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Polynomial Diffeomorphisms of C2: 
VI. Connectivity of J 

BY ERIC BEDFORD and JOHN SMILLIE* 

0. Introduction 

Polynomial maps g: C > C are the simplest holomorphic maps with 
interesting dynamical behavior. The study of such maps has had an important 
influence on the field of dynamical systems. On the other hand the traditional 
focus of the field of dynamical systems has been in a different direction: in- 
vertible maps or diffeomorphisms. Thus we are led to study polynomial diffeo- 
morphisms f: C2 > C2) which are the simplest holomorphic diffeomorphisms 
with interesting dynamical behavior. 

Two features are apparent in much of the contemporary work on poly- 
nomial maps of C (cf. [DH]). The first is a focus on the connectivity of the 
Julia set. The second is the use of computer pictures. Computer pictures do 
not substitute for proofs, but they have provided a tool that has been used 
to guide research. In this paper we consider these ideas in the context of 
polynomial diffeomorphisms of C2. This approach to the study of polynomial 
diffeomorphisms originates with Hubbard. 

For a polynomial map of C the "filled Julia set" K c C is the set of 
points with bounded orbits, and the Julia set J is defined to be the boundary 
of K. The Julia set has several analogs for diffeomorphisms of C2. Since 
f: c2 > c2 iS invertible, we can distinguish properties of points based on 
both forward and backward iteration. The sets K+ (resp. K-) consist of 
points with bounded forward (resp. backward) orbits under f. We write Ui 
for the complementary sets Ui = C2-Ki. The set of points whose orbits 
are bounded in both forward and backward time is K = K+ n K-. The sets 
Ji := AKi are analogues of the Julia set, as is the set J = J+ n J-. We 
use the notation J+- for J- n u+. We will see that in some cases the set J+- 
plays the role of the Fatou set for polynomial maps of C. The focus of this 
paper is to investigate the J-connected/J-disconnected dichotomy in the case 
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696 ERIC BEDFORD AND JOHN SMILLIE 

of polynomial diffeomorphisms of c2 and relate it to the structure of the sets 
J-nU+ arld J+nU-. 

One of the attractive features of the study of polynomial maps of C is that 
the Julia sets can be drawn by computer. Thus the connectivity properties of 
the Julia set can often be demonstrated (visually if not rigorously) by means 
of computer pictures (see below). One of the daunting features of the study of 
polynomial diffeomorphisms of c2 is that the sets of fundamental importance 
are complicated subsets of C2. As a consequence of our investigations we 
will show that it is possible to "see" the connectivity of the Julia set J for a 
polynomial diffeomorphism of C2. 

Hubbard has suggested the following computer experiment. Let f be a 
polynomial diffeomorphism of C2, and let p be a periodic saddle point of f. 
The unstable manifold of p, WU(p), is an immersed submanifold conformally 
equivalent to C. We have a partition of Tu (p) into subsets wu (p) n K+ and 
WU(p) n U+. The set WU(p) n K+, viewed as a subset of C, is easily drawn 
by computer; three such drawings appear below. 

p 

; 
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POLYNOMIAL DIFFEOMORPHISMS OF C2 VI 697 

In order to make these computer pictures a useful tool for investigating 
the dynamics of f it is important to know which features of these pictures 
reflect dynamically significant properties of the diffeomorphism. In particular 
it is useful to know which features are independent of the choice of periodic 
point. We say that f is anstably connected with respect to the point p if some 
component of WU(p) n u+ is simply connected. The following theorem shows 
that this property is independent of the point p and furthermore that it is 
equivalent to the existence of a certain geometric structure of J+-. 

THEOREM 0.1. The following are equivalent: 
1. For some periodic saddle point p, some component of Tu(p) nu+ is simply 

connected. 
2. The set J+- has a lamination by simply connected leaves so that for any 

periodic saddle point p each component of WU(p) n u+ is a leaf of this 
lamination. 

3. For any periodic saddle point p, each component of WU(p) n u+ is simply 
connected. 

This result is a consequence of Theorems 2.1 and 4.1. 
If the equivalent conditions of the theorem hold, we say that f is anstably 

connected. When f is a polynomial diffeomorphism, the inverse function is 
also a polynomial diffeomorphism. Replacing f by f-1 interchanges the sets 
J- and J+, so any result for, or property of, J- has an analog for J+. We say 
that f is stably connected if the equivalent properties of the previous theorem 
hold for f 1. In §5 we show that the connectivity of J is determined by the 
stable/unstable connectivity of f. 

*- * +4* 

r. FS 
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698 ERIC BEDFORD AND JOHN SMILLIE 

THEOREM 5.1. The set Jf is connected if and only if the diffeomorphism 
f is either stably connected or unstably connected. 

From Theorem 5.1, it follows that the connectivity of the Julia set J of a 
polynomial diffeomorphism of C2 can be determined "empirically." It suffices 
to pick a periodic saddle point and observe the escape locus inside the stable 
and unstable manifolds, and according to Theorem 0.1 and its analog for stable 
connectivity the topology of these sets determines the connectivity of J. 

In one variable, questions involving the connectivity of J are bound up 
with properties of the critical points of g. In particular J is connected if and 
only if there are no critical points with unbounded orbits. Now a polynomial 
diffeomorphism by definition has no critical points, and it seems difficult to 
define a single analog of critical points which works in all settings. On the 
other hand, an analog of critical points with unbounded forward orbits was 
described in [BS5]. This is the set Cu of critical points of the Green function 
G+ restricted to unstable manifolds. 

THEOREM 7.3. f is unstably connected if and only if for ta almost every 
point p, Wu(p) n U+ contains no unstable critical points. 

Recall that the Jacobian determinant of a polynomial diffeomorphism 
detD(f) is constant, and detD(f1-) = detD(f)-l. Replacing f by f1- if 
necessary, we may assume that IdetDfI < 1. We say that f is dissipative if 
IdetDf I < 1 and volume preserving if fdetDf I = 1. 

Combining the previous theorem with results from [BS5] we have: 

COROLLARY 7.4. If f is dissipative then f is not stably connected. If 
f is volume preserving, then f is stably connected if and only if f is unstably 
connected. 

Combined with Theorem 5.1 this immediately yields: 

THEOREM 0.2. Assume IdetDfI < 1. Then J is connected if and only 
if f is unstably connected. 

Earlier we described a method of determining the connectivity of J exper- 
imentally by considering the stable and unstable manifolds of a periodic point. 
It follows from Theorem 0.2 that we can determine the connectivity of J with 
only half as much data. 

When f is unstably connected we can give further information about the 
lamination of J+ . Our result can be compared with the fact that for polynomial 
maps in one variable the connectivity of the Julia set is equivalent to the 
existence of a canonical model for the dynamics on the complement of the 
Julia set. 
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The complex solenoid is defined as the set of bi-infinite sequences S+ = 
{Z = (Z;) lZil > 1,j E Z,zjd = Zj+l} with the product topology. The 
induced mapping a: S+ > S+, obtained by shifting sequences to the left, is 
a homeomorphism. Furthermore, S+ has a natural lamination by Riemann 
surfaces. 

THEOREM 3.2. If f is anstably connected, then there is a continuous 
map ? : J+- > S+ which semi-conjugates f l J-nu+ to the mapping a1S+, i. e. 
ff o q) = q) o f. Furthermore, <) preserves the lamination structure and is a 
holomorphic bijection on each leaf. 

Given this laminar structure on J+- we define external rays to be gradient 
lines of the function G+ restricted to leaares of the lamination. As in the case 
of polynomial maps of C it is interesting to know when these rays "land," i.e., 
conarerge to points in J. E+ren in one arariable it is too much to ask that all rays 
land, unless we impose additonal hypotheses on the map. It is known that 
the set of rays which fail to land has Lebesgue measure zero. Theorem 3.1 
shows that for polynomial diffeomorphisms, there is a natural measure on the 
set of rays, with respect to which almost all rays land. In [BS7] we show that 
when f is unstably connected and hyperbolic, all rays land. We also show in 
[BS7] that with the same hypotheses the semiconjugacy to the solenoid can be 
replaced by a conjugacy. 

We end this section with a guide to the organization of the paper. As 
a tool for relating unstable connectiarity at a point and the laminar structure 
on J+-, we introduce in §2 a condition (t), and we show that the existence of 
a laminar structure is a consequence of (t) In §3 we show that (t) implies 
the existence of a semiconjugacy to the solenoid. In §4 we show that the 
topological condition of unstable connectiarity implies (t) In §5 we relate 
stable and unstable connectiarity to the connectedness of J. In §6 we collect 
seareral properties equiaralent to unstable connectiarity. These are summarized 
in Theorem 6.9. In particular this theorem shows that unstable connectivity 
can be characterized without making reference to unstable manifolds. In §7 
we establish a relationship between unstable connectiarity and critical points. 

1. Notation and preliminaries 

In this section we briefly reariew standard terminology and facts about 
polynomial diffeomorphisms of C2. For a discussion at greater length see §1 
of [BS5]. 

We consider mappings of the form f = f1 o o fm, where each fj has the 
form 

fj (x, y) = (y, pj (y)-ajx), 
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700 ERIC BEDFORD AND JOHN SMILLIE 

and pj (y) is a monic polynomial of degree dj, and aj E C is nonzero. It follows 
that f has degree d = dl dm) and the n-fold iterate ) n = f 0. o f has degree 
dn. Let Ki denote the points which remain bounded in forward/backward 
time, and set K = K+ n K-, Ji = AKi, and J = J+ n J-. Define 
the projections 7rX(xvy) = x and 7ry(x,y) = y, and it follows that Xx(fn) = 

dn-l + and X (fn) = yd + .... Set 

G+(x, y) = lim dn log+ ||n+n(z, y) || = lim dn log+ |7rv o f+n(z, y) | . 

Then Gi is continuous and plurisubharmonic on C2) Ki = {Gi = O}, and 
Gi is pluriharmonic on the sets Ui := c2-Ki. The currents ,u+ and ,u- are 
defined by ,ui = (l/21r)ddCGi. The harmonic measure is giaren by ,u = ,u+/\,u-. 

For R > 0 define V+ = {IYI > IXI, IYI > R}. It follows that one may 
choose Ro sufflciently large that 

(1.1) J- n {G+ > Ro} C V+. 

If R is chosen sufficiently large, then for all n > 0, one may choose a dn-th 
root of 1ry 0 fn on V+ such that (v(fn))7 y, and with this choice of root, 
define 

(p+ (x, y) = lim (1ry 0 fn (x, y)) 7, 
n+oo 

which is analytic on V+ and satisfies Sn+ o f = ((p+)d (see [HOV]). Further, 

(1.2) So+ (x, y) = y + O (1), and S° <9( ' 8) = l + O ( ly l -l ) 

on V+. The uniformity of the O terms means that for fixed x, y +(x, y) is 

univalent for IYI > max(R, Ixl). Thus, if we set s = W+, then (x, s) is a global 
coordinate system on V+. 

Let v be an ergodic inarariant measure supported on J. Associated to 
v are two Lyapunoar exponents A+(v) and A-(v) which describe the growth 
of tangent vectors under Dfn. We say that v is an index one hyperbolic 
measure (or simply a hyperbolic measure when no confusion will result) if 
A- (v) < O < A+ (v). If v is an index one hyperbolic measure then the following 
conditions hold: 
(1) for v almost earery p there are complex one-dimensional linear subspaces 

Ep and Epu Of the tangent space Tpc2 such that Ep @ Epu = Tpc2 where 
the families {Ep/U} are inarariant: Dfp(Ep/U) = Ef/U. 

(2) for v almost earery point p, we haare 

( 1. 3) lim -log | | D fpn | ES/ u | | = > /+ (V) > 
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Conarersely if there are numbers A- < O < A+ such that (1) and (2) hold 701 
then v is an index one hyperbolic measure with exponents Ai. The concept of 
hyperbolic measure will be used frequently throughout this paper; see [P] or 
[KM] for further information. 

Examples of index one hyperbolic measures include the measure giaren by 
the aarerage of point masses oarer the orbit of a periodic saddle point. Such 
periodic saddle points exist in profusion for earery f (see [BLS2]). Another 
important example of a hyperbolic measure is the harmonic measure ,u (see 
[BS3] ) . 

A consequence of the Pesin theory is that there is a set 1Z C J which has 
full v measure for any index one hyperbolic measure v and such that for p E 1Z 
the stable/unstable manifolds 

ws/u(p) = {q E c2 lim dist(fnq, fnp) = 0} 

are smooth submanifolds of C2. In fact, (see [BLS], [W]) these are Riemann 
surfaces which are conformally equiaralent to C. In general these submanifolds 
arary only measurably with p. Loosely speaking, we may defiEne 1Z to be the set 
of points p E J for which Ws/U(p) are Riemann surfaces conformally equivalent 
to C. 

2. Extension of + and laminar properties of J+ 

In this section we describe a technical condition on complex disks con- 
tained in J+ which will play an important role in this paper. We will show 
that when there is a disk that satisfies this condition, J+ has a lamination 
by complex leaares. In §4 we will give topological hypotheses that imply the 
existence of such a disk. 

Let M be a Riemann surface. A positiare harmonic function on M will be 
called minimal if it generates an extreme ray in the cone of positiare harmonic 
functions. In other words, if a minimal harmonic function h can be written 
as a sum of positiare harmonic functions h = h1 + h2 on M, then h, hl, and 
h2 are all constant multiples of each other. In case M = i\ is the unit disk, 
the minimal harmonic functions are just the positiare constant multiples of the 
Poisson kernel 

p(z,ei0) = R (e° +Z) 

for some real 0. We note that under composition with an automorphism of the 
disk i\, the Poisson kernel P(z, 1) is taken to cP(z, ei0) for some real numbers 
c > O and 0. For any positiare harmonic function h on the unit disk, there 
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is a unique positive Borel measure A on 0A for which we have the Herglotz 
representation 

h(z)= JP(z ei9)A(O0) 

It turns out that minimality of G+ will enter frequently in our work in 
a rather specific context. So we formalize this. We call 0 C C2 a complex 
disk if there is a holomorphic infective immersion of the unit disk b: A - > C2 
with 0 = O (A). We say that a complex disk 0 satisfies condition (t) if the 
following three properties hold: 

(9 C J-, G(+IO is minimal, and 
for each j E Z either (D n fO = 0 or (D = f0. 

In the most typical situation 0 will be a component of WU(p) - K+ where 
W (p) is an unstable manifold of a point (not necessarily periodic). In this 
case the minimality of G+ is the only part of (t) that is not automatic. We say 
that a polynomial diffeomorphism satisfies condition (t) if it posesses a disk 
which satisfies condition (t). 

Let us recall the definition of a Riemann surface lamination of a topological 
space X (cf. [C]). A chart is a choice of an open set Uj C X, a topological 
space Yj, and a map pj Uj -4 C x Yj which is a homeomorphism onto 
its image. An atlas is a collection of charts such that {Ui } covers X. The 
set of points of Uj for which the second coordinate of pj assumes a fixed 
value is called a plaque. For coordinate charts (pi, Ui, Yi) and (pj, Uj, Yj) with 
Ui n Uj 78 0, the transition function is the homeomorphism from pj (Ui n Uj) 
to pi(Ui n Uj) defined by Pij Pi o pi 1. A Riemann surface lamination of 
a topological space X is determined by an atlas of charts which satisfy the 
following consistency condition: the transition functions may be written in the 
form Pij = (g(z, y), h(y)), where for fixed y E Yj the function z }- g(z, y) is 
holomorphic. The condition on the transition functions gives a consistency 
between the plaques defined in Uj and those in Ui. Thus plaques fit together 
to make global manifolds called leaves of the lamination, and each leaf has the 
structure of a Riemann surface. 

One of the equivalent conditions in Theorem 2.1 below is that J7 carries 
a unique Riemann surface lamination. After Proposition 2.7, we remark that 
this lamination in fact carries a special affine structure. 

The following theorem collects the basic results of this section. 

THEOREM 2.1. If there is a complex disk 0 satisfying (t)5 then 
(1) I+ extends to a continuous mapping p+ : J4- {I( > 1} which satisfies 

the functional equation 
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(2) J+ has a Riemann surface lamination M- with (9 as one leaf. 
(3) For each leaf M of M-, G+lM has no critical points. 
(4) For each leaf M of the lamination M-, the restriction W+IM: M > 

{141 > 1} is a holomorphic covering map. 
(S) Each leaf M of M- is a disk satisfying (t) 
(6) Each leaf of M- is dense in J+ . 
(7) M- is the unique lamination of J+ by Riemann surfaces. 

The remainder of this section is devoted to the proof of Theorem 2.1. In 
particular we will make the standing assumption that there exists a disk C) 
which satisfies (t) The general plan of the proof is as follows. Let C7oo be 
defined as UjEz fjO in J+-. Let e9 denote the closure in U+ of the set C;>oo. 
We begin by proving analogs of (1-5) with J+- replaced by (9. In Theorem 2.6 
we prove an analog of (1). In Proposition 2.7 we prove an analog of (2). In 
Corollary 2.8 we prove an analog of (3). In Corollary 2.9 we prove an analog 
of (4). In Corollary 2.10 we prove (5). Corollary 2.14 proves (6) and shows 
that (9 = J+-. Thus it follows that items (1-5) hold for J+- as claimed. (7) is 
proved in Corollary 2.18. 

For any set X C J+- we will use the notation: 
x(p) := x n {G+ > loGp}. 

We saw in g1 that + is defined for points in J+- with G+ suffficiently large. 
Let po be a fixed constant chosen large enough that + is defined on J+- (po). 

We will also use the notation C(p) := {( E C: 141 > p}. With this 
notation it follows that for p > po the map + maps the set J+- (p) to the set 
C(p). 

PROPOSITION 2.2. Let H = {x + iy: x > O} be the right half-plane, and 

let O be a disk satisfying (t) We can choose a conformal coordinate ae: H (9 

such that for x > logpo we have (p+(ae(x + ty)) is defined and (p+(as(z)) = eZ. 
Proof. By hypothesis, there is an imbedding f: A > (9 c C2 such that 

g = G+ o + is a positive multiple of the Poisson kernel function with pole at 
eiK E 0A. Choose a conformal map from the right half-plane H to A which 
sends the point at infinity to ei8. Let oe: H > e;> be the composition of map 
from H to A and f. On the right half-plane the Poisson kernel function with 
pole at infinity is x + iy " > x. Thus G+(oe(x + iy)) = cx. By composing 
oe with multiplication by a scalar we may assume that c = 1. If x > logpo 
then +(oe(x + iy)) is defined, and G+(oe(x + iy)) = log l+(x + iy))l. Since 
log le+iY | = x, we have log 1f+ (x + iy) | = log lex+iY | so that 

log 1f+ (x + iy)/ex+iY | = 0 

R((p+(x + iy)/eX+i8) = 1. 
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A holomorphic function with constant real part is constant so that + (x+iy) = 
ei0°eX+t8. Now by composing oe with the translation z | > z-iSo we have the 
required parametrization. cl 

Since the map exp: {x+iy: x > logp} > {(: 141 > p} is a covering when 
p > po, we have: 

COROLLARY 2.3. If ev satisfies (t) then (P+ I,9(p) : e7(P) > { 1(l > p} is a 
covertng map when p > po. 

For any subsets X c J+ and E c {G+ > p} with p > po, we will use the 
notation XE := X n (f+)-1E. 

LEMMA 2.4. If G C {|s| > po} is simply connected and ( E G, then 
there a homeomorphism H: G x O{(} > e3G satisfying (p+(H(s,p)) = s. 
Furthermore H(G x O{(}) = (9G 

Proof. Condition (t) implies that C;>oo can be written as a disjoint union of 
disks of the form fn(c;>), which again satisfy (t) For p E C>oo let O' denote the 
(unique) disk containing p, and let Lp be the component °f OG which corltains 
p. Now by Corollary 2.3 (P+ILP is a covering map with connected domain and 

simply connected range, so in fact W+ILS, is a bijection. Let gp: G Lp c C2 

be the inverse map, so gp is a holomorphic. By the remark following (1.2), 
the functions (7rxv +) form a coordinate system on V+, so there is a function 
h such that gp(z) = (h(z, p), z). Further, if we set E := O{4}, then in these 
coordinates we may identify E with a subset of C. 

Now the function h: G x E C is a holomorphic motion, which is to 

say that: 
(1) z 1--) h(z, p) is holomorphic, and 

(2) p h(z, p) is injective. 

The second property follows from the fact that O°° consists of subsets 
of pairwise disjoint disks in C2 which are given as graphs ( 1 > (h((, p), () in 
the (7rxv +)-coordinates. There is a well-developed theory of holomorphic mo- 
tions which shows that holomorphic motions can be extended to quasiconfor- 
malmaps C 9 t 9 > h(z,t). Weneedonlythebasicobservationfrom [MSS] that 

h has an extension to a function h: G x C9{4} C, which is also a 

holomorphic motion, and which is continuous. Now (9{(} = C){(}. We define 
H: G x C9{4} > XG by the formula H(t, z) = (t, h(t, z)), where the right-hand 
side is given in the (1rXv W+) coordinates on XG. The function H is a contin- 
uous surjection. The fact that h satisfies (2) shows that H is injective. H is 
proper, so it is a homeomorphism on each compact set. This implies that H 
is a homeomorphism. cl 
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Next we show that the function A+ has a canonical extension to all of O. 
This proof will use a purely topological fact which we prove first. 

Let 7r Y - Y be a covering space. Let ?: X -* Y be a map. A lift 
of 4' is a map 4": X --+Y such that 7r o V' = 4'. We will reduce the problem 
of extending A+ to a problem of finding a lift. On well-behaved spaces lifting 
problems can be translated into problems in terms of the fundamental group. 
The spaces we are dealing with here are not locally connected so this translation 
is not possible. On the other hand standard techniques of topology can be used 
to solve the problem. Let A be a closed subset of the topological space X. To 
say that A is a strong deformation retract of X means that we are given a 
function F: X x I -+ X (the retraction function) such that: 
(1) F(x, O) = x for x E X, 
(2) F(x, 1) E A for x E X 
(3) F(x, t) =x for x E A. 

LEMMA 2.5. Let A c X be a strong deformation retract. Let ir: Y - Y 
be a covering map. Let 4': X -- Y be a map and assume we are given a map 
1i: A -+ Y which is a lift of 0 IA. Then there is a unique lift 4' of 4 which 

agrees with 4l on A. 

Proof. Let F denote the strong retraction function as above, and define 
G: X x I - X by G(x, t) ='o F(x, 1-t). The function x "-4 *1 o F(x, 1) is 
well defined since F(x, 1) E A and it is a lift of the function x H-* G(x, 0). The 
homotopy lifting property of the covering map 7r [S, p. 67, Theorem 3] gives 
us a unique lift G' of G with the property that G'(x, 0) = 01 o F(x, 1). The 
restriction of G' to the set A is a lift of a constant homotopy (independent of 
t). By uniqueness of lifts of paths [S, p. 68, Theorem 5] the restriction of G' 
to A is itself a constant homotopy. It follows that G'(x, t) = 01i(x) for x E A. 
Now if we set +'(x) = G(x, 1) then 4' is a lift of 4 o G(x, 1) = 4 and +'(x) = x 
for x E A. 

Now if 4" is any other lift of 4 which agrees with 4l on A then GI" =4"'oF 
is a lift of G with the property that G"(x, 0) = o F(x, 1). By the uniqueness 
property of lifts of homotopies we have G" = G'; hence 0"(x) = G"(x, 1) = 
G'(x, 1) =0 X! 

THEOREM 2.6. If f satisfies (t) then the function (+ has a continuous 
extension to all of 0 which satisfies the functional equation 

(2.1) (O~~~~~+ (f (p)) = (Wp+ (p)) d (2.1) W+f~) 

There is a unique extension satisfying (2.1). 

Proof. The function A+ is defined on 0 (po) and satisfies (2.1) for p E 

(9(po). To prove the proposition, it suffices to show that A+ has a unique, 
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continuous extension to O(pd), which satisfies (2.1). Repeating this argument 
allows us to extend the function successively to sets (po/d) and thus to ( 
which is the union of these sets. 

Let us define 7r: C -* C by 7r(z) = zd and write 0 = o+ o f . Finding a 4' 
which satisfies (2.1) is equivalent to finding Ob' Q(pl/d) C- A such that 
ir o b' =- . The function 7r: C-A - C-A is a covering map. This is a 
problem of finding a lift b' with the added constraint that we want A' to have 
prescribed values on (0(po). 

In order to apply Lemma 2.5, let A = 0((p), let X (pl/d), and let 
01= ( O6(p). To verify the hypotheses of the lemma it suffices to show the 
following. For 1 < a <3 the set 0(i3) is a deformation retract of 0(ao). 

Since fnh(0(p)) = 0(p d) by applying a sufficiently high power of f we 
may assume that po < ao < A3. Applying the homeomorphism ffn does not 
change the topological properties of the sets. We will construct a deformation 
retraction by using A+ to lift a deformation retraction of {jzj > ca} to {jzj > 1}. 

Let F {jzj > a} x I -* {jzj > 13} be a strong deformation retraction. 
Thus F(z,O) = z, IF(z,1)j > /3 and F(z,t) z for Izj > 3. We may as- 
sume that F preserves radial lines. Define G: 0(a) x I C(oa) by G(p, t) - 

F(o+(p), t). We wish to find a function G': O(a) x I -* 0(a) which satisfies 
A+ o G' = G and G'(p, 0) = p. Since S+ is a covering on each leaf, the homo- 
topy lifting property of covering spaces gives us such a unique such function. 
A priori all we know is that this function is continuous when restricted to each 
leaf. To see that G' is continuous on 0(a) we use the product structure given 
by Lemma 2.4. Consider a set S = {jzj > ar, Oo < arg(z) < O1}. Since S 
is simply connected the set Os has a product representation as S x O(G} by 
Lemma 2.4. Now the restriction of F to S is a deformation retraction as is 
the restriction of G to OS. To prove that G is continuous it suffices to prove 
that G restricted to Os is continuous for any such set S. Now we can use 
the product structure to define a deformation retraction on (9s by the formula 
(z,w) | 4 (Ft(z),w) and it is a lift of F. This function is clearly continuous 
and by the uniqueness of lifts it must be equal to G restricted to OS. E 

We now define the lamination M- on the set 0. 

PROPOSITION 2.7. There is a Riemann surface lamination of (. The 
charts have the form PG : OG G C x O{(} and satisfy the condition 7ir 0 PG 
(1 

Proof. For each point p E 0 we will construct a set G and a chart as 
above. If G+(p) > logpo then let G C {IzI > poo} be a simply connected open 
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set that contains +(p). Let PG be the inarerse of the function h given by 
Lemma 2.4. 

A For a p E (9 not of the above form there is an n > O so that lq+(fn(p)) | > 
po- Let ( = f+(fn(p)). Let 41,(@,(dn be the roots Of zd = ( SO that 
41 = +(p). Let H be a simply connected subset Of {lZl > po} that contains 
(. Let Glv...vGdn be the components Of {z zd E H} numbered so that 

A A A 

(:k E Gk. Now f-n((9H) = (9G1 U . . . U OGdn where the sets on the right-hand 

side are disjoint. We have a map PG: C)H H x C){(}. We can write (9{sS} as 

1 A A a disjoint union (9{(1} U . U {¢:dn} In fact f-nPGl(H x (9{(k}) = (9Gk This 
is because for each plaque P the function + O f-n O (f+lp)-l is a branch of 
the dn-th root function so its values lie in Gk if and only if its value at ( is (:k 
Thus the function PH O f n: OG1 > H x OG1 gives a coordinate chart on C)Gl 

It remains to check the form of the overlap functions. If OG and OG 
intersect, then their intersection is C)H where H = GT n G//. We can analyze 

A A A the transition function in terms of the functions from C)H to OG and from C)H 
to OG. Thus we begin with the situation of H C G. Let us assume first that 
G C { [zl > po}. Let us assume that PG: OG > G x C){(} with ( in H. The map 

A A . 1 

P: H X C){(} > G X C){(} defined as P = PG ° t ° PH1 is continuous where t is the 
inclusion. On the set H X C){<;} we have p(z, w) = (z, w). Since H x O{d;} iS dense 
p must have this form everywhere. For a set G such that fn(G) C { IZI > P0} 
we apply the function fn and repeat the previous argument. o 

Remark. In Proposition 2.7 we have defined an atlas A of charts which 
gives us a Riemann surface lamination structure, which has the special property 
that a global function, +, is used as the local holomorphic coordinate. It 
is sometimes useful to consider a related atlas >' which gives us an affine 
Riemann surface lamination. Recall that the atlas A consists of charts PG 
where G iS a simply connected subset of C and PG: OG > G X Y. Define 
P/G = (#, id) ° PG where f is a branch of the logarithm function defined on G. 

The overlap functions for >' now have the form (z, w) (z + c, g(w)) where 

the constant c is an integral multiple of 21r which arises because of ambiguity 
in the choice of the branch of the logarithm. The chart >' induces an affine 
structure on each leaf, and with respect to these affine structures the map A 

has the form z d * Z + C(W) on the local plaque with w constant. Note 

further that our transition functions preserve both factors of the product so 
that not only are leaves well defined but local transversals to the leaves of the 
form {(zo, y): y E Yj} are also well defined, independent of the chart (compare 
Sullivan's comment on the TLC property [S, p. 549]). 

The following are consequences of Proposition 2.7. 
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COROLLARY 2.8. Let C)' be a leaf of the lamination M-, then (P+l,D, 

has no critical points. 

COROLLARY 2.9. Let C)' be a leaf of the lamination M . Then when 

C)' is given the leaf topology the fzunction (p+ln: C)' > C-A is a cover2ng 

map. 

Proof. Let G be any set arising in the previous proposition. Then the 

proposition implies that +|<:>1(G) consists of path components mapped bijec- 

tively to G. With respect to the leaf topology each of these path components 

is an open set. 
z 

LEMMA 2.10. Each leaf of M- is a conformal disk, and (p+ is a minimal 

harmonic function on each leaf. 

Proof. Let (9' be a leaf M-. Assume first that the degree of the covering 

+1<, is finite. For n a natural number let On = f-n((9t) Now + O fn = 

tn o + where we use the letter 1r for the d-th power map. The degree of 

fnlO is one and the degree of lRn is dn. Since degrees multiply we have 

deg(q+|<)/ ) dn = deg(q+|<9/). Since the right-harld side is divisible by some 

highest power of d this equation cannot be valid for all n. We conclude that 

the degree of q+l< must be infinite. It follows from covering space theory that 

the image of the map (f+)*: 1rl((9/) 1rl(C-A) is a subgroup of infinite 

index. But this second group is isomorphic to Z; hence the only subgroup 

of infinite index is the trivial group. Since by covering space theory (f+)* is 

injective we conclude that 1rl((9/) is trivial. Thus (9' is a simply connected 

Riemann surface. 
Let H = {x + iy: x > O}. Consider the map oe: H > C-A given by 

oe(z) = eZ. Now (D' and H are both universal covering spaces of C-A so 

by covering space theory there is a bijection S: (D' > H so that Sn+ = °e ° p. 

Since oe and + are holomorphic,: is holomorphic. Thus (D' is holomorphically 

equivalent to the right half-plane and log 1f.+1 is holomorphically equivalent to 

p(x + iy) s > log loe(x + iy) | = x. The function x + iy s > x is a minimal function 

on the right half-plane so log 19+l is minimal on U. a 

If we fix a simply connected domain G as above and consider 41, 42 E G, 
A 

A 

then the product structure on OG gives us a homeomorphism X(1,(2 {41} > 

A 

{42}. If 7 is a path in C-A, then we define a holonomy map X: O{a(o)} 

A 

(9{a(1)} by subdividing the path into small intervals, covering each interval by a 

disk and composing successive local holonomy maps. The resulting holonomy 

map depends only on the homotopy type of the path relative to its endpoints. 
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We now prove that O supports a unique positive, closed current. We 
will define a family £(M-) of positive, closed currents which are compatible 
with the laminar structure of M-. We consider currents S such that for each 
( E C-A there is a neigborhood G of ( and a measure As, on C){(} such that 

A f 
(2.2) S L (9G = J as 4 (t) [rt], 

tEC{(} 
where rt are the leaves of the product lamination M- n JG. We let c(M-) 
denote the set of positive, closed currents S on U+ with support in d) such 
that the representation (2.2) holds with AS,( a probability measure. Thus for 
each S E c(M-) there is a probability measure A on (9{(} for each ( E C-A. 
These measures are connected via the holonomy map: if p is a path connecting 
the points ( and (', then (Xp)*A = A/. Let ry be a loop based at ( which 
generates the fundamental group of C-A. If we have a measure A on (9{(} 
which is invariant under the holonomy automorphism %a: (9{(} > (9{(}, we 
can define a family of measure A/ on each (9{,} by the formula A/ = (%p)*A 
where p is a path connecting ( and ('. The resulting measure is independent 
of the path: any other path between these points is homotopic relative to its 
endpoints to a path which differs from p by a multiple of ry. This family of 
measures produces a current in £(M-) via formula (2.2). Thus we have proved 
the following lemma. 

LEMMA 2.11. Elements of £(M-) are in one-to-one correspondence 
A 

with probability measures on O{(} which are invariant under the holonomy 
map Xa 

Next we will look at the push-forward of a current under a diffeomorphism. 
We recall that for a current of integration [D], the push-forward is given by 
f*[D] = [f (D)]. Thus the push-forward of a current of the form (2.1) is given 
by f*( f A(t)[rt]) = S A(t)[f rt]. 

LEMMA 2.12. d lf*£(M ) C £(M ). 

Proof. For a point ( E C-A, we let 61,. . . ,Fd denote the solutions to 
(d = (, and we let D1,...,Dd denote the preimages of a neighborhood G of 
(. Let S E £(M-) be given, and suppose that over each Dj, S has the form 
(2.1). It follows that on the neighborhood (OG of the fiber (9{(}, 

f * S L ( f +) G = E | A&j (t) [ f rj,t], 

where rj,t denotes a leaf of M- lying over Dj and containing the point t. The 
transversal measure in this case is the push-forward of Ed=l A5;, which has 
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total mass d. After we normalize by multiplying by d-l, f*S will again belong to £(M-) . ° 
By (1.1) it follows that if R is large, then for any S E £(M-), the re- striction SE{IYI, R} is closed on {IYI > R}. We will let S denote the slice measure Sl{y = (}. For 141 > R, the transversal (9 n {y = (} is approximately (9{(}, and so the local holonomy map %: (D n {y = 4} > o{(} is well defined and takes the slice measure S to A. Thus the slice measure is a probability measure. We deSne the potential function 

Ps(z, y) := j log Ix - x'l Sy(x/). 
xec 

Since S is a positive, closed current, it follows that on {IYI > R}, Ps is pluri- subharmonic, and 21 ddCps = S. Since each slice measure Sy is supported in the set {IXI < IYI}, it follows that 
(2.3) log(lxl + IYI) > Ps(x7y) > lOg(lxl - IYI) 
holds on the set {(x, y): R < IYI < IXI}. 

The following proposition was motivated by the result of Fornaess and Sibony [FS, Theorem 7.12]: Any positive closed current on c2 which has Slbp- port in K+ mv,st be a multiple of p+. 
PROPOSITION 2.13. £(M ) = {,u LU+}. 
Proof. By Lemma 2.11, we know that there is an element S E £(M-). If we write Sj := dJf* JS, then by Lemma 2.12, we have Sj e £(M-). By our 

notation, 

S = d-2 (f-2)*dJf* JS = d-2 (f-2)*SJ 
By the remarks on the potential function, then, 

S = (d-j) 2 ddc(psi o f-2 ) 
For any point (x, Y) E {IYI, R}-K-, we observe that f j(x, y) = (z_j, y_j) 

satisfies R << IY-S I << IX j I E X as j x. We recall that d-2 log Ix_j I > G- 

uniformly on compact subsets of C2-K-. Now if we apply (2.3), we obtain that 
(2.4) d-2Psj (f-2 (x, y)) > G- (x, y) 
uniformly on compact subsets of {IYI, R}-K-. It follows that the sequence on the left-hand side of (2.4) is uniformly bounded above, and any such se- quence of plurisubharmonic functions either has a subsequence that converges in Llloc(lyg > R) or the entire sequence converges everywhere to-oo. Now, passing to a subsequence, we may assume that it converges in Lloc(lyg > R) 
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to a plurisubharmonic function W. Since W = G- on the complement of K-, 
G- is continuous and G- = 0 on K-, and since W is upper semicontinuous, 
we have W = 0 on AK-. Further, since supp(ddcPsi) C J., it follows that 
supp(ddcW) C J-. Thus W is pluriharmonic on the interior of K-, and so 
W = 0 on K-. Thus W = G-, so this sequence converges in Lj-(,yI > R) to 
G-. Applying 1 ddC to (2.3), we conclude that S =21 ddCG- = Gon U+. 
Thus S=-LU+. ' E 

COROLLARY 2.14. on u+ = 9 = J;- 
Proof. Since (9 C J- and J- is closed we haveo n fu C J; . For the 

other containment, let v- denote the current with supp(v-) C 0, given in 
Lemma 2.11. By Proposition 2.13, we have u- L U+ = v- so J- n U+ = 

supp(v-) C 0, since supp(u-) = J-. 

COROLLARY 2.15. The holonomy map is uniquely ergodic and the unique 
invariant measure has full support. 

Proof. By Lemma 2.11 a finite probability measure A on the transversal 
invariant under the holonomy map gives rise to a current on J;. There is only 
one such current namely ,t- and its support is all of J4. It follows that the 
support of A is equal to the transversal. 

COROLLARY 2.16. Every leaf of the lamination M- is dense. 

Proof. This corresponds to the minimality of the holonomy map. The 
minimality of the holonomy map is a consequence of the unique ergodicity 
with a measure of full support (see [Wa, Theorem 6.17]). 

The next result extablishes the uniqueness of the lamination M-. 

THEOREM 2.17. If f satisfies condition (t) and D is a connected Rie- 
mann surface contained in J;, then D is an open subset of a leaf of the lami- 
nation M. 

Proof. Let us suppose that D is a complex disk such that D n J; contains 
an open subset of D. We recall that the Green function G-, restricted to 
the transversals 01(j, is continuous. Thus 01(l cannot have isolated points. 
Let us consider a neighborhood N C J; such that M- n N is the product 
lamination T x G, whose leaves are written Ft. Let us suppose, for the sake of 
contradiction, that D is not contained in any leaf of M-. It follows, then, that 
D must intersect each leaf M of M- in a zero-dimensional set. If D intersects 
Ft, tangentially, then by [BLS, Proposition 6.4], the intersection of D and rt 
is transverse for all t close to to with t $& to. 
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Thus we may assume that D and rt intersect transversally for all t E T. 
We may also assume that in local coordinates D = {IxI < 1} x {O}, so that D 
is contained in the family of complex disks D5 = { lxI < 1, y = 4}. It follows 
that for E small, there is a holonomy map X,: DsnN -* DnN for each Is} < E. 
Since D n N contains an open subset of D, it follows that D5 n N contains a 
nonempty open subset of D8 for each s, and that Ul A <,(DnN) contains a 
domain in C2, which contradicts the fact that J4 has no interior. o 

COROLLARY 2.18. If f satisfies condition (t) then decomposition of J; 
into the leaves of M- is the unique way of writing J+ as a union of connected 
Riemann surfaces. 

COROLLARY 2.19. If W C J- is a Riemann surface conformally 
equivalent to C, then each component of W n U+ is a disk satisfying (t). 

Remark. If p E 1Z then W = Wu(p) satisfies the hypotheses of this 
corollary. 

Proof. The set Up A W is an open subset of W so it has a most countably 
many components. According to Theorem 2.17 each component is contained in 
a leaf L of the lamination M-. Let L1, L2, ... be the leaves that meet W. Let 
X = W U {Lj}. We claim that X has the structure of an immersed Riemann 
surface. Let q5: C -> W and let qj: H -+ Li where H is the right half-plane. 
The set of charts A = {f q5 7,... .} forms an atlas for X. To show that A is 
an atlas we verify that the change of coordinate functions are holomorphic. If 
+$(c) n o (H) = W n LJ is a Riemann surface so q 1 (W n Li) is an open subset 
of C and Xv 0(W n L) is an open subset of H and All o qj is holomorphic. 

The atlas A determines a topology on X where we define a set Y C X to 
be open if 0q1 (Y) is open for each chart q E A. With respect to this topology 
the inclusion from X into C2 is continuous. The existence of an atlas for a 
toplogical space does not imply that it is Hausdorff. From the fact that the 
inclusion is continuous we can deduce that X is Hausdorff. If p and q are 
distinct points in X then they are contained in disjoint neighborhoods in C2. 
The pullbacks of these neighborhoods are disjoint neighborhoods in X. We 
also see that X is path connected. Since X is holomorphically embedded in 
C2 so it is not compact. 

We will finish by showing that X = W. This will imply that the intersec- 
tion of W with U+ is a union of leaves of the lamination M-. The corollary 
then follows from Theorem 2.1 (5). 

Assume that W is a proper subset of X. Replace X by its universal cover 
X and replace W by some lift Wo of W. The inclusion of Wo in X is still 
proper. Now X is simply connected but not compact thus it is conformally 
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equivalent to a disk or plane. Now X contains a copy of C so it is not the 
disk. We conclude that X is the plane. A proper simply connected subsurface 
of the plane is equivalent to the disk so Wo must be equal to X contradicting 
our assumption. a 

3. External rays and semi-conjugacy to the solenoid 

The previous section was devoted to the study of some of the properties 
of mappings which have a disk satisfying (t), and the following sections will be 
devoted to establishing various conditions which imply this property. Before 
we proceed with this, however, we describe two ways in which the special 
features of these maps can be exploited. First we define a family £ of external 
rays in J+-. It is expected that, as in the one-dimensional case, a connection 
between the dynamics of the restriction flJ- and flJ will be obtained by a 
more careful study of the map of external rays. Our second observation is that 
flJ_ is semi-conjugate to the shift on the complex solenoid. The paper [BS7] 
is devoted to further exploration of the relationship between these mappings 
and the solenoid in the hyperbolic case. 

We begin by recalling some properties developed in 02. If g satisfies (t), 
then by Theorem 2.1 there is a lamination M- of J+- and a holomorphic 
extension +: J+- > C-A, which serves as a canonical projection. For any 
S c C-A we set J5 := (f+)-1(S) The sets J{(}, ( E C-A form a canonical 
family of transversals to J+-. If G C C-A is a simply connected domain, then 
for any ( E G, Proposition 2.4 shows that the restriction M nJG is equivalent 

to a product lamination whose leaves are {rt t E J{(}}, and +: rt G is 

a canonical biholomorphism. This local product structure also extends to ,Ll- 
in the sense that there is a measure Ae on J{(} such that 

(3.1) ,Ll L JG = j >e(t) [rt] 
tEJ{e} 

For a leaf M of M-, the 1-form dCG+ restricts naturally to M. The set 
of integral curves a of dCG+lM will be called external rays, and the set of all 
external rays will be denoted by £. External rays serare as a substitute for 
gradient lines of G+, and eachoy may naturally be parametrized by G+. These 
are called rays because each a E £ is contained in some leaf M of M-, and 
a is the lift of some radial ray Ro = {reio E C: r > 1} under the mapping 

W+IM. We may define the map er: £ {G+ = r} n J- by letting er(ty) be 

the intersection point a n {G+ = r}. The mapping Xr,s: J- n {G+ = r} > 
J- n {G+ = s}, defined by following the external rays, is a homeomorphism 
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between these two sets, and es = Xr,s o er. It is natural to topologize £ so that 
er is a homeomorphism. 

We will show how external rays give a description of the harmonic measure 
,u when (t) holds. Let Alr denote the measure on J n {G+-r} defined by 

(3.2) 
yr = (27r)2 (-dCG+ * h{G+ > r}) A ddCG- = (2 )2 ddC(max(G+, r) ) /\ ddCG- . 

We note that (27r)-l(-dCG+]ML{G+ > r}) may be interpreted as the har- 
monic measure of Mn {G+ > r}. (This is also the pullback under W+IM of the 
planar harmonic measure (27r)-1dClogll of {( E C: 141 > r}, which is nor- 
malized arclength measure on the circle orthogonal to the rays.) For a simply 
connected domain G c C-i\, it follows from (3.1) that on JG the middle 
expression in (3.2) may be interpreted as 

(3.3) j >e(t)t 
tEJ{(} 

if we set gt := (27r)-l(-dCG+]rtL{G+ > r}). Flowing along the gradient 
lines of G+]M preserves harmonic measure in the sense that Xr,s*r -aJs 
wherever Xr,s is correctly defined, so Xr,s also preserves Hr in the sense that 
(Xr,s)*Ur = Hs Thus we may define a measure v on £ by the condition that 
(er)*v = Ur, and this definition is independent of r. 

For a leaf M of M-, let atM: H > M denote the uniformization given 
in Lemma 2.2. All external rays a c M are of the form (y)-{oeM(x + iy) 
: O < x < oo}. Since atM iS a bounded analytic function on the set {O < x < 
R < oo} the limit OeM(y):-limxo+ atM(x+iy) exists for almost every y. Thus 
oeM(g) = limro+ er(a(y)) exists for almost every (y) c M. Since harmonic 
measure adt corresponds to dy under OeM, it follows that within each leaf M, e 
is defined almost everywhere with respect to adt. We define the endpoint map 

e(^y) riOer(-r) 

for all a E £ for which this limit exists, and we observe that by (3.3), e(^y) is 
defined for v almost every . 

Thus e: £ > C2 iS a Borel measurable map, and we may push the 
measure v forward to a measure e*v on C2, which coincides with the weak-* 
limit limro(er)*v. Fiom the right-hand expression in (3.2) and the fact that 
G+ is continuous, we see that limrO+,ur = 1. It follows by the uniqueness of 
weak-* limits of measures that we have the following: 

THEOREM 3.1. If f satisfies the hypotheses of Theorem 2.1, then the 
endpoint mapping e is defined v almost everywhere on 6, and e*v = . 
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We now begin the construction of the semi-conjugacy to the standard 

model. Let cr: C* C* denote the map cr(z) = Zd. Let E denote the 

projective limit of the map cs, and call E the d-fold complex solenoid. We may 
represent the solenoid as a space of bi-infinite sequences 

E = {( * * Z-2Z-lZOZlZ2 * * *) where zj E C*and Zj+1 = a(z;) for all j E Z}. 
Observe that Cs induces a homeomorphism (which we again denote as cr: E 

S), which is given by left translation: cr(z) = w, where z = (z;) and 

w = (w;) has entries Wj = Zj+l. 

Define ur: E C* by ur(z) = ur(. . . z-1z0z1 . . .) = zo. Thus urcs = Td. We 

give E the product topology, so the fiber ur-1(() is a Cantor set (i.e. totally 
disconnected and perfect). 

The standard (real) solenoid is given by 
So = {s E S: l(s)l = 1}. 

This may also be identified with a set of sequences of points of the circle 
So = {° = ( 0-1°001 ): 0j E R/2tZ, d °n = °n+l} 

We let r1: E So be defined by r1(s) = s, where s; = sj/lsyl. Thus r1 

commutes with cr. We define 
S+ = {s E S: l(s)l > 1} 

to be the portion of the complex solenoid lying above the complement of the 

closed unit disk. We observe that the fibers of the mapping r1: S+ So are 

rays in the complex solenoid, so the complex solenoid has a natural structure 
of a family of external rays, parametrized by the real solenoid So. 

Given a space X, a mapping b: X E is given by a family of mappings : X C*, j E Z such that +;+1(x) = Qjd(x) for all x E X and j E Z. If 4) is to give a semi-conjugacy between a bijection f: X X and cs, then we must have Qj o f = Qj+l = jd. In this case o: X C* determines all of 

the coordinate maps Qj via the relation Xj(X) = o(fiz) for all j E Z. The 

consistency condition for a given map o: X C* to induce an equivariant 

mapping 4) in this fashion is that o ° f = od. According to Theorem 2.1(1) if 
there is a disk satisfying condition (t) then + has an extension to J+- which 
satisfies + O f = (f+)d. Thus + serves as a 0-th coordinate map for an 

equivariant mapping 4>: J+- S+ given by 

(3.4) (P) := (+j(P)) = (f+(fip)). 
THEOREM 3.2. If f satisfies the hypotheses of Theorem 2.1, then there 

is a continvous mapping 4?: J+- > S+ which is holomorphic and injective on 
the leaves of M- and such that 
(3.5) CJOb = bof, 
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and 
(3.6) logluro4>l=G+. 

Proof. By Theorem 2.1, (p+ extends to J+ and is holomorphic on the leaves of M-. Thus, if we defirle b as in (3.4), then (3.5) and (3.6) are easily seen to be satisfied. For M E M- it is evident that 4>lM is holomorphic. We must show that BIM is injective. We let (o = +(p) and let jr denote the path in C startirlg at (o which traces the circle {141 = lSol} j times in the counter-clockwise direction. We let pj be the point obtained by lifting jt via the map W+IM starting at po) so that (9+)-1((o) = {pj: j E Z}. We let Vil,i2 derlote the curve above T which goes from Pil to Pi2 Since (f+)d = f+ o f, we see that 
(((f9+ ° f -n) IM) dn = (f9+ IM 

It follows that the curve (f + O f -n) (ail ,i2 ) starts at the point + O f -n (Pil ) and moves inside the circle {141 - 19+ ° f-n(po)l} through arl angle of 2X(j2-jl)d-n E Z. It follows that if (fi)-n(Pil) = (t-n(Pi2) for n = 1)2) then j2-jl is dirrisible by dn for all n. Thus jl = j27 arld so 4) is one-to-one on M. 
a 

Under the mapping @, the external rays £ are mapped to rays of the solenoid, and the lamirlation M- is takerl to the lamination of S+. 

4. Unstable connectedness 

Let p be any point in J so that WU(p) exists and is conformally equivalent to C. We will say that f is unstably connected with respect to p if WU(p)-K+ has at least one simply connected component. 
Let v be an ergodic hyperbolic measure with index one. We will say that f is unstably connected with respect to v if for v almost every point p, f is unstably connected with respect to p. Since v is assumed to be ergodic and our condition on p is invariant urlder f, it is equivalent to assume f is unstably connected with respect to p for p in a set of positive v measure. 
THEOREM 4.1. Let M be a hyperbolic index one measure then f is anstably connected with respect to v if and only if there is a disk satisfying (t) 
COROLLARY 4.2. If f is unstably connected with respect to some hy- perbolic measure v then it is unstably connected with respect to any hyperbolic measure v. 

We say that f is unstably connected if f satisfies the hypothesis of the corollary for any hyperbolic measure. 
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Remark. If p is a periodic saddle point and v is the normalized counting 
measure on the orbit then the condition of being unstably connected with 
respect to p described in the introduction, i.e. that Wu(p) n U+ has a simply 
connected component, is equivalent to being unstably connected with respect 
to v. 

The "if" part of Theorem 4.1 is already contained in Corollary 2.19. The 
rest of this section will be devoted to the proof of the "only if" statement. The 
proof of Theorem 4.1 can be broken into two parts: function theoretic, involv- 
ing the growth of G+ on a single unstable manifold, and dynamical, where we 
use the properties of the measure v. We will start with some properties of 
hyperbolic measures. The reader who is unfamiliar with hyperbolic measures 
may find it convenient upon first reading to consider only the simplest hyper- 
bolic measures: the averages of point masses over periodic saddle orbits. This 
proves Theorem 4.1 in the case of periodic saddle points and makes the proofs 
of the following three lemmas rather simple. 

For the rest of this section, v will denote an index one hyperbolic measure, 
and f will be assumed to be unstably connected with respect to v. 

Applying the Pesin Stable Manifold Theorem to an index one hyperbolic 
measure v, it follows that for v almost every point p there is an unstable 
manifold WU(p) which is conformally equivalent to C (cf. [BLS], [W]). Let us 
fix a conformal equivalence $: C -- Wu(p) with $(O) = p. We will use q to 
translate concepts from W (p) back to C. For z e C we will sometimes write 
G+(z) to denote the function G+(q(z)). We write U+ for 0-1(U+) and K+ 
for 4-1(K+). Thus G+ is a continuous subharmonic function on C which is 
equal to zero on K+ and positive and harmonic on U+. 

Given one uniformization 4, all other uniformizations 4 are of the form 
b(oaz) for some constant a e C- C{O}. We define the function 

M(p, r) = max G+ (+(z)). 
|z|=r 

By the maximum principle M is an increasing function of r. We may 
choose the scale loal in the uniformizing function b(oaz) so that M(p, 1) = 1, 
and we let Op denote the uniformization which is normalized this way. This 
determines M uniquely in terms of G+ and the conformal structure of Wu(p). 
Since G+ o 4 is subharmonic on C, M(p, r) is continuous and increasing in r. 
We define a Hermitian metric 11 JIG on the subspace Epu by the condition 

JJD~p(0)1JJG = 1, 

where 1 denotes an element of TOC which has unit length with respect to the 
standard metric. We will also consider the growth rate of Dfn with respect to 
F: 

JJDfp' Eu |G = IIDfP (v)|G/GIIV |G, 
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where v is any nonzero element of Ep. The advantage of 11 IIG is that it transforms naturally under a in connection with G+ and M(p, r). 
LEMMA 4.3. For all n E Z we have M(fnp, ||Dfpn||G) = dn. 
Proof. The map sbf lp O fn O Xp is a holomorphic and bijective map that sends C to C and takes O to 0. Any such map is linear. Thus there is ( E C-{O} so that 

(4.1) ¢JJnp o fn O p(z) = (z. 
Thus ¢5frwp(f,Fz)-fn o (>p(z). By rewriting this equation and applying G+ we obtain: 

G+(¢,fnp((z)) = G+(fn o ¢)p(z)), 
Now G+ multiplies by d when f is applied so 

G+ ((/) f np((z)) = d G+ (z) 
We now evaluate 

M(fnp) 1f l )-max G+ (¢>fnp (z)) = max G+ ((/)f np ((z) ) 
= dn max G+ (¢p (z) ) = dn 

To evaluate 161, we differentiate equation (4.1) to get 
D¢Stf lp O Dfn o D(Ap(z) = f,5; 

thus 
j§D§ifnlpll j§DfnllG * j§DQp(z)ll-11611^ 

Since Xp and C/)fnp were normalized so that D¢a)p and Dl$)fnp have norm one, we have ||Dfn||G = |(| 
2 

The next lemma shows that we may also compute the Lyapunov exponent starting with the metric 11 IIG 
LEMMA 4.4. Let v be an index one hyperbolic measure. For v almost every p, we have the existence of the limit 

lim -log ||Dnfp||G = )28(>) nioo n 
Proof. Let v E Ep be nonzero and let 

r(p)= 1:V::H, 
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so that 
||Dfp||H ||Dfp(V)|lH, IIVIIG = r(|(p))/r(p) 

|IDfPIIG |IDfP(V) ||G IIVIIH 
Let oe(p) = log llDfpllH, ,0(p) = log llDfpllG, and p(p) = logr(p). Taking 
logarithms gives the cocycle equation: 

a(P) - (P) = P(f (P)) - P(P) 
If p were in L1, then our lemma would be a consequence of the 
Ergodic Theorem. 

Although we have no information on p, we can show that oe(p)-,B(p) is 
bounded below. Since M(fp, IlDfpllG) = d and M(fp, 1) = 1 and M is strictly 
monotone in r, we conclude that IlDfpllG > 1. Thus oe(p) > O. Further, 
IlDfpllH is bounded above by the supremum of the Euclidean norm of the 
Jacobian matrix Dfp over the compact set J. Thus :(p) < C and oe(p)-p(p) > 
-C7. According to [LS, Proposition 2.2] we have limn poo n(at(fnp)-iB(fnp)) 

= O so limn poc, -oe(fnp) = limn >00 -,8(fnp) holds for zJ almost every point p, 
and this limit must be equal to AU(ZJ). o 

We fix a component O of U+ n wu(p). An end of C, written £r (O) or just 
£rX is a connected component of O n {Izl > r}. It is evident that £o((9) = O. 
We say that an end £r has no loops if £r contains no closed curves which 
encircle the origin. 

LEMMA 4.5. WU(P) n U has no loops. 
Proof. If U contains a loop around zero then the component of K 

containing O is compact. But we have assumed that there are no compact 
components. o 

For an end £r C U+, we define 
M(p,£r,s)= max G+((), 

4EernOn{lUl=s} 

or we write M(£r,s) = M(p,£r,s) if the point p is understood. Let us fix 
r < s. For a subset X c 0((9 n {r < lzl < s}), we define a function (X, z) 
called the harmonic measure of the set X to be to be the greatest function 
O < w(X, z) < 1 that is harmonic on O n {r < Izl < S} and which satisfies 

lim z(X, () = O for (o E @((9 n {r < lZl < s})-X. 

o 

We will consider the case where X has the form At = O n {Izl = t} for 
t = r, s. Let tf3(t) denote the length of the set on {Izl = t}. When O contains 
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no loops, classical estimates on the harmonic measures of the sets Ar and As for r < lZl < s (see Fuchs [F]) are given by 

a)(Art z) < 4 exp (-7 t tl3(t) ) 
and 

(Asx z) < 4 eXp (-7r Jlzl t(3(t) ) 
Since @(t) < 27r we have 

Jab dt > Xb dt 1 Xb dt log(b/a) 
Thus 

. z(Ar) z) < 4+/r/|z| and a)(AsX z) < 4A/1zl/s We use these estimates as follows. For any end £r of C), the maximum 
* * 

) prlnclple glves 

(4.2) G+(Z) < M(ErX r)S(Ar7 z) + M(£r) s)S(As, z) Thus 

(4.3) M(£rv Izl) < 4M(£rx r) /r/lzl + 4M(£r, s) +/lzl/s. 
PROPOSITION 4.6. Fix r > O and an end Er. Then exactly one of the following two alternatives holds. Either 

(4.4) M(£r, s) < 4M(£r) r) for all s > r, or for some constant c > O 
(4.5) M(£r, s) > cW for all s > r. When r-O, the second alternative must hold. 

Proof. Let us fix an end Er of C). If alternative (4.4) does not hold, then there exists to > r such that 
(4.6) M(Er, to) > 4M(Erx r) H74 

Set oe-M(Er,to) 4M(£r,r)+/;74. Then by (4.6)) ae > O and using (4.3) 

with Iz | = to we have 

oe < tM(Er7 s)4; 
thus 

c<M(£r,s) 
holds with c-ot/(4A/0 
Now, in case r-O we haare £r = (9. C:ase (4.4) cannot hold, for it implies that G+ = O on O by the maximum principle. C1 
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Let fr be an end. If case (4.4) in Proposition 4.6 applies, we will say that 

Er is a decay end, and if (4.5) applies we say that, Er is a growth end. By 
Proposition 4.6 each end is either a growth end or a decay end. For f > O 
we let C(r) denote the set of connected components of U+ n {Izl > r}. Let 
c(r) be the cardinality of the set C(r), and let g(r) denote the number of 
growth components in C(r). Thus c(r) > g(r). Since C(O) corresponds to the 
set of connected components of U+, it follows from Proposition 4.6 and the 
maximum principle that each component of U+ is a growth component. Thus 
c(O) = 9(0). 

If r < s, then there is the containment map 

Y>: C(s) C(r) 

where for any component O E C(s)) r(O) denotes the element of C(r) contain- 
ing O. 

PROPOSITION 4.7. The f?lnctions c(r) and g(r) are nondecreasing in r, 
and if g(r) is finite for some valtse of r, then limr fo g(r) = 9(O) = c(O). 

Proof. The mapping r is surjective since there are no bounded compo- 
nents (this is a consequence of the maximum principle), so c(r) > c(s) for 
r < s. Further, by Proposition 4.6, an end fr is a growth end if and only if 
one of the components of fr n {Izl > S} is a growth end. Thus r is a surjective 
mapping from growth ends to growth ends, and so g(r) is nondecreasing. 

Finally, we show that limro g(r) = 9(O) if g(r) is finite. Let us suppose, 
to the contrary, that g(O) < g(r) for O < r <o. This means that there are 
two growth ends tro and fr20 in U+ n {Izl > r} which are contained in different 
connected components of U+n{lZl > r} for O < r < ro, but which are contained 
in the same connected component of U+-{O}. Now if ty is a path in U+-{O} 
which connects these two components, then ty avoids some disk { Izl < }. Thus 
tro and fr2o are contained in the same connected component of U n {Izl > S}, 
which is a contradiction. o 

LEMMA 4.8. If C)l, . . ., (9N are disjoint, open sets, then there exists j 
s?lch that 

7rJC rG3 (r) > 2 log(t) 

Proof. By the Cauchy inequality, 

- ,X3j ,(32 > (,/9Xx (32 ) = N s 
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Since the sets (9j are disjoint, E (3j < 2er; thus 

E /3j (r)- 2Fr 

This gives 

15 r$3J (r) 27r ( t ) 

from which the lemma follows. o 

PROPOSITION 4.9. If for some r > O there are N distinct growth ends 
in U+ n {Izl > r}, then 

M(U+, s) > CSN/2 

for some C > O and all s > r. 

Proof. The harmonic measure estimates above yield the estimate 

M(O, t) < 4M((9, r) H + 4M(O, S) exp (-7r t #H>( ) ) 

Arguirlg as in Proposition 4.6 we have 

M(c7,s) > C exp (-r /t <3( )) 

If we choose (9 = (9j satisfying the conclusiorl of Lemma 4.8, then the propo- 
sition follows. a 

PROPOSITION 4.10. For 72 almost every point p and every r > O we have 
()<21ogd 

Proof. According to Lemma 4.4, M(fnp, IIDfpnilG) = dn. Thus, after 
changing variables, we have M(p, IIDffn_npllG) = dn. 

Let N be a (finite) integer no greater than g(r). Then 

d = ty(p, IlDff-npilG) > cilDffn_ jIN/2 

and taking logarithms we see that 

nlogd > logC + 2 log ||Dffn_np||G 
We divide by n, take limits, and apply the chain rule jlDffn_npil = IIDfp-nil-l, 
so 

log d > 2 lim -log | | Dff -np | | G =- 2 lim -log | | Df p I I G . 
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By Lemma 4.9 we have 
logd> 2A(B8) 

Since this holds for all finite N < g(r) we have: 

logd> (r)A(v). cl 

We say that a component (9 has a unique growth end if for each r > O 
there is only one growth end Er((9) 

THEOREM 4.11. For 72 almost every point p every component of Wp nu+ 
has a uniq?se growth end. F?srthermore the n?smber of components of Wp n u+ 
is eq?sal to a constant N for z>-almost every p, and N < 21ogd. 

Proof. We denote by g(p, r) the number of growth ends in Qp 1(U+) n {Izl 
> r} . We observe that by the property of || ||G,- we have g( f (p), ||Dfp ||G r) = 
g(p,r). We begin by showing that for almost every p the function g(p, r) is 
independent of r forr > 0. Sinceg(e(p),1) = g(p,llDfplllG) < g(p,1), we 
have g(p, 1)-g(<(p), 1) > 0. On the other hand 

Jg(P l)zo(p)= Jg(g(P) l)zo(p) 

because of the invariance of zo. Both integrals are finite because g(p, 1) is 
uniformly bounded almost everywhere by Proposition 4.10. This gives 

/ (g(p 1) g(f (p) 1)) zo(p) = o 
and so we conclude that g(p, 1) - g(f (P) 1) = 0 outside a set measure zero. 
Thus g(fnp, 1) is independent of n E z except for p in a set of measure zero. 
Let rn-IIDff_npllG, then g(fnpXl) = 9(p,rn). Since g(p r) is a monotone 
function of r and since 9(p rn) = g(p rm) it follows that 9(P r) is constant 
for rn < r < rm. Finally, since rn ) 0 as n > oo and rn > +x as n > +x, 
it follows that g(p, r) is constant on the interval 0 < r < oo 

Now we apply Proposition 4.7 to conclude that g(p o) = limro g(P r). 
As was observed before Proposition 4.7, g(0) = c(0) is the number of connected 
components of op l (U+), so the theorem follows from Proposition 4.10. o 

Remark. In the special case where v is normalized counting measure on 
the orbit of a periodic saddle, then it is possible to define a combinatorial ro- 
tation number in terms the action of f on the growth ends. The Pommerenke- 
Levin-Yoccoz inequality gives the estimate above, as well as information on the 
possible combinatorial rotation number. Indeed, the proof of this inequality, as 
given in [H], goes through essentially without change in the case of polynomial 
diffeomorphisms . 
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THEOREM 4.12. Let (9 be a simply connected component of wpu n u+ 
with a unique growth end. Then 0 satisfies (t). 

Proof. Since p is a Pesin regular point, it follows (see [BLS]) that Wu (p) c 
J- and that Wu(p) n WU(fnp) = 0 or Wu(p) = WU(fnp) for n E Z. We must 
show that G+ Io is minimal. 

Let A: A -+ 0 be a conformal equivalence with 0b(0) = zo C (9, and let 
h = G+ of . We wish to show that h is a multiple of the Poisson kernel P(z, em) 
for some real K. Let A denote the measure in the Herglotz representation. We 
will show that the support of A is a single point. For 0 < r < oc, let 4r be the 
unique growth end. Let acr = - 1 (0 - 4r), and let Wr be the component of War 
containing 0. Thus Amn &c2 is a collection of Jordan arcs with their boundaries 
in &A. Let 'Yr denote the Jordan arc which separates 4-1(4) from 0. 

Let us write A hawr = Or U U3 r 3. Let Wa denote the component of A- U 
which does not contain 0. Then b (aZr n wi) is a decay end of 0. Since there is 
only one growth end, it follows from Proposition 4.6 that 

lim hQ7) O. 

Thus A is zero outside the region of DA cut out by er Arguing as in Proposition 
4.6, we see that the harmonic length of b(7.) with respect to zo inside 0 is 
bounded above by 4/IzoI/r. Transferring this result back to A via b, we see 
that the endpoints of ea in 0A are separated by at most (2/7r) ;zoI/r. Since 
the family of curves f 7r: 0 < r < oo} is nested, i.e. if r < s < t, then -y, 
separates eYr from eYt, it follows that they must decrease down to a single point, 
which must be the support of A. 

Proof of Theorem 4.1. This is an immediate consequence of Theorems 
4.11 and 4.12. 

5. Connectivity of J 

This section is devoted to proving (Theorem 5.1) that the presence of 
either stable or unstable connectivity is equivalent to the connectivity of J. 

THEOREM 5.1. J is connected if and only if either f or f -1 is unstably 
connected. 

LEMMA 5.2. Let v be a hyperbolic measure. Then for v almost every 
point p each component of U+ n Wu (p) contains p in its closure. 

Proof. Let e(p, r) be the number of connected components of Wu(p) n 0+ 
that meet the closed disk of radius r in Wu (p). Note that if r < s then 
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every component which intersects the disk of radius r also intersects the disk 
of radius s. Thus e(p,r) is an increasing function of r. Also, since every 
component intersects some disk, we have limr yOOe(pvr) = c(p), where c(p) is 
the number of components of WU(p3 n u+. By ergodicity, c(p) is constant v 
almost everywhere. 

Now e(fp, IlDfpll) = e(p, 1) so that 

e(p) 1) = e(fp, iiDfpll) > e(fp, 1) . 

Thus e(p,l) behaves like c(p,l), and arguing as before, we see that for v 
almost every point p we have e(p, r)-c(p) for every r. In particular, the set 
of components that meet the disk of radius r has the same cardinality as the 
set of all components. Thus every component meets the disk of radius r. - o 

LEMMA 5.3. Let v be a hyperbolic measure. If f is anstably connected 
with respect to v, then for v almost every p the set {G+ < s}-int{G+-O} c 
WU(p) is connected. 

Proof. The set of points p for which Lemma 5.2 holds has full measure for 
v. Let p be such a point. Then for every connected neig;hborhood N of p in 
WU(p), N U (WU(p) n u+) is connected. If (9 is a component of WU(p) n u+, 
then by Theorem 2.1, (9 satisfies (t), so there is a conformal equivalence taking 
(9 conformally to the upper half-plane and taking G+ to the function y. Thus 
the sublevel set (9 n {G+ < s} is a strip, which is connected. Taking the union 
over all components, we see that Nu(WU(p)n{G+ < s}) = N U(On{G+ < }) 
is connected. Since this holds for all N, the lemma follows. 2 

The following general lemma will be used to show that a certain bidisk 
contains points of J. 

LEMMA 5.4. Suppose that (x, y) is a local coordinate system such that 
D = {IXI) IYI < 1} has nonempty intersection with both J+ and J-. If G+ > O 
on {IXI < 1, IYI = 1} and G- > O on {IXI = 1, IYI < 1}, then it follows that 
rD H A H > o. 

Proof. Since Gi > O the condition on the supports of Mi allow us to 
choosesi iOsufficientlysmallthat DX{G+ <E+} C {ixl < 1,1yl <r} and 
D n {G- < E-} c {Ixl < r, IYI < l} for some O < r < 1. We may assume that 
s+ > O is a regular value of G+, so that dG+ 7& 0 on D n {G+ = s+}. Thus 
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we may apply Stokes' Theorem: 
/ H A ,u = / d(dCG+ A ddCG ) 
Dn{G+ <E+ ,G- <6 } Dn{G+ <E+ ,G- <E- } 

= X dCG+ A ddCG-. 
Dn{G- <E- }n0{G+ <E+ } 

Since £+ iS a regular value, we may consider Dn{G- < -}na{G+ < +} 
as a domain inside the smooth manifold D n {G+ = £+}. It is relatively com- 
pact since Dn{G+ < £+, G- < £-} c {0xl, IYI < r}. Since G+ is pluriharmonic 
in a neighborhood of D n {G+ = £+}, the closure of D n {G+ = £+} is not 
relatively compact in D. Thus G- is not constant on this set, so we may 
choose E to be a regular value for the restriction of the map G |{G+=dD+}. 
This means that dG+ A dG- 7& 0 at all points of D n {G+ = +, G- = -}, so 
this is a smooth 2-manifold. Since ddCG+ = O on {G+-+}, it follows that 
dCG+ A ddcG- = d(dCG- A dcG+) on D n {G- < -} n {G+ = +}, so we may 
apply Stokes' Theorem again to obtain: 

X dCG+ A ddCG- 
Dn{G- <E- }n0{G+ <E+} 

=J d(dCG-AdCG+) 
Dn{G- <E- }n0{G+ <E+ } 

= j dCG- A dCG+. 
Dn0({G- <E- }n@{G+ <E+ }) 

This last integral is taken over the set {G+ = +,G- = -}, which is 
an oriented 2-manifold. The tangent space of a 2-manifold is either a com- 
plex subspace of c2 (which is equivalent to being invariant under the complex 
structure operator J) or totally real (which means that T @ JT = TC2, the 
generic case). Since this 2-manifold is compact, it cannot be a complex sub- 
manifold. Since it is real-analytic, there is an open dense subset of points 
where the tangent space it totally real. The 2-form dG+ A dG- annihilates 
the tangent space. And since dCGi is obtained from dGi by applying J, 
it follows that dCG+ A dCG- does not annihilate of the tangent space; thus 
dG+ A dG- A dCG+ A dCG- 7& O. It follows that dG+ A dCG+ A dG- A dCG- is a 
nonzero, positive multiple of the standard volume form on C2. F+om this, we 
conclude that dCG+ A dG- A dCG- = dG- A dCG- A dCG+ is a nonzero positive 
multiple of the volume form on Dn0{G+ < +}, with the induced (boundary) 
orientation; and dCG- AdCG+ is a nonzero, positive multiple of the volume form 
on D n a({G- < £-} n a{G+ < £+}) with the induced orientation. It follows 
that the last integral above, and thus SD p+ A p-, is strictly positive. z 

Proof of Theorem 5.1. We begin by showing that if f is either stably 
or unstably connected, then J is connected. Replacing f by f-1, we may 
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assume that f is unstably connected. According to Proposition 2.3 of [BS3], 
J* intersects every connected component of J. Periodic saddle points are dense 
in J*, by [BLS], so it suffices to show that any two saddle points p and q can 
be connected by a path lying in an arbitrarily small neighborhood U of J. 
Again by [BLS], any two saddle points are heteroclinic, so Wu(p) n W-9(q) is 
nonempty and in fact contains a transverse intersection. Now Wu(p) n W8(q) 
contains points arbitrarily close to q, so it suffices to show that any transverse 
intersection point r E Wu (p) n WI (p) can be connected to p by a path lying 
inside U. 

It is evident that r E Wu(p) n {G+ = 0}, and we will show that r 
int{G+ = O}, where the interior is taken relative to Wu(p). Let us suppose, to 
the contrary, that there is a disk in {G+ = O} n Wu(p) containing r. Since the 
iterates of ffl n > 0 remain bounded, the derivative Dfn tangential to Wu(p) 
at r remains bounded. But this contradicts the smooth Lambda Lemma. 
Thus r is not in the interior, and r must belong to the closure of {O < G+ 
< }n Wu (p) inside WU (p), and so it will follow from Lemma 5.3 that there 
is a path in {G+ < 4} n Wu(p) connecting r to p. Since we may choose E > 0 
sufficiently small that {G+ < e} n Wu(p) c U, it follows that r and p are 
in the same connected component of J. This completes the proof that J is 
connected. 

Now we show that if neither f nor f1 is unstably connected, then J is 
not connected. Let p be a periodic saddle point. Replacing f by fn for an 
appropriate n lets us assume that p is a fixed point. We can choose a coordinate 
system {fxi < 1, ty! < 1} in a neighborhood B of p so that p corresponds to the 
point (0,0), the set {fxi < 1, y = 0} is a local unstable manifold for p, and the 
set {x = 0, Iy< < 1} is a stable manifold for p. Furthermore, by taking B small, 
we may assume that the restriction of f to B is approximately linear, and thus 
it is uniformly expanding in the x-direction and uniformly contracting in the 
y-direction. 

Since f is not unstably connected, Wu(p) n K+ contains a compact com- 
ponent. Now f-1 decreases distance in Wu(p), so by applying f m with m 
sufficiently large we may assume that the set {lxI < 1, y = 0} n K+ has a 
compact component. We may further assume that this component does not 
contain p = (0,0). Let 'y be a curve in {Ixi < 1,y = 0} 0 U+ which encloses 
this compact component but does not enclose p. Let Do be the region of 
{lxl < 1, y = O} enclosed by -y, and let E+ denote the portion of Wu(p) n K+ 
enclosed by 'y. By the uniform expansion/contraction of f!B (or equivalently, 
by the Lambda Lemma) it follows that for n sufficiently large and tal < 2, the 
disk 

n-1 

M+(X) = f -n({ XIx {Ijy < 4}) n n -jB 
j=O 
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is vertical, in the sense that the projection of Mn+(x) to {x = O, IYI < E} is a 
homeomorphism. It follows that 

n-1 
rn+ = f-n(? X {IYI < E}) n n f jB = U Mn+(X) 

j=O X7 

is a hypersurface in B made up of vertical disks. Thus rn+ divides B into two 
components, and we let B+ denote the component of B-rn+ which contains 
f-nDo. We note, also, that G+ > O on rn+. 

Similarly, since f-1 is not unstably connected, Ws(p) n K- contains a 
compact component. Arguing as above, we have a hypersurface rn- of unstable 
disks Mn-(x), and G- > O on rn-. Furthermore, there is a component B- of 
B-rn- which contains the compact component of Ws(p) n K-. Let Bo = 

B+ n B-. We consider the family of vertical disks {IXI < 2} 9 x Mn+(x). 

We know that G- > O on rn-, and so ddCG- vanishes there. Thus {IXI < 2} 9 
X 0 > SB- nM+ (z) ddCG- is constant. We know that B- n Mn+ (O) = B- n Ws (p) 
contains a compact component, so it follows ddCG- puts positive mass on 
B- n Mn+(O). Thus ddCG- puts positive mass on B- n Mn+(x) for x E Do C 
{IXI < 2}. This implies that Bo intersects J-. Similarly, Bo intersects J+. 
Thus we may apply Lemma 5.4 to conclude that SBo u+ A ,u- 7& O, from which 
it follows that J n Bo 7£ 0. Since dBo C rn+ U rn- is disjoint from J, and since 
Bo does not contain p, and thus all of J, it follows that J is disconnected. [: 

6. Unstable connectivity and extension of bo+ 

In this section we find several characterizations of the condition of unsta- 
ble connectivity which are summarized in Theorem 6.3. These relate to the 
existence of extensions of bo+ and topological properties of J+-. 

Recall that bo+ is defined and holomorphic on V+ and satisfies the func- 
tional equation 

(6 1) '# (f (P)) = (' (P)) 

When f is unstably connected, then according to Theorem 2.1 the function bo+ 
has a continuous extention to J+- that satisfies equation (6.1). Let 5+ be the 
foliation of U+ defined by the holomorphic one form DG+. When restricted to 
V+ the leaves of S+ are just the sets on which bo+ is constant. 

LEMMA 6.1. If f is qbnstably connected then each path component of J+- 
is simply connected. 

Proof. Let a be a loop in J+-. The image bo+(a) is a loop in C-A. We 
begin by showing that the image loop is contractible. Let [o+(a)] E Z denote 
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the degree of the image loop. To show that the image loop is contractible 
we show that the degree is zero. Let ny' denote f-n(n). Now the furlctional 
equation for + gives: 

[<P (a)] = [b°+(fn(^)t/)] = [(Sp+)dn(nt/)] = dn[(p+(7/)] 

This implies that [<p+(n)]/dn is an integer for any n. Thus [o+(^y)]-0. 

Lemma 2.4 tells us that the map Xo+: J+- C-A is a locally trivial 

fibratiorl. Thus it has the homotopy lifting property. Since the image of ny 
is contractible the loop ny is homotopic to a loop in a fiber of the map bo+, 
that is to say a set + = const. We complete the proof by showing that each 
component of a fiber is simply connected. Now a fiber of the map is contained 
in a leaf L of the foliation 5+. In fact it is contained in the intersection of 
L with J-. The set J- is the zero set of the function G-. The leaf L is 
conformally equivalent to C and the restriction of G- to L is a subharmonic 
function. The maximum principle implies that each component of the zero set 
of G- in L is simply connected. o 

LEMMA 6.2. If f is unsta1uly connected, then (P+ has an analytic con- 
tinuation to a neighborhood of J+-. 

Remark. It follows frorn Hubbard and Oberste-Vorth [HO] that + cannot 
be extended to U+. For any holomorphic extension of + is locally constant 
on the leaves of 5+. Thus if an extension of bo+ to a set U' 3 V+ exists, each 
leaf of 5+1U' can intersect only one disk of 5+1V+, since + takes distinct 
values on distinct disks. Thus there can be no extension to U+ 3 V+, since as 
shown in [HO] each leaf of 5+ intersects V+ in infinitely many disks. 

Proof. For p E 5+ let Lp denote the leaf of the 5+ foliation that passes 
through p. For p and q in the same leaf let dL(p, q) denote the distance mea- 
sured with respect to the induced Riemannian metric in the leaf. For p E U+ 
let vp be the set consisting of "nearest points in J+-," i.e., those points q in 
Lp n J+- which minimize the function dL(p, q) among all points in Lp n J+ . 
Let N consist of those points p for which the function bo+ is constant on vp. 
For p e N defirle the function Xo(p) to be the common value of bo+ on the 
elements of IJp. We will show that any p E J+ has a neighborhood in N on 
which the function bo is holomorphic. Choose local coordinates u and v near 
p so that the set B = {(u, v) : lul < 1, {vl < 1} is a neighborhood of p, and 
the sets u-const are contained in leaves of 5+. We may assume that the 
set v = 0 is the local leaf of the J- lamination containing p. Choose an n 
sufficiently large so that fn(p) e V+. We may assume that B is chosen small 
enough so that fn(B) c V+. For (u,v) E J+ n B define the following function 
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oe(a,v) = bo+(u,v)/o+(a,O). Let W denote the set where oe = 1. Since oe is 
continuous W is a closed set. We claim that W is an open set of J+- n B. 

Since (u, v) and (O, v) have the same second coordinate they lie in a disk 
inside a leaf of the 5+ foliation. Since fn(B) c V+ the points fn(uvv) 
and fn(Ovv) are on the same leaf of the 5+ foliation of V+ and we have 
C>+(fn(llvV)) = iD+(fn(0?V)) The functional equation (6-i) gives 

(Sp ) (2, V) = (f ) (11, O). 

So oe(u, v)d = 1 and the values- of oe are dn-th roots of unity. The function oe 
is continuous and takes on a finite set of values so the set where oe = 1 is open. 
The set {(v, O)} is in W. Since W is open we can choose £ sufficiently small so 
that 1lil < £ implies that the dL distance from (u,v) to (u,0) is smaller than 
the dL distance from (u, v) to any point (u, v/) not in W or any point (u, v') 
on the boundary of B. Since the nearest neighbors of (a, v) are in W we have 
that +(u,v') = bo+(a,O) for all nearest neighbors of (u,v). Thus for Ivl < E 
(2, v) E N and io(2, v) = bo+(u, O). a 

THEOREM 6.3. The following are equivalent: 
(1) f is unstably connected. 
(2) + extends to a contin?sotbs f?>nction on J+- which satisfies the eq?>ation 

(p f = (tP ) 
(3) W+ extends to a continvo1ss ftbnction on J+- which is holomorphic on leaves. 
(4) The cohomology class represented by the form n = (l/27r)dCG+ is an in- 

tegral class on each leaf of the lamination M- of J+. 
(5) Each path component of J+- is simply connnected. 
(6) H1(J+;R) = O. 
(7) Sn+ extends holomorphically to a neighborhood of J+. 

Proof. The strategy of proof is to show that (1)X(2), (2)X(3), (3)X(4) 
and (4)>(1). We then show that (1)=>(S), (5)>(6) and (6)=s(4). We conclude 
by showing that (1)X(7) and (7)X(3). 

(1)X(2). This follows from Theorem 2.1. 
(2)>(3) The function + is defined and holomorphic on V+. Let p E 

J+-. For some n, fn(p) E V+. Now the function Sz'+fn is holomorphic when 
restricted the leaf containing p. The extension is locally a continuous dn-th 
root of a holomorphic function. Hence the extension is holomorphic on each 
leaf. 

(3)=>(4). Since Sn+ is holomorphic on leaves the function log Is+l is har- 
monic on leaves. In the set V+ we have log Is+l = G+. Since both sides of the 
equation are analytic functions the equation holds on the entire leaf. Now 

n= (1/2X)dCG+ = (1/2T)dClogl9+l = (f+)*((1/2X)dCloglzl). 
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The form dc log lZl measures the change in argument so on any closed loop its 
value is in the set 21rZ. Thus r7 is the pullback of a form which represents an 
integral class in H1(C-A) so r1 itself is an integral class. 

(4)X(1). Let p be a saddle point. Assume r7 represents an integral class 
but that f is unstably disconnected. Let (9 be a component of WU(p)-K+. 
By Theorem 4.11 there are only finitely many components, so we may assume 
that (9 is periodic. Passing to a power of f, we may assume that (D is fixed. 
Since f is unstably disconnected there is a nonempty compact component E 
of WU(p)-(9. Let a c (D be a simple closed curve that surrounds E. Let D 
be the topological disk surrounded by . Define b? := , dCG+. Given an n 
let ' = f-n(a). Our hypothesis implies that 6? and 6D, are integers. Now the 
functional equation for G+ gives: 

6 = J dCG+ = J dCG+ o fn = dn J dCG+-dnda 

a a, a, 

Since bi/dn is an integer for any n, b? =O. 
Since G+ is subharmonic we have SE ddCG+ > 0. If SE ddCG+ > °-° 

then G+ would be harmonic on the region enclosed by . Since G+ is positive 
on a and zero on E this would violate the minimum principle. We conclude 
that SE ddCG+ > 0 But SE ddCG+ = 6t = 0. This contradiction completes the 
proof. 

(1)=s(5) . This is Theorem 6.1. 
(5)=>(6). This is clear. 
(6)=s(4). If H1(J+;R) = O then the simplicial cohomology group 

H1(J+;R) is zero. Since r1 represents an element of this group r1 = 0. In 
particular r1 is integral. 

(1)s(7). This is Theorem 6.2. 
(7)X(3). This is clear. a 

7. Critical points and harmonic measure 

We first give a dichotomy of possible behaviors: either f is unstably con- 
nected, or f has a strong unstable disconnectedness property with respect to 
harmonic measure. Then we will show that f is unstably connected exactly 
when it has no critical points with respect to ,u. 

Let 1t denote the set of Pesin regular points for the map f. For p E 7Z we 
let K+U(p) denote the connected component of WU(p) n K+ which contains p. 
We let fu denote the set of points of 1t for which the corresponding component 
of the unstable slice of K+ is trivial, i.e. Su = {p E 1z: {p} = K+U(p)}. 

THEOREM 7.1. The following dichotomy holds. Either: 
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(1) u is unstably connected, or 
(2) f u has full measure for p. Equivalently, for , altnost every p, f u n WU(p) 

has full rneasure for the induced rneasure ju+lwu(p). 
In case (2), it follows that for ju altnost every point p, the critical points of 
G+lwu(p)nu+ are dense in the boundary of WU(p) n K+, with the boundary 
being taken inside WU(p). 

Rernark. This dichotomy says that, with respect to harmonic measure, 
either a is unstably connected, or unstably totally disconnected. We recall 
that the induced measure ju+lwu(p) is defines the measure class of harmonic 
measure. We conclude that when case (2) of Theorem 6.2 holds, and there is 
a nontrivial compact component E, then E has zero harmonic measure. In 
this case the point components of WU(p) n K+ form a halo which surrounds 
E closely enough that E can have no harmonic measure. 

Proof. For p E 1Z, WU(P) C has an affine structure, and we let || I|G 

denote the norm defined in §2. Let us define R(p) to be the radius with respect 
to 11 IIG of the smallest closed disk centered at p E WU(P) which contains 
K+(p). It follows from the ergodicity of ju that either: (1) R(p) = oo, ju almost 
everywhere, (2) R(p) = O, p almost everywhere, or (3) 0 < R(p) < oo, ju almost 
everywhere. The possibility (2) corresponds to the case (2) in the dichotomy 
above. 

We show that case (1) here corresponds to case (1) above. Let us 
find countably many unstable boxes BJ whose union has full measure. If 
f is not unstably connected, we may choose one of the unstable boxes Bg = 
{r(t): t E Tj} so that one of the leaves r(to) intersects K in a compact 
component. Thus there is a simple, closed curve a C r(to) which encircles a 
nonempty portion of K+ n r(to). It follows that min? G+ > O, and by continu- 

ity minat G+ > O for at C r(to) near . Further, it follows that t Sat dCG+ 

is locally constant for t near to. Thus at cuts off a compact portion Et °f 
K+ n r(t) for t near to. The set of p such that WU(p) n K+ has a compact 
component contains Ult_tol<Et which has positive ju measure by the local 
product structure, since the measure of Et is j>+lr(t)(Et) = Sat dCG > 0, and 
{t E T: It-tol < s} has positive transversal measure. Thus E is not unstably 
connected. 

Thus to prove the theorem, we must show that (3) cannot occur. For 
O < a < b < oo we define S = {p E 1Z: a < R(p) < b}. In case (3), we may 
choose a and b so that S has positive b measure. Now by (4.1) fn is linear 
with respect to the afflne structures of WU(p) and WU(fnp). Thus it follows 
that 

R(f nP) = I I Df n |EUP || GR(P) . 
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By Poincare recurrence, for almost every q E S, there is a sequence ny oo 

such that fnJq E S. In this case we have b/a > IIDfnJlEUPIIG. But this 
contradicts Lemma 4.4 if S has positive measure. Thus case (3) cannot occur. 

The equivalent statement in (2) follows by the local product structure, 
which says that ju is given locally as the product of the slice measures of ,u+ 
and ju-. Thus if fu has full measure for ju, then it has full measure for almost 
every slice measure ,u+lwu(p). 

For the statement concerning critical points, we note that if q E SU n 
WU(p), then G+lwu(p)nu+ must have critical points arbitrarily close to q. Oth- 
erwise, by Lemma 6.2, q is an isolated point of WU(p)nK+, which is impossible 
since it would mean that q is an isolated sero of G+lwu(p,. o 

LEMMA 7.2. If E is a compact component of WU(P) n K+, and if 
G+lwu(p, has no crztical points in a neighborhood of E, then E is an isolated 
component of WU(p) n K+. 

Proof. Let V denote a relatively compact neighborhood of E inside WU(p) 
such that AV n K+ -0. If we set bo = minoV G+, then the sublevel sets 
Se := {G < 6} n v are bounded if 0 < 6 < do, and ASe c {G+ = 6}. Since 
G+ has no critical points, the set {G+ = r$} is smooth, and each component of 
ASe is homeomorphic to a 1-sphere. It follows by Morse theory that E can be 
the only component of K'r inside its component of S^. Thus E is isolated. o 

THEOREM 7.3. The following are eqzuivalent: 
(1) A+(H) = logd. 
(2) For,u almost every p, G+ IWU(P)-K+ has no critical points. 
(3) For a set of jp of positive ,u measture there is a component eXp of WU(P)-KF 

stuch that G+le)p has no critical points. 
(4) f is tunstably connected. 

Proof. (1) X (2) follows from Corollary 6.7 of [BS5]. (2) X (3) is obvious. 
(4) X (2) follows from Corollary 2.19. It remains to show (3) => (4). By 
Theorem 6.1, there are two possibilities: if f is not unstably connected, then for 
almost every p, the unstable manifold WU(p) has the property that pf lwu(p) 
is carried by the set T. But if q E sU, then the {q} is the component 
of WU(P) n K containing q, which must be isolated by Lemma 6.2, since 
G+lwu(p) has no critical points. Since (7+ is continuous, however, ,u+lwu(p) 
can put no mass on an isolated point. Thus the slice cannot put any mass at 
all on fU, so f must be unstably connected. cz 

COROLLARY 7.4. If f is dissipative then f is tunstably connected. If 
f preserves volzume, then it is stably connected if and only if it is tunstably 
connected. 

This content downloaded from 156.56.192.15 on Thu, 5 Feb 2015 05:41:15 AM
All use subject to JSTOR Terms and Conditions



734 ERIC BEDFORD AND JOHN SMILLIE 

Proof. By Theorem 7.3, if f is unstably connected, then A = log d. If 
a E C denotes the (constant) complex jacobian determinant of f then by 
Proposition 7.7 of [BS5], A = logd implies that lal < 1. Similarly, if lal = 1, 
then A (f) = log d if and only if A(f 1) = log d. a 
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