [6]).

of u are Borel measures on Q, and dd‘u is a positive current of type (1,1)

Proposition 2.1. Let 1<m<n. Let u,, ..., u,e C*(Q), and let ¢ be an differential
form of type (n—m, n—m) with coefficients from Cg(2). Then, for m= 2,

fonddu nrddu,=—[dd ¢ rduy Ad uy nddus A+ Addu,, 1)
and

fonddu - nddu,=fuddprddu,n-- nddu,. )
Proof. Note that, by Stokes’ theorem,

fonddugn-nddu,=—fdp Aduyndduy A Addu,

However, the (n—(m—1), n—(m—1)) parts of d¢ A d°u and du A d° ¢ are the same,
so the last integral is equal to

~(duy nd*p ndduy A nddu=fu dd°p Adduy A -+ AddCuy,.
To prove (1), note also that
—fduy nd'pAdduy - Addu,=—[duynd[duy AdPAdduzn--- Adduy,)
=—f[dd'p rduy Aduy ndduy A - AddCu,,.

From the formulas of Proposition 2.1, we can read off some conditions under
which (dd°u)" should be defined. For example, when m=n=2, we have from (1)
(with u, =u,),

dddu?=~{dundundded
§
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Thus, when Vi, the gradient of u, is locally square integrable, this equation defines
(dd°u)? as a distribution of order at most 2. Similarly, from (2) we have

[oddup=[udd ¢ nddu

which defines the left-hand side when dd°u has coefficients which are measures
and u is locally an I! function with respect to these measures. We will only consider
plurisubharmonic functions here, and the situation when (dd“u)" is a measure.

Denote by M, (£2) the class of currents on Q of bidegree (m, m) and order 0.
That is, M,,(£) is the class of differential forms of bidegree (m, m) whose coefficients
are Borel measures. We will suppose that M,,(€) has the usual topology of weak
convergence in the space of measures. That is, u;—p in M,(Q) if and only if
J@ Ap;— [ Ap for all differential forms ¢ of bidegree (n—m, n—m) with coef-
ficients from C,(£2), the space of continuous functions with compact support in Q.
For reference we record the following well-known fact.

Proposition 2.2. If u;, ueM,,(Q), then p;— p if and only if

(1) f@Au;—fd Au for all differential forms ¢ of bidegree (n—m, n—m) with
coefficients from CZ(Q); and

(2) for every compact subset K of Q, there is a constant Cy such that || ;|| x < Ck.
(Here, by || u|lx we mean any total variation norm of yu on K. For example, if

p=3 uy dz' Adz’,  set |lple=Y llur sl

where | ;5 ||k is the usual total variation of the measure y; ; on the compact subset
Kof Q)

Using Proposition 2.1, it is now easy to see that (dd°u)" is defined for all
continuous plurisubharmonic functions u.

Proposition 2.3. For 1=<m=<n, consider T,(w)=(ddu), (dd°uw)>, ..., ddw", a
densely defined operator from C(Q) to || M,(R) with domain C*(Q). Then
k=1

(1) T,, maps C(Q)-bounded subsets of C*(2)nP(Q) into bounded subsets of
[T M(Q); and
k=1

() If u;,v;eC*(Q), and lim uj=llir£1o v;=u in C(Q), and if both the limits

j— oo

lim T,,v; and lim T,,v; exist, then they are equal. Consequently, T, has an unique
joowo

J—ow

extension to a continuous operator on all of C(Q) P(Q).

Proof. The assertion (1) is a special case of a lemma of Chern, Levine, and Niren-
berg ([6], p. 125).

To prove (2), let u;, v; be as in the hypothesis. For m=1, the assertion is well-
known. It also follows from (1) of Proposition 2.1. Proceeding by induction,
assume the assertion has been proved for smaller values of m> 1. Then we know
that }112 (ddeu)) =,h}2 (@ddv)=y for k<m. Let p,= ,122, (dd°u)™ and v,=



The Dirichlet Problem 7

lim (dd°v))". We have to show that p,=v,. That is, [¢ Ap,=[¢dAv, for all
jo o

forms ¢ of type (n —m, n—m) with coefficients from Cg (Q).
Now, by (2) of Proposition 2.1, we have

j(i) A u,,,:jlirg qu A (dd‘uj)'"=}in; fujdd‘qﬁ A (ddcuj)""1
and
fon vm=}§g fv,ddep A(ddv)"!

By the induction hypotheses, (dd‘u;)"~' and (dd‘v))"~' both converge to p,,_,
in M,,_,(Q). Also, u;, v; converge uniformly to u on support ¢. Thus, both limits
are equal to {udd‘$ A p,,_,, as asserted. This completes the proof.

It is convenient to have a slightly better estimate for (dd°u)" than the one
given in [6]. We give one in the next theorem whose proof, however, follows closely
the one given in [6].

Theorem 2.4. Let u be plurisubharmonic and continuous on the closure of the
polydisc
AN r)={(zy, ..., 2,): |z;| <A"r;, L £ j<n},
for some A> 1. Let w(d) be the modulus of continuity of u on A(A"r), i.e.
u@)—u@)I2w(@) if |z-{|<0.
Then there is a constant C, depending only on n and 2> 1 such that
| @du < Colny)... o).

4(r)
Corollary 2.5. If u is a continuous plurisubharmonic function on Q< C", then
(dd° u)" has no mass concentrated on any analytic subvariety of Q.

Proof. Clearly, from Theorem 2.4, (dd°u)* has no mass at points. Let ¥ be a sub-
variety of dimension k <n. The singular points of V are a subvariety of dimension
<k, which we can assume has (dd°u)" measure zero by induction. Thus, we only
have to show that (dd‘u)" assigns measure zero to the regular points of V. This
is a purely local question, so we can assume that V={(z,, ..., z,, 0, ..., 0)}, near
0", and then the result follows by letting r, , ; —0 in the estimate of Theorem 2.4.

Remark. The estimate of Theorem 24 cannot be substantially improved. For
example, in €2, if u(z,, z,)=max (0, Re z;, Re z,), then «(d) is 4, and it can be
calculated that (dd°u)* is equal to the Lebesgue surface area measure on the
2-dimensional real subspace Re z; =Re z, =0. Thus,
{ (dd*u)*=4nr,.

A(ry,r2)

We will obtain Theorem 2.4 as a special case of the following (slightly) more
general statement which will be proved by induction.

Proposition 2.6. Let u,,...,u, be C* plurisubharmonic functions on the closure
of A(A"r), with

lui(2) —uw(OIsw(d) for {z—{|<d,and 2z {ed(d'r). 2.2)
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There is a constant C, depending only on n and 4> 1 such that
§ dd®uy A+ Add°u, < Cox(ry)... ().
A(r)

Proof. We will prove the Proposition by induction on n. The case n=1 is an im-

: . 1
mediate consequence of Jensen’s formula. For if we set n(r)==— [ dd‘u, then
Jensen’s formula is lz|<r

1 r
= ju(re"’)d@ u(0)= j"i)
The left-hand side is clearly dominated by w(r). For the right-hand side, the
standard argument
"t
e "0 s { 2n(r/3)log
0 t rii
gives us an upper bound for n{r) in terms w(Ar), as asserted.
Now assume the Proposition has been proved for smaller values of n. Given
n—1 functions v, , ..., v,_,, define the coefficients 4(i, j) by

dd'vi A Addv,_ =Y A(i,j)*(dz;AdZ)) (2.2)
ij=1
where (l ;1) dz;ndZ;a*(dz;ndZ)=p,. Also choose a C* function y of one
variable e € such that y({)=1if|{|Z1, y(()=01if|{|=A,and 0<y <. Set
n z.
$er.z)= 111 (2). 23)
j=1 \I

Since u,,...,u, are plurisubharmonic, ddu; A --- Add‘u, is a nonnegative
measure ([17, p. 68) so

{ dd'uy Ao Addu,<fPpdduy A+ Addu,=1.

A(r)

We will estimate 1.
It is no loss of generality to assume that r; <r;, 2 < j<n. Define

(21,25, .., 2)=u;(0, 25, ..., 2,). (2.4)
Writing u; =u; —{i, + i, in the expression for I, we have
I={pdd (u, —i) Adduy A Addu,+ [ pdd°iiy ndduy A - Add u,
=1 +1,.
By (2) of Proposition 2.1, we have
L=[(uy—i,)dd°p Adduy A -+ Add°u,

$0
L=o(m)[lddd ndduy A - ndd u,.
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With the notation of (2.3) and (2.4), we see that the coefficients in
dd¢ nddu, ...ddu, are linear combinations of the two kinds of terms:

Lﬂj" C_)] z_)c( (‘)2% (‘) oy, A 1] (2.9)

and

[,L[ix( )]aaczac (Z) 41, i=j. 2.6)

Because all the forms dd‘u,, ...,dd‘u, are nonnegative, the nx n matrix [4(i, j)]
is a nonnegative Hermitian matrix ([17], p. 68). Consequently, 2(r; )‘1 4@, )<
2 A(i, i) +r;7 24(j,j) and so for a suitable constant C= C(n, 1), we have

11§Ca)(/1r1)2—§ [ 4G, i) dm(z) .7)

i i A(Ar)

where dm is Lebesgue measure. To estimate the last integrals, we will use the
induction hypothesis. To be specific, suppose i=1. Let 4,={z,:|z,|<in},
4,={(z3,...,2,): |z;l<Ar;}. Then

§ 4G, Ddmz)= | [ AG,i)dm(z,, ..., z) dm(z,).

A(Ar) 4y 43

With z, fixed, the n— 1 functions
(23 s 2= uiZ1, 2550005 2,), 25 jSn

all satisfy the hypotheses of the Proposition with r replaced by Ar and n by n—1.
Thus by induction, we have for some constant C

[ 41, 1)dm(z) S Colry)... o) - (r)

A(Ar)
Consequently, for some (different) C >0, from (2.7) there follows
L2Coin) Y, [To)
i=1 j*1

Now, it is no loss of generality to assume that w is increasing and subadditive,
because it can be replaced by the maximum of the modulus of continuity of the u;.
Hence w(Ar)<2iw(r) for 121 and w(n) H o(r)Sor) [] o) because r<r,
2<iZn. Thus j*1

L £Co®)...o)

for a suitable constant C.
To estimate the second integral I,, we write u, =u, —ii, +ii, s0

L={ddd(u,—it;) Addit, nddus A - AddCu,
+{pddiy, nddliy ndduz A - Addu,
=J1 +J2
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The first integral J, is estimated exactly as I, was above. If we repeat this process
on J,, we finally arrive at

fpddiuy, A AddU,_, Addu,
= [ S dde(uy~i1,) A ddTiy A AddT,_,
+{pddii, A - ndd°il,.

Again the first integral can be handled as I, was, while the last integral vanishes
because @, , ..., &, are functions only of n — 1 variables. This completes the proof.

Remark. The estimate of Theorem 2.4 can be slightly improved. An examination
of the proof will show that w(r;)... w(r,) can be replaced by

Wy (1) ... w,(r,)

where each o, is the “modulus of continuity in the i-th variable.” That is, for example,
@y (8)=sup {lu(zy, 23, ..., 2,)—U({, 25, ..., Zpl: |2, = (1S9, |z S A"ry}.

We next verify that the definition of (dd°u)" in the weak sense coincides with
the classical definition when it exists.

Proposition 2.7. Let ue C(Q)n P(Q2) and suppose dd“u:2i2hj,;dzj/\d2k, where
the h; are locally L™ functions in Q, 1 <mz=n. Then (dd°u)"eM,,(Q) has locally
integrable coefficients and is given by [2i) hdz indz ™

.k

Proof. If u satisfies the hypotheses of the proposition, then we can choose a

sequence u, of smooth plurisubharmonic functions converging to u in C(£2) such
2 2

974, converges to h;;= “
52,07, BeS 10 Mk =52, 5%,

1. is @ usual smoothing kernel ([13], p. 45). The result now follows from the weak
continuity of (dd‘u)", given by Proposition 2.3.

Let us now prove two inequalities which are useful in the study of the Dirichlet
problem.

Proposition 2.8. If u, ve C(Q) P(8), then

(1) (dd°[max (u,v)])" = min [(dd°u)", (ddv)"].

2) @d[u+v])"=(dd°uw) +(dd vy
Proof. Let p=min [{(dd°u)", (dd°v)"], and first assume that u({z: u(z)=v(z)})=0.
Then set Q, ={u<v}, and Q,={v<u}. We have on ,, (dd‘[max(u,v)])’=
(dd°vy'zu, and a similar inequality on ,. Since u(Q~(2,uQ,))=0, and
(dd° [max (u, v)])" = 0, the assertion (1) follows in this case.

In general, replace v by v+, ¢ a small constant. Then max (u, v + &) —» max (u, v)
in C(Q) as &~0. Thus, (dd°[max(u,v+¢)])'—(dd°[max(u,v)])" weakly, by
Proposition 2.3. Also, since (dd°v)"=(dd‘(v+¢))", we have

p=min [(dd°u)*, (dd‘(v+¢))"].

Thus, by the first case, we know the inequality for max (u,v+¢) for all ¢ with
ui{z: u(z)=v(z)+¢}=0. Since this happens for all but at most countably many
£>0, we obtain (1) letting ¢ -0, avoiding these countably many values of &.

that

locally in L". For example, u,=u  x,, where
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Remark. Example 11, Section 4 shows that (1) fails when u, v are not continuous.

To prove (2), note first that if u, ve C*(Q)~ P(), the differential (1, 1) forms
dd‘u, dd°v are positive and therefore so are sums of positive multiples of powers of
the forms ([17], p. 68). Thus,

(dd° [u+v])* = (dd° u) + (dd° v)* z )(dd“ ¥ A (ddS oy = (dde uy + (dde o).

If u, v are only continuous, let u,=u * x,, v,=0v = y, where , is a usual smoothing
kernel ([13], p. 45). Since u,, v, are smooth, we have (dd°[u,+v.])"=[dd u,]"
+[dd‘v,]". However,u, - u,v, »vand u,+ v, - u+vin C(), so by Proposition 2.3,
we obtain (2) by letting £ — 0.

The question arises whether there is a “natural” domain of definition for
(dd°u)". As was pointed out following Proposition 1, if Fu is locally in I?, then
(dd°u)? is a (2, 2)-current. Is there an analogue of this for n>27 It is not hard to
show that a bounded subharmonic function has locally square integrable gradient,

and thus (dd°u)® is a positive (2,2)-current for any bounded plurisubharmonic
function.

Proposition 2.9. If ue L*(2)n P(Q2) one may define (dd°u), 1 £k<n inductively
as follows. If y is a (n—k, n— k)-form with smooth coefficients with compact support
in Q, then

fdduf A y=[uddu)—' nddy. (2.8)
Defined in this manner, (dd° u)* is a positive (k, k)-current.

Proof. The proposition is true for k=1 so we proceed by induction.

Since u is uppersemicontinuous and bounded, u(dd°u)*~! again has measure
coefficients, and thus (dd°u)* is a (k, k)-current. Positivity can be seen as follows.
Let y be a smooth (n—k, n—k)-form with compact support taking values in the
positive cone & (see Lelong [17], p. 60). It must be shown that

f(dd uy Ay 20.

Since u is plurisubharmonic, there is a sequence of functions u;e P(2)n C*(£2)
decreasing monotonically to u. Again dd‘u; A x takes values in 2, and thus by
induction

[(dd°u) =1 A(ddu; A x)20.
The positivity of (dd°u)* now follows by monotone convergence,
fddeuf A y={u(dduf=* rddy
=Jlir1; fuddoup=tnddy
=1111£10 fdduf=t addu;nyxz0.
The difficulty with this definition is that it is not clear whether there is a topo-
logy on L*(§) n P(Q) for which C(22) ~ P(Q) is dense and for which the mapping
(ddy: L°(2)n P(Q)— M,

is continuous.
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Another approach to defining the Monge-Ampere operator which does not
involve integration by parts will be given in Section 5.

3. The Minimum Principle

The uniqueness part of Theorem D is an immediate consequence of Theorem A,
which we prove in this section. We note that for the case of C? functions, another
proof has been given by Kerzman, Kohn, and Nirenberg [15].

The proof of Theorem A is based on the following inequality.

Proposition 3.1. Let G be a bounded open set in €" with smooth boundary, and let
u, ve C2(G) be plurisubharmonic functions on G. If u=v on 0G and u=2v in G, then

[ (ddeuy < | (ddeoy.
G G

Proof. One may factor
(ddu)" —(@dd° vy =(ddu—ddv) A((ddu)y* +(ddu)y*"? Addv
+ o+ (ddv)y" =dd(u—v)A B

where 6 is a positive, closed (n—1, n—1) form. In particular, dp Ad°p A0Z0
for all C! functions p (see e.g. [17], p. 68). Thus, by Stokes’ theorem,

f(dduy'—(ddvy'= | d°(u—v)AD.
G oG

Let pe C* be a function which defines 0G. That is, G={p <0}, 6G={p=0}, and
Vp #0 on JG. Then since u —v vanishes on G, we have u —v=u p, where « <0 in G,
since u=v and p<0in G. Thus, on 4G,
d(u—v)=d(ap)=adp so [(dduy'—(ddvy'= [ ad'pnb.
G

G

d .
But, if ¢ is the surface area on ¢G, then we have 6 = |T dpp||’ where = is the Hodge
star operator on R?"= C". Thus, if ad®p A 6= fdo, then adpAd‘pA 0= fdpA ITdde '
P

But since a0 and dp A d°p A 020, we must have that f<0. Hence,

{ [@dduy —(@ddv)= | fdo=0

G aG

since f<0. This completes the proof.
Our method allows us to prove the following slight extension of Theorem A.

Theorem 3.2. Let Q be a bounded open set in €". Let v be a continuous function
on Q which is plurisubharmonic on Q. Let u be a plurisubharmonic function on Q
such that

lim infu(¢) ~0(0)20; (1)

and
ling (dd°u,)"<(ddv)" in Q, ¥
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where u,=u * y, and y, is a usual smoothing kernel for plurisubharmonic functions
([17], p. 45). Then uz=v in Q.

Proof. Assume the theorem is false. That is, there exists z,€ Q such that u(z,) <v(z,).
Let 1o =2%(v(zo) —u(z,)). Then for all 0 <n<rn,, the set

G)={zeQ: u(z2)+n<v(z)}az,

is a nonempty, open (u—v is upper semicontinuous), refatively compact subset
of 2, because of hypothesis (1).

Let u,=uxy,, v,=v * x, be regularizations of u, v as in hypothesis (2), so that
u,, v, are defined on

Q,={zeQ|distance from z to 0Q exceeds &}

(i.e. x.is supported in }z| L¢), and u, = u, v, = v. Since v is continuous, v, — v uniformly
on compact subsets of .
Define

G(n, 8)={ze Q: u(2)+n<v(z)+8|z—z,|?}.

There exists a function J(y)>0, 0 <n<n,, which is increasing and such that
G(#, d) is nonempty, open, and relatively compact in Q for all 0 < £ 5(n). We have,
in fact z,€ G(n, 8). Next, choose &(5, 6)>0 so small that 0 <e<e(y, 6) implies

Q.5G(n/2,08), 0<n<ny, 0<d<do(n/2).

Then define, for such ¢, 4, 6,
G(n, 6, 8)={zeG(n/2, 6): u(z)+n<v2)+d|z—z,|*}.

If ¢ is so small that |v(z) —v,(z)| < n/4 whenever ze G(1/2, d) and e <e&(n, d), then
G(n, 9, 6)= G(3n/4,0) = G(1/2, 9)

because ze G(1/2, )~ G(3y/4, o) implies

h

3 .n
ue(2)+nzu(2)+1n+zév(2)+5lz—zo|2+4

20,(2)+ 312 = 2o = [0(2)=v,(2)| + 3

Z,(z)+ 8]z~ z,%

In particular, G(n, J, ¢) is a relatively compact subset of ©,, so v, is C” in a neigh-
borhood of the closure of G(y, 4, ¢).

Finally, choose (3, J, £) so small that for 5,9, ¢ as above and 0<t<1(n, J, ¢)
we have that

G(”I, 53 &, T)= {ZEG(%}”’ 5)' ut(Z)+?1<U£(Z)+5|Z—ZO‘2}

is a nonempty, open, relatively compact subset of Q.. Because u, 2 u, we have
G(n, 9, ¢e,1)=G(n, 6, ¢) and because z,eG(n, J, ¢), we have z,eG(n, 5, &, 7) when 1
is sufficiently small.

We now want to apply Proposition 3.1 with G=G(n, J, ¢, 7) and the functions
defining this set. The only problem is that G may not have a smooth boundary.
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However, by Sard’s theorem, the value —# is a regular value of the C* function
u(z)—v,(z)—8|z—z,|* for almost all values of #. Thus, we can take a sequence
of numbers 7, —0 and apply the Proposition to G for almost all values of . Con-
sequently we have by Proposition 3.1 and (2) of Proposition 2.8,

f[ddu])"=[[dd" (u,+m]"2 [ [dd*(v,+ |z — 2z, [))]"
gf[ddcve]"-k(y'f[ddc|z—20|2]" 3.1
={[dd°v,]"+5"-4"n! vol G(n, 6, ¢,7)

where all integrals are over G=G(y, , ¢, 7). Letting 1 — 0, the open sets G(1, 6, ¢, 1)
increase to G(n, 6, ¢). If u=1im (dd‘u,)", then we deduce from (3.1) that

WG, 6,e)z | [ddv,]"+n!4"8"vol G(n, 4, ¢)
G(n,d,¢)

for almost all n<n,, 0<5<d(y), and O<e<e(n, §). Now let ¢ —»0. The measures
[dd¢v.]" converge weakly to [dd‘v]", by Proposition 2.3. Also
G(1,0,8)>{ze G, 8): u(z)+n<v(z)+6|z~z,|*}
=G(n, 8)n Gy, 8)=G(n,9).
Further,
() G(n,6,e)c K(n, 8)={zeQ: u(z) +n=v(2)+ 1z —z,|*}.

e>0

Thus, we have for almost all #,

wKn,8)2 [ (ddv)+n! 48" -vol G(y, 5).
G(n, d)

Since u=(dd‘v)", this implies, with v=(dd‘v)",
v(K(n, 0)Zv(G(n, 6))+n!4"" - vol G(n, ).

However, #-—v(G(n, 9)) is an increasing function of #, and K(n, 6)< G(r', 5) for
7' >#n. At points of continuity of this function we then have

v(G(n, 0)=v(G(n, 8))+n! 4" 6" vol G(n, 5)

which contradicts the fact that G(y, d) is a nonempty, open, relatively compact
subset of Q. This completes the proof.

Corollary 3.3. Let Q be a bounded open set in C" and ¢ a continuous, real-valued
function on 0Q. The solution, if one exists, of the Dirichlet problem

u plurisubharmonic in Q

u continuous in Q 12
u=a¢ in 0Q 62
(dduy'=u in Q

where i is a given positive Borel measure, is unique.

Proof. If u, v are two solutions of (3.3), we have u=v and v=u in Q2 by Theorem A.
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Finally, we note as a consequence of Theorem 3.2 the following very weak
regularity theorem for the equation (dd°u)"=0.

Theorem 3.4. Let Q be a strictly pseudoconvex bounded open set in €*. Suppose
that u is a plurisubharmonic function in Q such that

(1) ling (dd°u)'=0, (u,=ux*yx, as in (2) of Theorem 3.2) and

(2) there is a continuous function ¢: 02— R with

Jim_u(@)=4(2)

Then u is continuous in Q.

Proof. From Theorem 3.2 it follows u is the upper envelope of all plurisubharmonic
functions on Q which are continuous on  and are <¢ on dQ. By a theorem of
J.B. Walsh ([23], p. 145), u is continuous.

4. Examples of Nonuniqueness in the Dirichlet Problem

In this section we give examples of nonuniqueness in the Dirichlet problem (1).
This is associated with the failure of the minimum principle, Theorem A, and we
first give simple examples where this principle fails. In all cases, it is of course
necessary to go outside the class of continuous plurisubharmonic functions.
We will restrict ourselves to the case n=2, and the examples given here fall under
the case Pu locally I?, which was discussed in Section 2 (or a simple modification
can be made to bring them into this case). It will be clear how corresponding
examples for n>2 may be found.
We will consider functions of the form

u(z, wy=3log (| f(z, w)I* +|g(z, w)I?)
where f, g are analytic. If | f|+[g|>0, then we compute
_ fof+gog

Ou=—27__27°5_ 41
=20 P +IglP) @D
= (fog—gof)n(fog—gof)

Ju= 42
N Vi A 2
L —(fog—g3f) AT ATE s
A= (T 1gPY @)
00u A 00u=0. 4.4)

However, if f and g can both vanish, it is not true that (dd°u)* = —400u A ddu
vanishes. Let F =(f, g) be thought of as a map of €*— €2 If F has an isolated zero
at (0,0)eC?, then near (0,0),

(ddu?=4n*pé (4.5)
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where p is the degree of F at (0,0) and ¢ is the unit point mass measure at (0, 0).
This can be seen in a couple of ways. One way is to note that the restriction of the
form

w=d'[Flog(IzI* + |wl*)] A dd°[31og (1z* +|w|*)]

to a sphere S,={|z|?>+|w|*=¢%} is equal to 2¢” >dg,, where do, is the volume
form on the sphere S,. The form d“u A dd‘u is the pullback under F=({, g) of the
form w. Further, | F*(¢~*da,)=2n?p, where p=degree of F at (0, 0). Thus,
d'unddu=2{F*e *do)=4n’p

22 4 {w|2=g2
which, together with (4.4), gives (4.5).

Another way to see (4.5) is to notice that d°u A ddu is essentially the Cauchy-
Fantappi¢ form associated to the map F, and the value of {d°u A dd‘u follows from
well-known integral formulas (cf. [16]).

Example 1. For an example where Theorem A fails, set
uy(z, w)=1log(lz|* +|w|)
and

1
z, wy=——log (Jz)* + |w|*).
uy(z, w) 273 g (1zI" +wl")
By (4.5), we have

[dd°u,)* =[dd°u,]=4n>6.

However, there are points inside the unit ball |z|> +|w|* <1 where u, >u, (e.g.
where w=0) and points where u, >u, (e.g. where z=0), even though u, >u, for
all (z, w) with |z]2+|w|?=1.

It is also in general false that

(dd° [max (u, v)])* Zmin (dd°u)?, (dd°v)?) (4.6)

in contrast to (1) of Proposition 2.8 for continuous functions, as the following
example shows.

Example I1. Setu,(z, w)=%1og (|z* + |w|*) and u,(z, w)=u, (w, z)=%log (|z|*+|w}?).
Let

U(z, wy=max (¥, , u,).

If Q={(z,w): |z + |wl< 1,0<|w|<|z]} and Q,={(z,w): |z +|wP<1,0<|z|<|wl|},
then we easily verify that U=y, on Q,.

We claim that (dd°U)? is equal to 412§ plus the restriction to 082, ~ {(0, 0)}
of the 3-form (du; —du,) A (dd°u, +dd‘u,). That is, if ¢ is a C® function with
compact support in |z|> +|w|? < 1, then

[ddUP=4r*¢p0)+ | Pdu—v)rdd(u+v). 4.7

lwi={z{>0

In particular, (4.6) fails, since by (4.5), min (dd°u;)* =87*é.
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Before proving (4.7), let us note some facts about the various weak derivatives
of U. The first derivatives of U are functions, and we have

dU=du;,, d°U=du on @, i=12 4.8)

as is easily verified using formula (4.1). Since d°U is smooth except at zero and
except for the jump across the hypersurface 0<|z|=|w}, it is then standard to
compute that

dd°U=v+1 (4.9)

where v,n are the currents, v=dd‘u;, on ,, i=1,2 and # is the restriction of
du, —d‘u, to the part of the boundary of Q; where 0<|z|=|w|. That is, for all
smooth (1, 1) forms ¢ with compact support in |z]? +|w|?* <1

forddU= | o¢n (d”uz—d‘ul)-i—i | ¢ nddeu,. (4.10)
a2~ {(0, 0)} i=10
To compute (dd°U)?, we can use either (1) or (2) of Proposition 2.1.
fPpdd°Uy=—fdd°d AndU Ad°U
={Udd¢p Add°U.

To be explicit, let us use the first of these formulas. Let Q,(e) = Q; n {}z]* +|w|* > 2},
M;(e)=0Q,(e) N {|z]* +|w|*>€?} and S;(e)=0R;(e) {|z]* +|w|*=¢%}. Then by
(4.8),

2
foddUP=—3 [dddndunduy,
=l (4.11)
=lim ) | dd°¢ ndu;ndu,.
e~0i=1 2,()
We want to move the differentiations off of ¢. Thus,
| dd¢ nduyndu;=— [ d°¢ Andu; nddu;
Qi(5) £2:(e)
+ | d¢ ndu,ndy
@ 4.12)
= [ doadunddu+ | d¢ndurdu
Qi(e) 00, (¢)
= | ¢dunddu+d ¢rdunrdu
092;(e)

since dd‘u; nddu;=0 on Q,(¢). Now use formulas (4.1) and (4.3) to compute
du; Addu;, du; nd°u;. We find that on S;(e),

|d°u; Addu;| < const./e, |du, Ad°u;| < const./e
so that

| | du;nddu+ [ d°d Adugndu] £0(e?)+0(e)—0.
Si(e) Si(e)
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Therefore
2
fopddUy¥=lim Y | ¢du,Addu+d¢ndu;ndu,
e-0i=1 M;(g)

=lim { | [du Addu —duy nddu,]+ [ d°¢Aduy Ad(uy—u,)}
e~0 Mi(e) M (&) (4 13)

where the last equality results from M, (s), M,(¢) having opposite orientations,
and du, =du, on M, (g), because u, =u, =0 defines 0Q; .

Now, on the manifold {u; =u,}~(0,0)> M, (¢), we have d°¢ Adu, A d°(u,—u,)
= —d¢ Adu; Ad(u; —u,) because the (1, 1) parts of d°¢ Adu; and —d¢ Adu,
are the same so

A, —u ) Ad°d Aduy Ad(uy —uy)=—d(u, —u) Adp Adug Adf(uy —uy).
Thus,
[ ddndund(uy—uy)=— | d Aduy nd(u;—u,)
M (e) M;(e)
=— [ donduyndu,
M (¢)
=~ | d[¢du, ndu,]
M ()
— | ¢(duy ndduy —duy Addu,)
My (e)

Together with (4.13), this implies
[pddUy =lim | ¢d(u,—u,) Add(u +u,)

=0 M) (4.14)
- j dlddu, Adfu,].
My ()
However,
— [ dl¢duyndu]=— [ ¢du, ndu,
M; () oM (g)
50

lim— | ¢du adu,=—-¢©0)lim [ du Andu,.

>0 M(p) e~ 0 M, (g)
Finally, direct computation shows that | d°u; Ad‘u,= —4n*+0(e?), so (4.7)
follows from (4.14). oM ()

To construct an example of nonuniqueness in the Dirichlet problem, we will
make use of a relationship between the complex and real Monge-Ampere operators.
Namely, suppose U(z)=U(z,, ..., z,)=U(lz|, ..., |z,]). If we set |z;|=¢€* and

S(xg, . x)=Ule™, ..., &™) (4.15)
then it is easily checked that

U
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SO

d_ef a2f — AR 2 2 aZU
MrE det [axiax,]“4 2, 2.1z, det [aziaz,]' 4.17)

With examples of the form u(|z,],...,|z,|) in mind, we will now construct
a family of functions in two variables such that

dduy?=cé on |z]2+|wr<l,
u=0 on |z]?+|w]*=1

where ¢ is the point mass measure at the origin. These will be functions u(jz}, |w|)
so that the associated convex functions

S x, y)=u(e*, &) (4.18)
have Mf =0 on
Q*={(x,y): z=¢", w=¢", |z]* +|W]* < 1}

but, Mf has some “mass at infinity”.
Fix positive numbers p, . We will take f in the form

fx,0)=0*+9")""*(gx+py)—dlgy—px)

where ¢ is a suitable smooth function. Now, we want f=0 on dQ*. Each line
of slope p/q intersects 0Q2* in exactly one point. Thus, there is a map @: IR? - 6Q*,
say @(x, y)=(x', y) given by projecting (x, y) along the line of slope p/q passing
through (x, y) to the intersection of the line with d2*. The mapping @ is smooth.
The function f is linear with slope + 1 on each line of slope p/q, and ¢(qy—px)
is constant on such lines. Thus, if f is to vanish on 0Q*, we have

¢(gy—px)= —%;f)%
or
fx, =2 TPZY) (4.19)

(p2+q2)1/2
We can also compute the derivatives of f. To do this, it suffices to compute

the Jacobian matrix of @. This is a direct computation which we omit. The results
are as follows. Set a=e?*, b=¢*¥, A=(pb+qa)~'. Then with

¥ vy oy

M MToy BT BTy

a,=pbd, oa,=-bqd, oa3=-pad, a,=aqd. 4.20)
The second derivatives can be computed in the same way. A typical result is

0

M _2abp?qa®. (4.21)
0x

The only important point for us is that each of these second derivatives has the
form abH, where H is a polynomial in a, b, p, ¢, and 4.
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Let us note some consequences of formulas (4.20) and (4.21). First, since
a+b=1, we have 0<4<min(p~!, g71), so

lo;|Sconst. b, i=1,2, (4.22)

laj|Sconst.a, i=3,4. 4.23)
Also, if D*f is any second partial derivative of f, we have

|D*f|Zconst. ab (4.24)

For later reference, we also want to compute some special derivatives of f.
Let i=(p®+q*)~'?(q,p) be a unit vector having the direction of lines with
slope p/q, and T=(p®+q%) Y?(—p,q) the vector orthogonal to 7. Introduce
new coordinates (£, ) on IR? so that (x, y)=¢n+nt. That is,

x=p?+g>) V2 (ql—pn), y=@*+4*>) "V (pl+qn)

In this coordinate system, we find, using the chain rule and our previous cal-
culations

y_, Y _av-pe
0 7 8n pb+qa

(4.25)

Note that if x> — o0 while y remains bounded, then x'— — o0, y'—0, so a—0,
b—1. Thus.
, of
1 -
x—-}r—noo 0
y bounded

(4.26)

S

Similarly

lim Z=-F 4.27)

of P
on  q

¥ — o
x bounded

Proposition 4.1. Let o 2f (ZJ;) Z{) (ZJ;)
p*+q’
o+ pq
Proof. The estimates given for first and second derivatives of f show that the
integral converges. To evaluate ot, transform to (&, n) coordinates. Then

52 on) o (e) )
by (4.25). Thus,

)
f o= lim of lim o
o x'—>—w,y-0 ar’ x' =0,y -~ mar’
. . q . p p+4
which, by (4.26) and (4.27) is equal to ;+a— Py as asserted.
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Finally, we return to the function u given by (4.18). Let
B={(z, weC?*: |z|* +|w|*<1}.

Proposition 4.2. The function u is infinitely differentiable on B~ {zw=0}. Further,
(1) u has a continuous extension to a C? function on B~ {(0,0)},

(2) if u(0,0)= — o0, then u is plurisubharmonic on B;

(3) if y=max (B,g), then |d‘u|Zconst.(|z|2 +|w|?)~¥% and |ddu|<const.
(1z1* + w272 b

Proof. Tt is clear that u is smooth on B~ {zw=0} since f is smooth. From the
formulas (4.20) and (4.21) together with the formula (4.16) for the derivatives of u
in terms of derivatives of f; it is easily checked that the derivatives of u extend con-
tinuously to B~ {(0, 0)}. In fact, u is infinitely differentiable on B~ {(0, 0)}, although
we don’t need this. To see that u is plurisubharmonic on B, all we have to verify
is that u is uppersemicontinuous and locally satisfies the subaveraging property
on each complex line. We omit these routine verifications.

To obtain the estimates of (3) we again use (4.20) and (4.21). First note that
when |z|>|w]|, we have a|z|~ 2 Zconst.(jz|> +|w|?)~ 1. And, when |z| <|w|, we have
alz] 2=e* e ¥ =23 ) = g240~¥VP < ||~ 24P where we have written |z]|=¢*,
Iw|=e". Thus, a/|z|? £ const.(|z|> +|w|?)~?. Similarly a/|z| < const.(|z|? + |w|?)~ /2.

. . ou 0
Then for a typical derivative of u we have Ia—l <const.|z|~! '6_f <const.|z|"1ag
z X
const. (|z|? +|w|?)~"2. All other derivatives are estimated in the same way.

Proposition 4.3. Suppose p, q are such that y=max (B, %) satisfies y<%. Then
q
(1) duAddu is integrable on B; and

2, 2
(2) d[dunddu]l=4n> % 9, where 6 is the point mass measure of (0,0).

Proof. From (3) of Proposition 4.2 we have that |d°u A ddu]<(|z|* +|w|?)~ 372,
so the coefficients are integrable so long as 3y <4. We already know that dd“u A
dd‘u=0 away from (0,0), so dd‘u Add‘u= 10 for some nonnegative number A.
We can compute 2 easily using Proposition 4.1. We have

PES | du A dd‘u.

2P +]wl2=1
A computation shows that on the unit sphere, with x=Ilogr, y=log p, r=|z|,
p=|w|, we have
2 2 2 62
dmAdmu=[@iié_@:af>d _Glﬁé_if /
Ox 0y* 0y Ox0dy dy 0x* 0x Ox0y

Thus, § d'undd'u=4r* | o where w is the form of Proposition 4.1.
z2+|wj2 =1 o

)dx]Ad@Ad¢.

2 2
Thus we find 1=4n=> (?_pi‘L) as asserted.
q
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")

Remark. Note that when p=g=1, we have {log (|z|2+|w|2)———u This gives
another method for computing (4.5).

Example I11. Finally, to get the examples of nonuniqueness in the Dirichlet
problem, consider functions of the form Au= iup ¢ Where u=u, , is as in Pro-
position 4.3. We have that each such function is continuous on B\ {0,0} and
vanishes for |z|*> +|w|>=1. Also,

2 2
¢ p +q
[dd iy )17 =22 =" 8

so different values of 4, p, g can give rise to the same right-hand side.

5. The Operator ®(u)

We have seen that the operator (dd°u)” has some unpleasant properties when the
singularities of u are too strong, for instance the failure of (4.6) and Example II
of Section 4. In this section, we introduce a closely associated operator, &(u),
which is essentially [(dd“u)"]*"". As we will see, it has some advantages over
(dd‘u)". In particular, it is defined for all plurisubharmonic functions. On the
other hand, in some cases @(u) will fail to recognize singularities we wish to take
into account (c.f the example after Theorem 5.8).

To define d(u), we will use a general measure theoretic construction given by
Goffman and Serrin in [12]. Let

C={¢&:&=(¢&;) is a nonnegative, n x n Hermitian matrix} (5.1)

so that C is a closed, convex cone. We will think of C as imbedded in €* = R*",
with the usual Euclidean norm on R*”. Consider the function

P(&)=(det &),  EeC. (5.2)

Proposition 5.1. The function ¥ is a continuous, nonnegative, concave function
which is positively homogeneous of degree 1 on the cone C.

Proof. All assertions are clear, except that ¥ is concave. To see this, let £, ne C,
and O0<t< 1. We have to prove

Y(l+1-mztPQ+1-1) ¥(n). (5.3)

It is no loss of generality to assume that ¢ is nonsingular. Otherwise, replace &
by £+el, where I is the identity matrix, and then let ¢—0. Then since & is non-
singular, we can write

==L+ (1—) g g ] g
Because ¥(En)=Y(&)- ¥(n), it therefore suffices to prove (5.3) when &=1. Then,
if y,, ..., u, are the eigenvalues of # the inequality (5.3) is equivalent to

n

H 1_[)M]1/">t+(1_t) [ﬁ,u,]un. (5.4)

J



The Dirichlet Problem 23

To prove (5.4), divide both sides by ¢, set x=(1—1t)/t, and consider the function

f)=T]Q+xpu)*™ It suffices to prove that f”(x)<0 for x>0. A short cal-
j=1
culation yields

win SO = W )2 < I ]

/") n’ [(j§11+xuj nj; (T+xp)* )
and the bracketed term is <0 by the Cauchy-Schwarz inequality.

Now, let 1 be a vector valued Borel measure on Q < €" with values in the cone C.
That is u=(u;;) where the p;; are Borel measures on © and for each Borel set
EcQ, (u;;(E)eC. We want to define ¥(u), as a nonnegative Borel measure on
Qc " This can be done in the following way. Choose a nonnegative Borel
measure A on 2 so that u is absolutely continuous with respect to A. For example,
A=Y ;I, where |u;;] is the total variation measure of y;;. Then by the Radon-
Nikodym Theorem, du=hd4, where h is a Borel measurable function on Q
with values in the cone C.

Definition 5.2. W(u)y=¥(h) A.

It is routine to verify that this definition is independent of the particular
Borel measure A used in the definition, since ¥ is homogeneous of degree 1.
It is also routine to verify that ¥(u) is a nonnegative Borel measure, because
¥([a;;]))<const. Y |a;;], and ¥ 20.

There are several properties of the operator ¥ on Borel measures which are
immediate consequences of the definition.

Proposition 5.3. If u, v are Borel measures on Q with values in C, then
(1) ¥Y(ap=a¥()ifaz0.
(2) If u,v are mutually singular, then ¥(u+v)=¥(u)+ ¥(v).
(3) W(w) is absolutely continuous with respect to u.
@) Yitu+(l-pv)zZtPw+(1-0¥Py), O<t<l

We need also two additional facts about the operators @, ¥. The first is the
continuous analogue of (4) of Proposition 5.3.

Proposition 5.4. If x=0 is a continuous function with compact support, then

Plux )z ¥y
on any open set Q' with Q'+ support y =£2.

To prove Proposition 5.4, it is convenient to use an alternate definition of ¥ (u).
Lemma 5.5. For all Borel subsets E of Q,

Y(w (E)=inf{§ Y(uWE)): E= O E;, E; disjoint Borel subsets ofﬂ}.

: j=1 j=1

Proof. This is a special case of [12], Theorem 2, p. 163, with only three slight
modifications. First, Goffman and Serrin treat subadditive functions, while ¥
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is superadditive. However, the same arguments will work in our case. Second,
Goffman and Serrin take the infinimum as the definition of ¥(u)(E), and then
prove our definition coincides with the infinimum definition. Third, Goffman
and Serrin assume that the domain of ¥ is all of Euclidean space (or a Banach
space) instead of just a cone. However, this is not an essential change.

Proof of Proposition 5.4. If E={ J E;, we have
P * 1) (Ep)="P ([ x(x) oE;~ {x}) dx) Z [ x(x) ¥ (W(E; — {x})) dx,

where the last inequality results from the homogenity of ¥ and Jensen’s inequality
for concave functions. Summing over j gives

L (0 (EZ fx(x) LY (WE;—{x})) dx

2 [x(x) () (E—{x}) dx=(¥ () * ) (E)

where the last inequality follows from Lemma 5.5. Taking the infinimum over
all Borel partitions E=|( ) E; of E and applying Lemma 5.5 again, the Proposition
follows.

The other fact we need about the operator ¥ is a semicontinuity property.

Proposition 5.6. Let {u'} be a sequence of Borel measures on Q with values in C
which converges weakly to the Borel measure p. Suppose also that the Borel measures
Y (u') converge weakly. Then

P2 lim P ()
j=
Proof. This is a special case of [12], Theorem 3, p. 165, with the same slight modi-

fications observed in Lemma 5.5.
We now define the operator @(u). If u is plurisubharmonic on , then the

. *u . ) .
matrix of Borel measures ( — ) takes values in the cone C since dd‘u is a
positive (1, 1) current.

z;0Z,
Definition. ®(u)=4(n!)*" ‘P([ o ])

J
0z;0Z,
We can now very easily give several properties of ®(u).
Theorem 5.7. Let u, v, u; be plurisubharmonic on Q< C". Then
(1) Plau)y=adu), o=0; "
(2) P@tu+(1-tv)Ztdw)+(1—1)Pd(v), O<t<l;
(3) Ifx=0 is a continuous function with compact support, then
Dlu * y) = Dlu) * x
Jor any open set Q@ with Q + support y < 8;

(4) ifu;—ulocally in L', or as distributions on Q, and if the sequence of measures
D(u;) converges weakly, then

D(u) 2 lim P(u);
jo®
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(5) Ifu,=u=*y,,wherey,(2)
p.45), then

lim &(u,) = Ow)

1
=gl (%) = 0is a usual smoothing kernel (e.g. [13],

(6) @(max(u, v))= min(D(u), (v)).

Proof. Assertions (1), (2) follow from Proposition 5.3. Assertion 3 follows directly
from Proposition 5.4. To see that (4) follows from Proposition 5.6, note that the
operator dd° is continuous for the distribution topology, so dd‘u;—dd‘u as (1, 1)
currents on . However, just as convergence of positive measures in the distribution
topology implies weak convergence as Borel measures on £, we have that dd“u;—
ddu as Borel measures, i.e. {¢ Addu;— [ Add‘u for all (n—1, n—1) forms ¢
with coefficients which are continuous and have compact support. (See e.g. [17],
p. 67.) Thus, Proposition 5.6 implies assertion (4).

To prove (5), we combine (3) and (4). That is, we have &(u,)= ®(u) * x, by (3),
and by (4), as ¢ 0, we have

di(u)gliné cb(ue)gliné D(u) * x,= D(u)
where the last equality is a well-known property of the smoothing kernels y, .

To prove (6), first assume u, v are smooth. Then on the open set where u>v,
we have

®(max (u, v)) = @ (u) = min (P(u), 2(v)),
and a similar inequality where v>u. Thus, unless u = v on a set of positive measure,

this case is proved. If u=v on a set of positive measure, replace v by v+¢&. For all
except countably many >0, the set u=v+¢ has zero measure. Thus,

d(max (1, v+ ¢)) = min [P(u), P(v+ )] =min [P(u), P(v)].

Now let ¢ -0, and apply (4), to get assertion (6) when u, v are smooth.

In the general case, replace u, v by u,, v,. Then max (u,, v,) decreases to max (u, v)
([13], p. 45). Select a sequence ¢;—0 such that ¢(max (u,,, v,)), P(v,) P(v,) and
min [®(u, ), D(v,)] all converge weakly. Then by (4) and (3),

d(max (u, v)) 2 lim ¢(max(y,, v,))
jo oo
2 lim min (9(u,))), D(v,,)
jox
2 lim min [@(u) * x,,, P(v) * 2, ]
J

2 lim min [@(u), @(v)] * 1., = min [P(u), P(v)].

J—=

This completes the proof.
We conclude this section by giving some explanation of the relationship
between ®(u) and (ddu)".

Theorem 5.8. Let u be a plurisubharmonic function on @ such that the regularizations
of u, u,=u * y,, have the property

{(dd‘u,)"} is a bounded family of Borel measures on each compact subset of Q. (5.5)
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Then

(1) @(u) is absolutely continuous with respect to Lebesgue measure, and, if
®(u)=gdV, where dV is Lebesgue measure, then g is locally n-th power integrable;
ie geli ().

(2) if u is continuous, and if (dd°u)*=fdV+dv is the Lebesgue decomposition
of the nonnegative measure (ddu)" into its absolutely continuous and singular parts,
then

g
%u
3) i P fixdV+dvy; is the Lebesgue decomposition of the Borel mea-
2%u o
sures o then g=4(n ! det [ f;x]'".

Proof. Since u, is smooth, we can write @(u,)=g,.dV, and from (2.1),
g dV=(ddu,)". (5.6)
Thus, from (5.5) we find that [ gldV<M <o for each compact subset K of .

Thus, the {g.} are a bounded fafnily in L1 (€2). The measures g, dV therefore have a
subsequence which converges to a measure gdV, with gel} (Q2). But we already
know by (5) of Theorem 5.7 that g, dV — @ (u). Thus, & (u)=gdV. This proves (1).

To prove (2), note first that (g » y,) dV< ®(u,), by (3) of Theorem 5.7. Thus,
from Fatou’s lemma we find for all ¢ =0, continuous with compact support in Q,

fograv<liminf [$(g * r.)' dV
=0
<lim inf { $(g,)" dV

={pfadv+[pav.
Thus, g"dV<fdV+dv,so g"<f.
" @

To prove (3), we use (2) of Proposition 5.3. Thus, Z%: P([fizdV D+ P dv]).
However, by (1), #(u) is absolutely continuous, and by (3) of Proposition 5.3,
¥[dv;] is singular with respect to Lebesgue measure. Thus ¥ [dv;;]=0. This
completes the proof.

In connection with Theorem 5.8, we mention the following example. lfu =log | z|,
then ®(u)=0, as a short computation shows. Thus, there can be no minimum
principle for the operator ¢ analogous to Theorem 2.

Finally, we know of no example where the measure @(u) is not absolutely
continuous with respect to Lebesgue measure.

6. Regularity Properties of Upper Envelopes

Now we shall define some classes of plurisubharmonic functions which are sub-
solutions of the Dirichlet problem (1.1). In Section 8 it will be shown that the
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solution to (1.1) may be obtained as the supremum taken over these classes of

subsolutions. In this section we show that these upper envelopes have desirable

regularity properties. First, the upper envelope is shown to lie in Lip” if the data

are sufficiently regular (Theorem 6.2). Next an approximation to the Laplacian

is introduced which behaves well with respect to the families of subsolutions.

In particular, it is shown (Corollary 6.5) that if ue P(2) n C*(Q) and ¢(u)e P(Q)
2

then

assumes its maximum on 0Q. Finally, it will be shown (Theorem 6.9)

02,0Z;
that if ujanjd ¢ are of class C?, and if Q=B" is the unit ball in ", then the upper
envelope of subsolutions actually has locally bounded second derivatives. This
result is obtained by using the group of analytic automorphisms of B".
Given ¢ e C(6Q) and a measure u on Q, we define three Perron-Bremermann
families of subsolutions to (1.1) for the operators @ and (dd°)".

B(d, @)= {veP(Q): d(v)= p and lim sup v(z) £ P(z,), for all z,edQ}.
CA(¢, p)=B(d, u) N C(Q),

and
F (¢, p)={veP(Q)n C(Q): (dd°v)" 2 u and v(z,) < P(z,) for all z,€0Q}.

Throughout the remainder of this section the domain 2 is assumed to be strictly
pseudoconvex.

If peln (Q), say u=fdV (dV=Lebesgue measure), then let u"=f"dV. If
ve P(Q)n C(Q), then by Theorem 5.8,

O(v) S (dd o
and consequently,
CRB(p, = F (9, 1)

Theorem 6.2 will show that if, in addition, fe C (Q), then u(z) =sup {v(z): ve B(P, u)}
belongs to C(2)n P(Q), which will allow us to conclude

sup {v: veB(, W} =sup {v: € CH(P, p)} =sup {v: veF (¢, 4"}

In Theorem 6.9, these three envelopes will be shown to be the same if Q is the unit
ball, and then in Section 8 it will be established that these envelopes coincide
and solve the Dirichlet problem (1.1) for all strictly pseudoconvex sets € when
¢ and du=fdV are continuous.

Note that in case the measure u is not absolutely continuous with respect
to dV, the class CA(¢p, u) is empty, by Theorem 5.8, part (1).

The following proposition justifies the terminology “subsolution” for the
families C# and #.

Proposition 6.1. Let Q be a bounded domain in C" and suppose ueP(2)n C(Q)
satisfies (dd°u)'=(@W))". If CE=CHB(p, ®)) and F =F (¢,(ddu)"), where
¢ =ulsy, then sup {v: veF }=sup {v: ve CH}=u.

Proof. From Theorem 5.8, part (1), we deduce that

ussup {v: ve C#} Ssup {v: ce #},



28 E. Bedford and B. A. Taylor

so it suffices to show that
sup {v: veF}Zu.

However, if ve#, then by Theorem A, u—uv attains its minimum on Q on the
boundary of Q. Thus, since u=v on dQ, we have u=v in Q for all ve#, and the
proposition follows.

We next discuss Lipschitz regularity of the envelope. By Lip*(X),0<a <1,
we mean the functions on X which satisfy a Lipschitz condition of order «,

luz) —uw)| = Clz—wl™.

If a=0, Lip® (X)= C(X), the continuous functions on X. If a>1, say k<a<k+1,
then by Lip*(X) we mean the class of functions which have continuous partial
derivatives of order <k on X, and whose k-th order partial derivatives satisfy
a Lipschitz condition of order a— k.

The following proof is modeled on a Proposition of J.B. Walsh [23].

Theorem 6.2. Let Q be a strongly pseudoconvex, bounded domain in C" with C?
boundary. Suppose that for some o, 0<a <1, we have ¢eLip?*(0Q) and du=fdV
with feLip*(Q). Then the upper envelope u of #(¢, u),

u(z)=sup {v(z): veB(, u)}
belongs to Lip*() and is plurisubharmonic on .

Proof. The upper envelope of a family of plurisubharmonic functions is pluri-
subharmonic if it is continuous, so we only have to show ueLip*(Q). We will
first prove that given {8, there exists ve #(¢, u) » Lip* () such that v({) = ¢(?).
We do this assuming o> 0, since the case a=0 (i.e. ¢, u continuous) was treated
by Bremermann ([4], p. 250). It is sufficient to prove that there exists a constant
C, depending only on £, such that for all {edQ, and all ¢ eLip2*(9Q), there exists
a function hgeLip“(Q) N P() such that

h(2)S(z), zedR (6.1)
h ()=o), (6.2)
IS Clld 12, (6.3)

where by ||h]l,, [|¢], we mean any convenient norms on the Banach spaces
Lip*(Q), Lip*(6Q),e.g. if O<a =<1,

Ihl=sup {Ih(): e} +sup {W—)‘M: . }

weQp.
|z—wl*

Because, if (6.1)-(6.3) are proved, then we first choose K, so large that (K, |z]?)
=K; ®(z|*)2 1 and then K, =K, [{|?, $(z) = p(2)— K, |2|>+ K, and the function
h=h,so that (6.1)~(6.3) hold with ¢ replaced by ¢. The function ve (¢, u) N Lip*(2)
is then

v(z2)=h(z)+K,|z|*~K,.
We also obtain a bound

vl = CUél2.+Ky)
for some constant C (different from the constant of (6.3)).
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To prove (6.1)-(6.3), make a holomorphic change of coordinates so that the
boundary is given by x, =yi+|z,|*+ - +|z,|* + a(z), where a(z)=0(|z|?) and {
is the origin of coordinates (z,,...,z,). We may assume that ¢(0)=0 and, if
20—1>0, dp(0)=0. Thus, for zed€, z near 0, ¢(z)= —c|z|*% where ¢>0. Set
h(z)= —2c|x,|*. Observe that, since 0Sa <1, h is plurisubharmonic and that
for zedQ near 0,

h(z)==2c(7 +1z, P + - +1z,)> + 0(2)F £ —c|z1** S $(2)
while /(0)=0=¢(0). Now &, via the inverse change of coordinates, is given as a
function & plurisubharmonic near {€dQ. The norm |jh|, is determined by the

mapping function giving the analytic change of coordinates. Further, by choosing
a function

hy(z)=max (=1, 4, h(z))

where 4,21 is large and 4,>0 is small, we obtain properties (6.1), (6.2), (6.3).
The constant C in (6.3) is seen to depend only on Q.

Next, we assert that there exists ve (¢, u)n Lip*(€) such that v({)=¢(()
for all {e Q. We have just proved that for each { €0, there is a function v,e #(¢, u)
with v,({)=¢({) and { v ||, < C for some constant C independent of {. Set

v(z)=sup {v,(2): {€0Q}.
Then from [v(z)—v, (W)= Clz—w|*, we deduce that |v(z)—v(w)|< Clz—w|%

so veLip*(Q)n P(Q), and clearly v({)=¢({) for all {edQ. It then follows from (6)
and (4) of Theorem 5.7 that also ®(v)= pu, so ve B(¢P, u) N Lip*(Q), as asserted.

By a similar construction there exists a plurisuperharmonic function we Lip*(Q)
such that w(z)=¢(z) for zeQ. Thus for zeQ

v(z)Su(z)=w(z), andsoif zeQ, (eoQ, (6.4)

lufz) —u()| = K|z -1 (6.5)
Now we must show that (6.5) also holds for {e Q.

Let u*(2)= lign sup u(z+ 4z) be the upper regularization of u. Then u* is

plurisubharmonic ([17], p. 26). Because of (6) of Theorem 5.7, #(¢, ) is closed
under the operation of taking finite maxima. Thus, we can choose a sequence
u;e B(¢, p) with u; <u,<... and u;—u almost everywhere. Since u=u* almost
everywhere, we have that u;—u* locally in I, so that dd‘u; converges weakly
to dd‘u*. From (4) of Theorem 5.7, it follows that

Pu*)2 lim d(uj)2 p.
j= o
Then, by (6.4), u*e B(¢, u). Since u<u*, we must have u=u*, so u is plurisub-

harmonic and ue Z(¢, ).
For any small vector te C", define

V1= u(z) 2+ 1¢Q, zeQ,
5= max (u(z), v(z)), z,z+1eQ
where

v(z)=u(z+7)+ Kyltl*|z]? =Ky |t = K |7f*
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and
Ki=lpll.=Ifll, Ki>Kjlt|*|z)?

for all ze 2, and K, is the constant K of (6.5). Observe that for all 1, z— V(z, 1) P(Q).
For, by (6.5), v(z) <u(2) if zeQ, z+1€0Q. From the choice of K and K, we have
V(z, 1)e #B(¢, p). It follows that for all zeQ, V(z,7)Su(z). If z+1€Q, this yields

uz+t)—u(@) K|
for a suitable constant K. Reversing the roles of z+ 7 and z, we obtain
luz+7)—uz)| = K|l

whence ueLip?* (Q). If « =0, only minor modifications need be made in the argument
to show that u is continuous. This completes the proof.

Remark. If peLip?*(0Q), ue C*®, then in general u¢ Lip**+® for £> 0. This is easily
seen for the real Monge-Ampere equation in the unit disc in IR? with ¢(8)=02°
and u=0.

For any ue C(2) and any vector {eC", |{|=1, define

1 2 .
u(2)=ug (2)=5= [ u(z+ee®()do
2w §
and
T, u(z)=e"*[ug (z)—u(z)]. (6.6)
Further, let
0%u(z " 0%u(z) , o
@ § Fu), .
ofol 52, 02;,0%;
Proposition 6.3. For ue C(Q),
. 5’u
hm T4 =575z

in the following senses:
(1) if ue C%(), the limit exists in C(R2);
(2) ifueC(Q), the limit exists in 9'(Q);
(3) IfueP(Q), the limit exists in the sense of weak convergence of measures;

(4) if uel%(Q) (ie. has second partial derivatives in L*(2)), then the limit
exists weakly in LY, ().

Proof. These facts are all well-known. We will only outline the proofs. Statement
(1) may be seen if u is written as a Taylor polynomial with remainder. Then (2)
follows from (1), since for all peD(Q),

(T, .1, ¢>)=Sj2 T;, u(z) ¢(Z)dV(Z)=Sj; w(2) (T, .9) (2) AV (D)= (u, T, @)~ (u, 4,9).
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To establish (3) it is sufficient to show that the L'-norms of T; ,u remain bounded
as e—-0. If ue P(Q) it follows from Jensen’s formula in one variable that

2

u
lzl};rTg,eu(Z)dV(z)_IszmacaC (2)dV(2)

2
and so T, ,u has a weak limit in the space of measures, which must be ——

st5t O
The statement (4) follows in a similar way from Jensen’s inequality.

Theorem 6.4. Let Q be a bounded open set in C". Suppose that ueP(Q)n C(Q)
and that

dduy=fdV, &u)=f1"av

where dV is Lebesgue measure, 0< fel .(Q), and f1"e P(Q). Then for ¢>0 and
{eC" (| =1, the function T;, ,uis defined on the closure of Q°={zeQ: dist. (z, 0Q2)> &}
and

sup {(T; .u)(2): zeQ*} =sup {(T, ,u) (z): ze0Q%}.

Proof. It is clear that T, ,u=T,u is defined on the closure of Q°. Suppose that T,u
has a strict interior maximum, i.e. for some # >0 and some zy€ Q°,

Tu(zo)—n> sup Tu(z)=
z2e0Q¢

‘Then we may define the function
v(z)=u,(z)—e*(C+n).

By Theorem 5.7 and the fact that @(u)e P(Q2),
O(0)2 B(u), 2 D).

Set ¢*=u/s0.. Then we have
ve CA(¢%, [PW)]", ),

since for ze 04",
v(z)=u,(z)—&*(C+n)

Su,(z)—e*n—e* Tu(z)<u(z)=¢*(2).

On the other hand,

0(20)=,(20)— €*(C +1)
> u,(20) — e*(Tu(zo)) = u(zo),

which contradicts Proposition 6.1.
We can now prove Theorem B by the same method.

Proof of Theorem B. Define
n aZ _
H(a,z)= ), 5 —(2ay, zeQ

ik=102;
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After a unitary change of coordinates, the expression for H(a, z) becomes

H(a z)—il Fu (z)
A Y 0z,07,

where the 1,20 are the eigenvalues of a=(a;,). Setting ¢;=(0,0,...,1,0,...,0),
we see from (1) of Proposition 6.3 that

T;u=z,1,T

converges to H(a, z) uniformly on  as ¢— 0, since ue C*(Q). Therefore, if H(a, z)
has a strict interior maximum in @, then T.u also has a strict interior maximum
in Q, when ¢ is sufficiently small. However the proof of Theorem 6.4, with T, ,

replaced by T, and u, replaced by Z Aju,, . shows that T.u cannot have a strict
interior maximum. Thus, H(a, z) and H(a, z) must attain their maximum on ¢Q.
Corollary 6.5. If u satisfies the hypotheses of Theorem 6.4 and for some A>0,
ess sup {du(z): zeQ, dist (z, 0Q) < A} < o0,

then || Auf Lo )< .

Proof. Since AueL* near 09, it follows that i T,,, .u converges weakly to 3 Au
in *(zeQ: dist (z, Q)< A). Thus the set z :;1; bounded on {ze€2: dist(z, 0Q)< A}
for £>0 and by the proof of Theorem B the same bound holds on all of Q. It

follows that Z T, .u converges weakly to 3 1 Auin L*(Q).
i=t

Proposition 6.6. Let Q=B" be the unit ball in C". Suppose ¢¢ C2(0B™, du=fdv
with fe C*(B"), f20. If

u=sup {v: ve #(¢, u)}

is the upper envelope of #B(p, ), then for every n=>0, there exists a constant A(n)
such that

u(z+h)—2u(z)+u(z —h) < A(n)|h|* 6.7
for all{z|£1—n and |h|Zn/2.
Proof. For ae B", let T,e Aut (B") be defined by

LE)=I@)—

where
-

aa
F(a)=1_v(a)—v(a)l

and

v(a)z]/l—iaiz.
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Here we are following the notation of [18], p. 6, and points of €" are thought
of as nx 1 column matrices, so that I'(a) is an n x n matrix. Note that T,(a)=0,
T_,=T,!,and T,(z) is analytic in z, and a smooth function of ae B".

For aeB(0,1—n)={a: la|]<1—n}, set

L(a, h, 2)= T3} T.(2)
and
Ula, h, 2)=u(L(a, h, 2)),
F(a, h,2)=f(L(a, h, 2)),
Y(a, h,z2)=¢(L(a, h,2), zcéB"

It follows that FeC?(B(0,1—#)x B(0,n)x B". Similarly, since Uf(a,h,z)=
Y(a, h, z) for zedB", we conclude that Ue C*(B(0, 1 —n) x B(0, ) x 6B"). Conse-
quently, for a suitable constant K, , depending on >0, we have

L (U(a b, 2)+ Ula, —h, 2)— K, [h < Ula, 0, 2)= b(2) (68)

for all |a| £ 1—n, {h{=<#/2, and ze0B". For example, take K, to be the supremum
over the set B(0, 1—#)x B(0,n/2) x dB" of the norms of the second derivatives
of U. If it can be shown that z— v(z)e B{¢, u) where

v(a, h,2)=1[U(a, h,2)+ Ula, —h,2)]—K, |h|?
+ K,z - 1) P
then it follows that v(a, h, z) Su(z). Thus, if we set a=z, we conclude that
4 [u(z +h)+u(z ~ W] Su@)+ (K, +K,) b2

which proves the proposition.
Let JJL(a, h, z) be the Jacobian matrix of the holomorphic mapping z — L(a, h, 2).
Then, by the chain rule, we have
[ ?U 0%u
02;0z, dz,0Z,,

] =[JL(a, h, 2] [ ] [L(a,h,z)]

where the multiplication on the right hand side is matrix muitiplication. It then
follows that
(V)= P(u) |det JL(a, h, 2)|*" (6.9)

where @ is applied to the plurisubharmonic function, z— U{a, h, z). By Theorem 5.7,
@ is superadditive (since @ is concave and homogeneous of degree 1), so

)21 {D(U(a, h, 2))+ P(U(a, —h, 2)} +4(n)"" K, |h|*dV (6.10)
where the last term results from
&(|z|*)=4(n)"dV.

Thus, by (6.9) and (6.10), if we want to show ve (¢, p), it is sufficient to prove
that for K, large enough,

1 {F(a, h,z) j(a, h, 2)+ Fla, —h, 2) jla, —h, 2)} + K, {h[>2 F(a,0,2)=f(2) (6.11)
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for all Ja|<1—n, |h|<n/2, and ze B, where j(a, h, z)=|det JL(a, h, z)|*"". However,
L(a, 0, z) is the identity mapping, so j(g, 0, z)=1. Since the function G(g, h, z)=
F(a, h, z) j(a, h, 2) is of class C? on a neighborhood of |a|£1—7, |h|Sn/2, 1z|£1,
there exists K, such that

% {G(as ha Z)+ G(a5 -'ha Z)} +K2 |hI2 gG(d, 05 Z)

for la|£1—n, |h|£4/2, |z]£1. This proves (6.11) and completes the proof of the
proposition.
We can now prove a stronger regularity theorem, essentially Theorem C.

Theorem 6.7. Let Q=B" be the unit ball in C". Let ¢ C*(0B"), and du= fdV,
with fe C*(B"). If u is the upper envelope of B(®, ).

u(z)=sup {v(2): ve B($, p)}

then ue L% | (B"); i.e. u has locally bounded second partial derivatives.

2,
Proof. We will first show that for each {eT", [{|= 86C 6Z€ L3 1,o(B"). To see this,
we use the operators T, , of (6.6). If 0<y <1, and |z| £1—n, e<#/2, then

-2 2=

(L)@ =5 | [ue+ele?)—u(]do
0

6~—2 2n

=5z [ Guiz+ee®))+u(z—ee)—u(z)} d6.
T o

Since u is plurisubharmonic, and by Proposition 6.7, it follows that 0T, ,u(z)<
2

A() for |z <1—n, e<#y/2. Thus by Proposition 6.3, lin& T; (W= ;C Pl where the

convergence is in the weak sense of measures. Now because of the bound for

T, .u, we then have that
is locally bounded,  950¢

*u
Next let us show that ax,fELl“(Bn)’ where z;=x;+ix

eL2 1oc{|zt<1—7). In particular, the Laplacian of u

.+; are the underlying
real coordinates of €”. Since the Laplacian of u is locally bounded, all the second
2%u
0x;0x;
(0,...,0,1,0...0) is the j-th standard basis vector, then

order partial derivatives of u, are locally in I for every p<oo. If ¢;=

f’—; [u(z+ee)+u(z—ee)—2u(z)]

2

converges to ——; in If, p< o, and thus a subsequence converges almost every-
.i

where. Then again, by Proposition 6.7, it follows that

all |z]£1—p,and k=1,2,...,2n.

But,if {=e¢;, z;=X; +lx,,+1,we have
0%u o%u
0S5757 (0= [axz() @] s4m

n+1

(z) 1 A(n) for almost
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2 2
which implies that 6—1;, _a_zu_ are also bounded below a.e. on |z|£1—#n. To see
0x; 0xq,;
: . 0%u o 0
that the mixed derivatives -——— are bounded, let X =——+-——. Then by the
0x 0%, ox; 0x,

above argument X2u is locally bounded, and

20%u 2 o*u  0%u

0x;0%x, dx? 0x;

so uel? |,.(B"), as asserted.

Remark 6.8. Following through the details of the proof of Theorem 6.7, one may
obtain the estimate
2
0*u(z) < C N
(I—1z])
on the second derivatives of u; where C depends on the derivatives of ¢ and f

up to second order. The same argument yields uniform estimates for second order
tangential derivatives of u, if in the proof of Theorem 6.7 the automorphisms

. . 0
L(z, h) are replaced by unitary maps. That is, if L; , =2 gy
2k

lz| <1 (6.12)

0x;0x,

_ 0
—zké—z;, then

|L;L,ul<C
where again C depends on second order derivatives of ¢ and f. It is possible to
refine the argument and improve the estimate (6.12) to
2
0*u(z) < C .
0x;0x, |~ 1|z

It seems reasonable that the factor (1 —|z])~! can be eliminated if C is allowed to
depend on derivatives of ¢ and f up to fourth order.

7. Approximations to the Laplacian

The regularity Theorem 6.9 allows us to reduce the proof of existence of solutions
of the Dirichlet problem to functions with ocally bounded second derivatives.
In this section, we show in Theorem 7.3 that a standard approximation of the
Laplacian will essentially allow a further reduction to the C* case. In analogy
with the operators T; , of Section 6, an operator T, is defined which converges to
the Laplacian 4 as ¢—0. The result is much in the same spirit as Littlewood’s
principle that a measurable function is “almost continuous” and shows that
a function u with bounded second partial derivatives behaves “almost everywhere”
as though it were of class C2. The approximation T, and all the arguments are
quite standard although somewhat technical. Also, since this is a purely real
variable result, we shall work in R™, setting IR?"=C" when the Theorem is applied
in Section 8.

Let Q be a bounded open set in R™ Let u be a locally integrable function
on Q, ie., uell (Q). For £>0, define a smoothing of u that is different from the
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one used in Section 6,

W)= [ u(x+EdV()

m& jgize

where dV is Lebesgue measure on R™, and 7, = j dV (&) is the volume of the
unit ball in R™. Define HES!

If ue C%(Q), an easy calculation using the second order Taylor polynomial of u

shows that

lim Tu(x)=4u(x), ueC®) (7.2)

7.1)

and the limit is uniform over compact subsets of Q. It is well known that the

operators T,u converge to the Laplacian of u, du, in the distribution sense. For

our purposes we need a more refined version of the limit relation (7.2) which

applies to functions with bounded Laplacian. The precise version is Theorem 7.3.
We need to use the following fact about the operators T;.

Proposition 7.1. If Aue}, (Q), then
li_{r(} Tu=Adu in L}, .(Q)
This proposition is well known. We omit the proof.

We also need an estimate on the Lipschitz norm of T,u for small ¢>0 when
Auell (Q).

Proposition 7.2. Let K be a compact subset of Q of distance greater than ¢, from 052.
There is a constant C>0 such that for all x, yeK and 0<e=Zg¢,,

Mix—
Tt~ Tug) s ¢ 22
where M =ess sup{|du(&)|: distance from & to K is at most &,}.

Proof. We shall use the familiar Jensen formula

J ulx+ro) dole) =u(o)+ | D
Om—1 ja|=1 o !

dt

where do is the surface area measure on the unit sphere " 1= {aeR™: |¢|=1}

and g,_,= [ dois the area of S"~'. The quantity n(t, x) is given by
sm-1

n(t, x)=

§ du(x+&)dv(o). (7.3)

Om—1 |&] 2t

Combining the Jensen formula with the definition of T, gives

2
(T) ()= mrj;z)msm 1[ n(tx)

dt] dr

{since g,,_, =m1,).
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We will show an appropriate estimate for n(t, x)—n(t, y). First, note that we
always have |n(t, x)]| S M1" so

|n(t, x)—nlt, ISZM™,  t=eg. (7.5)
Ift22]|x—y|,set E(t)={{eR™: |[{—x|<tand|{—y[2t0r|f—x|2tand [E—y|= t}.
Then measure (E(f))<Clx—y| ™!, since t=2|x—y|. From the formula (7.3)

M
for n(t, x), we see that |n(t, x)—n(t, y)| £—— [measure (E(t))] < C'|x—y| "L,
that is, m—1

In(t, x)—n(t, YIS C'lx—yl "~ if 2x—y|St=<e,. (7.6)
If e<2|x—yl, e<g,, the estimate of the proposition follows by using (7.5) in
formula (7.4). If 2|x — y| £ e < gy, then again use the formula (7.4), except this time

use (7.5) to estimate n(t, x)—n(t, y) when t<2|x—y| and (7.6) when t=2|x—y|.
We can now prove the exact convergence result we need for the T, and u,.

Theorem 7.3. Suppose u is a function such that Aue L5 (), where Q is a bounded
open set in R™. Let 11>0 and let {¢;} be a sequence of positive numbers converging to
zero. Then there exists a compact set F = Q and an integer j, such that
(i) measure (Q~ F)<n;
(i) the restriction of Au to F is (almost everywhere equal to) a continuous
function on F,
(iii) for all xe F and jZ jo, we have | T, u(y) — Au(x)| <n for all y with |y — x| S ¢;.
62

0x; 0%,

i

Moreover, if all the second partial derivatives of u,
then we can also choose F so that
2

o
0x;0x,
(v) for all xe F and j= j,, we have
*u,, *u
(y)—ﬁxi 0xy
Sor all y with |y—x|<e;.

, are in I3, (Q),

(iv) the restriction of to F is a continuous function; and

<
v o, ()|=n

Proof. Let n, >0,and let {¢;} be a sequence of positive numbers, &;— 0. By Egoroff’s
Theorem ([21], p. 75) and Proposition 7.1, we can find a compact set F, <
such that measure [(2~ F;)] <7, and

lim T, u(x)=Adu(x)  uniformly for xeF. (1.7
jo®

Note that since all of the T, u are continuous, this limit defines 4u as a continuous

0%u

function on F| . If the second partial derivatives are in L (Q) (or just inte-
grable functions, which follows from dueL? (€)), then by Lusin’s theorem

loc

([21], p. 56), after possibly shrinking F, slightly, we can assume also that the
2

- 0*u . . .
restriction of each oy to F, is a continuous function.
x;0x;
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Now consider the functions

bi(x)= sup ORI L K= xISt ER)

O<t=s T t™

From the differentiability theory of I! functions, (see e.g. [21]), it follows that
¢,(x) converges almost everywhere on Q to the characteristic function of @\ F,.
Since the sequence ¢, is monotone in s, it follows that there is a compact subset F,
of F, such that measure (2~ F,)<n,, and a number t,>0 such that ¢ (x)<n,
if xeF, and s<t,. That is,

measure {&: |E—x|St, E¢Fy S 1, t", x€F,, O0<t=Zt,, (7.8)

Weset F=F,.
The condition (i) holds, if we assume, as we may, that n, <. Also, we have
already verified (ii). To prove (iii), introduce

w(e, F)=o(e)=sup {|du(y)— du(x)|: |x—y| S4¢, x, ye F}.

Since F; is compact and Au|F, is continuous, w(g)—0 as ¢—0. Suppose ¢>0 is
such that 4¢<t,. Then if xe F=F, and |y—x|=¢, there exists weF, such that
|w—y|<2ni™e. For, if not then the entire ball {&: [£—y|<2ni/™e} lies inside
{&:1¢—x|=2¢,(¢F, ). Then, by (7.8)  1,,(2¢)" Smeasure {: | —x|S2¢,{¢F,} <
N T.(2 €)™, a contradiction. With this choice of w, we then have for xe F, |[y— x| <¢

| Tu(y)— du(x)| £| Tu(y) — Tu(w)| + | Tu(w) — du(w)| + | du(w)— du(x)].  (7.9)
By Proposition 7.2, the first term on the right hand side of (7.9) does not exceed
ly W|<2CM ni'™. The last term on the right hand side of (7.9) does not

exceed w(e). And, if e=¢;, we have from (7.7) that lim | T, (w)— Au(w)|=0 umformly
for weF,. The assertlon (iii) therefore follows from (7. 9), provided 2CMnim <y
The set F has already been chosen so that (iv) holds To prove (v), write

*u 0%u 1 o%u %u
U = - . (110
00 ) 0x;0%, ) ngmléljée [6xi@xk O+2) 0x;0%, (x)] ave. (@10
Set
0%u o2u
T —_— _ . — < <i S )
(e)=ess sup{ Gxiax, ) Bxm, ®)|: Ix—y|<2e x, yeF,, 1 i, k_m}

Then if xeF<F, and y+¢&ekF,, the integrand in the right hand side of (7.10)
does not exceed @(g). Thus,
0*u u

~(y)- (x)

2M{[measure {&: E¢F, |x— | <2¢6)]
0x,0x; 0x;0%; )

T &

<a(e)+

2

. . ofu .
But, @(e)—0 as ¢—-0, since each function FE, is continuous on F,. Thus, the
X; 0%, :

assertion (v) follows from (7.8) provided 5, >0 is chosen small enough. This
completes the proof.



The Dirichlet Problem 39

8. Existence of Generalized Solutions

The results of the preceding sections can be combined to show the existence of
solutions. The method is to solve progressively more general versions of the
problem. The main step is the first step where it is shown that solutions exists on
the unit ball in €” if the data are sufficiently smooth. The reason for starting with
the ball is that our regularity Theorem 6.9 can be applied there, and allows us to
show that the upper envelope of solutions is actually a generalized solution.
We then proceed by making spherical modifications (analogous to the Poisson
modifications in the Dirichlet problem for the Laplacian) to solve the problem
for more general domains and more general data.
We first treat the following special case.

Q= B"=unit ball in C"
du=fdv, fz0, f'"eC*(B") (8.1)
¢e C*(0B").

Under these hypotheses, it follows from Theorem 6.2 (with « =0) and the regularity

Theorem 6.9 that the upper envelope to the classes #{(¢, u), C#(¢p, u), and F (¢, p)
all coincide. Denote this upper envelope by u.

Theorem 8.1. Under hypotheses (8.1), we have

Pu)=f1"dV, 8.2)
and

ddu)'=fdV  on |z|]< 1. (8.3)
Thus, u solves the Dirichlet problem (1).

Proof. By Theorem 6.2, ue C(B") and u=¢ on 0B". By Theorem 6.8, the second
partial derivatives of u are locally bounded, so from Theorem 5.8, ®(u)=g!"dV,
¢=0, and (dd‘uy*=gdV. Thus, it suffices to prove either (8.2) or (8.3). We will
prove (8.3).

Now u is the limit of a sequence u;e #(¢, p), with u; Su, <+, u;—»uin C(B"),
since ue C(B™) and %(¢, p) is closed under finite maxima. Thus, by (4) of Theorem
5.7, ue B(¢, p). Thus, the locally bounded function g satisfies g= f. If g=f, we are
done, so we may assume that for some small constant ¢ >0, the measure of the set

{z:{z]S1—=c,g(z)> f(z)+ ¢}

is greater than ¢>0. Set

0%u

. <1
52,73, Hzlst c/Z}.

We have M < o0, by Theorem 6.9.
Now, choose positive numbers a, >0 such that

a<cd™"[2n!(14+nM)y]! (8.4)
and
n<al4@n+1)]". (8.5)

M =M, =ess sup { (z)
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Let {;} be any sequence of positive numbers tending to zero. Let F be the compact
set and j, the positive integer given by Theorem 7.3. We can also assume that j,
is so large that

If@—-fwisc/d  if |z—w|Ze;,  jZJo. (8.6)
If we write u; for u, , then for ze F and j 2 j,, Theorem 7.3 yields
I T, ,u(w)— Au(z)| & <nej 8.7)
and
0%u; 0%u
52,35, (w) 3207, @) +ay, luglsn (8.8)

for ze F and all w with jw—z|<g;.

Now, because the measure of the complement of F does not exceed < c/4,
there exists at least one point ze F for which g(z)> f(z)+c¢. This point z will be
fixed for the remainder of the argument.

Consider the functions

viw)=uw)—alw—z|*>+ ny |lw—z|?

- [%%%—a] e —2nn(s). (8.9)

Then for j2 j,, we assert that v; has the following five properties.
v;is a C? function on |w—z|<¢;. (8.10)
v; is plurisubharmonic for [w—z| <e;. 8.11)
v(wy<u(w) if jw—z|=¢g; (8.12)
(ddvyzfdv if lw—z|<g; (8.13)
v(2)>u(z) ‘ (8.14)

If these properties are all verified, then we may find a subsolution larger than u
at z, namely,

max (v;(w), u(w)) lw—z|Z¢;

V(w)={

Then by (6) of Theorem 5.7, and properties (8.10)-(8.13), V' is a subsolution:

Ve CH($, = B(d, w.

But, by (8.14), V(z)>u(z) which contradicts the maximality of u. The theorem
therefore follows from (8.10)-(8.14).

It remains to verify (8.10)~(8.14). Now (8.10) is clear, since u;e C%. To prove
(8.11), let I denote the n x n identity matrix. Then write, using (8.9) and (8.8),

u(w) w—z{=e;.

[ aazj;%k (W)] = ([ 65;';" (z)] - aI) +([og] +nn ). (8.15)
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For |w—z|<¢;, j2 jo, the inequality of (8.8) shows that [a;, ] +nnl is nonnegative.
We claim the first matrix on the right hand side of (8 15) is also nonnegative.

For, if 04, £4,<.-- <4, are the eigenvalues of [

32,07, (z)] then we have

A EnM so H A= (nM)"'. However, 4"n! []A;=g(z)> f(z)+c2c>0, so
i=1

Jj=

»—M:

2
A 2cd "n)~' (nM) ~">a by (8.4). Thus, [65—6“2 (z)}—al is a positive matrix
iYek

and (8.11) follows. Note that (8.13) also follows because, from (8.15) we now have

det [66 o (w)]>n(,1 —a)>]—[/1 —a(l +nMYy"

=4""(nN)"! g(z)—a(l +nM)"
247"(n)"! [g(2)~¢/2]
247"y [ f(2)+¢/2].
However, from (8.6), f(z)+¢/2> f(w) if [w—z|<Z¢g;, so (8.13) follows.
To prove (8.12) and (8.14), consider the identity,

00— 0) =5 T, )= Au(2]

+(a—2nn) el —(a—nn) |lw—z|%
If we set [w—z|=¢;, then (8.7) yields

ne 2
U,-(W)~M(W)='2—(2T2)

which proves (8.12). If we set w=z, then again, by (8.7),

—nne} <0

vi{z)— u(z)z e? [a 2nn— 5(77—]—_"—2-)]

which proves (8.14). This completes the proof of Theorem 8.1.
Next, we will relax the smoothness conditions on ¢ and f.

Theorem 8.2. Suppose Q=B" is the unit ball in C", ¢ C(3B"), and dp=['"dV
where 20, fe C(B"). Then the upper envelopes of the families #(¢, u), CA(®, W),
F (¢, u") coincide. If u is this common upper envelope, then ue C(B") and satisfies

dw)=f1"dV  in B,
(dduy'=fdV in B,
u=¢ in 0B".

Proof. Choose a sequence of functions f; with f}'/"e C?*(B", and f; decteasing to f
uniformly on B". Also, choose a sequence of C2 functions ¢; on B" such that ¢;
increases to ¢, uniformly on B”. Let u; be the unique plurlsubharmonlc solutlon
to the Dirichlet problem (dd°u)"= f; dV in B", u;=¢; in 0B", u;e C(B"). The
existence of u; is given by Theorem 8.1, and the umqueness by Theorem A. Also
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by Theorem A, the sequence u; is increasing. We can choose positive numbers
n; tending to zero so that ¢;+#;= > ¢ on 9B". Further, since (dd° [ug+e(z2— D)=
(dd‘uk)"+a (dd°)z)?)y = fde-i-a (dd°|z{*)", and since f,—f uniformly, we can
choose positive numbers &;—0 such that (dd°[u, +¢;(|z]* —1)]" = (dd°u;)" for k= j.
Therefore, by Theorem A, if k= j we have

u+e;(zI2—1)Sufz)+n; for zeB"
Thus, since u;(z) Su,(z), we find that lim u;=u exists uniformly on B". It follows

that ue P(B"). Further, (dd“uj)"a(ddct:)" weakly, by Theorem 2.3, so (dd‘u)" = fdV.
Further, by (4) of Theorem 5.7, ®(u)= f1"dV, and then by (2) of Theorem 5.8,
®(u)" <(ddu)* so we have ®(u)=f1"dV.

It then follows from Proposition 6.1 that the upper envelopes of CZ(¢p, fdV)
and £ (¢, f"dV) coincide with u. Further, from Theorem 6.2 (with «=0), the
upper envelopes of #(¢, fdV) and CH(¢p, fdV) coincide. This completes the
proof.

We can now prove an existence theorem for more general domains.

Theorem 8.3. Let Q be a bounded open set in C". Let ¢pe C(0R2) and du=fdV with
20, fe C(Q), dV = Lebesgue measure. If

i) #(¢, u) is nonempty, and

(i) the upper envelopeu=sup {v: ve B(d, p)} is continuous on Q with u=p on 6,
then u is a solution to the Dirichlet problem

(ddu)'=fdV inQ,

ueP(Q)n C(Q),

u=¢ on Q.
Also, D(u)= f1"qV.

Proof. We only have to prove that (dd°u)”=fdV in Q. To see this, fix z,eQ and
choose £>0 so small that the ball B(z,, ¢)= {|z—z,| <&} has its closure contained
in Q. By Theorem 8.2, there is a function v(z) on B(z,, &) such that

ve P(B(z,, &) n C(B(zo, ¢)),

v(z)=u(z) on 0B(z,,é€),

D(@v)=f1"dV  on B(z,,é),

(dd°v)"=fdV on B(z,,é¢).
By (2) of Theorem 5.8, we have (ddv)" <(dd‘u)" in B(z,, ¢). Thus, by the minmum
principle, Theorem A, we have v2u in B(zgy,¢). ~

Set U(z)=v(z)if ze B(z,, &), and U(z)=u(z)if ze 2~ B(z,, ). Then Ue C(2)n P(Q)
and U=® on Q. We also have ®(U)= f1/"dV. Therefore, Uc &(¢, f1/"dV). Then
U su. But, Uzu by our construction, so U=u. In particular, u=v on B(z,, &),
so (dd°u)"=fdV and ®(u)=f1/"dV, This completes the proof.

Finally, we can complete the proof of Theorem D by showing the existence
of a solution.
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Proof of Theorem D. By Theorem 8.3, we have to verify that #(¢, u) is not empty
and its upper envelope ue C(2), and u=¢ on Q2. When Q is strictly pseudoconvex,
this is a consequence of the «=0 case of Theorem 6.2. Thus,

u=sup {v: ve £ (o, p)}
is the solution of the Dirichlet problem (1.1).

9. The Bremermann Dirichlet Problem and Regularity of Envelopes of Holomorphy

In [4], Bremermann introduced the family £ (¢(z), Q) of all plurisubharmonic
functions v on Q such that lim scup v(z) £ d(0), {e0Q. In our notation, L(¢p(z), Q)=

#(¢,0). Bremermann proved that the upper envelope u of ¥ assumed the bound-
ary values ¢ continuously when ¢ e C(0Q) and Q is strictly pseudoconvex. It was
later shown by J.B. Walsh [23] that ue C(2). It is a consequence of the minimum
principle Theorem A and the existence theorem that u is the unique solution of
the Dirichlet problem

(dduy*=0 1 Q
u=¢ in 0Q,
ue C(Q) and u plurisubharmonic in Q

when Q is a strongly pseudoconvex set in C".

Bremermann also proved ([4], p. 270) that if K is the set of all points (z, w)e C*+1
such that zedQ and |w|<e *9 or zeQ and jwiSe ™ m=sup {|¢(2)|: ze8Q2},
then the envelope of holomorphy of K is

K={(z, w)eC"': |w|Le™"@ zeQ}.

Consequently, the regularity results, Theorem C and Theorem 6.2, yield the
following regularity of part of the boundary of K.

Theorem9.1. IfQ = B"istheunit ballinC", and if p € C*(0B"), then {(z, w)e K : zeQ}
={(z, w)eC"*: zeQ, log |w|+u(z)=0}, where u is a plurisubharmonic function
on Q with locally bounded second partial derivatives. More generally, if Q is strictly
pseudoconvex with C? boundary, and if ¢ €Lip*(0Q), then ueLip¥?(Q), 0S8 a <2.
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