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a b s t r a c t

We prove John Hubbard’s conjecture on the topological complexity of the hyperbolic horseshoe locus of
the complex Hénon map. In fact, we show that there exist several non-trivial loops in the locus which
generate infinitely many mutually different monodromies. Furthermore, we prove that the dynamics of
the real Hénon map is completely determined by the monodromy of the complex Hénon map, providing
the parameter of the map is contained in the hyperbolic horseshoe locus.
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1. Introduction

One of the motivations of this work is to give an answer to
the conjecture of John Hubbard on the topology of hyperbolic
horseshoe locus of the complex Hénon map

Ha,c : C2
→ C2

:


x
y


→


x2 + c − ay

x


.

Here a and c are complex parameters.
Belowwedescribe the conjecture following a formulation given

by Bedford and Smillie [1].
Let us define

KC
a,c := {p ∈ C2

: {Hn
a,c(p)}n∈Z is bounded}, KR

a,c := KC
a,c ∩ R2.

The set KC
a,c is compact and invariantwith respect toHa,c .When the

parameters a and c are both real, the real planeR2
⊂ C2 is invariant
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and hence so is KR
a,c . In this case, we call Ha,c |R2 : R2

→ R2 the real
Hénon map.

Our primary interest is on the structure of the parameter space,
especially on the topology of the set of parameter values on which
complex and/or real Hénon maps become a uniformly hyperbolic
horseshoe. More precisely, we study the following sets:

HC
:= {(a, c) ∈ C2

: Ha,c |KC
a,c is a hyperbolic full horseshoe},

HR
:= {(a, c) ∈ R2

: Ha,c |KR
a,c is a hyperbolic full horseshoe}.

Here we mean by a hyperbolic full horseshoe a uniformly
hyperbolic invariant set which is topologically conjugate to the
full shift map σ defined on Σ2 = {0, 1}Z, the space of bi-infinite
sequences of two symbols.

A classical result of Devaney and Nitecki [2] claims that if (a, c)
is in

DN := {(a, c) ∈ R2
: c < −(5 + 2

√
5) (|a| + 1)2/4, a ≠ 0}

then KR
a,c is a hyperbolic full horseshoe. ThusDN ⊂ HR holds. They

also showed that the set

EMP := {(a, c) ∈ R2
: c > (a + 1)2/4}

http://dx.doi.org/10.1016/j.physd.2016.02.006
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Fig. 1. The shaded regions consist of hyperbolic (not necessarily full horseshoe)
parameters of the real Hénon map.

consists of parameter values such that KR
a,c = ∅. Later, Hubbard

and Oberste-Vorth investigated the Hénon map form the complex
dynamical point of view, and improved the hyperbolicity criterion
by showing that

HOV := {(a, c) ∈ C2
: |c| > 2(|a| + 1)2, a ≠ 0}

is contained in HC. Remark that EMP ∩ HOV is non-empty; in
this parameter region, although KC

a,c is a full horseshoe, it does not
intersect with R2.

Fig. 1 illustrates a subset of parameter values onwhich the chain
recurrent set of the real Hénon map is uniformly hyperbolic (not
necessarily a full horseshoe) [3]. Three solid lines are parts of the
boundaries of DN, HOV and EMP, from left to right. On the biggest
island to the left, the chain recurrent set coincides with KR

a,c and is
conjugate to the full shift. Hence the island is contained in HR.

We then consider the relation between HR and HC. By the
result of Bedford, Lyubich and Smillie [4, Theorem 10.1], we know
HR

⊂ HC
∩ R2. It is then natural to ask what happens in (HC

∩

R2) \ HR. To be specific, we divide HC
∩ R2 into three mutually

disjoint sets.

Definition 1 (Bedford and Smillie [1]). We say (a, c) ∈ HC
∩ R2 is

of type-1 if (a, c) ∈ HR, and of type-2 if KR
a,c = ∅. Otherwise, it is

of type-3.

Since DN ⊂ HR, the set of type-1 parameter values is non-
empty. The set of type-2 parameter values is also non-empty
since it contains EMP ∩ HOV. However, the existence of a type-3
parameter value was open.

Conjecture 1 (Hubbard). There exists a parameter value of type-3.

As we will see later, this conjecture turned out to be true.
Besides the existence, Hubbard also conjectured that there are

infinitely many classes of type-3 parameter values corresponding
to mutually different real dynamics. This stronger conjecture is, to
be precise, given in terms of the monodromy representation of the
fundamental group of the hyperbolic horseshoe locus as below.

Denote by HC
0 the component of HC that contains HOV. Let us

fix a basepoint (a0, c0) ∈ DN and a topological conjugacy h0 :

KC
a0,c0 → Σ2.
Given a loop γ : [0, 1] → HC

0 based at (a0, c0), we construct
a continuous family of conjugacies hγt : KC

γ (t) → Σ2 along γ such
that hγ0 = h0 (see Section 4 for the details). This is possible because
KC
a,c is uniformly hyperbolic along γ . When no confusionmay arise,

we suppress γ and write hγt as ht . Then we define

ρ(γ ) := h1 ◦ (h0)
−1

: Σ2 → Σ2.
It is easy to see that ρ defines a group homomorphism

ρ : π1(H
C
0 , (a0, c0)) → Aut(Σ2)

where Aut(Σ2) is the group of the automorphisms of Σ2. Recall
that an automorphism of Σ2 is a homeomorphism of Σ2 which
commutes with the shift map σ [5]. We call ρ the monodromy
homomorphism and denote its image by Γ .

For example, let γ∅ be a loop in HC
0 based at (a0, c0) which is

homotopic to the generator of π1(HOV). It is then shown [1] that
ρ(γ∅) is an involution which interchanges the symbols 0 and 1.
Namely, (ρ(γ∅)(s))i = 1 − si for all s = (si) ∈ {0, 1}Z.

The monodromy homomorphism was originally defined for
polynomial maps of a single complex variable. In this case, since
the map does not have the inverse, the target space of the mon-
odromy homomorphism is the automorphism group of one-sided
shift space of d-symbols, where d is the degree of the polynomial.
When d = 2, this group is isomorphic to Z2 and the monodromy
homomorphism is shown to be surjective since it maps the gener-
ator of π1(C \ {the Mandelbrot set}) to 1 ∈ Z2. The monodromy
homomorphism is also surjective even when d > 2, although the
proof is much harder than the case d = 2 because the automor-
phism group becomes much more complicated [6].

Hubbard conjectured that the surjectivity also holds in the case
of the complex Hénon map, with the only exception being σ .

Conjecture 2 (Hubbard). The imageΓ of themonodromy homomor-
phism and the shift map σ generate Aut(Σ2).

Here we remark that the structure of Aut(Σ2) is quite compli-
cated [7]: it contains every finite group; furthermore, it contains
the direct sum of any countable collection of finite groups; and it
also contains the direct sum of countably many copies of Z. There-
fore, the conjecture implies, provided it is true, that the topologi-
cal structure of HC is very rich, in contrast to the one-dimensional
case where the fundamental group of C \ {the Mandelbrot set} is
simply Z.

Let us state the main results of the paper now.
First, we claim that Conjecture 1 is true.

Theorem 1. There exist parameter values of type-3. In fact, if (a, c)
is in one of the following sets:

Ip := {1} × [−5.46875,−5.3125],
Iq := {0.25} × [−2.296875,−2.21875],
Ir := {−1} × [−5.671875,−4.4375],
Is := {−0.375} × [−2.15625,−1.8125]

then (a, c) is of type 3.

Toward Conjecture 2, we obtain the following partial result.

Theorem 2. The order of the group Γ is infinite. In particular, it
contains an element of infinite order.

Apart form the theoretical interest, the monodromy theory of
complex Hénon map can contribute to the understanding of the
real Hénon map.

Let (a, c) ∈ HC
∩ R2. If (a, c) is of type-1 or 2, then by

definition KR
a,c is a full horseshoe, or empty. Suppose (a, c) is of

type-3. We then ask what is KR
a,c in this case. By definition, KR

a,c is
a proper subset of KC

a,c
∼= Σ2. The uniform hyperbolicity implies

the existence of a Markov partition for KR
a,c , and therefore, KR

a,c
must be topologically conjugate to some subshift of finite type.
The following theorem reveals that KR

a,c is actually a subshift ofΣ2
which is realized as the fixed point set of the monodromy of a loop
passing through (a, c).
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Theorem 3. For any (a, c) ∈ HC
0 ∩ R2, there exists a loop γ :

[0, 1] → HC
0 with γ (1/2) = (a, c) such that ρ(γ ) is an involution

and Ha,c : KR
a,c → KR

a,c is topologically conjugate to

σ |Fix(ρ(γ )) : Fix(ρ(γ )) → Fix(ρ(γ )).

In fact, it suffices to set γ := ᾱ−1
· α, where α is an arbitrary path

in HC
0 connecting a point in DN to (a, c). Here ᾱ denotes the complex

conjugate of α. The conjugacy is given by the restriction of h1/2 to
KR
a,c . Namely, the following diagram commutes;

KR
a,c

Ha,c
−−−−→ KR

a,c

h1/2|KR
a,c

∼= ∼=

h1/2|KR
a,c

Fix(ρ(γ ))
σ

−−−−→ Fix(ρ(γ )).

As an application of Theorem 3, we obtain the following.

Theorem 4. Let (a, c) ∈ Ip. The real Hénon map Ha,c : KR
a,c → KR

a,c
is topologically conjugate to the subshift of Σ2 with two for-
bidden blocks 0010100 and 0011100. Similarly, KR

a,c is conju-
gate to the subshift of Σ2 defined by the following forbidden
blocks: 10100 and 11100 for (a, c) ∈ Iq; 10010 and 10110 for
(a, c) ∈ Ir ; 0010 and 0110 for (a, c) ∈ Is.

Notice that Ip contains (a, c) = (1,−5.4), the parameter
studied byDavis,MacKay and Sannami [8]. The subshift for (a, c) ∈

Ip given in Theorem 4 is equivalent to that observed by them. Thus,
we can say that their observation is now rigorously verified. We
also remark that this theorem is closely related to the so-called
‘‘pruning front’’ theory [9,8]. Theorem 3 implies that ‘‘primary
pruned regions’’, or, ‘‘missing blocks’’ of KR

a,c is nothing else but the
region where the generating partitions are interchanged along γ .

The structure of the paper is as follows. We prove the theorems
in Section 2, leaving computational algorithms to Sections 3 and 4.
In Section 3, we summarize the algorithm for proving uniform hy-
perbolicity developed by the author [3]. Section 4 is devoted to an
algorithm for computing the monodromy homomorphism. In the
Appendix, we discuss a method for rigorously counting the num-
ber of periodic points, which gives rise to an alternative proof of
Theorem 1. Programs for computer assisted proofs are available at
the author’s web page (http://www.math.sci.hokudai.ac.jp/~zin/).

2. Proofs

We first prove Theorem 3.We note that the idea of the theorem
and techniques used in the proof are similar to Theorem 5.2 of [1];
the difference is that in our formulation the emphasis is put on the
relation between real and complex dynamics.

The key is the symmetry of the Hénon map with respect to the
complex conjugation [1], by which we mean the equation

φ ◦ Ha,c = Hā,c̄ ◦ φ

where φ is the complex conjugation that maps z = (x, y) to
z̄ = (x̄, ȳ).

Proof of Theorem 3. Let γ = ᾱ−1
· α be a loop in HC

0 where α
is a path connecting a point in DN to (a, c), and let γ̄ := φ ◦ γ
be the complex conjugate of it. Note that by construction, we have
γ̄ = γ−1.

Take an arbitrary point z ∈ KC
a,c and define

sz := h1/2(z) ∈ Σ2.

To prove the theorem, it suffices to show that ρ(γ )(sz) = sz if and
only if z ∈ R2.
We denote the continuation of z along γ by z(γ , t), where
z(γ , 1/2) = z. Remark that by construction,

z(γ , t) = (ht)
−1(sz) ∈ C2.

By the continuity of hyperbolic invariant sets,

z(γ , ·) : [0, 1] → C2
: t → z(γ , t)

defines a continuous curve, which is a closed loop if z(γ , 0) =

z(γ , 1).
From the symmetry of the Hénon map with respect to the

complex conjugation it follows that

z(γ , t) = z̄(γ̄ , t).

Here z̄(γ̄ , t) is the continuation of z̄ along γ̄ . Since γ̄ = γ−1, we
have z̄(γ̄ , t) = z̄(γ , 1 − t). Therefore,

ρ(γ )(sz) = h1((h0)
−1(sz)) = h1(z(γ , 0)) = h1(z(γ , 0))

= h1(z̄(γ̄ , 0)) = h1(z̄(γ , 1)) = h1((h1)
−1(sz̄)) = sz̄ .

The third equality holds because KC
γ (0) ⊂ R2 and hence z(γ , 0) =

z(γ , 0).
Thus, we know that ρ(γ )(sz) = sz if and only if sz = sz̄ . Since

the map h1/2 is a bijection between KC
a,c and Σ2, it follows that

sz = sz̄ if and only if z = z̄.
The equation ρ(γ )(sz) = sz̄ implies that ρ(γ ) is an involution,

since ¯̄z = z. �

Now we discuss Theorem 1. We first define the sets in which
we will find non-trivial loops. Let

Lp := {1} × {C \ white regions in Fig. 2},
Lq := {0.25} × {C \ white regions in Fig. 3},
Lr := {−1} × {C \ white regions in Fig. 4},
Ls := {−0.375} × {C \ white regions in Fig. 5}

and L := Lp ∪ Lq ∪ Lr ∪ Ls ⊂ C2. To be precise, these regions are
defined by a finite number of closed rectangles. The complete list
of these rectangles is available at the author’s web page.

Lemma 5. If (a, c) ∈ L then Ha,c is uniformly hyperbolic on its chain
recurrent set R(Ha,c).

The proof of this lemma is computer assisted. We leave it to
Section 3.

Recall that the hyperbolicity of the chain recurrent set implies
the R-structural stability [10, Corollary 8.24]. Therefore, it follows
from Lemma 5 that no bifurcation occurs in R(Ha,c) as long as
(a, c) ∈ L. Since L and DN have non-empty intersection and
KC
a,c = KR

a,c = R(Ha,c) is a hyperbolic full horseshoe on DN,
we know that R(Ha,c) is also a hyperbolic full horseshoe for all
(a, c) ∈ L. However, this observation is not sufficient for our
purpose because R(Ha,c) and KC

a,c do not necessarily coincide. To
conclude the hyperbolicity of KC

a,c , we need to show that these sets
are equal in the horseshoe locus, as follows.

Corollary 6. If (a, c) ∈ L then Ha,c |KC
a,c is a hyperbolic full horseshoe,

that is, L ⊂ HC.

Proof of Corollary 6. Let

K+

a,c :={p ∈ C2
: {Hn

a,c(p)}n≥0 is bounded},

K−

a,c :={p ∈ C2
: {Hn

a,c(p)}n≤0 is bounded}

and J±a,c := ∂K±
a,c . Define Ja,c = J+a,c ∩ J−a,c . Then KC

a,c = K+
a,c ∩K−

a,c and
we have Ja,c ⊂ R(Ha,c) ⊂ KC

a,c [11, Proposition 9.2.6, Theorem
9.2.7]. Suppose (a, c) ∈ L. Since R(Ha,c) is a full horseshoe,

http://www.math.sci.hokudai.ac.jp/%7Ezin/


136 Z. Arai / Physica D 334 (2016) 133–140
Fig. 2. The shaded region is contained in HC
∩ {a = 1}.

Fig. 3. The shaded region is contained in HC
∩ {a = 0.25}.

Fig. 4. The shaded region is contained in HC
∩ {a = −1}.
Fig. 5. The shaded region is contained in HC
∩ {a = −0.375}.

all periodic points of Ha,c is contained in R(Ha,c) and therefore
they are of saddle type. Thus there exists no attracting periodic
orbit. Furthermore, Ja,c is uniformly hyperbolic because it is a
closed sub-invariant set of R(Ha,c). It follows that int K+

= ∅

[12, Theorem 5.9]. Since |a| ≤ 1, we also have int K−
= ∅

[12, Lemma 5.5]. As a consequence, J+a,c = K+
a,c and J−a,c = K−

a,c ,
and hence Ja,c = R(Ha,c) = KC

a,c . Therefore, Lemma 5 implies this
corollary. �

The set Lp∩R2 has three components: twounbounded intervals,
and one bounded interval connecting two white regions in Fig. 2.
We define Ip to be this bounded one. Similarly, Iq, Ir and Is are
defined to be the bounded intervals contained in Lq ∩ R2, Lq ∩ R2

and Ls∩R2, respectively. FromCorollary 6 it follows that Ip, Iq, Is and
Ir are contained in HC

0 ∩ R2. To complete the proof of Theorem 1,
we need to show that these intervals are of type-3.

A simple and direct way for proving this is to show that
the number of periodic points contained in KR

a,c is non-zero and
different from that of a full horseshoe. Rigorous interval arithmetic
and the Conley index theory can be applied for this purpose. We
discuss this method in the Appendix.

Anotherway is tomake use of Theorem3. Sincewehave already
shown that L ⊂ HC

0 , we can consider the monodromy of loops in
L, from which we derive the information of KR

a,c .
Let βp : [0, 1] → Lp be a loop that turns around the smaller

white island of Fig. 2 as illustrated in Fig. 6. We require that
βp(1/2) ∈ Ip, and that βp be symmetric, that is, β̄p = β−1

p . Then
we define a loop γp : [0, 1] → Lp ∪ HOV based at (1,−10) ∈ DN
by setting

γp := ᾱ−1
· βp · α

where α : [0, 1] → HOV ∪ Lp is a path from (1,−10) to
the basepoint of βp. Choose the parameterization of γp so that
γp(1/2) ∈ Ip and γ̄p = γ−1

p hold. Similarly we define loops γq,
γr and γs based at (1,−10) turning around the smaller islands in
Lq, Lr and Ls, respectively.

Proposition 7. The automorphism ρ(γp) interchanges the words
0010100 and 0011100 contained in s = (si)i∈Z ∈ Σ2. Namely,

(ρ(γp)(s))i =

0 if si−3 · · · si · · · si+3 = 0011100
1 if si−3 · · · si · · · si+3 = 0010100
si otherwise.

Similarly, ρ(γq) interchanges 10100 and 11100, ρ(γr) interchanges
10010 and 10110, and ρ(γs) interchanges 0010 and 0110.
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Fig. 6. The loop βp : [0, 1] → Lp based at (a, c) = (1,−5.875).

The proof of Proposition 7 is also computer assisted. An algo-
rithm for this will be discussed in Section 4.

Now we are prepared to prove Theorem 1.

Proof of Theorem 1. Since Fix(ρ(γp)) is a non-empty proper
subset of Σ2, Theorem 3 implies that γp(1/2) ∈ Ip is of type-3. By
considering loops homotopic to γp, we can show that all (a, c) ∈ Ip
are also of type-3. Proofs for other intervals are the same. �

Theorem2 immediately follows from the following proposition.

Proposition 8. The order of ψ = ρ(γ∅) · ρ(γs) is infinite.

The proof below is due to G. A. Hedlund [13, Theorem 20.1].

Proof. For non-negative integer p, we define elements of Σ2
named x(2p) and x(2p+1) by

x(2p) = · · · 010101010110110(10)p.11111 · · · ,

x(2p+1)
= · · · 010101010110110(10)p1.00000 · · · .

We then look at the orbit of x = x(0) under the map ψ . A simple
calculation shows that

x = · · · 010101010110110.11111 · · · = x(0),

ψ(x) = · · · 101010101101101.00000 · · · = x(1),

ψ2(x) = · · · 010101011011010.11111 · · · = x(2),

ψ3(x) = · · · 101010110110101.00000 · · · = x(3).

By induction, it follows that ψn(x(0)) = x(n). Since x(n) ≠ x(m) if
n ≠ m, this implies that the order of ψ is infinite. �

Theorem 4 is a direct consequence of Theorem 3 and
Proposition 7.

3. Hyperbolicity

We recall an algorithm for proving the uniform hyperbolicity of
chain recurrent sets developed by the author [3]. We also refer the
reader to the work of Suzanne Lynch Hruska [14,15] for another
algorithm.

Let f be a diffeomorphism on a manifold M and Λ a compact
invariant set of f . We denote by TΛ the restriction of the tangent
bundle TM toΛ.

Definition 2. Wesay that f isuniformly hyperbolic onΛ if TΛ splits
into a direct sum TΛ = Es

⊕ Eu of two Tf -invariant subbundles
and there exist constants c > 0 and 0 < λ < 1 such that
∥Tf n|Es∥ < cλn and ∥Tf −n

|Eu∥ < cλn hold for all n ≥ 0. Here
∥ · ∥ denotes a metric onM .
In general, proving the uniform hyperbolicity of f according to
this usual definition is quite difficult, because wemust control two
parameters c and λ at the same time, and further, we also need to
construct a metric onM adapted to the hyperbolic splitting.

To avoid this difficulty, we introduce a weaker notion of hyper-
bolicity called ‘‘quasi-hyperbolicity’’. We consider Tf : TΛ → TΛ,
the restriction of Tf to TΛ, as a dynamical system. An orbit of Tf is
said to be trivial if it is contained in the image of the zero section.

Definition 3. We say that f is quasi-hyperbolic onΛ if Tf : TΛ →

TΛ has no non-trivial bounded orbit.

It is easy to see that uniform hyperbolicity implies quasi-
hyperbolicity. The converse is not true in general. However, when
f |Λ is chain recurrent, these two notions of hyperbolicity are
equivalent.

Theorem 9 ([16,17]). Assume that f |Λ is chain recurrent, that is,
R(f |Λ) = Λ. Then f is uniformly hyperbolic on Λ if and only if f
is quasi-hyperbolic on it.

The definition of quasi-hyperbolicity can be rephrased in terms
of isolating neighborhoods as follows. Recall that a compact set
N is an isolating neighborhood with respect to f if the maximal
invariant set

Inv(N, f ) := {x ∈ N | f n(x) ∈ N for all n ∈ Z}

is contained in intN , the interior of N . An invariant set S of f is
said to be isolated if there is an isolating neighborhood N such that
Inv(N, f ) = S.

Note that the linearity of Tf in fibers of TM implies that if
there exists a non-trivial bounded orbit of Tf : TΛ → TΛ, then
any neighborhood of the image of the zero-section must contain
a non-trivial bounded orbit. Therefore, the definition of quasi-
hyperbolicity is equivalent to saying that the image of the zero
section of TΛ is an isolated invariant setwith respect to Tf : TΛ →

TΛ. To confirm thatΛ is quasi-hyperbolic, in fact, it suffices to find
an isolating neighborhood containing the image of the zero section.

Proposition 10 ([3, Proposition 2.5]). Assume that N ⊂ TΛ is
an isolating neighborhood with respect to Tf : TΛ → TΛ and
N contains the image of the zero-section of TΛ. Then Λ is quasi-
hyperbolic.

Next, we check that the hypothesis of Theorem 9 is satisfied in
the case of the complex Hénon map. Let us define

R(a, c) :=
1
2
(1 + |a| +


(1 + |a|)2 + 4|c|),

S(a, c) := {(x, y) ∈ C2
: |x| ≤ R(a, c), |y| ≤ R(a, c)}.

Then the following holds as in the case of the real Hénon map
[3, Lemma 4.1].

Lemma 11. The chain recurrent set R(Ha,c) is contained in S(a, c).
Furthermore, Ha,c restricted to R(Ha,c) is chain recurrent.

To prove Lemma 5, therefore, it suffices to show that R(Ha,c) is
quasi-hyperbolic for (a, c) ∈ L. By Proposition 10, all we have to
do is to find an isolating neighborhood that contains the image of
the zero-section of TR(Ha,c). More precisely, it is enough to find
N ⊂ TM such that

R(Ha,c) ⊂ N and Inv(N, THa,c) ⊂ intN

hold. Here we identify R(Ha,c) and its image by the zero-section
of TM . Since there are algorithms [3, Proposition 3.3] that effi-
ciently compute rigorous outer approximations of R(Ha,c) and
Inv(N, THa,c), these conditions can be checked on computers rig-
orously.
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In practice, we fix the parameter a to +1 (or 0.25, −0.375, −1)
and regard {H1,c} as a parameterized family with a single complex
parameter c ∈ C. In the parameter plane, we define

C := {c ∈ C : |Im c| ≤ 8 and |Re c| ≤ 8}.
If c ∉ C then (1, c) ∈ HOV, and thus we do not need to check
the hyperbolicity for such c. Furthermore, our computation can be
restricted to the case when Im c ≥ 0 because H1,c and H1,c̄ are
conjugate via φ and hence the hyperbolicity of these twomaps are
equivalent.

Finally, we perform Algorithm 3.6 of [3] for the family {H1,c}

with the initial parameter set C ∩ {Im c ≥ 0}. The algorithm
inductively subdivide the initial parameter set and outputs a list
of parameter cubes on which the quasi-hyperbolicity is verified.
This proves the quasi-hyperbolicity of R(H1,c) for (1, c) ∈ Lp. The
quasi-hyperbolicity for Lq, Lr and Ls is also obtained by applications
of the same algorithm.

4. Monodromy

In this section, we develop an algorithm for computing the
monodromy homomorphism ρ.

Let γ : [0, 1] → HC
0 be a loop based at γ (0) = γ (1) =

(a0, c0) ∈ DN. Since ρ(γ ) is defined in terms of conjugacies ht =

hγt : KC
γ (t) → Σ2 along γ , we first discuss how to compute them.

Let us recall the definition of ht . Define

K 0
0 := {(x, y) ∈ KC

γ (0) : Re y ≤ 0},

K 1
0 := {(x, y) ∈ KC

γ (0) : Re y ≥ 0}.

By the argument of Devaney and Nitecki [2], we have K 0
0 ∩ K 1

0 = ∅

and the partition KR
γ (0) = K 0

0 ∪ K 1
0 induces a topological conjugacy

h0. The continuation of this partition along γ is defined by

K 0
t := {z ∈ KC

γ (t) : the continuation of z along γ at t = 0 is in K 0
0 },

K 1
t := {z ∈ KC

γ (t) : the continuation of z along γ at t = 0 is in K 1
0 }.

The conjugacy ht is, by definition, the symbolic codingwith respect
to this partition. Namely,

(ht(z))i :=


0 if H i

γ (t)(z) ∈ K 0
t

1 if H i
γ (t)(z) ∈ K 1

t .

To determine this conjugacy, however, we do not need to compute
K 0
t andK 1

t exactly. It suffices to have rigorous outer approximations
of them. That is, if N0

t and N1
t are disjoint subsets of C2 such that

K 0
t ⊂ N0

t and K 1
t ⊂ N1

t hold for all t ∈ [0, 1], then kt : KC
γ (t) → Σ2

defined by

(kt(z))i :=


0 if H i

γ (t)(z) ∈ N0
t

1 if H i
γ (t)(z) ∈ N1

t

is identical to ht .
Here is an algorithm to construct such N0

t and N1
t .

step 1. Subdivide the interval [0, 1] into n closed intervals
I1, I2, . . . , In of equal length.

step 2. Using interval arithmetic, we compute a cubical set Nk for
each 1 ≤ k ≤ n such that KC

a,c ⊂ Nk rigorously holds for all
(a, c) ∈ γ (Ik). Define Nt := Nk for t ∈ Ik.

step 3. Consider the set

N :=


t∈[0,1]

{t} × Nt ⊂ [0, 1] × C2.

Let N0 and N1 be the unions of the components of N which
intersect with {0} × {Re y ≤ 0} and {0} × {Re y ≥ 0},
respectively. If N0

∩ N1
= ∅, define N0

t = Nt ∩ N0 and
N1

t = Nt ∩N1 then stop. If this is not the case, we refine the
subdivision of [0, 1] and the grid of C2, and then go back to
step 1.
Fig. 7. At t = 0: the initial partitions N0
0 and N1

0 .

Fig. 8. At t = 1: the partitions N0
1 and N1

1 , obtained by continuing N0
0 and N1

0 along
γq .

Applying the algorithm above to the loop γq, we obtain Figs. 7
and 8. The interval [0, 1] is decomposed into n = 28 sub-intervals,
and the size of the grid for C2 is 2−8 in each direction. The lightly
and darkly shaded regions in Fig. 7 are N0

0 and N1
0 . Similarly, Fig. 8

illustrates N0
1 and N1

1 . Notice that two figures differ only in four
blocks on the left hand side: two blocks of each of N0

0 and N1
0

are interchanged. Using rigorous interval arithmetic, these blocks
are identified as blocks corresponding to the symbol sequences
10.100 and 11.100 where the dot separates the head and the tail
of a sequence. By the head of s = (si)i∈Z we mean the sequence
{. . . s−3s−2s−1s0} and by the tail {s1s2s3 . . .}.

We execute the same computation also for loops γp, γr and γs.
This yields Fig. 9, which shows a schematic picture of the change
along these loops. Notice that ‘‘head’’ and ‘‘tail’’ labels in the figure
indicates the symbol coding according to the initial partitions N0

0
and N1

0 , illustrated in the central square.
Now, we can compute the image of γ = γp (or γq, γr , γs) by

ρ as follows: Choose a symbol sequence s = (si)i∈Z ∈ Σ2. Then
z := h0(s) is located in the central square of Fig. 9. By definition,
ρ(γp)(s) is the symbolic coding of the same point z, but with
respect to the partition on the top left corner of Fig. 9. Since two
partitions differ only on blocks 0010.100 and 0011.100, it follows
that (ρ(γ (s)))i ≠ si if and only if H i

γ (0)(z) is contained in these
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Fig. 9. The change of the partition along γp, γq, γr and γs .
blocks. Namely,

(ρ(γ (s)))i =

0 if si−3si−2si−1sisi+1si+2si+3 = 0011100
1 if si−3si−2si−1sisi+1si+2si+3 = 0010100
si otherwise.

Similarly we can compute ρ(γq), ρ(γr) and ρ(γs). This proves
Proposition 7.

5. Discussion

Since the preprint version of this paper first appeared, some
application of our results have found.

N. Long [18] studied the fixed point set of involutions on Σ2
and showed that the fixed point set can be decomposed into the
disjoint union of ‘‘2-cascades’’, which is a combinatorial analog of
period doubling cascades in the bifurcation theory. Combinedwith
Theorem 3, his result implies that periodic points of the real Hénon
map which are missing at a hyperbolic parameter value in HC can
be understood as the union of period doubling cascades; this gives
yet another explanationwhyperiod-doubling cascades are so often
observed in bifurcations of dynamical systems [19].

V. Mendoza also used Theorem 3 and our rigorous numerical
results to study the pruning front conjecture for certain parameter
values of the Hénon map [20]. He combines our results with
topological arguments by A. de Carvalho and T. Hall to establish
the existence of pruning isotopies.

Finally, we would like to remark that further detailed study
of the monodromy representation is on going. For example, we
can prove that the image Γ of the monodromy representation is
contained in the subgroup of inert automorphisms providing there
exist infinitely many non-Wieferich prime numbers (it suffices to
assume the abc conjecture) [21]. This implies that there are some
combinatorial restrictions on the action of the monodromy to the
periodic orbits; the geometricmeaning of these restrictions will be
studied elsewhere.
Fig. 10. The number of points in Fix(Hn
a,c) ∩ R2 .

Acknowledgments

The author is grateful, first of all, to John Hubbard, the
originator of the problem. He also would like to thank E. Bedford,
P. Cvitanović, S. Hruska, H. Kokubu, A. Sannami, J. Smillie, and
S. Ushiki for many valuable suggestions.

Appendix. Counting periodic orbits

In this appendix, we prove Theorem 1 directly from Corollary 6,
without any monodromy argument. Instead of using Theorem 3,
we show that the number of periodic points in KR

a,c is different from
that of a full horseshoe. Specifically, we claim that the number of
points in Fix(Hn

a,c) ∩ R2 is exactly as in Fig. 10.
We use the Conley index theory to prove the claim. The reader

not familiar with the Conley index may consult [22,23].
Assume (a, c) is in one of Ip, Iq, Ir or Is. We remark that the

uniform hyperbolicity of KR
a,c implies that the number of periodic

points in KR
a,c is constant on these intervals.

First we compute a lower bound for the number of periodic
points. We begin with finding periodic points numerically. Since
periodic points are of saddle type and hence are numerically
unstable, we apply the subdivision algorithm [24] to find them. For
each periodic orbit found numerically, we then construct a cubical
index pair [22]. The existence of a periodic point in this index pair
is then proved by the following Conley index version of Lefschetz
fixed point theorem.
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Theorem 12 ([22, Theorem 10.102]). Let (P1, P0) be an index pair for
f and fP∗ the homology index map induced by f . If


k(−1)ktr f nP∗k ≠

0 then Inv(cl (P1 \ P0), f ) contains a fixed point of f n.

This theorem assures that there exists at least one periodic orbit
in each index pair, and therefore we obtain a lower bound for the
number of points in Fix(Hn

a,c) ∩ R2.
To compute an upper bound, we have two methods.
One is to prove the uniqueness of the periodic orbit in each in-

dex pair. As long as the size of the grid used in the subdivision algo-
rithmwas fine enough, we can expect that each index pair isolates
exactly one periodic orbit of period n. Since periodic points are hy-
perbolic, uniqueness can be achieved by a Hartman–Grobman type
theorem [25, Proposition 4.1].

The other one is to use the fact that the number of fixed points
of Hn

a,c : C2
→ C2 is independent of the parameter, in fact it is

2n, counted with multiplicity [26, Theorem 3.1]. In our case, the
uniform hyperbolicity implies that the multiplicity is always 1 and
hence there are exactly 2n distinct points in Fix(Hn

a,c). Therefore,
if we find k distinct fixed points of Hn

a,c outside R2, then the
cardinality of Fix(Hn

a,c) ∩ R2 must be less than or equal to 2n
− k.

Again, we can apply Theorem 12 to establish the existence of fixed
points in C2

\ R2. This gives an upper bound.
For all cases shown in Fig. 10, the lower and upper bounds

obtained by methods above coincide. Thus our claim follows.
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