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POLYNOMIAL DIFFEOMORPHISMS OF C2:
VII. HYPERBOLICITY AND EXTERNAL RAYS

By Eric BEDFORD* anND JouN SMILLIE*

ABSTRACT. — For a polynomial automorphism we study the topology of J, the analogue of the Julia set, in the
case where J is connected and hyperbolic. © Elsevier, Paris

RESUME. — A partir d’un automorphisme polynomial de C2, nous étudions I’analogue de 1’ensemble de Julia,
noté¢ J, dans le cas ou J est hyperbolique et connexe. © Elsevier, Paris

0. Introduction

In this paper we consider the dynamics of polynomial diffeomorphisms of C2. The
family of polynomial diffeomorphisms f : C2 — C? contains the simplest invertible
holomorphic transformations with interesting dynamical behavior. Given a dynamical
system to investigate, a first problem is the identification of sets of dynamical interest, and
when such a set is identified, a second problem is then the description, up to topological
equivalence, of the dynamics on this set.

For this class of diffeomorphisms there is a natural candidate for a dynamically significant
set, namely the analogue of the Julia set J = J; C C? defined below. We are interested
in attacking the problem of finding a topological description of the restriction of f to J. A
paradigm for what we would like to achieve is the Douady-Hubbard theory of external rays
for polynomial maps of C, which we recall briefly. Douady and Hubbard show that when
the Julia set J of a polynomial map f is connected, and f is expanding on .J, then the map
fls is semiconjugate to the map z — z¢ on the unit circle. Furthermore this semiconjugacy
can be realized concretely by external rays. An external ray is a gradient curve for the
Green function of the complement of the filled Julia set. Douady and Hubbard show that
each external ray limits on a well-defined point in the Julia set. It is this “landing map”
which provides the semiconjugacy from the space of external rays (which is the circle) to
J. This explicit description of maps with expanding connected Julia sets provides a first
step in the combinatorial description of parameter space.

Our aim in this paper is to lay the groundwork for a theory of polynomial
diffeomorphisms of C? analogous to the Douady-Hubbard theory for 1-variable polynomial
expanding maps with connected Julia sets. We showed in [BS6] that external rays for
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456 E. BEDFORD AND J. SMILLIE

polynomial diffeomorphisms can be defined when J is connected. In this paper we make
the additional assumptiont that f is hyperbolic on J. This condition is analogous to the
expanding condition for maps in one variable. In §3 we establish a range of topological
conditions equivalent to connectivity. Assuming that J is connected we describe the
topology of the space of rays in §4. In §5 we show that the landing map from the space of
rays to J is defined, continuous, surjective and bounded-to-one. This allows us to describe
J as a quotient of the solenoid under an equivalence relation. In §6 we describe topological
conditions that this equivalence relation must satisfy. We also relate the properties of the
equivalence relation to the local topology of J and in §7 we identify a finite set of periodic
points that play a distinguished role.

To describe the results of this paper more precisely, we will recall some standard
terminology and known results. We denote by K+/K~ the sets of points in C? with
bounded forward/backward orbits under f. Let J* = OK* and let J = J*t NJ~. We
refer to J as the Julia set of f. Let U* = C2 — K*. There are real valued functions G*
defined on C? which play the role of Green functions. The functions G* are continuous,
non-negative, plurisubharmonic, equal to zero on K* and pluriharmonic on U®.

The properties of stable and unstable connectivity were defined in [BS6]. Let p be
a periodic saddle point, and let W*(p) be its unstable manifold. We say f is unstably
connected if W*(p) N K+ has no compact components. It is shown in [BS6] that this
definition does not depend on which saddle point p is chosen. Stable connectivity is defined
analogously. Let J; = J~ — K. When f is unstably connected, J, has a lamination
M~ by Riemann surfaces. Furthermore the restriction of G* to a leaf of this lamination
is a harmonic function without critical points. An (unstable) external ray is then a gradient
curve of the restriction of G* to a leaf (with respect to some conformal metric on the leaf).
We denote by £ the set of external rays. This set inherits a topology from the space J .

The function det Df is constant on C2. We say that f increases, preserves, or decreases
volume, depending on whether |det D f| is greater than, equal to, or less than, one. By
replacing f by f~! if necessary we may assume that f is not volume increasing. This will
be a constant assumption throughout this paper. By Corollary 6.3, if J is connected (and
hyperbolic as we also constantly suppose), then f cannot preserve volume. In particular,
since f does not increase volume, it follows from [BS6, Corollary 7.6] that unstable rays
are defined exactly when J is connected, and stable rays are never defined.

We will review some results from [BS1] and [BS2] on hyperbolicity. When f restricted
to J is hyperbolic, then f is Axiom A. In this case Smale’s spectral theorem gives a
decomposition of the nonwandering set into basic sets. The basic sets are: .J, which is the
unique (complex) index one basic set, and a finite set of periodic sinks S = {s1,...5%}.
The stable set of J, W*(J), is J* = K™ and the interior of K consists of the basins of
the sinks. The unstable set of J, W*(J), is J~ — S and the interior of K~ is empty. The
sets W*/%(.J) have dynamically defined Riemann surface laminations, W*/*, whose leaves
consist of stable/unstable manifolds of points. Each leaf of this lamination is conformally
equivalent to C. When f is unstably connected, the restriction of the lamination W* to
J is the same as the lamination M~ given in [BS6].

1 Generally speaking, the map f is assumed hyperbolic, and J is assumed connected thoughout this paper. In
parts of §3 and §5, J is not assumed to be connected.
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As was observed in [H] the function G is pluriharmonic on U™, and the holomorphic
1-form G defines a holomorphic foliation Gt on U, In §2 we prove the useful technical
result that if f is hyperbolic and unstably connected, then the laminations G* and W?*
fit together continuously, or, more precisely, Gt U W?* is a Riemann surface lamination
of J*t UUT (Proposition 2.7). We note in Appendix A, however, that G~ and W* (the
corresponding objects for the inverse diffeomorphism) do not fit together continuously
in this case.

When f is hyperbolic, we will sharpen some of the topological criteria for unstable
connectivity given in [BS6]. The property of unstable connectivity is defined in terms
of slices of K+ by unstable manifolds. We say f is unstably connected when, for any
saddle point p, K+ N W*(p) has no compact components. In §3, we show that in the
hyperbolic case, the property of unstable connectivity is characterized by slices by more
general “transversals” (The use of the term transversal is meant to be suggestive. In fact
our transversals are very general complex one dimensional submanifolds). A typical result
from §3 is that, when f is hyperbolic, f is unstably connected if and only if a transversal
slices Kt (locally) into only finitely many components.

We give a second topological characterization of unstable connectivity in the hyperbolic
case, we recall the observation of [HO1] that the homology of the set U™ is independent
of the mapping f and is given by Hy(U*;Z) = Z[%], where d denotes the degree of f
(see §1). Note that this homology group is not finitely generated. The condition that the
map f be unstably connected can be characterized by the finite generation of the homology
of a bounded portion of U™. Precisely, f is unstably connected if and only if for every
bounded set B C C? the image of the inclusion map

t:H (BNUY,Z) - Hy (U Z)

is finitely generated (Proposition 3.2 and Theorem 3.4).

In [BS6] it was shown that the property of unstable connectivity has consequences for
the topology of J. . In particular we can construct an abstract “model” for the space J .
We recall some notation. Let ¥ be the complex solenoid, the inverse limit of C* under the
map o : z — z%. Let ©; C ¥ denote the inverse limit of the set {z : |z| > 1} under o, and
let ¥o C ¥ denote the inverse limit of the set {z : |z2| = 1} under o, which is the (real)
solenoid. The shift map o acts on each of these spaces (these are discussed further in §1).
We showed in [BS6] that when f is unstably connected there is a semiconjugacy ® between
the action of o on ¥ and the action of f on J} . In §4 we show that when f is hyperbolic
and unstably connected there is a map ¥ from ¥, to J which is in fact a conjugacy.
The conjugacy ¥ induces a conjugacy between Y and the space of external rays £.

In §5 we derive geometric information about unstable manifolds. For every point p € J
the stable/unstable manifolds W*/*(p) are uniformized by C. This endows the manifolds
We/%(p) with affine structures. In §5 we use the work of Ghys [G] to show that for any
hyperbolic mapping these affine structures vary continuously with p. The affine structure
gives us a tool for proving a John-type condition for the sets W*(p) N U™ inside W*(p).
This implies (Proposition 5.6 and Corollary 5.13) that when f is unstably connected the
sets K+ NW¥(p) and J* N W*(p) are connected and locally connected. (For a general
unstably connected map we know only that K+ N W*(p) has no compact components.)

We can use the function G* to parametrize external rays. For an external ray v € £ and
a real number r > 1, let e,(v) be the point on v for which G* = r. We say that ~ lands
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if lim, 0 e,(7) exists; when ~ lands we denote the limit by e(~y). We prove that external
rays land at well-defined points of J, and we prove that the landing map v > e(v) is a
continuous map from £ to J. We use the John property to show that the landing map is
a surjection and finite-to-one, with the number of preimages of a point being uniformly
bounded. The existence of the landing map allows us to represent J as a quotient of X
by an equivalence relation.

At this stage it is natural to ask what general sort of equivalence relations can arise to
give the restriction f|;. In §6 we show that the quotient map 1 : ¥y — J respects local
product structures. We give some additional conditions which this quotient must satisfy;
these arise from the topological condition that certain subset of J must be contained in
sets W*(p) and thus must be planar.

In §7 we consider a special kind of cut point of K N W*, which we call pinch points.
It is also shown (Theorem 7.1) that all pinch points of the slices W* N K of the Julia
set lie on the stable manifolds of a finite set of “primary” periodic points. In Appendix
B we present an example and show how a computer picture may be used to illustrate
the results of this paper.

This paper is not the first to make a connection between polynomial diffeomorphisms
of C? and solenoids. Such a connection first appears in the paper of Hubbard [H]. More
recently, Hubbard and Oberste-Vorth [HOV1] have established the existence of a “solenoid
at infinity” in connection with a certain compactification of C2. By contrast our use of
the solenoid is more closely connected with the topology of J. While the solenoid at
infinity exists for all parameter values, our “solenoid of external rays” exists only when
J is connected. Yet when the solenoid of external rays does exist it seems more directly
related to the dynamics of J than does the solenoid at infinity.

1. Notation and Preliminaries
We consider mappings of the form f = f; 0--- o f,,, where

fi(z,y) = (y,p;(y) — a;z), (1.1)

with p;(y) = y% + O(y%~2), and d; > 2. It is a result of [FM] that every polynomial
diffeomorphism of C? which is not conjugate to a linear map or a shear is conjugate to a
map of this form. We let d = d; - - - d,, denote the degree of f.

The iterates of f have the form

Py =@+, (14 .0), (12)
The rate of escape to infinity in forward/backward time is given by

1
dn

G* = lim —log™ |f*"(z,y)|. (1.3)
The function G* is continuous and pluri-subharmonic on C2. Further, if we let U* denote
the points that escape to infinity in forward/backward time, then U* = {G* > 0}, and
G* is pluri-harmonic on U*. Thus the complex 1-form G* is holomorphic on U* and
defines a plane field which determines a holomorphic foliation G on U®.
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We define the sets
V* ={ly| > |z|,G* >log R}, V™ ={Jy| < |z],G~ > log R}, (1.4)

and
V= {G+,G‘ < log R}. (1.5)

For R sufficiently large, fV+ c V*, fV c V UV, and for any point (z,y) € V~, the
orbit f™(z,y) can remain in V= only for finitely many n > 0. If K* denotes the points
with bounded forward/backward orbits, then

Ut=C’-K*=Jfv*, and U =C-K =[] fv". (1.6)
n=0 n=0

Laminations of sets occur at various points in our work. Loosely speaking, a lamination
L of a set X is a partition of X into subsets which are manifolds, such that the partition
is locally trivial. This means that each point has a neighborhood U such that the partition
of £|U into components of leaves, or “plaques” is homeomorphic to a product lamination.
For further details, see [C] or [MS].

We collect here some facts which will be useful in §3. Let us set m3(z,y) = y, and then
as in [HOV1], let us define an analytic function ¢+ on V* by the formula

o*(2,9) = lim (w0 f"(z,9)) 7, (L.7)
where we take the d"-th root so that o™ (z,y) = y+o0(1) holds on V'*. It is immediate that
¢t o f=(p*)? and log|p*| = G* hold on V*. In particular, any analytic continuation
of ¢* is locally constant on the leaves of G*. Indeed locally the plaques of the foliation
Gt are just the level sets of . In [BS6] we showed that if f is unstably connected,
then ¢t has an extension to J .

We collect some background which will be useful in §4. The complex solenoid ¥ is the
inverse limit of C* under the map z — 2% (A more detailed discussion of the complex
solenoid is given in [BS]). We can realize this explicitly as the set of bi-infinite sequences
z = (z;) such that z; € C* and z}i = z;j4+1. The space ¥ has the topology of a closed
subset of the bi-infinite product (C*)%. The shift mapping o : ¥ — ¥ is defined by setting
o(z) = w, where w; = zj41 = z%. The map o induces a homeomorphism of .

We define the projection 7 : ¥ — C* by 7(2) = zo. The set 7~!(w) has the topology of
a Cantor set. We define a modulus function on ¥ by |z| = |7 (z)|. We have |o(2)| = |2|¢.
We set Yo = {z € £ : ]2 =1} and £, = {z € £ : |2| > 1} . The map o induces
homeomorphisms on ¥; and on .

The complex solenoid is a topological group under coordinatewise multiplication. The
unit element “1” of this group is the element with all coordinates equal to 1. The subset ¥
is a subgroup. We let m, : ¥ — ¥ denote the operation of multiplication by s. If s € X,
then m, maps X to itself. For z € C we define exp(z) € ¥ by defining the n-th coordinate
to be [exp(z)], = e**". This gives a C-action on the solenoid by C 3 2 = Meyp(,). For
t € R we have exp(it) € o This gives an R-action on the solenoid by R 3 t — Mexp(it)-

The orbits of the C action on ¥ are the leaves of a lamination of ¥. This lamination has
a dynamical interpretation as the lamination by unstable manifolds of o. The map from
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C to the orbit of a point w given by z — exp(z) - w induces an affine structure on each
leaf. These affine structures on leaves come from an affine lamination on ¥. The subspace
Y, inherits the affine lamination structure from ¥ even though it does not inherit the C
action. Each leaf of the lamination of ¥ is affinely equivalent to a half-plane.

We use the extension of ¢ to construct a semi-conjugacy from JI to X, (cf. [BS6,
Theorem 3.2]). Specifically the map ® : J, — X, given by [®(p)], = ¢ (f"p) is
continuous and satisfies 0 0o ® = ® o f.

The extension ¢+ has the property that ¢* |5 : M — C — A is a holomorphic covering,
for every leaf M of M ™. As in Proposition 2.2 of [BS6], this may be lifted to a conformal
equivalence a : M — H to the right half plane H. For each 8 € R, we let 7p : H — H
be the translation H 3 z + z + 0. We may now define an R-action on J by pulling
the translation 7, back to the leaf M. We denote this action by (6, z) — exp(if) - z. We
have exp(if) o ® = ® o exp(if).

2. Continuity of the Stable Lamination

In this section we show that when f is a hyperbolic and unstably connected map, the
leaves of the foliation Gt of U™ and the stable lamination W* of J fit together to make
a locally trivial lamination of Ut U J* (Theorem 2.7). In the process of proving this
result, we show that the external rays converge to well defined points of J and that this
“landing map” is continuous. We also obtain some results on the interplay between the
landing map and the stable manifolds.

We begin with a preliminary result about the landing map. We will investigate the
properties of the landing map more fully in §3.

PrROPOSITION 2.1. — Let f be unstably connected and hyperbolic. Then the mapping
e : & — J is defined on all of € and is continuous and equivariant.

Proof. — Since f is hyperbolic, there exist constants C' < oo and A < 1 such that
IIDf™" (@) lwe || < CA (2.1)

for z in a neighborhood of J in J~. By applying the appropriate iterate of the map f and
changing the constant we may assume that this holds on J~ N {0 < G+ < 1}.

Let G denote the family of arcs v obtained by starting at points of J~ N {Gt = 1}
and following the gradient line of G*|W™(p) in the direction of decreasing G, so that -y
ends at a point of J~ N {G* = d~1} (note that these arcs are pieces of external rays, as
defined in §3 of [BS6]). The family G has the properties:

(i) For every p € J~ N {G* = 1} there is a curve v € G starting at p.

(ii) Every v € G lies inside W*(z) for some z € J.

The curves of f~"G connect J~ N {GT =d™"} to J- N {GT = d "'} inside W".
Let G denote the paths of the form

F=yUf'mufipu...,

that is, ~y starts at a point p € J- N{G* = 1} and ends at a point p; € J-N{G* =d~1}.
This is followed by f~'v;, where v; € G starts at fp; € J~ N {G* = 1} and ends at
a point p, € J- N{G* = d'}.
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The endpoint map will be defined as e(s) = lim,,—, €,(s), Where e, (s) is obtained by
following the ray v, to the level {G* = 1} and then following the curve ¥ in to the level
{G* = d™"}. The map e, : £ — J~ is continuous.

If we set

M = max Length(vy), (2.2)
Y€G

then the curves in the family f~"G all have length no greater than M CA™. Thus for n < m
max len(s) = em(s)] S CMOA™ + ...+ A™) < CM (1 — \)~ 1A+

so the e,, converge uniformly, and the limit e : £ — J exists and is continuous. |

Further properties of the endpoint map will be discussed in §5. Our next objective is
to show that the foliation Gt of U™* is compatible with the lamination of J* by stable
manifolds.

It will be useful to set up some of the machinery from the graph transform proof
of the stable manifold theorem. At each point p € J we can split the tangent space
T,C* = E; & E;. This splitting depends continuously on the point p. We can also choose
a continuous adapted metric on the tangent spaces E' and E; so that Df : E} — E}‘(p)
uniformly expands distances and Df : E; — E;(p) uniformly contracts distances. At each
point p € J we choose a coordinate map 6, : C?* — C2. We choose 6, to be an affine
map which takes 0 to p, takes the z-axis to E; and takes the y-axis to E;. We also
require that 6, take the standard metrics on the axes to the adapted metrics on the stable
and unstable tangent spaces.

Let B.(p) be the image of the set {(z,y) € C%: |z| <€, |y| < €} under the map 6,. A
vertical (resp. horizontal) disk in B.(p) is a set which can be written as {(T'(y),¥) : |y| < €}
(resp. {(z,T(z)) : |z| < €}) for some holomorphic map T : {|z| < €} — {|z] < €}. For
p € J we define the local stable/unstable manifold through p, written we/ “(p) to be the
component of B.(p) N W*/*(p) containing p.

It is sometimes useful to consider the local unstable manifold of p relative to a nearby
point p: For p € J we define W:/"(p,p') to be the component of B.(p') N W*/*(p)
containing p.

We may assume that € is chosen sufficiently small for the following properties to hold:

VERTICAL OVERFLOWING PROPERTY. — If A is a vertical disk in B(p), then

f7HA)N B(f7H(p))
is a vertical disk in B.(f~(p)).

STABLE MANIFOLD THEOREM. — W2/ (p) is a vertical/horizontal disk in B. (p)-

SMOOTH LAMBDA LEMMA. — If M is a smooth manifold which intersects W*(p) transversally
at a point g, then there is an n such that the component of f~"(M)N B.(f~(p)) containing
f~™(p) is a vertical disk in B.(f~(p)).

The first of these properties is easily verified. The second two properties are consequences
of the graph-transform proof of the Stable Manifold Theorem.
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For p € J and q € B.(p) — K we denote by G (g, p) the component of G*(q) N B.(p)
containing g. We say that Gt (q,p) is vertical if it is a vertical disk in B.(p). Using the
compactness of J it is easy to show that there is a § > 0 such that for p € J and p’ € J
with d(p,p’) < §, W(p,p') is vertical and W*(p,p’) is horizontal. The next Proposition
shows an analogous result for local leaves of the G* foliation.

PROPOSITION 2.2. — There is a § > 0 such that for p € J and q € U™ with d(p,q) < 6,
GX(q,p) is vertical.

The proof will be given after a sequence of lemmas.
LeMMA 2.3. — If G (q,p) is vertical then GF(f~(q), f~1(p)) is vertical.

Proof. — If G¥(q,p) is vertical then the component of G*(¢) N B.(p) containing g
is a vertical disk A in B.(p). The vertical overflowing property of f~! implies that
F~HA)NB(f~(p)) is a vertical disk in B¢(f~!(p)). The invariance of the foliation G+
implies that f~1(G*(q)) = G*(f~1(q)). Thus f~1(A) N B.(f~*(p)) is the component of
G*(f~%(q))NB(f~*(p)) containing f~*(q). This is the definition of G} (f~(q), f~1(p)).
O

LEMMA 2.4. — There is an a > 0 so that if GF(q,p) is vertical and d(p', f~(p)) < «
then GF(f~1(q),p') is vertical.

Proof. — The Vertical Overflowing Property implies that f~!(B.(p)) overflows the box
B.(f~(p)). If the box B.(f~'(p)) is changed slightly then the overflowing condition
still holds. Since the stable and unstable tangent spaces and the adapted metric vary
continuously with the point, a small change in the point causes a small change in the box.
Thus there is some o, such that d(p’, f~*(p)) < c, implies that G (f~1(g),p’) is vertical.
The compactness of J allows us to find a positive lower bound « independent of p € J. O

LEMMA 2.5. — There is a 3 > 0 so that if GF(q,p) is vertical for some p with d(q,p) <
then G (f~1(q),p’) is vertical for all p’ with d(f~1(q),p’) < B.

Proof. — Choose 8 < a/2 such that d(p,q) < B implies that d(f~(p), f~1(q)) <
a/2. If d(p,q) < B and d(p',f~'(q)) < B then d(p',f~'(p)) < d(¥',f*(q)) +
d(f~*(q), f~(p)) < a so by Lemma 2.4, G} (f~1q,p’) is vertical. O

We will say that a point ¢ € U™ is good with respect to p € J if either d(p,q) > 3
or G¥(q,p) is vertical. We will say that a point q is good if it is good with respect to
any p € J with d(p,q) < . Lemma 2.5 says that if ¢ is good with respect to some p
then f~1(g) is good. Note that a point ¢ can be good “vacuously” if its distance from J
is greater than (3. In this case f~!(q) need not be good. On the other hand if ¢ is good
and d(q,J) < @ then, by Lemma 2.5, f~!(q) is also good.

LEMMA 2.6. — There is an Ny such that every q with 0 < G*(q) < 1/d™ and
G~(q) < 1/d™ satisfies d(q,J) < B.

Proof. — Let V be the set of points within distance 8 of J. The set V Uint K is an
open set containing the compact set K, and K is the set of common zeros of the functions
Gt and G~; so there is some N; such that the set

{q:G*(q) <1/d™M, G (q¢) £1/d™M} c VUintK*.
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If we remove the set int K™ = {q: GT(¢) = 0} from the left hand side of the equation,
then we have

{g:0< G (q) <1/d™M, G=(¢) <1/d™M} C V. o

Proof of Proposition 2.2. — Let S(N;) = {qg € J~ : 1/d™M*+! < G*(q) < 1/d™'}. This
set is compact and serves as a fundamental domain for the action of f on J . Fix a point
g € S(Ny). Since f is hyperbolic each point of J7 is in the stable manifold of some point
of J. Choose a p so that ¢ € W*(p). Since GT has no critical points on W*(p) N U™ the
leaf G*(q) is transverse to W*(p) at q. The Smooth Lambda Lemma implies that there
is an n so that Gt(f~"(q), f~™(p)) is vertical. If this condition holds for a fixed value
of n, then Lemma 2.3 implies that it holds for all larger values of n. Choose an n, large
enough for Gt(f~"(q), f~™(p)) to be vertical and d(f~"(q), f~™(p)) < B. In fact there
is a neighborhood U, of ¢ consisting of points ¢’ so that G*(f~"(¢’), f~"(p)) is vertical
and d(f~"(¢'), f~™(p)) < B. The set S(Ny) is compact, so we can cover it by a finite
number of such open sets, say Uy, ,...,U,,. Let U be the union of these neighborhoods,
and let N, be the maximum of the ny;’s. Thus for each q' € U there is an n < N, and a
p € J so that GT(f~"(q), f~"(p)) is vertical and d(f~"(q'), f~™(p)) < B. Choose N3 so
that 1/d™M+1 < G*(q) < 1/d™ and G~(g) < 1/d™* implies that q € U.

We complete the proof by showing that any q satisfying 0 < G*(q) < 1/dN1+N2+2 and
G~(g) < 1/d™2 is good. Assume that g satisfies the above conditions. We can write g as
f~™(q") for a unique ¢’ with 1/d™M*! < G*(¢') < 1/d™. Now

! o) = () = Lty !
WZG(Q)—GU (Q))—d_nG (Q)ZW

so that n > Ny + 1. Since G~(¢') = (1/d")G~(¢q) < G=(q) < 1/d™: we see that ¢ € U.
Since ¢’ € U there is an integer £ and a point p’ € J so that f~¢(g’) is good with respect to
F74®') and d(f~4(¢"), f*(p")) < B. It follows from Lemma 2.5 that f~(¢+1)(¢’) is good.

Now 0 < /< Nyand n > Ny + 1, so £+ 1 satisfies 0 < £+ 1 < n. We observe that
for each m with 0 < m < n we have

G S GH) S o
and 1 1
GT(fMAN <G < o < o

Thus by Lemma 2.6 d(f~™(¢'),J) < B.

In particular, d(f~**1(¢’),J) < B. It follows that f~(+2)(¢’) is good. By induction on
the size of the exponent m for which f~™(q’) is good we see that ¢ = f~"(¢’) is good as
was to be proved. ]

Let W* be the lamination of J* by stable manifolds. Let £* be the partition of J*UU*
whose leaves are the leaves of W?* and G*.

ProposiTION 2.7. — If f is hyperbolic and unstably connected, then partition L° is a
(locally trivial) lamination.

Remark. — In Corollary A2 in the Appendix, we show that under these hypotheses, there
are points of J, where £ is not locally trivial.
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Proof. — We must show that £ is locally trivial. For points p € U™ the local triviality
of L is a consequence of the local triviality of the foliation GT. Let p € J+. Consider the
restriction of the lamination £° to the box B.(p). Let V C B.(p) be the union of leaves
which intersect the §-ball around p. The leaves of the restriction of WW* to V are local
stable manifolds of the form W2 (p’,p). It follows from the remarks prior to Proposition
2.2 that these disks are vertical in B.(p). The leaves of the restriction of Gt to V are
sets of the form G (p/, p). It follows from Proposition 2.2 that these sets are vertical disks
in B.(p). If we view these vertical disks as graphs of functions in the box B.(p) they
constitute a holomorphic motion. It follows from the complex A-Lemma (see [MSS]) that
the restriction of £* to V' is homeomorphic to a product lamination. a

Remarks. — Related results, which give the conclusion of Proposition 2.7, have been
obtained by Pixton [P] and Buzzard [B]. They work, however, under the additional
hypothesis that the slice of W* by a transversal is totally disconnected. In fact, it will be
shown in §4 (using Proposition 2.7) that this slice property also holds for our mappings.

ProPOSITION 2.8. — Ifp € J and q € U™ and d(p, q) < & then W*(p) NG (q,p) consists
of precisely one point.

Proof. — Tt follows from Proposition 2.2 that G} (q, p) is vertical in B,(p). The constant
€ was chosen so that W*(p) is horizontal in B.(p). It follows from topology that vertical
and horizontal disks intersect in precisely one point. O

Choose a reference point p € J. Let q and ¢’ be points in U™ so that q and ¢’ are within
distance § of p. Assume also that-e(q) and e(q’) and the tails of external rays through ¢
and ¢’ lie completely within the ball of radius ¢ around p. For the next two propositions
we will use the term “local leaves” to mean local with respect to the box B.(p).

PROPOSITION 2.9. — If q and q' lie on the same local G leaf then e(q) and e(q’) lie on
the same local W?* leaf.

Proof. — Let V be the union of local £° leaves which intersect the 6-ball around p.
We have an extension of the function ¢* to the set V N U*. ot is constant on local
leaves so ¢t (q) = ¢*(q¢'). The construction of external rays implies that for ¢ > 0
ot (et(q)) = ¢T(ex(q")) so that e,(g) and e;(g’) are on the same local leaf. Now L°|V,
is a product lamination so e(q) = lim;_,¢ e;(q) and e(q’) = lim;_,0 e;(q’) lie on the same
local W? leaf. ]

PROPOSITION 2.10. — Let p, q and q' be chosen as above. If q and ¢’ lie on the same local
Gt leaf and e(q) = e(q') then q = ¢'.

Proof. — The external ray through g, e;(q), lies on a single unstable manifold. Since
the tail of this ray is contained in B.(p), the external ray lies on a single local unstable
manifold. It follows that e(q) lies on the same local unstable manifold. We conclude that
q € W*(e(q)). Similarly ¢’ € W*(e(q')). Our hypothesis implies W*(e(q)) = W*(e(q'))
so that ¢ and ¢’ both lie on the same local unstable manifold. On the other hand ¢ and ¢’
both belong to the same local leaf of G*. It follows from Proposition 2.8 on the uniqueness

of intersection points that ¢ = ¢'. O

The following proposition describes one property of the landing map. We will collect
other properties in §6.
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ProposITION 2.11. — If z,y € U™ are sufficiently close and z € U™ is sufficiently close to
e(x) then there is a unique w close to z in GF(2) with e(y) = e(w).

Proof. — Define w = W*(e(y))NGX(z). Then e(w) € W¥(e(y)) and e(w) € GF(e(2)) =
GF(e(z)) = GF(e(y)). But e(y) € W*(e(y)) N GF(e(y)) so the uniqueness of the
intersection implies that e(y) = e(w). O

For a point p € J, we let R(p) denote the external ray containing p. We let Ro(p)
denote the bounded component of (R(p) U {e(p)}) — {p}.

LeEMMA 2.12. — For any ¢ > 0, there is an € > 0 such that, for any § > 0, there exists
n > 0 such that if p1,p2 € J~ N{GT = ¢}, € > dist(p1,p2) > 6, and

Ni= |J Bi(@ndi) (2:3)

q€Ro(p;)
for 7 = 1,2, then Ny N Ny = .

Proof. — By Proposition 2.1, the mapping J; 3 p — Ry(p) is continuous. Thus it is
uniformly continuous on the set {GT = c}. Since e is locally injective (Proposition 2.10), it
follows that Ry(p;1) N Ro(p2) = 0 if p1 # p2 and dist(p1, p2)) < €. If € > dist(p1,p2) > 6,
then Ro(p1) and Ry(p2) are uniformly separated by a distance 1 > 0. |

3. Topological Characterizations

In this Section we give two characterizations of unstable connectivity for ma<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>