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§0. Introduction. Parabolic bifurcations in one complex dimension demonstrate a wide
variety of interesting dynamical phenomena [D, DSZ, L, Mc, S]. Consider for example the
family of dynamical systems fε(z) = z + z2 + ε2. When ε = 0 then 0 is a parabolic fixed
point for f0. When ε 6= 0 the parabolic fixed point bifurcates into two fixed points. (The
use of the term ε2 in the formula allows us to distinguish these two fixed points.)

We can ask how the dynamical behavior of fε varies with ε. One way to capture this
is to consider the behavior of dynamically significant sets such as the Julia set, J , and the
filled Julia set, K, as functions of the parameter.

Theorem. ([D,L]) The functions ε 7→ J(fε) and ε 7→ K(fε) are discontinuous at ε = 0 when
viewed as mappings to the space of compact subsets of C with the Hausdorff topology.

In this paper we consider semi-parabolic bifurcations of families of diffeomorphisms in
two complex dimensions. We let M denote a complex manifold of dimension 2, usually
M = C2, and we consider a family of holomorphic diffeomorphisms Fε : M → M . such
that

Fε is holomorphic in ε2, and Fε(x, y) = (x+ x2 + ε2 + · · · , bεy + · · ·) (0.1)

where |bε| < 1, and the ‘· · ·’ term in the first coordinate has order ≥ 3 in (ε, x, y), and in
the second coordinate it has order ≥ 2. When ε = 0 this map has the origin as a fixed
point, and the eigenvalues of the derivative at the origin are 1 and b0. We say that F0 is
semi-parabolic at the origin. In [U1,2] it is shown that the set of points attracted to O in
forward time can be written as B ∪W ss(O), where B is a two complex dimensional basin
of locally uniform attraction and W ss(O) is the one complex dimensional strong stable
manifold corresponding to the eigenvalue b0. The point O is not contained in the interior
of its attracting set, and we describe this by saying that the point is semi-attracting. The
set of points attracted to O in backward time can be written as Σ ∪ O where Σ is a one
complex dimensional manifold called the asymptotic curve.

The principal case we consider here is where M = C2, and Fε is a polynomial dif-
feomorphism. Friedland and Milnor [FM] have classified these into two classes. One of
them has dynamical behavior which is too simple for there to be a semi-parabolic fixed
point. Thus a family satisfying (0.1) must belong to the other class which, up to conjugacy,
consists of compositions of generalized Hénon mappings. We refer to [BS1], [FS] and [HO1]
for general discussions of Hénon maps.

Polynomial diffeomorphisms have constant Jacobian, and to be consistent with (0.1),
we assume that the Jacobian is less than one in absolute value. Analogs of the filled Julia set
are the sets K+ and K−, consisting of points p so that Fn(p) remains bounded as n→ ±∞.
Dynamically interesting sets also include J± = ∂K±. We also consider K = K+ ∩K− and
J = J+ ∩ J−. It is a basic fact that the one variable Julia set J is the closure of the set
of expanding periodic points. We define J∗ to be the closure of the set of periodic saddle
points. It has a number of other interesting characterizations: it is the Shilov boundary
of K and is the support of the unique measure of maximal entropy (see [BS1] and [BLS]).
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Both the sets J and J∗ can be considered analogs of the Julia set in one variable. The set
J∗ is contained in J , but it is still not known whether these two sets are always equal.

If {Xε} is a family of closed sets, we will say that a point p belongs to lim infε→0Xε iff
for every neighborhood V of p we have Xε∩V 6= ∅ for all sufficiently small ε. We say that p
belongs to lim supε→0Xε iff for every neighborhood V of p we have Xε ∩ V 6= ∅ for infinite
sequence of ε’s tending to 0. We say that ε 7→ Xε is upper semicontinuous if lim supε→0Xε ⊂
X0, and lower semicontinuous if lim infε→0Xε ⊃ X0. Certain semicontinuity properties
hold generally (see [BS1]): For a continuous family ε 7→ Fε of Hénon maps, the set-valued
mapping ε 7→ X(Fε) is upper semicontinuous if X = K+, K− or K; and it is lower
semicontinuous if X = J+, J−, or J∗.

We will show that at a semi-parabolic fixed point we have additional information:

Theorem 1. Suppose that Fε as in (0.1) is a family of polynomial diffeomorphisms of C2.
Then for X = J∗, J , J+, K or K+ the function ε 7→ X(Fε) is discontinuous at ε = 0. For
X = J− or K− the function ε 7→ X(Fε) is continuous.

Our approach follows the outlines of the approach of the corresponding result in one
variable. In the one variable case we work with fε(z) = z + z2 + ε2 + · · ·; the first step
is to analyze certain sequences of maps fnjεj , where the parameter εj and the number of
iterates nj are both allowed to vary. The idea is the following. Let p be a point in the
basin of 0 for f0. When ε is small but non-zero the fixed point at 0 breaks up into two fixed
points. As n increases, the point fnε (p) will come close to 0 and may pass between these
two fixed points and exit on the other side. Following standard terminology we refer to
this behavior as “passing through the eggbeater”. When ε is small the point moves more
slowly and more iterations are required for it to pass through the eggbeater. It is possible
to choose sequences εj going to 0 and nj going to infinity so that fnjεj (p) will converge to
some point on the other side of the eggbeater, in particular some point other than 0. The
limit maps which arise this way have a convenient description in terms of Fatou coordinates
of the map f0 (see [Mi]). A Fatou coordinate is a C-valued holomorphic map ϕ defined on
an attracting or repelling petal which satisfies the functional equation ϕ(f(p)) = ϕ(p) + 1.
There is an “incoming” Fatou coordinate ϕι on the attracting petal and an “outgoing”
Fatou coordinate ϕo on the repelling petal. Let τα(ζ) = ζ + α be the translation by α,
acting on C, and let tα := (ϕo)−1 ◦ τα ◦ ϕι be the transition map that maps the incoming
(attracting) petal to the outgoing (repelling) petal.

Theorem. (Lavaurs) If εj → 0 and nj →∞ are sequences such that nj − π/εj → α, then
limj→∞ f

nj
εj = tα.

We will define εj to be an α-sequence if εj → 0 and nj → +∞ can be chosen so that
nj − π/εj → α. Sometimes for clarity we will refer to (nj , εj) as the α-sequence.

In Section 3 of this paper we prove the analogous result in two complex dimensions.
Shishikura [S] gives a careful proof of this Theorem in one dimension using the Uniformiza-
tion Theorem. The concept of uniformization is much more delicate in two variables so,
by way of preparation for our two dimensional result, we re-prove the 1-dimensional result
without using the Uniformization Theorem in Section 2.

The existence of the Abel-Fatou functions, or Fatou coordinates, in the semi-parabolic
case was established in [U1,2]. Let ϕι : B → C denote the Fatou coordinate on the attracting
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basin and ϕo : Σ → C the Fatou coordinate on the asymptotic curve (or repelling leaf).
Note that the function ϕι has a two complex dimensional domain of definition, while ϕo

is defined on the Riemann surface Σ. In fact the map ϕι is a submersion and defines a
fibration whose leaves are described in Theorem 1.2. Our principal object of study will be
the transition map

Tα := (ϕo)−1 ◦ τα ◦ ϕι : B → Σ (0.2)

where α ∈ C is given, and τα denotes the translation by α. We have

F ◦ Tα = Tα+1 = Tα ◦ F.

Fatou coordinates could also be defined by adding constants to ϕι/o. The family {Tα}
covers all such possibilities.

Theorem 2. Let Fε be a family of polynomial diffeomorphisms as in (0.1), and let εj be
an α-sequence. Then limj→∞ F

nj
εj = Tα uniformly on compact subsets of B.

We note that we are taking very high iterates of a dissipative diffeomorphism, so it
is reasonable that the limiting map has a one-dimensional image. A version of Theorem 2
holds if Fε is only locally defined at O; see the discussion of the local basin at the end of §1.

Figure 1. The discontinuity of the map ε 7→ K+(Fa,ε) illustrated by showing complex linear
slices in C2 for two nearby parameter values. Fa,ε is given by equation (0.3) with a = .3;
ε = 0 (left), a = .3, ε = .05 (right).

When ε is small, a point may pass through the eggbeater repeatedly. We may use the
map Tα to model this behavior. In case Tα(p) happens to lie in B, we may define the iterate
T 2
α(p). More generally we can view Tα as a partially defined dynamical system. A point

for which Tnα can be defined for n iterations corresponds to a point which passes through
the eggbeater n times.

Following the approach of [D, L] in one dimension we may introduce sets J∗(F0, Tα)
and K+(F0, Tα) which play the role of J∗ and K+ for the partially defined map Tα. (See
Definitions 4.2 and 4.3.)
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Theorem 3. Suppose that Fε is a family of polynomial diffeomorphisms of C2 as in (0.1),
and let εj be an α-sequence. Then

lim inf
j→∞

J∗(Fεj ) ⊃ J∗(F0, Tα).

Though we have stated Theorem 3 for polynomial diffeomorphisms, the definition of the
set J∗(Fε) as the closure of the periodic saddle points makes sense for a general holomorphic
diffeomorphism, and Theorem 3 is true in this broader setting.

Theorem 4. Suppose that Fε is a family of polynomial diffeomorphisms of C2 as in (0.1),
and let εj be an α-sequence. Then we have

B ∩ lim sup
j→∞

K+(Fεj ) ⊂ K+(F0, Tα).

If the function ε 7→ J∗(Fε) were continuous at ε = 0, then the limit of J∗(Fεj ) along
an α-sequence would be independent of α and would be equal to J∗(F0). Theorem 3
implies that J∗(F0) would have to contain every set J∗(F0, Tα). Theorem 4 implies that
J∗(F0) would have to be contained in every set K+(F0, Tα). The following shows that these
conditions are incompatible.

Theorem 5. If F0 is a polynomial diffeomorphism with a semi-parabolic fixed point O,
then (i) there exists α ∈ C such that B ∩ J∗(F0, Tα) 6= ∅, and (ii) for each p ∈ B there
exists an α′ such that p /∈ K+(F0, Tα′).

We can use Theorem 5 to prove the discontinuity statement of the maps ε 7→ J∗(Fε)
and ε 7→ K+(Fε), but in fact the same argument shows the discontinuity of any dynamically
defined set X which is sandwiched between J∗ and K+. Using this idea, we now give a
proof of Theorem 1.

Proof of Theorem 1. We begin by proving the statement concerning discontinuity. Let X
be one of the sets J , J∗, J+, K or K+. Assume that the function ε 7→ X(Fε) is continuous
at ε = 0. By Theorem 5 we may choose p ∈ B and α, α′ to that p ∈ B ∩ J∗(F0, Tα), but
p /∈ K+(F0, Tα′). Let εj be an α-sequence and let ε′j be an α′-sequence. Since

J∗(Fε) ⊂ X(Fε) ⊂ K+(Fε)

we have that
J∗(F0, Tα) ⊂ lim inf

j→∞
J∗(Fεj ) ⊂ lim inf

j→∞
X(Fεj ) = X(F0)

by Theorem 3. Further, by Theorem 4, we have

K+(F0, Tα′) ⊃ B ∩ lim sup
j→∞

K+(Fε′
j
) ⊃ B ∩ lim sup

j→∞
X(Fε′

j
) = B ∩X(F0).

By the properties of α, α′, and p, we see that the lim inf and lim sup cannot be the same.
The fact that J− and K− vary continuously follows from the fact that for polynomial

diffeomorphisms which contract area the sets J− and K− are equal (see [FM]). We combine
this with the facts that J− varies lower semi-continuously and K− varies upper semi-
continuously.
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To give a 2D analogue of the family fε we start with the quadratic Hénon maps
Ha,c(x, y) = (x2 +c−ay, x). Ha,c has a semi-parabolic fixed point when c = (a+1)2/4. We
fix a and consider the perturbation c = (a+1)2/4+δ. Now we conjugate with a translation
to move the fixed point to the origin and then a linear map to diagonalize the differential.
If we use the parameter ε2 = δ/(1− a)2, we arrive at the family (0.3).

Fa,ε :
(
x
y

)
→
(
x+ (x+ ay)2 + ε2

ay − (x+ ay)2 − ε2
)

(0.3)

If 0 < |a| < 1, the family (0.3) is in the form (0.1). When ε = 0, the origin O is the
unique fixed point and has multipliers 1 and a, and T = the x-axis is the eigenspace for
the multplier 1. Figure 1 shows the slice K+∩T , where the points are colored according to
the value of the Green function G+. The set K+ = {G+ = 0} is colored black. It is hard
to see black in the right hand of Figure 1 because the set T ∩ K+ is small. In this case,
there are points of T ∩K+ at all limit points of infinite color changes. Figure 1 illustrates
the behaviors described in Theorems 3 and 4. In the perturbation shown in Figure 1, there
is not much change to the “outside” of K+, whereas the “inside” shows the effect of an
“implosion.” Further discussion of the figures in this paper is given at the end of §1.
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§1. Fatou coordinates and transition functions. Let M be a 2-dimensional complex
manifold, and let F be a holomorphic automorphism of M , corresponding to the case ε = 0
in (0.1), so O is a fixed point which is semi-attracting and semi-parabolic. We will give a
brief sketch of the results in [U1].

We choose local holomorphic coordinates (x, y) with center O = (0, 0) so that the local
strong stable manifold is given by W ss

loc(O) = {x = 0, |y| < 1}. Further, for any i, j we may
change coordinates so that F has the form

x1 = x+ a2x
2 + a3x

3 + . . .+ aix
i + ai+1(y)xi+1 + . . .

y1 = by + b1xy + . . .+ bjx
jy + bj+1(y)xj+1 + . . .

(1.1)

We will suppose that a2 6= 0, and by scaling coordinates, we may assume a2 = 1. (In the
case where a2 = . . . = am = 0, am+1 6= 0, the results analogous to [U1] have been treated
by Hakim [H].) For r, η > 0, we set

Bιr,η = {|x+ r| < r, |y| < η} =
{
<
(
−1
x

)
>

1
2r
, |y| < η

}
. (1.2)
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If we take r and η small, then the iterates FnB
ι

r,η of the set B
ι

r,η shrink to O as n → ∞.
Further, Bιr,η plays the role of the “incoming petal” and is a base of convergence, which
is to say that B :=

⋃
n≥0 F

−nBιr,η is the set of points where the forward iterates converge
locally uniformly to O.

With a3 as in (1.1), we set q = a3−1 and choosing the principal branch of the logarithm,
we set

wι(x, y) := − 1
x
− q log(−x). (1.3)

It follows that for p ∈ B the limit

ϕι(p) = lim
n→∞

(wι(Fn(p))− n)

is an analytic function ϕι : B → C satisfying the property of an Abel-Fatou coordinate:
ϕι ◦ F = ϕι + 1. Further,

ϕι(x, y) = wι(x, y) +B(x, y) (1.4)

where B is bounded on Bιr,η and tends to 0 when <(−1/x)→ +∞ (see [U1, Section 8.1]).

Theorem 1.1. There is a holomorphic function Φ2(x, y) on B such that Φ = (ϕι,Φ2) gives
a biholomorphic isomorphism between B and C2. The map F is conjugated via Φ to the
translation of C2 given by (X,Y ) 7→ (X + 1, Y ).

Figure 2a. Slices of K+ by an unstable manifold for Fa,ε. a = .3, ε = 0 (left); a = .3,
ε = .05 (right).

By Theorem 1.1, the sets {ϕι = const} define a holomorphic fibration Fϕι of B whose
fibers are closed complex submanifolds which are holomorphically equivalent to C. The
intersection of this fibration with Bιr,η may be thought of consisting of vertical disks as
was observed in [U1, §8]. More precisely, for each p ∈ Bιr,η, there is an analytic function
ψp : {|y| < η} → C such that the fiber of Fϕι through p is contained in a graph:

{(x, y) ∈ Bιr,η : ϕι(x, y) = ϕι(p)} ⊂ {(x, y) : x = ψp(y), |y| < η}
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These graphs converge to the (vertical) local strong stable manifoldW ss
loc(O) as p→W ss

loc(O)
through Bιr,η.

Figure 2b. Zoom of Figure 2a (right). Further zoom.

The fibers of Fϕι can be distinguished by their intrinsic dynamical properties. In fact
they are strong stable manifolds in the sense that the distance between points in a given
fiber converges to zero exponentially, whereas for points in distinct fibers the convergence
is quadratic (cf. [Mi, Lemma 10.1]).

Theorem 1.2. For p1, p2 ∈ B such that p1 6= p2 and ϕι(p1) = ϕι(p2), we have

lim
n→+∞

1
n

log dist(Fnp1, F
np2) = log |b|. (1.5)

On the other hand, if ϕι(p1) 6= ϕι(p2), then limn→+∞
(
n2 · dist(Fnp1, F

np2)
)
6= 0.

Proof. The forward orbit of a point of B will enter the set Bιr,η, so we may assume that
p1, p2 ∈ Bιr,η0 . If ϕι(p1) = ϕι(p2) we may assume that they are contained in a graph
{x = ψξ(y) : |y| < η0}. The behavior in the y-direction is essentially a contraction by a
factor of |b|+ o(1) where the o(1) refers to a term which vanishes as the orbit tends to O.
Since the graphs become vertical as they approach O, the distance from Fnp1 to Fnp2 is
essentially contracted by |b|n, which gives the first assertion.

For the second assertion, we use (1.3) and (1.4) so that

ϕι = − 1
x
− q log(−x) + o(1)

since <(−1/x)→ +∞ along forward orbits. From this we obtain

−x− 1
ϕι

= x2q log(−x) + o(x2 log(−x)).
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Thus
−x = (ϕι)−1 = O(x3/2)

holds on Bιr,ρ as <(−1/x) → +∞. For i = 1, 2, we write pi = (xi, yi) and ϕι(xi, yi) = ci.
The orbit is denoted (xi,n, yi,n) = Fn(xi, yi). We have ϕι(Fn(xi, yi)) = ci + n, so we have
|xi,n| ≤ 2/n. Thus it follows that

x1,n − x2,n = −
(

1
c1 + n

+O(n−3/2)
)

+
(

1
c2 + n

+O(n−3/2)
)

=
c1 − c2
n2

+O(n−5/2)

which gives the second assertion in the Theorem.

We may also define the asymptotic curve

Σ := {p ∈M \ {O} : F−n(p)→ O as n→∞} (1.6)

In [U2] this was shown to be the image of an injective holomorphic map H : C→ Σ which
satisfies H(ζ + 1) = F (H(ζ)). The outgoing Fatou coordinate ϕo : Σ→ C is defined to be
the inverse of H, so ϕo(F ) = ϕo + 1.

Let us define

Bor,η := {|x− r| < r, |y| < η} =
{
<
(
− 1
x

)
< − 1

2r
, |y| < η

}
(1.7)

Then there is an r > 0 and a component Σ0 of Σ ∩Bor,η that can be expressed as a graph

Σ0 := {y = ψ(x), |x− r| < r} (1.8)

where ψ is holomorphic, and ψ(x)→ 0 when < (−1/x)→ −∞. This is the analogue of the
“outgoing petal”.

We have two Fatou coordinates, ϕι and ϕo, defined on the set B ∩ Σ. It is natural to
compare them, so we set Ω := ϕo(B ∩ Σ) ⊂ C and define the horn map

h := ϕι ◦ (ϕo)−1 = ϕι ◦H : Ω→ C

The critical points of h correspond to the points ζc where (ϕo)−1(ζc) is a point of tangency
between the asymptotic curve Σ and the strong stable fibration Fϕι .

We recall the following from [U2]. The map h satisfies h(ζ + 1) = h(ζ) + 1. For R > 0,
let us write Ω±R := {ζ ∈ C : ±=(ζ) > R}, and choose R large enough that Ω±R ⊂ Ω. On Ω±R
we have

h(ζ) = ζ + c±0 +
∑
n>0

c±n e
±2nπiζ .

In particular h is injective on Ω±R if R is sufficiently large. Since h is periodic, it defines a
map of the cylinder C/Z; we see that the upper (resp. lower) end of the cylinder will be
attracting if =(c+0 ) > 0 (resp. =(c−0 ) < 0).
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In the construction of the Fatou coordinates we have

ϕι(x, y) = − 1
x
− q log(−x) + o(1)

ϕo(x, y) = − 1
x
− q log(x) + o(1)

where we interpret o(1) in the first case to mean that B 3 (x, y) → (0, 0), and x not
tangential to the positive real axis, and in the second case Σ 3 (x, y)→ (0, 0), and x is not
tangential to the negative real axis. Thus if we compare the values of log at the upper and
lower ends of the cylinders and use these values in the formula for hα, we find c±0 = ±πiq,
which gives the normalization c+0 +c−0 = 0. For comparison, we note that Shishikura [S] uses
the normalization c+0 = 0. In the case of the semi-parabolic map (0.3) with ε = 0, we find
that if we use the normalization in equation (1.1) with a2 = 1, then we have a3 = 2a/(a−1)
and q = a3 − 1, so

c+0 = πi
a+ 1
a− 1

(1.9)

We comment that this construction is in fact local. In case F is defined in a neighbor-
hood U of O, we may define the local basin

Bloc := {p : fnp ∈ U ∀n ≥ 0, fnp→ O locally uniformly as n→∞},

as well as the local asymptotic curve Σloc. Similarly, we have Fatou coordinates ϕι and ϕo

on Bloc and Σloc. In this case there is an R such that

ϕι(Bloc) ⊃ {ζ ∈ C : −<ζ +R < |=ζ|}, ϕo(Σloc) ⊃ {ζ ∈ C : <ζ +R < |=ζ|}.

We define WR := {ζ ∈ C : |<ζ|+R < |=ζ|}, so for R sufficiently large,

ϕι/o(Bloc ∩ Σloc) ⊃WR,

and possibly choosing R even larger, h = ϕι ◦ (ϕo)−1 is defined as a map of WR to C.
Note that we have h(ζ + 1) = h(ζ) + 1 for ζ ∈WR such that both sides of the equation are
defined. If we shrink the domain U of F , we may need to increase R, but the germ of h at
infinity is unchanged. Let h• denote the germ at infinity of h on WR. It is evident that:

Theorem 1.3. If F and F ′ are locally holomorphically conjugate at O, then the germs h•

and h′
•

are conjugate.

Up to this point, the discussion has applied to a general complex manifold M . Let us
suppose for the rest of this section that M is a Stein manifold. (See [FG] for the definition
and properties). For instance C2 is Stein. One of the properties of Stein manifolds is that
they have no compact complex submanifolds.

If M is Stein, then Σ does not continue through O. More precisely, we have:

Proposition 1.4. If M is Stein, then Σ0, as defined in (1.8), cannot be extended analyti-
cally past O.

Proof. If ψ extended analytically to a neighborhood of x = 0, then Σ ∼= C would be
contained in a strictly larger complex manifold. But it is known that the Riemann sphere
P1 is the only complex manifold that strictly contains C. But this is compact and thus
cannot be contained in M .
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Proposition 1.5. If M is Stein, every component of B ∩ Σ is simply connected. In par-
ticular, if M = C2 and F is a polynomial automorphism, then each component of B ∩Σ is
conformally equivalent to a disk.

Proof. We consider the sequence of holomorphic mappings Fn◦H : C→M , n = 1, 2, 3, . . ..
Since any Stein manifold can be embedded into some CN , we can regard Fn◦H as a mapping
into CN . Now H−1(Σ∩B) is the set of points ζ ∈ C for which {Fn ◦H(ζ)} converges to O
locally uniformly. Hence by the maximum principle, H−1(Σ ∩ B) is simply connected.

Theorem 1.6. Assume that M is Stein, and Ω 6= C. If Ω′ is a connected component of Ω,
then the function h|Ω′ cannot be continued analytically over any boundary point of Ω′. In
particular, since Ω± 6= C, the derivative h′ is nonconstant on both Ω+ and Ω−, and there
exist points in both of these sets where |h′| < 1 and where |h′| > 1.

Proof. Suppose there is a disk ∆ ⊂ C with center at a point of ∂Ω and a connected
component W of Ω ∩ ∆ such that the restriction of h0 to W extends to a holomorphic
function on ∆. Then, by shrinking ∆, we can assume that h = ϕι ◦ (ϕo)−1 is bounded on
W .

If Φ = (ϕι,Φ2) is the map from Theorem 1.1, we have

||Φ((ϕo)−1(ζ))||2 = |ϕι((ϕo)−1(ζ))|2 + |Φ2((ϕo)−1(ζ))|2 →∞

as ζ ∈ ∆0 approaches ∂W ∩∆. Hence |Φ2((ϕo)−1(ζ))| → ∞ as ζ → ∂W ∩∆. By Radó’s
Theorem (see [N]) Φ2 ◦(ϕo)−1 can be extended to a meromorphic function on ∆, with poles
on ∆ −W . This shows that ∆ −W consists of isolated points, and contradicts the fact
that every connected component of Ω is simply connected.

We note that in all dynamically interesting cases that we have encountered, the man-
ifold M is Stein. However, there are cases where M is not Stein.

Examples. The first example is the product M0 = P1 ×C. Let F act as translation on
P1 × {0} with fixed point O = (∞, 0) ∈ P1 × {0}, and let F multiply the factor C by b.
Then Σ = (P1×{0})−O = C×{0}. All points of M0 are attracted to O. The convergence
is locally uniform on B = C×C, so we see that Σ ⊂ B.

For the second example, we start with the linear map L(x, y) = (b(x + y), by) on C2,
so the x-axis, X = {y = 0}, is invariant. The origin is an attracting fixed point, and we let
M1 denote C2 blown up at the origin. The strict transform of X inside M1 will be again
denoted as X. Thus L lifts to a biholomorphic map of M1. We write the exceptional fiber
as E and note that E is equivalent to P1, and L is equivalent to translation on E. The
fixed point of L|E is E ∩ X, which is the only fixed point on M1. We have Σ = E − X,
and X is the strong stable manifold of E ∩ X. All points of M1 are attracted to E ∩ X,
but the convergence is not locally uniform in a neighborhood of any point of X. We have
B = M1 −X, and so B contains Σ. The second example is different from the first because
E has negative self-intersection (see [FG] for the definition of self-intersection and the fact
that it is negative in this case).

Both M0 and M1 fail to be Stein because they contain compact holomorphic curves.
Similar examples can be constructed for all of the Hirzebruch surfaces.
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Graphical representation. In Figure 1, we saw slices of K+ by a plane T which is not
invariant. If we wish to make the picture invariant, we may slice by unstable manifolds of
periodic saddle points. If Q is a periodic point of period p and of saddle type, then the
unstable manifold Wu(Q) may be uniformized by C so that Q corresponds to 0 ∈ C. The
restriction of F p to Wu(Q) corresponds to a linear map of C in the uniformizing coordinate,
so the slice picture is self-similar. The unstable slice picture cannot be taken at the fixed
point O when ε = 0 because it is not a saddle. Instead, we can use the unique 2-cycle
{Q,F (Q)}, which remains of saddle type throughout the bifurcation.

The left hand side of Figure 2a shows this picture for a = .3; the point Q corresponds
to the tip at the rightmost point, and the factor for self-similarity is approximately 8. The
two pictures, Figure 1 (left) and Figure 2a (left), are slices at different points O and Q of
∂B. However, the “tip” shape of the slice Wu(Q) ∩ B at Q appears to be repeated densely
at small scales in the slice T ∩ B as well as in Wu(Q) ∩ B. This might be explained by the
existence of transversal intersections between the stable manifold W s(Q) and T at a dense
subset of T ∩ ∂B. Similarly the “cusp” at O of the slice T ∩ B appears to be repeated at
small scales in the slice Wu(Q) ∩ B as well as in T ∩ B. A phenomenon which is closely
related to what we have just described has in fact been proved to hold in the hyperbolic
case (see [BS7]).

Figure 3. Basin B in Fatou coordinates; a = .3; 10 periods (left) and detail (right).

In general, the set K+ consisting of points with bounded forward orbits, coincides with
the zero set of the Green function {G+ = 0}. The set B is contained in K+ but the set
K+ is of dynamical interest, especially when B = ∅ . In Figures 1 and 2, B seems to have
“imploded” leaving K+ = ∂K+ = J+ without interior when ε 6= 0. On the other hand, the
computer detail in Figure 2b persists as ε → 0. This means that ε 7→ J+(Fε) will appear
to have “exploded” a little bit as ε = 0 changes to ε 6= 0. We will see a marked similarity
between Figures 2b (right) and 5 (right), which correspond to Theorems 3 and 4.

We may use ϕι and ϕo to represent B ∩ Σ graphically. We use ϕo to parametrize Σ.
In Figure 3 we have drawn part of the slice B ∩ Σ. By the periodicity, we see that there
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are at least two components, which must be simply connected by Proposition 1.4. Figure 3
also shows level sets of the real and imaginary parts of ϕι. At most places, the two families
of level sets form curvilinear quadrilaterals, but the places where they form curvilinear
octagons indicate the presence of critical points inside. One critical point for h (as well as
its complex conjugate and translates) is clearly evident on the left hand picture, and at least
two more critical points are evident on the right. Figures 1 and 3 give invariant slices of
the same basins and share certain features. But Figure 3, which is specialized to parabolic
basins, has more focus on the interior; and the two pictures are localized differently.

§2. “Almost Fatou” coordinates: dimension 1. We consider a family of holomorphic
maps fε(x) defined in a neighborhood V of x = 0 in C depending holomorphically on the
parameter ε. We assume that f0 has the form

f0(x) = x+ x2 +O(x3)

and that fε has fixed points at x = ±ε. Then fε has the form

fε(x) = x+ (x2 + ε2)αε(x) (2.1)

with
αε(x) = 1 + pε+ (q + 1)x+O(|x|2 + |ε|2) (2.2)

holomorphic in a neighborhood of (x, ε) = (0, 0). We may assume without loss of generality
that p = 0, by changing to the coordinates (x̂, ε̂) given by x = (1− pε̂)x̂ and ε = ε̂− pε̂2.

We are interested in analyzing the behavior of the iterates fnε (x) when n → ∞, and
ε = εn is an α-sequence, and thus ε tends to 0 tangentially to the real axis and satisfies

0 < <(ε), |=(ε)| ≤ c|ε|2, or equivalently,
∣∣∣∣=(1

ε

)∣∣∣∣ ≤ c. (2.3)

As the first step, we introduce a change of coordinates, depending on ε, in which fε
is close to the translation by 1. For ε with <(ε) > 0, we denote C − (L+

ε ∪ L−ε ), where
L±ε = {±iεt : t ≥ 1} are half lines with endpoints ±iε, and we define

uε =
1
ε

arctan
x

ε
=

1
2iε

log
iε− x
iε+ x

for x ∈ C−
(
L+
ε ∪ L−ε

)
. (2.4)

where we choose the single-valued branch of logarithm so that uε(0) = 0. Then uε(x) maps
C− (L+

ε ∪ L−ε ) conformally onto the strip in the u-plane given by |<(εu)| < π
2 . The inverse

is given by x = ε tan(εu). We note that any line <(εu) = a corresponds to a circular arc
with endpoints ±εi and passing through the point ε tan a in the x-plane.

We denote by S
ι/o
0,r the disk of radius r with center ±r. For nonzero ε, we let Sε,r be

the union of two disks of radius r with centers at ± ε
|ε|

√
r2 − |ε|2, as pictured in Figure 4.

Let Hι/o
ε denote the half-space to the left/right of the line εiR. Since ε is almost real, Hι/o

ε

is approximately the left/right half plane. The spaces of “incoming”/“outgoing” points are
S
ι/o
ε,r := H

ι/o
ε ∩ Sε,r. Finally, we write Dε := {|x| < ε}.

12



Figure 4 shows the boundary of Hι
ε (dashed) and its image under uε (also dashed).

The image uε(Sιε,r) is bounded by two parallel lines: one of them passes through − π
2ε + ρ,

where ρ = 1
2ε arctan |ε|√

r2−|ε|2
, and the other is inside the shaded strip. The set Dε is the

shaded region on the left; its image is the shaded vertical strip on the right hand side.
We will take r small enough that the ‘O’ term in (2.2) is small. Note that the propor-

tions in Figure 4 may be misleading because r will be fixed while ε→ 0, so Sε,r will be of
a fixed diameter while Dε := {|x| < ε} shrinks. Also note that if r is fixed, then ρ stays
bounded as ε→ 0.

Figure 4. Mapping of the slit region by uε for ε > 0.

To describe the behavior of the mapping fε in terms of uε, we note

iε− fε(x)
iε+ fε(x)

=
(iε− x){1 + (x+ iε)αε(x)}
(iε+ x){1 + (x− iε)αε(x)}

=
(iε− x)(1 + iεγε(x))
(iε+ x)(1− iεγε(x))

where we have put

γε(x) =
αε(x)

1 + xαε(x)
= 1 + qx+ · · · . (2.5)

Thus we have

uε(fε(x))− uε(x) =
1

2iε
log

1 + iεγε(x)
1− iεγε(x)

=
1
iε

{
iεγε(x) +

1
3

(iεγε(x))3 + · · ·
}

= γε(x)− ε2

3
γε(x)3 + · · ·

= 1 + qx+O(|ε|2 + |x|2).

(2.6)
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We note that, although uε(x) and uε(fε(x)) are not defined in a neighborhood of (x, ε) =
(0, 0), their difference is a well-defined single-valued holomorphic function in a neighborhood
of (x, ε) = (0, 0). By shrinking the domain V , we have

|uε(fε(x))− uε(x)− 1| < 1
4

for x ∈ V − (L+
ε ∪ L−ε ).

We note that the mapping uε does not converge when ε→ 0; we define

uιε(x) := uε(x) +
π

2ε
, uoε(x) := uε(x)− π

2ε
.

Proposition 2.1. We have convergence

uιε(x)→ uι0(x) := − 1
x
, <(x) < 0

uoε(x)→ uo0(x) := − 1
x
, <(x) > 0

on compact subsets as ε→ 0.

Proof. We have

uιε(x) =
1

2iε

(
log

iε− x
iε+ x

+ iπ

)
=

1
2π

log
x− iε
x+ iε

=

=
1

2iε
log

1− iε/x
1 + iε/x

= − 1
iε

(
iε

x
+

1
3

(
iε

x

)2

+ · · ·

)
where, in the first function in the second line, we choose the single-valued branch on C −
[−iε, iε] that vanishes at x =∞. This converges uniformly to −1/x on compact sets. The
proof is similar for uoε(x).

Proposition 2.2. For any compact subset C ⊂ Sι0,r, there are positive constants ε0, C0

and K0 such that for |ε| < ε0 and x ∈ C, the following hold:
(i) f jε (x) ∈ Sιε,r ∪Dε, for 0 ≤ j ≤ 3π

5|ε| −K0

(ii) |f jε (x)| ≤ C0 max
{

2
j , |ε|

}
, for 0 ≤ j ≤ 3π

5|ε| −K0

(iii) f j(x) ∈ Dε for π
3|ε| ≤ j ≤

3π
5|ε| −K0.

Proof. By Proposition 2.1,

uε(x) +
π

2ε
→ − 1

x
(ε→ 0)

uniformly on compact subsets of Sι0,r, so there is K0 > 0 such that

− π

2|ε|
< <

(
ε

|ε|
uε(x)

)
< − π

2|ε|
+K0
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on C. We know that uε(x) 7→ uε(fε(x)) is approximately translation by adding +1, and
since ε satisfies (2.3), it is approximately real, so we can multiply by ε/|ε| and have

3
4
< <

(
ε

|ε|
uε(fε(x))

)
−<

(
ε

|ε|
uε(x)

)
<

5
4

and so it follows by induction on j that

− π

2|ε|
+

3j
4
< <

(
ε

|ε|
uε(f jε (x))

)
< − π

2|ε|
+

5j
4

+K0. (2.7)

If 0 ≤ j < 3π/(5|ε|)−K0, then

<
(
ε

|ε|
uε(f jε (x))

)
<

π

4|ε|

and hence f jε (x) ∈ Sιε,r ∪Dε, which proves (i).
For (ii) we use (2.4) and have

−π
2
≤ <(εuε) ≤ −

π

4
⇒ |x| ≤ |ε| tan |<(εuε)| <

|ε|
π
2 + <(εuε)

and |<(εuε)| ≤ π
4 implies that |x| ≤ |ε|. Now by (2.7) we have

π

2|ε|
+ <

(
ε

|ε|
uε(f jε (x))

)
≥ 3j

4
.

For (iii), we note that if π/(3|ε|) ≤ j < 3π/(5|ε|)−K0, then by (2.7)

− π

4|ε|
< <

(
ε

|ε|
uε(f jε (x))

)
<

π

4|ε|

and hence f jε (x) ∈ Dε.

Next, with q as in (2.2), we define

wε(x) = uε(x)− q

2
log
(
ε2 + x2

)
=

1
2iε

log
iε− x
iε+ x

− q

2
log(ε2 + x2)

(2.8)

The corresponding incoming and outgoing versions are obtained by adding terms that
depend on ε but do not depend on x:

wι/oε (x) : = wε(x)± π

2ε

=
1
ε

(
±π

2
+ arctan

x

ε

)
− q

2
log(ε2 + x2)

(2.9)

We set wι/o0 (x) = − 1
x − q log(∓x). With this notation we have
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Lemma 2.3. limε→0 w
ι
ε = wι0 on Sι0,r and limε→0 w

o
ε = wo0 on So0,r.

Let us define Aε(x) := wε(fε(x)) − wε(x) − 1, which measures how far wε(x) is from
being a Fatou coordinate. Although wε(fε) and wε are defined on a domain that varies
with ε, the difference Aε is defined on a uniformly large neighborhood of (ε, x) = (0, 0).

Proposition 2.4. Aε(x) = O(|ε|2 + |x|2).

Proof. First we observe that

ε2 + fε(x)2 = ε2 + {x+ (ε2 + x2)αε(x)}2

= ε2 + x2 + 2x(ε2 + x2)αε(x) + (ε2 + x2)2αε(x)2

= (ε2 + x2)
(
1 + 2xαε(x) + (ε2 + x2)αε(x)2

)
= (ε2 + x2)(1 + 2x+O(|ε|2 + |x|2)).

It follows that

wε(fε(x))− wε(x) =

= (uε(fε(x))− uε(x))− q

2
(
log
(
ε2 + fε(x)2

)
− log

(
ε2 + x2

))
= 1 + qx+O(|ε|2 + |x|2)− q

2
(
2x+O(|ε|2 + |x|2)

)
= 1 +O(|ε|2 + |x|2)

which gives the desired result.

We note, too, that
Aε(x) = A0(x) + εÃ(x) +O(ε2) (2.10)

where A0(x) = O(x2) and Ã(x) = O(x).

Corollary 2.5. wι/oε (fε(x))− wι/oε (x)− 1 = O(|ε|2 + |x|2)

Lemma 2.6. There exists K0 > 0 such that: If x, fε(x), . . . , fnε (x) ∈ Sε,r, then

|wε(fnε (x))− wε(x)− n| ≤ K0

and hence
|woε (fnε (x))− wιε(x) +

π

ε
− n| ≤ K0

Proof. We have

wε(fnε (x))− wε(x)− n =
n−1∑
j=0

Aε(f jε (x)).

Choose 0 < n1 < n2 < n such that

f jε (x) ∈ Sιε,r −Dε, 0 ≤ j ≤ n1 − 1

f jε (x) ∈ Dε, n1 ≤ j ≤ n2 − 1

f jε (x) ∈ Soε,r −Dε, n2 ≤ j ≤ n
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Then n2 − n1 ≤ const/|ε|, and

|Aε(f jε (x))| ≤ const/j2, 0 ≤ j ≤ n1 − 1

|Aε(f jε (x))| ≤ const |ε|2, n1 ≤ j ≤ n2 − 1

|Aε(f jε (x))| ≤ const/(n− j)2, n2 ≤ j ≤ n

This proves the Lemma.

We will use the following condition:

{mj , εj} is a sequence such that
π

2εj
−mj is bounded (2.11)

Recall that {nj , εj} is an α-sequence if εj → 0, and nj − π
εj
→ α as j → ∞. For instance,

(j, εj) with εj = π
j−α is an α sequence. If {nj , εj} is an α-sequence, then εj eventually

satisfies (2.3), and {nj/2, εj} satisfies (2.11).
We define an almost Fatou coordinate in the incoming direction:

ϕιε,n(x) = wιε(f
n
ε (x))− n = wιε(x) +

n−1∑
j=0

Aε(f jε (x)).

We recall that B denotes the parabolic basin of points where the iterates f j0 converge locally
uniformly to O = (0, 0).

Theorem 2.7. If (2.11) holds, then on B we have

lim
j→∞

ϕιεj ,nj = ϕι.

Proof. If x ∈ B, we may assume that x ∈ Sιε,r, where ε and r are as above. If we set
ϕι0,n = wι0 +

∑n−1
j=0 A0(f j0 (x)), we have ϕι = limn→∞ ϕι0,n. We consider

ϕιε,n − ϕι0,n = wιε(x)− wι0(x) +
n−1∑
j=0

(
Aε(f jε (x))−A0(f j0 (x))

)
.

We will show that this difference vanishes as ε = εj → 0 and n = nj → ∞. We have
wιε − wι0 → 0 by Lemma 2.3. The summation is estimated by∣∣∣∑∣∣∣ ≤∑∣∣∣A0(f jε (x))−A0(f j0 (x))

∣∣∣+
∑∣∣Aε(f jε (x))−A0(f jε (x))

∣∣ =
∑

I
+
∑

II

For the first sum, we recall that A0(x) = O(x2), and so by Proposition 2.2 we have that if
(n− 1)|ε| ∈ (π2 ,

3π
5 ), then the following estimate holds:

∑
I
≤
n−1∑
j=1

(∣∣A0(f jε )
∣∣+
∣∣∣A0(f j0 )

∣∣∣) ≤ K n−1∑
j=1

(
1
j2

+ |ε|2
)
≤ K

3π|ε|
5

+
∞∑
j=1

1
j2

 ≤ B
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as n → ∞ and ε → 0. For δ > 0 we choose J such that
∑∞
J j−2 < δ. If we write∑

I ≤
∑J

1 +
∑∞
J+1, then we see that

∑∞
J+1 ≤ πK|ε|/2 +Kδ. On the other hand, for fixed

j we have A0(f jε )→ A0(f j0 ) as ε→ 0, so we conclude that

J∑
1

=
J∑
1

∣∣∣A0(f jε )−A0(f j0 )
∣∣∣→ 0

as ε→ 0. In conclusion, we see that limε→0

∑
I ≤ Kδ for all δ, so that

∑
I → 0.

For the second part, we use (2.10) so that

∑
II
≤
n−1∑
j=0

∣∣Aε(f jε )−A0(f jε )
∣∣ ≤ n−1∑

j=0

∣∣∣εÃ(f jε )
∣∣∣+

c
|ε|∑
j=0

K|ε|2

≤ K ′|ε|+K ′|ε|

c
|ε|∑
j=1

1
j
≤ K ′′|ε| log

(
c

|ε|

)

and this last term vanishes as ε→ 0, which completes the proof.

We may also define almost Fatou coordinates in the outgoing direction:

ϕoε,n := woε (f
−n
ε (x)) + n.

The direct analogue of Theorem 2.7 also holds for the outgoing direction:

Corollary 2.8. If (2.11) holds, then limj→∞ ϕoεj ,nj converges to ϕo uniformly on compact
subsets of So0,r.

For any x0 ∈ Sι0,r and x′0 ∈ So0,r, we set α = ϕo(x′)−ϕι(x). Then setting τα(ζ) = ζ+α,
we can define the transition map

Tα(x) = (ϕo)−1 ◦ τα ◦ ϕι(x)

so that Tα(x0) = x′0, and Tα extends holomorphically to a neighborhood of x0.

Theorem 2.9. Let x0, x′0 and α be as above. For any α-sequence (nj , εj), we have

lim
j→∞

f jεj (x) = Tα(x)

uniformly in a neighborhood of x0.

Proof. Choose mj and m′j so that nj = mj + m′j , and (2.11) holds for {mj} and {m′j}.
By Theorem 2.6, ϕιεj ,mj converges uniformly to ϕι in a neighborhood of x0, and ϕoεj ,m′j
converges to ϕo uniformly in a neighborhood of x′0. Since ϕo is invertible, it follows that
(ϕoεj ,mj )

−1 converges to (ϕo)−1 uniformly in a neighborhood of ϕo(x′0). For j sufficiently
large, ϕιεj ,mj maps a small neighborhood of x0 to a small neighborhood of ϕι(x0). If we
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set αj := nj − π
εj

, then αj → α, so for j sufficiently large, ταj ◦ ϕιεj ,mj maps a small
neighborhood of x0 into the domain of (ϕoεj ,m′j )

−1. We conclude that

xj := (ϕoεj ,m′j )
−1 ◦ ταj ◦ ϕιεj ,mj (x)→ Tα(x)

as j →∞. Applying ϕoεj ,m′j , we find

ϕoεj ,m′j
(xj) = ϕιεj ,mj (x) + αj

The left hand side of this equation is

woεj (f
−m′j
εj (xj)) +m′j = wεj (f

−m′j
εj (xj)) +

1
2εj

+m′j

and the right hand side is

wιεj (f
mj
εj (x))−mj = wεj (f

mj
εj (x))−mj −

1
2εj

+ αj .

Thus wεj (f
−m′j
εj (xj)) = wεj (f

mj
εj (x)), so we conclude that xj = f

nj
εj (x), and so we obtain

the desired convergence.

Now let us assume that f is defined on all of C.

Proposition 2.10. If f is defined on all of C, then (ϕo)−1 extends to an entire function
H : C→ C.

Proof. The quantities ϕι/o − wι/o are bounded, so the image ϕo(So0,r) contains {<(ζ) <
−K} for some large K. Further, ϕo is invertible on So0,r, and thus (ϕo)−1 is defined on
{<(ζ) < −K}. Now by the identity (ϕo(ζ + 1))−1 = f((ϕo)−1(ζ)), we may extend this
function from {<(ζ) < −K} to a function H defined on all of C.

If f if globally defined, then we let H be as in Proposition 2.10; thus Tα := H ◦τα ◦ϕι :
B → C is defined on the whole basin B. It is evident that we have: f ◦Tα = Tα ◦ f = Tα+1.
Using this functional relation, we obtain a more global version of Theorem 2.9:

Theorem 2.11. Suppose that f is defined on all of C. If (nj , εj) is an α-sequence, then
limj→∞ f

nj
εj = Tα on B.

Proof. We note that for an α-sequence (nj , εj) and an integer k, the sequence (nj−k, εj) is
an (α− k)-sequence. For given x0 ∈ B and α we choose an integer k so that Tα−k(x0) is in
So0,r. By Theorem 2.9, it follows that fnjεj (x0) = fkεj ◦f

nj−k
εj (x0) converges to fk◦Tα−k(x0) =

Tα(x0).

§3. Two-dimensional case: Convergence of the “Almost Fatou” coordinate. We
consider a one-parameter family Fε of holomorphic diffeomorphisms of a complex manifold
M , varying analytically in ε, such that F0(x, y) = (x+ x2 + · · · , by + · · ·). The fixed point
O = (0, 0) has multiplicity 2 as a solution of the fixed point equation, and we will assume
that for ε 6= 0 the fixed point O will split into a pair of fixed points. We parametrize so
that the fixed points are (±iε, 0)+O(ε2). We consider here only fixed points of multiplicity
two. We suspect that perturbations of fixed points of higher multiplicity might be quite
complicated, since this is already the case in dimension 1, as was shown by Oudkerk [O1,2].
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Theorem 3.1. By changing coordinates and reparametrizing ε, we may suppose that our
family of maps has the local form

Fε(x, y) =
(
x+ (x2 + ε2)αε(x, y), bε(x)y + (x2 + ε2)βε(x, y)

)
(3.1)

where αε = 1 + (q+ 1)x+ sy+O(|x|2 + |y|2 + |ε|2) and b0(0) = b. In particular, the points
(±iε, 0) are fixed, the lines {x = ±iε} are local strong stable manifolds, where the map is
locally linear. Further, the multipliers at the fixed points are (1± 2iε+O(ε2), bε(±iε)).

Proof. By a change of variables, we may assume that the fixed points are (±iε, 0). Each
fixed point will have eigenvalues 1 + O(ε) and b + O(ε). There will be local strong stable
manifolds W ss

loc corresponding to the eigenvalue b+O(ε), and these are proper in a uniformly
large domain in (x, y)-space for |ε| < ε0. That is, we may rescale coordinates so that we
have graphs

W ss
loc(±iε, 0) = {x = ψ±(ε, y) : |y| < 1},

where ψ± is analytic in y. Further, the local strong stable manifolds vary holomorphically
in ε for ε 6= 0, and they converge to the y-axis when ε→ 0. Thus ψ±(ε, y) is jointly analytic
in both ε and y.

Let us consider new coordinates X,Y defined by x = χ0(ε, y) + Xχ1(ε, y), Y = y,
where we set χ0 = 1

2 (ψ+ +ψ−) and χ1 = 1
2iε (ψ

+−ψ−). Since ψ± are uniquely determined
and analytic in ε, we have limε→0(ψ+(ε, y) − ψ−(ε, y)) = 0, from which we conclude that
χ1 is analytic in (ε, y).

In order for Fε to have the desired form in the y-coordinate, we need to change co-
ordinates so that y 7→ Fε(±iε, y) is linear in y. We set b±ε = ∂(Fε)2

∂y (±iε, 0). There is a
unique function ξ±ε (y) = y +O(y2) such that Fε(±iε, ξ±ε (y))2 = ξ±ε (b±ε y). We note that ξ±ε
is holomorphic in ε, and ξ+

0 = ξ−0 . Thus ε 7→ (ξ−ε − ξ+
ε )/ε is analytic, and we may define a

new coordinate system (X,Y ) with X = x and Y = [(iε − x)ξ−ε (y) + (x + iε)ξ+
ε (y)]/(2iε).

F has the desired form in the new coordinate system.
Our map now has the form (3.1) with αε = 1+p ε+(q+1)x+sy+O(|x|2 + |y|2 + |ε|2).

We now pass to the new coordinate system (x̂, ε̂) given by x = (1 − pε̂)x̂ and ε = ε̂ − pε̂2,
and now we have p = 0. The remaining statements in the Theorem are easy consequences
of (3.1).

One motivation for the normalization in (3.1) is that for the map fε : z 7→ z + z2 + ε2,
the fixed points are ±iε, and the multipliers are 1±2iε. We comment that the expression in
(3.1) is strictly local. If F (x, y) is a polynomial diffeomorphism which satisfies (3.1) locally,
then the vertical lines {x = ±iε} are contained in the local, and thus global, strong stable
manifolds. However, for a Hénon map, every stable manifold of a saddle point is dense in
J+ and thus not closed in C2 (see [BS1]). Thus the polynomial expression of a Hénon map
can never take the form (3.1).

Now let us define D = {ε ∈ C : |ε| < ε0} and let F̃ : D ×M → D ×M be defined by
F̃ (ε, p) := (ε, Fε(p)). The point (0, O) is fixed, and the eigenvalues of the differential of F̃
at this fixed point are 1, 1, and b0. We will now make use of the Center Manifold Theorem
(see [HPS] or [ST]). In particular, as a direct consequence of Theorem 2 of [ST] we have:
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Theorem 3.2. Given k, there is a neighborhood Ũ of (0, O) and a submanifold W̃ c of Ũ
which is Ck smooth and has the properties: (0, O) ∈ W̃ c, the tangent space T(0,O)W̃

c is the

(ε, x)-plane. Further, W̃ c is forward and backward invariant under F̃ in the following sense:
if p ∈W c, and f(p) ∈ Ũ , then f(p) ∈ W̃ c; similarly, if f−1(p) ∈ Ũ , then f−1(p) ∈ W̃ c.

We set W c
ε := W̃ c ∩ ({ε} ×M) to be the slice of W̃ c for fixed ε. By abuse of notation,

we will suppose that W c
ε is a submanifold of U := Ũ ∩ ({0} ×M).

Proposition 3.3. Let us fix a compact U0 ⊂ U . There are constants β < 1 and ε0 > 0
such that if |ε| < ε0 and p ∈ U0, we have dist(F jε (p),W c

ε ) ≤ βjdist(p,W c
ε ) for 1 ≤ j ≤ j0 if

F jε (p) ∈ U for 1 ≤ j ≤ j0.

Proof. The y-axis is normal to W c
0 at O, and the y-derivative of the second coordinate of

F0 at O is b with |b| < 1, so the derivative of Fε normal to W c
ε near O will be less than some

β < 1. This uniform contraction in the direction normal to W c
ε , means that the distance

to W c
ε decreases by a factor of β with each iteration.

Proposition 3.4. If |ε| < ε0, p ∈ U , and (xj , yj) := F jε (p) ∈ U for 1 ≤ j ≤ j0, then

|yj | ≤ C(|x2
j + ε2|+ βj)

for 1 ≤ j ≤ j0.

Proof. The strong stable manifold W ss for F0 passing through O is transverse to W c
0 .

For ε 6= 0, there are two saddle points (±iε, 0) for Fε. The stable manifold W s(Fε) for
these two saddle points is transverse to W c

ε , so W c
ε ∩W s(Fε) 6= ∅. It follows that W c

ε must
contain both saddle points (±iε, 0). Since W̃ c is C2 smooth, it follows that the curvature
is bounded by some constant C, and we have |y| ≤ C|x2 + ε2| for (x, y) ∈W c

ε .
Now let η : U → W c

ε be the projection in the x-direction, so that if p = (x, y) ∈ U ,
η(p) = (x, ŷ) ∈ W c

ε . By Proposition 3.3, we know that |y − ŷ|, the y-distance to W c
ε ,

decreases by a factor of β with iteration. Further, by the previous discussion, we have
|ŷ| ≤ C|x2 + ε2|, which gives the desired conclusion.

Now we want to re-do the estimates of §2 in the context of C2, so as in (2.5) we define

γε(x, y) =
αε(x, y)

1 + xαε(x, y)
= 1 + qx+ sy + · · · . (3.2)

If we define ũε(x, y) = uε(x) and assume that F has the form (3.1), we find the analogue
of (2.6):

ũε(Fε(x, y))− ũε(x, y) = γε(x, y)− ε2

3
γε(x, y)3 + · · ·

= 1 + qx+ sy +O(|ε|2 + |x|2 + |y|2)
(3.3)

We use the notation (xε,j , yε,j) := F jε (x, y), and we let r and ε be as in §2 just before
Proposition 2.2. We recall the sets Bιr,η = Sι0,r × {|y| < η} from (1.2).
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Proposition 3.5. For any compact subset C̃ ⊂ Bιr,η, there are positive constants ε0, C0

and K0 such that for |ε| < ε0 and x ∈ C̃, the following hold:
(i) xε,j ∈ Sιε,r ∪Dε for 0 ≤ j ≤ 3π

5|ε| −K0

(ii) |xε,j | ≤ C0 max
{

2
j , |ε|

}
, for 0 ≤ j ≤ 3π

5|ε| −K0

(iii) xε,j ∈ Dε for π
3|ε| ≤ j ≤

3π
5|ε| −K0.

Proof. This result is very similar to Proposition 2.2. While Proposition 2.2 was proved
using (2.6), we will use (3.3), which is the 2-dimensonal analogue. The principal difference
between (2.6) and (3.3) is the presence of the term sy. In Proposition 3.4, the term yε,j
was bounded by C(|xε,j |2 + |ε|2 + βj), and this term is smaller than, and easily absorbed
into, the right hand side of item (ii). Similarly, items (i) and (iii) remain valid.

Our next step is to define an analogue of wε, where we adjust it slightly by adding a
multiple of y:

w̃ε(x, y) = wε(x)− sy/(b− 1), w̃ι/oε (x, y) = wι/oε (x)− sy/(b− 1).

The addition of the multiple of y causes the y-terms to cancel in the expression

w̃ε(Fε(x, y))− w̃ε(x, y) =

= ũε(Fε(x, y))− ũε(x, y)− q

2
(
log(ε2 + x2

ε,1)− log(ε2 + x2)
)
− s

b− 1
(yε,1 − y)

= 1 +O(ε2 + |x|2 + |y|2)

As in §2, we note that although ũε(Fε) and ũε are defined in regions that vary with
ε, their difference is holomorphic in a uniform neighborhood of (x, y) = (0, 0). Thus, as in
Corollary 2.5, we have:

Proposition 3.6.

w̃ι/oε (Fε(x, y))− w̃ι/oε (x, y)− 1 = O(|ε|2 + |x|2 + |y|2)

holds for |ε| < ε0 and (x, y) in a neighborhood of (0, 0).

We define the incoming almost Fatou coordinate:

ϕιε,n(x, y) := w̃ιε(F
n
ε (x, y))− n

Theorem 3.7. If εj → 0, and if nj satisfies (2.11), then limj→∞ ϕιεj ,nj = ϕι0 locally
uniformly on B.

Proof. We define Ãε(x, y) := w̃ε(Fε(x, y))− w̃ε(x, y)− 1, so that

ϕιε,n(x, y) = w̃ιε(x, y) +
n−1∑
j=0

Ãε(F jε (x, y))

By Proposition 3.6, Ãε(x, y) = O(|x|2 + |y|2 + |ε|2), so we may repeat the proof of Theo-
rem 2.7 and obtain our result.
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Let us define W c
ε,r := W c

ε ∩Bor,η. The sets W c
ε,r are smooth disks which vary smoothly

with ε: there is a family of smooth functions ψε : So0,r → C depending smoothly on ε and
x such that

W c
ε,r = {y = ψε(x) : x ∈ So0,r}

We recall the set Σ0 defined in (1.6). By the following result, Σ0 is part of the smooth
family {W c

ε,r : |ε| < ε0}.

Proposition 3.8. W c
0,r = Σ0.

Proof. It will suffice to show that W c
0,r ⊂ Σ0. In [U2] it was shown that

Σ0 = {p ∈ Bor,η : F−n(p) ∈ Bor,η,∀n ≥ 0}.

Now let us start with (x0, y0) ∈ W c
0,r and iterate it backwards. As in Proposition 3.5, the

coordinate x−j stays inside So0,r and tends to zero. By the center manifold property of
W c

0 , (x−j , y−j) remains in W c
0,r, and thus (x−j , y−j) → O, and for (x, y) ∈ W c

0,r, we have
|y| ≤ C|x|2. This means that F−n(x0, y0) ∈ Bor,η, and thus (x0, y0) ∈ Σ0.

We define the almost Fatou coordinate ϕoε,n on W c
ε,r by setting

ϕoε,n(p) = w̃oε (F
−n(p)) + n.

for p ∈W c
r . Although for distinct ε, the outgoing almost Fatou coordinates ϕoε,n are defined

on distinct sets, they converge to the outgoing Fatou coordinate in the following sense:

Proposition 3.9. Suppose that the sequence (εj , nj) satisfies (2.11) and that |x− r| < r.
Then

lim
j→∞

ϕoεj ,nj (x, ψεj (x)) = ϕ0(x, ψ0(x)).

Proof. The proof is parallel to the proof of Theorem 3.6, except that now the starting
points are (x, ψεj (x)), so that the y-coordinates converge as j →∞.

The following is one of our principal results and concerns convergence to the mapping
Tα, defined in (1.10).

Theorem 3.10. Suppose that p ∈ Bιr,η and that Tα(p) ∈ Σ0. If {εj} is an α-sequence,

then F
nj
εj (p) converges to Tα(p).

Proof. Shrinking U if necessary, we may choose β and β̂ such that β < 1, β2β̂ < 1 and such
that: in the vertical direction, F contracts with a factor of β; and dist(F−1(q1), F−1(q2)) ≤
β̂ dist(q1, q2). Now let us write q = F

nj
εj (p), and let q′ := (π(q), hεj (π(q))) denote the

projection to Mεj . By Proposition 3.7, we have dist(q, q′) = O(βnj ). Now we write nj =
m′j +m′′j , where m′j and m′′j are both essentially nj/2. We have

F
m′j
εj (p) = F

−m′′j
εj (q) = F

−m′′j
εj (q′) +O(β̂m

′′
j βnj ) = F

−m′′j
εj (q′) + o(1)

Adding and subtracting π/(2εj) and nj to wεjF
m′j
εj (p) = wεjF

−m′′j (q′) + o(1), we have

wιεjF
m′j (p)−m′j = woεjF

−m′′j
εj (q′) +m′′j +

[π
ε
− nj + o(1)

]
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As we let j →∞, the left hand side will converge to ϕιp. The term in brackets will converge
to −α. Thus we conclude that woεjF

−m′′j
εj (q′)+m′′j will converge to ϕι(p)+α. By hypothesis,

we have Tα(p) ∈ Σ0, and ϕo is a coordinate on Σ0. Thus ϕo is a coordinate on W c
ε for ε

small. By Proposition 3.9, q̂ 7→ woεjF
−m′′j
εj (q̂) + m′′j gives a uniform family of coordinates

on W c
εj , so we conclude that q′ must converge to a point q0 ∈ Σ. By the condition that

ϕι(p) = ϕo(q0)− α, we conclude that q0 = Tα(p).

Proof of Theorem 2. We recall that B and Σ are invariant in both forward and backward
time. Further Tα+1 = Tα◦F . Thus for an arbitrary point p ∈ B and arbitrary α ∈ C we may
map p and add an integer to α so that the projection π(p) = x satisfies |x+r| < r, p ∈ Bιr,η,
and Tα(p) ∈ Σ0. The hypotheses of Theorem 3.10 are now satisfied, so limj→∞ F

nj
εj (p) =

Tα(p).

§4. Semi-continuity of Julia sets. In this section we give the proofs of Theorems 3, 4
and 5. Recall the domain Ω := ϕo(B ∩Σ) ⊂ C. For α ∈ C, we define the map hα : Ω→ C
which is given by

hα := ϕo ◦ Tα ◦ (ϕo)−1

= τα ◦ ϕι ◦ (ϕo)−1

= τα ◦ ϕι ◦H.

We say that ζ0 ∈ C is a periodic point for hα if ζj := hjα(ζ0) ∈ Ω is defined for all j, and
hnα(ζ0) = ζ0. By the chain rule we have (hnα)′(ζ0) =

∏n−1
j=0 h

′
α(ζj). We say that ζ0 is a

repelling (resp. attracting periodic point if |(hnα)′(ζ0)| > 1 (resp. < 1).

Theorem 4.1. Let ζ0 be a repelling (resp. attracting) periodic point of period µ for hα,
and let p0 = (ϕo)−1(ζ0) ∈ B ∩ Σ be its image. Then there exists j0 such that for j ≥ j0,
there is a point pj near p0, which has period νj for Fεj , with εj = π

j+α and which is a saddle

(resp. sink). Further, νj divides jµ, and νj →∞.

Proof. We will prove the repelling case; the attracting case is similar and easier. Let ζ0 be
a repelling periodic point, and let ∆0 ⊂ C be a small disk about ζ0. Now we transfer this
picture to M and write p0 = (ϕo)−1(ζ0) = H(ζ0), and write ∆0 again for its image under
H. We may choose a local holomorphic coordinate system such that p0 = (0, 0), and ∆0

lies inside the x-coordinate axis. We let ∆′ be a small disk about 0 inside the y-coordinate
axis, and we consider a product neighborhood ∆0 ×∆′ of p0. Since Tα is defined on B, it
is defined in a neighborhood of the closure of ∆0 ×∆′ in M . Since ζ0 is repelling for hµα,
we see that Tµα has the following properties:

(i) Tµα (∂∆0 ×∆′) ∩∆0 ×∆′ = ∅ (because of the expansion on ∆0), and
(ii) Tµα (∆0 ×∆′) ∩ (∆0 × ∂∆′) = ∅ (because the range of Tα is in Σ).

By Theorem 3.10, the sequence F jεj converges uniformly on ∆0 ×∆′ to Tµα . It follows that
F
µnj
εj also satisfies properties (i) and (ii) for j sufficiently large. In the terminology of

[HO2], Fµnjεj is a crossed mapping of ∆0×∆′ to itself with degree 1. A property of crossed
self-maps of degree 1 is that they have a unique saddle fixed point pj (see [BSsym]). This
point pj is periodic for Fnjεj , and we denote its period by νj . The period νj of pj must
divide jµ. Since ∆0 ×∆′ can be taken arbitrarily small, we see that the pj must converge
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to p0. Finally, νj cannot have a bounded subsequence, or else p0 would be periodic for F0.
But this is impossible since p0 ∈ B.

Figure 5. Slice K+(F, Tα) ∩ Σ, a = .3, α = 0: 44 periods, |=ζ| < 22 (left); detail (right).
Recall that for an automorphism F of a manifold M we defined J∗ = J∗(F ) to be

the closure of the set of saddle periodic points of F . In general the sets J∗(Fε) are lower
semicontinuous as a function of ε. It is evident that J∗(F ) ∩ B = ∅.

Definition 4.2. Let Rα denote the set of repelling periodic points of hα. By J∗(F, Tα)
we denote the closure in M of (ϕo)−1(Rα).

Proof of Theorem 3. We must show that lim infj→∞ J∗(Fεj ) ⊃ J∗(F0, Tα). Let p0 be a
periodic point in J∗(F, Tα). It will suffice to show that for every neighborhood V of p0

there is a j0 such that for j ≥ j0 there is a saddle point pj for Fεj on V . This property is
given by Theorem 4.1, which completes the proof.

Now let us suppose that M = C2 and F : M →M is a polynomial automorphism. We
define an analogue of a “filled Julia-Lavaurs set”.

Definition 4.3. Let K+(F, Tα) to be the set of points p ∈ K+(F ) which satisfy one of the
following two properties:
(i) Either p ∈ K+(F )−B or there is an integer n ≥ 1 such that T kα(p) ∈ B for k ≤ n− 1,

and Tnα (p) ∈ K+ − B.
(ii) Tnα (p) is defined and belongs to B for all n ≥ 0.

Thus the complement of K+(F, Tα) consists of the points satisfying the condition:
there is an n ≥ 0 such that T kα(p) ∈ B for k ≤ n− 1 and that Tnα (p) /∈ K+. It is immediate
from the definition that

K+(F, Tα)− B = K+(F )− B ⊂ K+(F, Tα) ⊂ K+(F ).
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Proposition 4.4. K+(F, Tα) = F (K+(F, Tα)) = K+(F, Tα+1), so K+(F, Tα) depends
only on the equivalence class of α modulo Z. Further, K+(F, Tα) ∩ B is a union of fibers
{ϕι = const}, and K+(F, Tα) ∩ B 6= B.

Proof. The last statement is the only one that is not immediate from the definitions. For
this, we recall that Σ 6⊂ K+. So choose a point p0 = (ϕo)−1(ζ0) /∈ K+. It follows that the
fiber {ϕι = ζ0 − α} is mapped to p0. Thus this fiber is outside of K+(F, Tα).

Figure 6a. Slices K+(F, Tα) ∩ Σ; a = .3, α = πi; 44 periods, |=ζ| < 22 (left), detail (right).

Figure 6b. Detail of 6a: one period from top of the bottom component of Σ ∩ B.
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By Theorem 1.1, the fibration Fϕι is trivial, and it follows from Proposition 4.4 that
K+(F, Tα) ∩ B is biholomorphic to a product S+ × C, where S+ := S+(F, Tα) ⊂ C is
a closed subset. Now let p ∈ Σ ∩ K+(F, Tα) ∩ B be a point that is not critical for hα.
(Critical points are a discrete subset of B ∩ Σ.) This means that Σ is transverse to the
fibration Fϕι at p. Thus S+ is locally homeomorphic to a neighborhood of p inside the slice
Σ ∩K+(F, Tα).

Proof of Theorem 4. We must show that B ∩ lim supj→∞K+(Fεj ) ⊂ K+(F0, Tα). Let us
choose a point p ∈ B −K+(F, Tα). Thus there exists an m such that Tmα (p) /∈ K+(F0). It
will suffice to show that p /∈ K+(Fεj ) for large j. By Theorem 2, it follows that Fnjmεj p is
approximately Tmα (p), and thus Fnjmεj p /∈ K+(F0). By the semicontinuity of K+, it follows
that Fnjmεj p /∈ K+(Fεj ). Thus p /∈ K+(Fεj ).

Figure 7a. Slices of K+ for Hénon map Fa,ε as in (0.3),
with a = .3, ε = π/(n− iα), n = 1000, α = 4.3:

Linear slice K+ ∩ T (left), unstable slice K+ ∩Wu(q) (right)

Proof of Theorem 5. We must show two things: (i) There exists an α ∈ C such that
B ∩ J∗(F0, Tα) 6= ∅. By Theorem 1.5, there exists a ζ0 ∈ Ω = ϕo(B ∩ Σ) with |h′0(ζ0)| > 1.
We choose α ∈ C so that hα(ζ0) = h0(ζ0) +α = ζ0. Since h′α(ζ0) = h′0(ζ0), the point ζ0 is a
repelling fixed point of hα. Thus p = (ϕo)−1(ζ0) is a fixed point of Tα and p ∈ B∩J∗(F0, Tα).

(ii) For each p ∈ B there exists an α′ such that p /∈ K+(F0, Tα′). For any pair of points
p ∈ B and q ∈ Σ we can choose α′ ∈ C so that Tα′(p) = q. Since F0 is Hénon, we can
choose q ∈ Σ so that q /∈ K+(F0). Thus p /∈ K+(F0, Tα′).

Definition 4.5. We use the notation:

K(F, Tα) : = J−(F ) ∩K+(F, Tα) = K−(F ) ∩K+(F, Tα),
J(F, Tα) : = J−(F ) ∩ ∂K+(F, Tα).

Thus we have J∗(F, Tα) ⊂ J(F, Tα) and:

27



Corollary 4.6. If Fε satisfies (0.1), and if {εj} is an α-sequence, then

B ∩ lim sup
j→∞

K(Fεj ) ⊂ K(F, Tα).

To illustrate K+(F, Tα) graphically, we return to the Hénon family defined in (0.3).
The pictures in Figure 5 correspond to those in Figure 2. That is, they are slices of
K+(F, Tα) ∩ Σ, with the values a = .3 and α = 0, which corresponds to real ε. The gray
region is the complement of K+(F ), the set K+(F, Tα) is black, and K+(F )−K+(F, Tα)
is white. All pictures are invariant under the translation ζ 7→ ζ + 1. The viewboxes on the
left hand sides of Figures 5 and 6 are taken to be symmetric around the real axis {=ζ = 0};
the viewboxes are taken to have side = 44 in order to show what happens when =ζ is large.
We see a number of horizontal “chains” in the left hand pictures in Figures 5 and 6. In the
upper half of each of these pictures, the map hα acts approximately as a vertical translation,
moving each chain to the one below it, until it reaches the chain just above the gray region,
which corresponds to the complement of B. By (1.9) the amount of vertical translation in
the upper region is approximately c+0 ≈ −5.83, and there are 8 ≈ 44/5.83 horizontal strips
in Figure 5. In Figure 6, the vertical translation in the upper part is c+0 +=α ≈ −2.69. In
the chains bordering the complement of the basin, the map is not like a translation and is
more complicated. The bottom half of the left hand side of Figure 5 and 6 is analogous, with
the approximate translation near the bottom of the figures being approximately c−0 + =α.
In fact, the symmetry in Figure 5 comes because hα commutes with complex conjugation.
The parameter α = πi in Figure 6 is nonreal, and we see that the symmetry of complex
conjugation is lost. The pictures on the right of Figures 5, 6a, and 6b give a detail from the
edge of the gray region, spanning a little more than 1 period. The implosion phenomenon
corresponding to Figure 6 is given in Figures 7a,b,c. By the time we have zoomed in as far
as Figure 7c, we begin to see the “detail” images from Figures 6a,b.

Figure 7b. On left, a zoom of Figure 7a (right). On right: a further zoom.
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Figure 7c. Zooms of the right hand image of Figure 7b.
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