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Chapter 1

Basic properties of holomorphic
functions, preview of differences between
one and several variables

For any n ≥ 1, the holomorphy or complex differentiability of a function on a domain in Cn implies
its analyticity: a holomorphic function has local representations by convergent power series. This
amazing fact was discovered by Cauchy in the years 1830–1840 and it helps to explain the nice
properties of holomorphic functions. On the other hand, when it comes to integral representations
of holomorphic functions, the situation for n ≥ 2 is much more complicated than for n = 1: simple
integral formulas in terms of boundary values exist only for Cn domains that are products of C1

domains. It turns out that function theory for a ball in Cn is different from function theory for a
polydisc, a product of discs.

The foregoing illustrates a constant theme: there are similarities between complex analysis
in several variables and in one variable, but also differences and some of the differences are very
striking. Thus the subject of analytic continuation presents entirely new phenomena for n ≥ 2.
Whereas every C1 domain carries noncontinuable holomorphic functions, there are Cn domains for
which all holomorphic functions can be continued analytically across a certain part of the boundary
(Section 1.9). The problems in Cn require a variety of new techniques which yield a rich theory.

Sections 1.1 – 1.8 deal with simple basic facts, while Sections 1.9 and 1.10 contain previews of
things to come.

NOTATION. The points or vectors of Cn are denoted by

z = (z1, . . . , zn) = x+ iy = (x1 + iy1, . . . , xn + iyn).

For vectors z and w in Cn we use the standard ‘Euclidean’ norm or length and inner product,

|z| = ‖z‖ =
(
|z1|2 + . . .+ |zn|2

) 1
2
,

(z, w) = 〈z, w〉 = z · w = z1w1 + . . .+ znwn.

(1.0.1)

Subsets of Cn may be considered as subsets of R2n through the correspondence

(x1 + iy1, . . . , xn + iyn)↔ (x1, y1, . . . , xn, yn) .

Ω will always denote a (nonempty) open subset of the basic underlying space, here Cn. We
also speak of a domain Ω in Cn, whether it is connected or not. A connected domain will often be
denoted by D if that letter is not required for a derivative.
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1.1 Holomorphic functions

Later on we will use the terms analytic and holomorphic interchangeably, but for the moment
we will distinguish between them. According to Weierstrass’s definition (about 1870), analytic
functions on domains Ω in Cn are locally equal to sum functions of (multiple) power series [cf.
Definition 1.5.1]. Here we will discuss holomorphy.

In order to establish notation, we first review the case of one complex variable. Let Ω be a
domain in C ∼ R2. For Riemann (about 1850), as earlier for Cauchy, a complex-valued function

f(x, y) = u(x, y) + iv(x, y) on Ω

provided a convenient way to combine two real-valued functions u and v that occur together in
applications. [For example, a flow potential and a stream function.] Geometrically, f = u + iv
defines a map from one planar domain, Ω, to another. Let us think of a differentiable map (see
below) or of a smooth map (u and v at least of class C1). We fix a ∈ Ω and write

z = x+ iy, z = x− iy,
dz = dx+ idy, dz = dx− idy.

(1.1.1)

Then the differential or linear part of f at a is given by

df = df(a) = ∂f

∂x
(a)dx+ ∂f

∂y
(a)dy

= 1
2

(
∂f

∂x
+ 1
i

∂f

∂y

)
(a)dz + 1

2

(
∂f

∂x
− 1
i

∂f

∂y

)
(a)dz.

(1.1.2)

One views df(a) as an element of the cotangent space at a, that is, as a linear map from the
tangent space at a ∈ R2, which equals R2, to C. One identifies tangent vectors at a with directional
derivatives at a, so that { ∂∂x ,

∂
∂y} is a basis of the tangent space. Then df(a) acts on a tangent

vector g = g1
∂
∂x + g2

∂
∂y as follows:

< df(a), g >= g1
∂f

∂x
(a) + g2

∂f

∂y
(a).

Compare Remark 1.1.2 below.
It is now natural to introduce the following symbolic notation:

1
2

(
∂f

∂x
+ 1
i

∂f

∂y

)
= ∂f

∂z
,

1
2

(
∂f

∂x
− 1
i

∂f

∂y

)
= ∂f

∂z

since it leads to the nice formula
df(a) = ∂f

∂z
dz + ∂f

∂z
dz.

[Observe that ∂f/∂z and ∂f/∂z are not partial derivatives in the ordinary sense – here one does
not differentiate with respect to one variable, while keeping the other variable(s) fixed. However,
∂f/∂z and ∂f/∂z are linear combinations of the tangent vectors ∂

∂x and ∂
∂y , and, in calculations,

do behave like partial derivatives. If we write the tangent vector as

g = g1
∂

∂x
+ g2

∂

∂y
= (g1 + ig2) ∂

∂z
+ (g1 − ig2) ∂

∂z

def= : h1
∂

∂z
+ h2

∂

∂z
,

we find in terms of the action of df(a) on g

< df(a), g >= g1
∂f

∂x
(a) + g2

∂f

∂y
(a) = h1

∂f

∂z
(a) + h2

∂f

∂z
(a).
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The definition is in accordance with the chain rule if one formally replaces the independent variables
x and y by z and z. For a historical remark on the notation, see [51].]

We switch now to complex notation for the independent variables, writing f((z+z)/2, (z−z)/2i)
simply as f(z). By definition, the differentiability of the map f at a (in the real sense) means that
for all small complex numbers ∆z = z − a = ρeiθ we have

∆f(a) def= f(a+ ∆z)− f(a) =
〈
df(a),∆z ∂

∂z
+ ∆z ∂

∂z

〉
+ o(|∆z|)

= ∂f

∂z
(a)∆z + ∂f

∂z
(a)∆z + o(|∆z|) as ∆z → 0

(1.1.3)

Complex differentiability of such a function f at a requires the existence of

lim
∆z→0

∆f
∆z = lim

{
∂f

∂z
+ ∂f

∂z

∆z
∆z + o(1)

}
. (1.1.4)

Note that ∆z/∆z = e−2iθ. Thus for a differentiable map, one has complex differentiability at a
precisely when the Cauchy-Riemann condition holds at a:

∂f

∂z
(a) = 0 or ∂f

∂x
= 1
i

∂f

∂y
.

[If ∂f/∂z 6= 0, the limit (1.1.4) as ∆z → 0 can not exist.] The representation f = u+ iv gives
the familiar real Cauchy-Riemann conditions ux = vy, uy = −vx. For the complex derivative one
now obtains the formulas

f ′(a) = lim
∆z→0

∆f
∆z = ∂f

∂z
= ∂f

∂x
= 1
i

∂f

∂y
= ux + ivx = ux − iuy. (1.1.5)

Observe that complex differentiability implies differentiability in the real sense.
Functions f which possess a complex derivative at every point of a planar domain Ω are called

holomorphic. In particular, analytic functions in C are holomorphic since sum functions of power
series in z − a are differentiable in the complex sense. On the other hand, by Cauchy’s integral
formula for a disc and series expansion, holomorphy implies analyticity, cf. also Section 1.6.

HOLOMORPHY IN THE CASE OF Cn. Let Ω be a domain in Cn ∼ R2n and let f = f(z) =
f(z1, . . . , zn) be a complex-valued function on Ω:

f = u+ iv : Ω→ C. (1.1.6)

Suppose for a moment that f is analytic in each complex variable zj separately, so that f has a
complex derivative with respect to zj when the other variables are kept fixed. Then f will satisfy
the following Cauchy-Riemann condition on Ω:

∂f

∂zj

def= 1
2

(
∂f

∂xj
− 1
i

∂f

∂yj

)
= 0, j = 1, . . . , n. (1.1.7)

Moreover, the complex partial derivatives ∂f/∂zj will be equal to the corresponding formal
derivatives, given by

∂f

∂zj

def= 1
2

(
∂f

∂xj
+ 1
i

∂f

∂yj

)
, (1.1.8)

cf. (1.1.5).
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Suppose now that the map f = u+ iv of (1.1.6) is just differentiable in the real sense. [This is
certainly the case if f is of class C1.] Then the increment ∆f(a) can be written in the form (1.1.3),
but this time ∆z = (∆z1, . . . ,∆zn), the differential of f at a is given by

df(a) =
n∑
1

(
∂f

∂xj
(a)dxj + ∂f

∂yj
(a)dyj

)
=

n∑
1

(
∂f

∂zj
dzj + ∂f

∂zj
dzj

)
and

∆f(a) =
n∑
1

(
∂f

∂zj
∆zj + ∂f

∂zj
∆zj

)
+ o(∆z).

Thus we arrive at the splitting
df = ∂f + ∂f

[del f and del-bar or d-bar f ], where

∂f
def=

n∑
1

∂f

∂zj
dzj , ∂f

def=
n∑
1

∂f

∂zj
dzj .

With this notation, the Cauchy-Riemann conditions (1.1.7) may be summarized by the single
equation

∂f = 0.

Definition 1.1.1. A function f on Ω ⊂ Cn to C is called holomorphic if the map f is differentiable
in the complex sense:

∂f(a) = 0, or df(a) = ∂f(a)

at every point a ∈ Ω. In particular a function f ∈ C1(Ω) is holomorphic precisely when it satisfies
the Cauchy-Riemann conditions.

More generally, a function f defined on an arbitrary nonempty set E ⊂ Cn is called holomorphic,
notation

f ∈ O(E), (also for open E = Ω!) (1.1.9)

if f has a holomorphic extension to some open set containing E.
The notation O(E) for the class or ring of holomorphic functions on E goes back to a standard

notation for rings, cf. [70] Section 16. The letter O is also appropriate as a tribute to the Japanese
mathematician Oka, who has made fundamental contributions to complex analysis in several
variables, beginning about 1935, cf. [44].

A function f ∈ O(Ω) will have a complex derivative with respect to each variable zj at every
point of Ω, hence by Cauchy’s theory for a disc, f will be analytic in each complex variable zj
separately. A corresponding Cauchy theory for so-called polydiscs will show that every holomorphic
function is analytic in the sense of Weierstrass, see Sections 1.3 and 1.6. Thus in the end, holomorphy
and analyticity will come to the same thing.
Remark 1.1.2. The previous introduction of df , ∂f , and ∂f is somewhat intuitive, and perhaps
some readers want more details. We discuss a more formal way of defining these object here. Let Ω
be an open set in Rn, and let C∞(Ω) denote the set of smooth functions on Ω. The tangent space
Tx(Ω) at x ∈ Ω is a intuitively a copy of Rn (this may sound weird at first, but think of Ω as a
subset of the hyperplane Rn × {0} in Rn+1). An element v of Tx(Ω) should best be intrinsically
defined in terms of Ω. The way to do this is to identify it with the operation ‘taking the directional
derivative in the direction v’on C(Ω) at v, i.e. f 7→ ∂f

∂v (x). Then Tx(Ω) becomes a vector space with
basis { ∂

∂xj
|x :, j = 1, n}. Notice that the tangent vectors at x pick up the linear part of f ∈ C∞(Ω).

4



As usual, denote the dual of the vector space Tx(Ω) by T ∗x (Ω). This space is called the cotangent
space and consists of the linear maps Tx(Ω) → R. By duality, every f ∈ C∞(Ω) gives rise to an
element df(x) ∈ T ∗x (Ω) as follows < df(x), ∂∂v >

def= ∂f
∂v (x). In coordinates

< df(x),
n∑
j=1

vj
∂

∂xj
>=

n∑
j=1

vj
∂f

∂xj
(x).

Taking for f the functions xi, this gives easily < dxi,
∂
∂xj

>= δij , the Kronecker δ, at every point
x ∈ Ω. In other words, {dxi} forms a dual basis of T ∗x (Ω) relative to the basis { ∂f∂xj (x)}. On this
basis df(x) can be expressed as follows

df(x) =
n∑
i=1

∂f

∂xi
(x)dxi.

One sees that two functions f and g have the same linear part at x if and only if df(x) = dg(x).
Thus, df(x) as defined just now, indeed represents the linear part as claimed in the loose explanation
above.

Going one step further, we define the tangent bundle T (Ω) = ∪x∈Ω{x}×Tx(Ω), and the cotangent
bundle T ∗(Ω) = ∪x∈Ω{x} × T ∗x (Ω). A (smooth) vectorfield on Ω is then a map that assigns to each
x a tangent vector at x that varies smoothly with x, so in coordinate it is given by

∑
fj

∂
∂xj

with
fj ∈ C∞(Ω). A differential (one-)form is the dual object, in coordinates df =

∑n
i=1 fidxi, with

fi ∈ C∞(Ω). It assigns in a smooth way a cotangent vector to each point of Ω. Differential forms
act on vectorfields and vice versa, resulting in a smooth function:

< df,
∑

gj
∂

∂xj
>=<

n∑
i=1

fidxi,

n∑
j=1

gj
∂

∂xj
>=

n∑
k=1

fkgk.

We can now pass to Cn = R2n, and consider complex valued functions. (We formally take the
tensor product with C for the real C∞(Ω) and the (co)tangent space.) The earlier introduction of
dzj , dz̄j , ∂ and ∂ passes over to the present setting without difficulty. Later on we will also need
higher order differential forms, cf. Chapter 10 for a systematic discussion.

1.2 Complex affine subspaces. Ball and polydisc

A single complex linear equation

c · (z − a) def= c1(z1 − a1) + . . .+ cn(zn − an) = 0 (c 6= 0) (1.2.1)

over Cn defines a complex hyperplane V through the point a, just as a single real linear equation
over Rn defines a real hyperplane.

Example 1.2.1 (Tangent hyperplanes). Let f be a real C1 function on a domain Ω in Cn ∼ R2n,
let a = a′ + ia′′ be a point in Ω and grad f |a 6= 0. Then the equation f(z) − f(a) = 0 will
locally define a real hypersurface S through a. The linearized equation < df(a), v >= 0 v ∈ Ta(Ω)
represents the (real) tangent hyperplane to S at a. Identifying Ta(Ω) with R2n based at a, a tangent
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vector will look like v =
∑

(xi − ai) ∂
∂xi

+
∑

(yi − ai) ∂
∂yi

, hence:

0 =< df(a), v >

=
∑
j

{
∂f

∂xj
(a)(xj − a′j) + ∂f

∂yj
(a)(yj − a′′j )

}
= 2 Re

∑
j

∂f

∂zj
(zj − aj).

The real tangent hyperplane contains a (unique) complex hyperplane through a, the ‘complex
tangent hyperplane’to S at a:

0 =
∑
j

∂f

∂zj
(a)(zj − aj),

cf. exercises 1.4 and 2.9.

A set of k complex linear equations of the form

c(j) · (z − a) = 0, j = 1, . . . , k

defines a complex affine subspace W of Cn, or a complex linear subspace if it passes through
the origin. Assuming that the vectors c(j) are linearly independent in Cn, W will have complex
dimension n− k. In the case k = n− 1 one obtains a complex line L (an ordinary complex plane,
complex dimension 1). Complex lines are usually given in equivalent parametric form as

z = a+ wb, or zj = aj + wbj , j = 1, . . . , n, (1.2.2)

where a and b are fixed elements of Cn (b 6= 0) and w runs over all of C. If f ∈ O(Ω) and L
is a complex line that meets Ω, the restriction of f to Ω ∩ L can be considered as a holomorphic
function of one complex variable. Indeed, if a ∈ Ω ∩ L and we represent L in the form (1.2.2), then
f(a+wb) will be defined and holomorphic on a certain domain in C. [Compositions of holomorphic
functions are holomorphic, cf. exercise 1.5.] Similarly, if V is a complex hyperplane that meets Ω,
the restriction of f to Ω ∩ V can be considered as a holomorphic function on a domain in Cn−1.

Open discs in C will be denoted by B(a, r) or ∆(a, r), circles by C(a, r). There are two kinds of
domains in Cn that correspond to discs in C, namely, balls

B(a, r) def= {z ∈ Cn : |z − a| < r}

and polydiscs (or polycylinders):

∆(a, r) = ∆n(a, r) = ∆(a1, . . . , an; r1, . . . , rn)
def= {z ∈ Cn : |z1 − a1| < r1, . . . , |zn − an| < rn}
= ∆1(a1, r1)× · · · ×∆1(an, rn).

(1.2.3)

Polyradii r = (r1, . . . , rn) must be strictly positive: rj > 0, ∀j. Cartesian products D1×· · ·×Dn

of domains in C are sometimes called polydomains.
Figure 1.1 illustrates the ball B(0, r) and the polydisc ∆(0, r) for the case of C2 in the plane

of absolute values |z1|, |z2|. Every point in the first quadrant represents the product of two circles.
Thus r = (r1, r2) represents the “torus”

T (0, r) = C(0, r1)× C(0, r2).
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Figure 1.1. The ball B(0, r) and the polydisc ∆(0, r).

The actual domains lie in complex 2-dimensional or real 4-dimensional space. The boundary of
the ball B(0, r) is the sphere S(0, r), the boundary of the ‘bidisc’∆ = ∆(0, r) is the disjoint union

{C(0, r1)×∆1(0, r2)} ∪ {∆1(0, r1)× C(0, r2)} ∪ {C(0, r1)× C(0, r2)} .

Observe that the boundary ∂∆(0, r) may also be described as the union of closed discs in certain
complex lines z1 = c1 and z2 = c2 such that the circumferences of those discs belong to the torus
T (0, r). This fact will imply a very strong maximum principle for holomorphic functions f on
the closed bidisc ∆(0, r). First of all, the absolute value |f | of such a function must assume its
maximum on the boundary ∂∆. This follows readily from the maximum principle for holomorphic
functions of one variable: just consider the restrictions of f to complex lines z2=constant. By the
same maximum principle, the absolute value of f on the boundary discs of ∆ will be majorized by
max |f | on the torus T (0, r). Thus the maximum of |f | on ∆(0, r) is always assumed on the torus
T (0, r).

By similar considerations, all holomorphic functions on ∆(0, r) = ∆n(0, r) ⊂ Cn assume their
maximum absolute value on the ‘torus’

T (0, r) = Tn(0, r) = C(0, r1)× . . .× C(0, rn),

a relatively small part (real dimension n) of the whole boundary ∂∆(0, r) (real dimension 2n− 1).
In the language of function algebras, the torus is the distinguished or Shilov boundary of ∆(0, r).
[It is the smallest closed subset of the topological boundary on which all f under consideration
assume their maximum absolute value.] As a result, a holomorphic function f on ∆(0, r) will be
determined by its values on T (0, r). [If f1 = f2 on T , then ... .] Thus mathematical folklore [or
functional analysis!] suggests that one can express such a function in terms of its values on T (0, r).
We will see below that there is a Cauchy integral formula which does just that.

For the ball B(0, r) there is no ‘small’distinguished boundary: all boundary points are equivalent.
To every point b ∈ S(0, r) there is a holomorphic function f on B(0, r) such that |f(b)| > |f(z)|
for all points z ∈ B(0, r) different from b, cf. exercise 1.9. Integral representations for holomorphic
functions on B(0, r) will therefore involve all boundary values, cf. exercise 1.25 and Chapter 10.

Function theory for a ball in Cn (n ≥ 2) is different from function theory for a polydisc, cf. also
[57, 59]. Indeed, ball and polydisc are holomorphically inequivalent in the following sense: there is
no 1-1 holomorphic map

wj = fj(z1, . . . , zn), j = 1, . . . , n (each fj holomorphic)

of one onto the other [Chapter 5]. This is in sharp contrast to the situation in C, where all simply
connected domains (different from C itself) are holomorphically equivalent [Riemann mapping
theorem]. In C, function theory is essentially the same for all bounded simply connected domains.
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1.3 Cauchy integral formula for a polydisc

For functions f that are holomorphic on a closed polydisc ∆(a, r), there is an integral representation
of Cauchy which extends the well-known one-variable formula. We will actually assume a little less
than holomorphy:

Theorem 1.3.1. Let f(z) = f(z1, . . . , zn) be continuous on Ω ⊂ Cn and differentiable in the
complex sense with respect to each of the variables zj separately. Then for every closed polydisc
∆(a, r) ⊂ Ω,

f(z) = 1
(2πi)n

∫
T (a,r)

f(ζ)
(ζ1 − z1) . . . (ζn − zn)dζ1 . . . dζn, ∀z ∈ ∆(a, r) (1.3.1)

where T (a, r) is the torus C(a1, r1)×. . .×C(an, rn), with positive orientation of the circles C(aj , rj).

Proof. We write out a proof for n = 2. In the first part we only use the complex differentiability of
f with respect to each variable zj , not the continuity of f .

Fix z in ∆(a, r) = ∆1(a1, r1) × ∆1(a2, r2) where ∆(a, r) ⊂ Ω. Then g(w) = f(w, z2) has a
complex derivative with respect to w throughout a neighbourhood of the closed disc ∆1(a1, r1) in
C. The one-variable Cauchy integral formula thus gives

f(z1, z2) = g(z1) = 1
2πi

∫
C(a1,r1)

g(w)
w − z1

dw = 1
2πi

∫
C(a1,r1)

f(ζ1, z2)
ζ1 − z1

dζ1.

For fixed ζ1 ∈ C(a1, r1), the function h(w) = f(ζ1, w) has a complex derivative throughout a
neighbourhood of ∆1(a2, r2) in C. Hence

f(ζ1, z2) = h(z2) = 1
2πi

∫
C(a2,r2)

h(w)
w − z2

dw = 1
2πi

∫
C(a2,r2)

f(ζ1, ζ2)
ζ2 − z2

dζ2.

Substituting this result into the first formula, we obtain for f(z1, z2) the repeated integral

f(z1, z2) = 1
(2πi)2

∫
C(a1,r1)

dζ1
ζ1 − z1

∫
C(a2,r2)

f(ζ1, ζ2)
ζ2 − z2

dζ2. (1.3.2)

If we would have started by varying the second variable instead of the first, we would have
wound up with a repeated integral for f(z1, z2) in which the order of integration is the reverse. For
the applications it is convenient to introduce the (explicit) assumption that f is continuous, cf.
Section 1.6. This makes it possible to rewrite the repeated integral in (1.3.2) as a double integral:

f(z1, z2) = 1
(2πi)2

∫
C(a1,r1)×C(a2,r2)

f(ζ1, ζ2)
(ζ1 − z1)(ζ2 − z2)dζ1dζ2. (1.3.3)

Indeed, setting ζ1 = a1 + r1e
it1 , ζ2 = a2 + r2e

it2 and

f(ζ1, ζ2)
(ζ1 − z1)(ζ2 − z2)dζ1dζ2 = F (t1, t2)dt1dt2,

we obtain a continuous function F on the closed square region Q = I1 × I2, where Ij is the closed
interval −π ≤ tj ≤ π. The integral in (1.3.3) now reduces to the double integral of F over Q. Since
F is continuous on Q, one has the elementary ‘Fubini’reduction formula∫

Q

F (t1, t2)dt1dt2 =
∫
I1

dt1

∫
I2

F (t1, t2)dt2

which implies the equality of the integrals in (1.3.3) and (1.3.2).
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Remarks 1.3.2. In the Theorem, the continuity of f does not have to be postulated explicitly.
Indeed, in his basic paper of 1906, Hartogs proved that the continuity of f follows from its complex
differentiability with respect to each of the variables zj . Since we will not need this rather technical
result, we refer to other books for a proof, for example [Hörmander 1].

Cauchy’s integral formula for polydiscs (and polydomains) goes back to about 1840. It then
took nearly a hundred years before integral representations for holomorphic functions on general
Cn domains with (piecewise) smooth boundary began to make their appearance, cf. Chapter 10.
Integral representations and their applications continue to be an active area of research.

In Section 1.6 we will show that functions as in Theorem 1.3.1 are locally equal to sum functions
of power series.

1.4 Multiple power series

The general power series in Cn with center a has the form∑
α1≥0,...,αn≥0

cα1...αn(z1 − a1)α1 . . . (zn − an)αn . (1.4.1)

Here the αj ’s are nonnegative integers and the c’s are complex constants. We will see that multiple
power series have properties similar to those of power series in one complex variable.

Before we start it is convenient to introduce abbreviated notation. We write α for the multi-index
or ordered n-tuple (α1, . . . , αn) of integers. Such n-tuples are added in the usual way; the inequality
α ≥ β will mean αj ≥ βj , ∀j. In the case α ≥ 0 [that is, αj ≥ 0, ∀j], we also write

α ∈ Cn0 , α! = α1! . . . αn!, |α| = α1 + . . .+ αn (height of α).

One sets
zα1

1 . . . zαnn = zα, (z1 − a1)α1 . . . (zn − an)αn = (z − a)α,
so that the multiple sum (1.4.1) becomes simply∑

α≥0
cα(z − a)α. (1.4.2)

We will do something similar for derivatives, writing

∂

∂zj
= Dj ,

∂β1+...+βn

∂zβ1
1 . . . ∂zβnn

= Dβ1
1 . . . Dβn

n = Dβ ,
∂

∂zj
= Dj .

Returning to (1.4.1), suppose for a moment that the series converges at some point z with
|zj − aj | = rj > 0, ∀j for some (total) ordering of its terms. Then the terms will form a bounded
sequence at the given point z [and hence at all points z with |zj − aj | = rj ]:

|cα| rαn1 . . . rαnn ≤M < +∞, ∀α ∈ Cn0 . (1.4.3)

We will show that under the latter condition, the series (1.4.1) is absolutely convergent through-
out the polydisc ∆(a, r) [for every total ordering of its terms]. The same will be true for the
differentiated series

∑
cαD

β(z − a)α. Thus all these series will have well-defined sum functions on
the polydisc: the sums are independent of the order of the terms.

For the proofs it will be sufficient to consider power series with center 0:∑
α≥0

cαz
α =

∑
cα1...αnz

α1
1 . . . zαnn . (1.4.4)
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Lemma 1.4.1. Suppose that the terms cαzα form a bounded sequence at the point z, |z| = r >
0 (1.4.3). Then the power series (1.4.4) is absolutely convergent throughout the polydisc ∆(0, r).
The convergence is uniform on every smaller polydisc ∆(0, λr) with 0 < λ < 1, no matter in what
order the terms are arranged. For every multi-index β ∈ Nn0 and Dβ = Dβ1

1 . . . Dβn
n , the termwise

differentiated series
∑
cαD

βzα is also absolutely convergent on ∆(0, r) and uniformly convergent
on ∆(0, λr).

Proof. For z ∈ ∆(0, λr) we have |zj | < λrj , ∀j so that by (1.4.3)

|cαzα| = |cα||zα1
1 | . . . |zαnn | ≤ |cα|λα1rα1

1 . . . λαnrαnn ≤Mλα1 . . . λαn .

On ∆(0, λr) the series (1.4.4) is thus (termwise) majorized by the following convergent (multiple)
series of positive constants:∑

α≥0
Mλα1 . . . λαn = M

∑
α1≥0

λα1 . . .
∑
αn≥0

λαn = M
1

1− λ . . .
1

1− λ = M

(1− λ)n .

It follows that the power series (1.4.4) is absolutely convergent [for every total ordering of its terms]
at each point of ∆(0, λr) and finally, at each point of ∆(0, r). Moreover, by Weierstrass’s criterion
for uniform convergence, the series will be uniformly convergent on ∆(0, λr) for any given order of
the terms. [The remainders are dominated by those of the majorizing series of constants.]

We now turn to the final statement in the Lemma. To show the method of proof, it will be
sufficient to consider the simple differential operatorD1. It follows from (1.4.3) that the differentiated
series ∑

cαD1z
α =

∑
cαα1z

α1−1
1 zα2

2 . . . zαnn

is also majorized by a convergent series of constants on ∆(0, λr), namely, by the series∑
α≥0

M

r1
α1λ

α1−1λα2 . . . λαn = M

r1

(
d

dλ

∑
λα1

)∑
λα2 . . .

∑
λαn = M/r1

(1− λ)n+1 .

Thus the differentiated series converges absolutely and uniformly on ∆(0, λr) for each λ ∈ (0, 1).
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Figure 1.2.
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Proposition 1.4.2. Let
∑
cαz

α be a power series (1.4.4) whose terms are uniformly bounded at z,
|z| = r > 0, or suppose only that the series converges throughout the polydisc ∆(0, r) for some total
ordering of the terms, or at least suppose that the terms cαzα form a bounded sequence at certain
points z, with |z| arbitrarily close to r. Then the series converges absolutely throughout ∆(0, r), so
that the sum

f(z) =
∑
α≥0

cαz
α, z ∈ ∆(0, r)

is well-defined (the sum is independent of the order of the terms). The sum function f will be
continuous on ∆(0, r) and infinitely differentiable (in the complex sense) with respect to each of the
variables z1, . . . , zn; similarly for the derivatives. The derivative Dβf(z) will be equal to the sum of
the differentiated series

∑
cαD

βzα.

Proof. Choose any λ in (0, 1). Either one of the hypotheses in the Proposition implies that the
terms cαzα form a bounded sequence at some point z = s > λr (Figure 1.2). Thus we may apply
Lemma 1.4.1 with s instead of r to obtain absolute and uniform convergence of the series on
∆(0, λr). It follows in particular that the sum function f is well-defined and continuous on ∆(0, λr)
and finally, on ∆(0, r).

We now prove the complex differentiability of f with respect to z1. Fix z2 = b2, . . ., zn =
bn (|bj | < rj). By suitable rearrangement of the terms in our absolutely convergent series (1.4.4)
we obtain

f(z1, b2, . . . , bn) =
∑
α1

( ∑
α2,...,αn

cαb
α2
2 . . . bαnn

)
zα1

1 , |z1| < r1.

[In an absolutely convergent multiple series we may first sum over some of the indices, then over the
others, cf. Fubini’s theorem for multiple integrals.] A well-known differentiation theorem for power
series in one variable now shows that f(z1, b2, . . . , bn) has a complex derivative D1f for |z1| < r1
which can be obtained by termwise differentiation. The resulting series for D1f may be rewritten
as an absolutely convergent multiple series:

∑
α1

( ∑
α2,...,αn

cαb
α2
2 . . . bαnn

)
D1z

α1
1 =

∑
α

cαD1 (zα1
1 bα2

2 . . . bαnn ) ,

cf. Lemma 1.4.1. Conclusion: D1f exists throughout ∆(0, r) and D1f(z) =
∑
cαD1z

α; similarly
for each Dj . Since the new power series converge throughout ∆(0, r), one can repeat the argument
to obtain higher order derivatives.

1.5 Analytic functions. Sets of uniqueness

We formalize our earlier rough description of analytic functions:

Definition 1.5.1. A function f on Ω ⊂ Cn to C is called analytic if for every point a ∈ Ω, there
is a polydisc ∆(a, r) in Ω and a multiple power series

∑
cα(z − a)α which converges to f(z) on

∆(a, r) for some total ordering of its terms.

It follows from Proposition 1.4.2 that a power series (1.4.1) for f on ∆ is absolutely convergent,
hence the order of the terms is immaterial. Proposition 1.4.2 also implies the following important

Theorem 1.5.2. Let f(z) be analytic on Ω ⊂ Cn. Then f is continuous on Ω and infinitely
differentiable in the complex sense with respect to the variables z1, . . . , zn; the partial derivatives
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Dβf are likewise analytic on Ω. If f(z) =
∑
cα(z − a)α on ∆(a, r) ⊂ Ω, then

Dβf(z) =
∑
α≥0

cαD
β(z − a)α =

∑
α≥β

cα
α!

(α− β)! (z − a)α−β , ∀z ∈ ∆(a, r).

In particular Dβf(a) = cββ!. Replacing β by α, one obtains the coefficient formula

cα = 1
α!D

αf(a) = 1
α1! . . . αn!D

α1
1 . . . Dαn

n f(a). (1.5.1)

Corollaries 1.5.3. An analytic function f on a domain Ω in Cn has only one (locally) repre-
senting power series with center a ∈ Ω. It is the Taylor series, the coefficients are the Taylor
coefficients (1.5.1) of f at a.

Analytic functions are holomorphic in the sense of Definition 1.1.1. [For analytic f one has
∂f/∂xj = ∂f/∂zj and ∂f/∂yj = i∂f/∂zj , cf. (1.1.5), hence the map f is of class C1 and ∂f = 0.]

Theorem 1.5.4 (Uniqueness theorem). Let f1 and f2 be analytic on a connected domain Ω ⊂ Cn
and suppose that f1 = f2 throughout a nonempty open subset U ⊂ Ω. This will in particular be the
case if f1 and f2 have the same power series at some point a ∈ Ω. Then f1 = f2 throughout Ω.

Proof. Define f = f1 − f2. We introduce the set

E = {z ∈ Ω : Dαf(z) = 0, ∀α ∈ Cn0}.

E is open. For suppose a ∈ E. There will be a polydisc ∆ = ∆(a, r) ⊂ Ω on which f(z) is equal to
the sum of its Taylor series

∑
Dαf(a) · (z − a)α/α!. Hence by the hypothesis, f = 0 throughout ∆.

It follows that also Dαf = 0 throughout ∆ for every α, so that ∆ ⊂ E.
The complement Ω − E is also open. Indeed, if b ∈ Ω − E then Dβf(b) 6= 0 for some β. By

the continuity of Dβf , it follows that Dβf(z) 6= 0 throughout a neighbourhood of b. Now Ω is
connected, hence it is not the union of two disjoint nonempty open sets. Since E contains U it is
nonempty. Thus Ω− E must be empty or Ω = E, so that f ≡ 0.

Definition 1.5.5. A subset E ⊂ Ω in Cn is called a set of uniqueness for Ω [or better, for the
class of analytic functions A(Ω)] if the condition ‘f = 0 throughout E’for analytic f on Ω implies
that f ≡ 0 on Ω.

For a connected domain D ⊂ C, every infinite subset E with a limit point in D is a set of
uniqueness. [Why? Cf. exercises 1.16, 1.17.] For a connected domain D ⊂ Cn with n ≥ 2, every
ball B(a, r) ⊂ D is a set of uniqueness, but the intersection of D with a complex hyperplane
c · (z − a) = 0 (c 6= 0) is not a set of uniqueness: think of f(z) = c · (z − a) ! One may use the
maximum principle for a polydisc [Section 1.2] to show that if ∆(a, r) ⊂ D, then the torus T (a, r)
is a set of uniqueness for D. It is not so much the size of a subset E ⊂ D which makes it a set of
uniqueness, as well as the way in which it is situated in Cn, cf. also exercise 1.18.

The counterpart to sets of uniqueness is formed by the zero sets of analytic functions, cf. Section
1.10. Sets of uniqueness (or zero sets) for subclasses of A(Ω), for example, the bounded analytic
functions, are not yet well understood, except in very special cases, cf. [59] for references. Discrete
sets of uniqueness for subclasses of A(Ω) are important for certain approximation problems, cf. [33].

1.6 Analyticity of the Cauchy integral and consequences

Under the conditions of Theorem 1.3.1 the function f represented by the Cauchy integral (1.3.1)
will turn out to be analytic on ∆(a, r). More generally we prove
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Theorem 1.6.1. Let g(ζ) = g(ζ1, . . . , ζn) be defined and continuous on the torus T (a, r) =
C(a1, r1)× · · · × C(an, rn). Then the Cauchy Transform

f(z) = ĝ(z) def= 1
(2πi)n

∫
T (a,r)

g(ζ)
(ζ1 − z1) . . . (ζn − zn)dζ1 . . . dζn (1.6.1)

where we use positive orientation of the generating circles C(aj , rj) of T (a, r) is analytic on the
polydisc ∆(a, r).

Proof. By translation we may assume that a = 0. Now taking an arbitrary point b in ∆(0, r):
|bj | < rj , ∀j, we have to show that f(z) is equal to the sum of a convergent power series with
center b on some polydisc around b. In a situation like the present one, where f(z) is given by an
integral with respect to ζ in which z occurs as a parameter, it is standard procedure to expand the
integrand in a power series of the form

∑
dα(ζ)(z − b)α and to integrate term by term.

In order to obtain a suitable series for the integrand, we begin by expanding each factor
1/(ζj − zj) around zj = bj :

1
ζj − zj

= 1
ζj − bj − (zj − bj)

= 1
ζj − bj

1
1− zj−bj

ζj−bj

=
∞∑
p=0

(zj − bj)p

(ζj − bj)p+1 . (1.6.2)

When does this series converge? We must make sure that the ratio |zj − bj |/|ζj − bj | remains less
than 1 as ζj runs over the circle C(0, rj). To that end we fix z such that |zj − bj | < rj − |bj |, ∀j
(Figure 1.3). Then

|zj − bj |
|ζj − bj |

≤ |zj − bj |
rj − |bj |

def= λj < 1, ∀ζj ∈ C(0, rj). (1.6.3)

Thus for ζj running over C(0, rj) the series in (1.6.2) is termwise majorized by the convergent
series of constants ∑

p

Mjλ
p
j =

∑
αj

1
rj − |bj |

λ
αj
j .

There is such a result for each j. Forming the termwise product of the series in (1.6.2) for
j = 1, . . . , n, we obtain a multiple series for our integrand:

g(ζ)
(ζ1 − z1) . . . (ζn − zn)

=
∑
α≥0

g(ζ)
(ζ1 − b1)α1+1 . . . (ζn − bn)αn+1 (z1 − b1)α1 . . . (zn − bn)αn .

(1.6.4)
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By (1.6.3) and using the boundedness of g(ζ) on T (0, r), the expansion (1.6.4) is termwise majorized
on T (0, r) by a convergent multiple series of constants

∑
αMλα1

1 . . . λαnn . Hence the series in (1.6.4)
is absolutely and uniformly convergent (for any given order of the terms) as ζ runs over T (0, r), so
that we may integrate term by term. Thus we obtain a representation for the value f(z) in (1.6.1)
by a convergent multiple power series:

f(z) =
∑
α≥0

cα(z − b)α. (1.6.5)

Here the coefficients cα [which must also be equal to the Taylor coefficients for f at b] are given by
the following integrals:

cα = 1
α!D

αf(b) = 1
(2πi)n

∫
T (0,r)

g(ζ)
(ζ1 − b1)α1+1 . . . (ζn − bn)αn+1 dζ1 . . . dζn. (1.6.6)

The representation will be valid for every z in the polydisc

∆(b1, . . . , bn; r1 − |b1|, . . . , rn − |bn|). (1.6.7)

Corollary 1.6.2 (Osgood’s Lemma). Let f(z) = f(z1, . . . , zn) be continuous on Ω ⊂ Cn and
differentiable in the complex sense on Ω with respect to each variable zj separately. Then f is
analytic on Ω.

[By Theorem 1.3.1, the function f is locally representable as a Cauchy transform. Now apply
Theorem 1.6.1. Actually, the continuity of f need not be postulated, cf. Remarks 1.3.2.]

Osgood’s lemma shows, in particular, that every holomorphic function is analytic. Thus
the class of analytic functions on a domain Ω is the same as the class of holomorphic functions,
A(Ω) = O(Ω). From here on, we will not distinguish between the terms analytic and holomorphic;
we usually speak of holomorphic functions.

Corollary 1.6.3 (Convergence of power series throughout polydiscs of holomorphy). Let f be
holomorphic on ∆(a, r). Then the power series for f with center a converges to f throughout
∆(a, r).

[We may take a = 0. If f is holomorphic on (a neighbourhood of) ∆(0, r), it may be represented
on ∆(0, r) by a Cauchy transform over T (0, r). The proof of Theorem 1.6.1 now shows that the
(unique) power series for f with center b = 0 converges to f throughout ∆(0, r), see (1.6.5–1.6.7). If
f is only known to be holomorphic on ∆(0, r), the preceding argument may be applied to ∆(0, λr),
0 < λ < 1.]

Corollary 1.6.4 (Cauchy integrals for derivatives). Let f be holomorphic on ∆(a, r). Then

Dαf(z) = α!
(2πi)n

∫
T (a,r)

f(ζ)
(ζ1 − z1)α1+1

. . . (ζn − zn)αn+1 dζ1 . . . dζn,

for all z ∈ ∆(a, r).

[By Theorem 1.6.1, f(z) is equal to a Cauchy transform (1.6.1) on ∆(a, r), with g(ζ) = f(ζ) on
T (a, r). Taking a = 0 as we may, the result now follows from (1.6.6) with b = z. Observe that the
result corresponds to differentiation under the integral sign in the Cauchy integral for f (1.3.1).
Such differentiation is thus permitted.]
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Corollary 1.6.5 (Cauchy inequalities). Let f be holomorphic on ∆(a, r), f(z) =
∑
cα(z − a)α.

Then
|cα| =

|Dαf(a)|
α! ≤ M

rα
= M

rα1
1 . . . rαnn

,

where M = sup |f(ζ)| on T (a, r).

[Use Corollary 1.6.4 with z = a. Set ζj = aj + rje
itj , j = 1, . . . , n to obtain a bound for the

integral.]

1.7 Limits of holomorphic functions

We will often use yet another consequence of Theorems 1.3.1 and 1.6.1:

Theorem 1.7.1 (Weierstrass). Let {fλ}, λ ∈ Λ be an indexed family of holomorphic functions
on Ω ⊂ Cn which converges uniformly on every compact subset of Ω as λ → λ0. Then the limit
function f is holomorphic on Ω. Furthermore, for every multi-index α ∈ Cn0 ,

Dαfλ → Dαf as λ→ λ0,

uniformly on every compact subset of Ω.

In particular, uniformly convergent sequences and series of analytic functions on a domain may
be differentiated term by term.

Proof. Choose a closed polydisc ∆(a, r) in Ω. For convenience we write the Cauchy integral (1.3.1)
for fλ in abbreviated form as follows:

fλ(z) = (2πi)−n
∫
T (a,r)

fλ(ζ)
ζ − z

dζ, z ∈ ∆(a, r). (1.7.1)

Keeping z fixed, we let λ→ λ0. Then

fλ(ζ)
ζ − z

→ f(ζ)
ζ − z

, uniformly for ζ ∈ T (a, r).

[The denominator stays away from 0.] Integrating, we conclude that the right-hand side of (1.7.1)
tends to the corresponding expression with f instead of fλ. The left-hand side tends to f(z),
hence the Cauchy integral representation is valid for the limit function f just as for fλ (1.3.1).
Theorem 1.6.1 now implies the analyticity of f on ∆(a, r). Varying ∆(a, r) over Ω, we conclude
that f ∈ O(Ω).

Again fixing ∆(a, r) in Ω, we next apply the Cauchy formula for derivatives to f − fλ [Corollary
1.6.4]. Fixing α and letting λ→ λ0, we may conclude that Dα(f − fλ)→ 0 uniformly on ∆(a, 1

2r).
Since a given compact subset E ⊂ Ω can be covered by a finite number of polydiscs ∆(a, 1

2r) with
a ∈ E and ∆(a, r) ⊂ Ω, it follows that Dαfλ → Dαf uniformly on E.

Corollary 1.7.2 (Holomorphy theorem for integrals). Let Ω be an open set in Cn and let I be a
compact interval in R, or a product of m such intervals in Rm. Suppose that the ‘kernel’K(z, t) is
defined and continuous on Ω× I and that it is holomorphic on Ω for every t ∈ I. Then the integral

f(z) =
∫
I

K(z, t)dt = lim
s∑
j=1

K(z, τj)m(Ij)
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defines a holomorphic function f on Ω. Furthermore, Dα
zK(z, t) will be continuous on Ω× I and

Dαf(z) =
∫
I

Dα
zK(z, t)dt.

Thus, ‘one may differentiate under the integral sign’ here.

For the proof, one may observe the following:

(i) The Riemann sums

σ(z, P, τ) =
s∑
j=1

K(z, τj)m(Ij), τj ∈ Ij

corresponding to partitionings P of I into appropriate subsets Ij , are holomorphic in z on Ω;

(ii) For a suitable sequence of partitionings, the Riemann sums converge to the integral f(z),
uniformly for z varying over any given compact subset E ⊂ Ω.

Indeed, K(z, t) will be uniformly continuous on E × I. We now write the integral as a sum of
integrals over the parts Ij of small (diameter and) size m(Ij). It is then easy to show that the
difference between the integral and the approximating sum will be small.

The continuity of Dα
zK(z, t) on Ω× I may be obtained from the Cauchy integral for a derivative

[Corollary 1.6.4]. The integral formula for Dαf then follows by differentiation of the limit formula
for f(z):

Dαf(z) = lim
s∑
j=1

Dα
zK(z, τj)m(Ij).

The following two convergence theorems for Cn are sometimes useful. We do not include the
proofs which are similar to those for the case n = 1, cf. [42] or [56].

Theorem 1.7.3 (Montel). A locally bounded family F of holomorphic functions on Ω ⊂ Cn is
normal, that is, every infinite sequence {fk} chosen from F contains a subsequence which converges
throughout Ω and uniformly on every compact subset.

The key observation in the proof is that a locally bounded family of holomorphic functions is
locally equicontinuous, cf. exercise 1.28. A subsequence {f̃k} which converges on a countable dense
subset of Ω will then converge uniformly on every compact subset.

Theorem 1.7.4 (Stieltjes-Vitali-Osgood). Let {fk} be a locally bounded sequence of holomorphic
functions on Ω which converges at every point of a set of uniqueness E for O(Ω). Then the sequence
{fk} converges throughout Ω and uniformly on every compact subset.

Certain useful approximation theorems for C do not readily extend to Cn. In this connection
we mention Runge’s theorem from 1885 on polynomial approximation in C. One may call Ω ⊂ Cn a
Runge domain if every function f ∈ O(Ω) is the limit of a sequence of polynomials in z1, . . . , zn
which converges uniformly on every compact subset of Ω.

More generally, let V ⊂W ⊂ C be two domains. Then V is called Runge in W if every function
f ∈ O(V ) is the limit of a sequence of functions fk ∈ O(W ) which converges uniformly on every
compact subset of V .

Theorem 1.7.5 (cf. [60]). The Runge domains in C are precisely those open sets, whose complement
relative to the extended plane Ce = C ∪ {∞} is connected.

There are several results on Runge domains in Cn, but also open problems, cf. [26, 50] and
especially [20]. The one-variable theorem provides an extremely useful tool for the construction of
counterexamples in complex analysis.
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1.8 Open mapping theorem and maximum principle

Theorem 1.8.1. Let D ⊂ Cn be a connected domain, f ∈ O(D) nonconstant. Then the range
f(D) is open [hence f(D) ⊂ C is a connected domain].

This result follows easily from the special case n = 1 by restricting f to a suitable complex
line. We include a detailed proof because parts of it will be useful later on. The situation is more
complicated in the case of holomorphic mappings

ζj = fj(z), j = 1, . . . , p, fj ∈ O(D)

from a connected domain D ⊂ Cn to Cp with p ≥ 2. The range of such a map will be open only in
special cases, cf. exercise 1.30 and Section 5.2.

Proof of Theorem 1.8.1. It is sufficient to show that for any point a ∈ D and for small balls
B = B(a, r) ⊂ D, the range f(B) contains a neighbourhood of f(a) in C. By translation we may
assume that a = 0 and f(a) = 0.

(i) The case n = 1. Since f 6≡ 0, the origin is a zero of f of some finite order s, hence it is not a
limit point of zeros of f . Choose r > 0 such that B(0, r)=∆(0, r) belongs to D and f(z) 6= 0 on
C(0, r). Set min |f(z)| on C(0, r) equal to m, so that m > 0. We will show that for any number c
in the disc ∆(0,m), the equation f(z) = c has the same number of roots in B(0, r) as the equation
f(z) = 0, counting multiplicities.

Indeed, by the residue theorem, the number of zeros of f in B(0, r) is equal to

N(f) = 1
2πi

∫
C(0,r)+

f ′(z)
f(z) dz.

[Around a zero z0 of f of multiplicity µ, the quotient f ′(z)/f(z) behaves like µ/(z − z0).] We now
calculate the number of zeros of f − c in B(0, r):

N(f − c) = 1
2πi

∫
C(0,r)

f ′(z)
f(z)− c dz = 1

2π

∫ π

−π

f ′(reit)
f(reit)− c re

itdt.

By the holomorphy theorem for integrals [Corollary 1.7.2], N(f − c) will be holomorphic in c on
∆(0,m). Indeed, the final integrand is continuous in (c, t) on ∆(0,m)× [−π, π] and it is holomorphic
in c on ∆(0,m) for every t ∈ [−π, π]. Thus since N(f − c) is integer-valued, it must be constant
and equal to N(f) ≥ 1.

Final conclusion: f(B) contains the whole disc ∆(0,m).
(ii) The case n ≥ 2. Choose B(0, r) ⊂ D. By the uniqueness theorem, f 6≡ 0 in B or else f ≡ 0

in D. Choose b ∈ B(0, r) such that f(b) 6= 0 and consider the restriction of f to the intersection ∆
of B with the complex line z = wb, w ∈ C. The image f(∆) is the same as the range of the function

h(w) = f(wb), |w| < r/|b|.

That function is holomorphic and nonconstant: h(0) = 0 6= h(1) = f(b), hence by part (i), the range
of h contains a neighbourhood of the origin in C. The same holds a fortiori for the image f(B).

For functions f as in the Theorem, the absolute value |f | and the real part Re f can not have
a relative maximum at a point a ∈ D. Indeed, any neighbourhood of the point f(a) in C must
contain points f(z) of larger absolute value and of larger real part. One may thus obtain upper
bounds for |f | and Re f on D in terms of the boundary values of those functions.

Let us define the extended boundary ∂eΩ by ∂Ω if Ω is bounded and by ∂Ω ∪ {∞} otherwise;
z →∞ will mean |z| → ∞.
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Corollary 1.8.2 (Maximum principle or maximum modulus theorem). Let Ω be any domain in
Cn, f ∈ O(Ω). Suppose that there is a constant M such that

lim sup
z→ζ, z∈Ω

|f(z)| ≤M, ∀ζ ∈ ∂eΩ.

Then |f(z)| ≤ M throughout Ω. If Ω is connected and f is nonconstant, one has |f(z)| < M
throughout Ω.

Indeed, if µ = supD |f | would be larger than M for some connected component D of Ω, then
f would be nonconstant on D and µ would be equal to lim |f(zν)| for some sequence {zν} ⊂ D
that can not tend to ∂eΩ. Taking a convergent subsequence we would find that µ = |f(a)| for some
point a ∈ D, contradicting the open mapping theorem.

In C, more refined ways of estimating |f | from above depend on the fact that log |f | is a
subharmonic function - such functions are majorized by harmonic functions with the same boundary
values. For holomorphic functions f in Cn, log |f | is a so-called plurisubharmonic function: its
restrictions to complex lines are subharmonic. Plurisubharmonic functions play an important role
in n-dimensional complex analysis, cf. Chapter 8; their theory is an active subject of research.

1.9 Preview: analytic continuation, domains of holomorphy, the Levi
problem and the ∂ equation

Given an analytic function f on a domain Ω ⊂ Cn, we can choose any point a in Ω and form the
power series for f with center a, using the Taylor coefficients (1.5.1). Let U denote the union of all
polydiscs ∆(a, r) on which the Taylor series converges. The sum function g of the series will be
analytic on U [see Osgood’s criterion 1.6.2] and it coincides with f around a. Suppose now that U
extends across a boundary point b of Ω (Figure 1.4). Then g will provide an analytic continuation
of f . It is not required that such a continuation coincide with f on all components of U ∩ Ω.

The subject of analytic continuation will bring out a very remarkable difference between the
case of n ≥ 2 complex variables and the classical case of one variable. For a domain Ω in the
complex plane C and any (finite) boundary point b ∈ ∂Ω, there always exist analytic functions f
on Ω which have no analytic continuation across the point b, think of f(z) = 1/(z − b). By suitable
distribution of singularities along ∂Ω, one may even construct analytic functions on Ω ⊂ C which
can not be continued analytically across any boundary point; we say that Ω is their maximal
domain of existence.

U'

ax

Ω

Figure 1.4.
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However, in Cn with n ≥ 2 there are many domains Ω with the property that all functions
in O(Ω) can be continued analytically across a certain part of the boundary. Several examples
of this phenomenon were discovered by Hartogs around 1905. We mention his striking spherical
shell theorem: For Ω = B(a,R)−B(a, ρ) where 0 < ρ < R, every function in O(Ω) has an analytic
continuation to the whole ball B(a,R) [cf. Sections 2.8, 3.4]. Another example is indicated in
Figure 1.5, where D stands for the union of two polydiscs in C2 with center 0. For every f ∈ O(D)
the power series with center 0 converges throughout D, but any such power series will actually
converge throughout the larger domain D̂, thus providing an analytic continuation of f to D̂ [cf.
Section 2.4].

Many problems in complex analysis of several variables can only be solved on so-called domains
of holomorphy; for other problems, it is at least convenient to work with such domains. Domains of
holomorphy Ω in Cn are characterized by the following property: For every boundary point b, there
is a holomorphic function on Ω which has no analytic continuation to a neighourhood of b. What
this means precisely is explained in Section 2.1, cf. also the comprehensive definition in Section
6.1. The following sufficient condition is very useful in practice: Ω is a domain of holomorphy if for
every sequence of points in Ω which converges to a boundary point, there is a function in O(Ω)
which is unbounded on that sequence [see Section 6.1]. Domains of holomorphy Ω will also turn
out to be maximal domains of existence: there exist functions in O(Ω) which can not be continued
analytically across any part of the boundary [Section 6.4].

We will see in Section 6.1 that every convex domain in Cn ∼ R2n is a domain of holomorphy.
All domains of holomorphy have certain (weaker) convexity properties, going by names such as
holomorphic convexity and pseudoconvexity [Chapter 6; Figure 1.5 illustrates a pseudoconvex
domain D̂ in C2]. For many years it was a major question if all pseudoconvex domains are, in fact,
domains of holomorphy (Levi problem). The answer is yes [cf. Chapters 7, 11]. Work on the Levi
problem has led to many notable developments in complex analysis.

We mention some problems where domains of holomorphy are important: HOLOMORPHIC
EXTENSION from affine subspaces. Let Ω be a given domain in Cn and let W denote an arbitrary
affine subspace of Cn. If f belongs to O(Ω), the restriction of f to the intersection Ω ∩W will
be holomorphic for every choice of W . Conversely, suppose h is some holomorphic function on
some intersection Ω ∩W . Can h be extended to a function in O(Ω)? This problem turns out to be
generally solvable for all affine subspaces W if and only if Ω is a domain of holomorphy [cf. Chapter
7].

SUBTRACTION of NONANALYTIC PARTS. Various problems fall into the following category.
One seeks to determine a function h in O(Ω) which satisfies a certain side-condition (S), and it
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turns out that it is easy to construct a smooth function g on Ω [g ∈ C2(Ω), say] that satisfies
condition (S). One then tries to obtain h by subtracting from g its ‘nonanalytic part’u without
spoiling (S): h = g − u. What conditions does the correction term u have to satisfy? Since h must
be holomorphic, it must satisfy the Cauchy-Riemann condition ∂h = 0. It follows that u must solve
an inhomogeneous problem of the form

∂u = ∂g on Ω, u : (S0). (1.9.1)

[Indeed, h must satisfy condition (S) the same as g, hence u = g−h must satisfy an appropriate
zero condition (S0).] Solutions of the global problem (1.9.1) do not always exist, but the differential
equation has solutions satisfying appropriate growth conditions if Ω is (pseudoconvex or) a domain
of holomorphy [Chapter 11]. The spherical shell theorem of Hartogs may be proved by the method
of subtracting the nonanalytic part, cf. Chapter 3.

GENERAL ∂ EQUATIONS. The general first order ∂ equation or inhomogeneous Cauchy-
Riemann equation on Ω ⊂ Cn has the form

∂u =
∑n

1

∂u

∂zj
dzj = v =

∑n

1
vjdzj

or, written as a system,
∂u/∂zj = vj , j = 1, . . . , n.

The equation is locally solvable whenever the local integrability or compatibility conditions

∂vk/∂zj [= ∂2u/∂zk∂zj = ∂2u/∂zj∂zk] = ∂vj/∂zk

are satisfied, as they are in the case of (1.9.1) [cf. Chapter 7]. There are also higher order ∂
equations where the unknown is a differential form, not a function. Assuming that the natural local
integrability conditions are satisfied, all ∂ equations are globally solvable on Ω if and only if Ω is a
domain of holomorphy, cf. Chapters 11, 12.

1.10 Preview: zero sets, singularity sets and the Cousin problems

For holomorphic functions in C, the best known singularities are the isolated ones: poles and
essential singularities. However, holomorphic functions in Cn with n ≥ 2 can not have isolated
singularities. More accurately, it follows from Hartogs’ spherical shell theorem that such singularities
are removable, cf. Sections 1.9, 2.6.

From here on, let Ω be a connected domain in Cn. We suppose first that f is holomorphic on Ω
and not identically zero. In the case n = 1 it is well-known that the zero set Z(f) = Zf of f is a
discrete set without limit point in Ω, cf. exercises 1.16, 1.17. However, for n ≥ 2 a zero set Zf can
not have isolated points [1/f can not have isolated singularities]. Zf will be a so-called analytic set
of complex codimension 1 (complex dimension n− 1). Example: a complex hyperplane (1.2.1). The
local behaviour of zero sets will be studied in Chapter 4.

Certain thin singularity sets are also analytic sets of codimension 1 [Section 4.8].
We now describe some related global existence questions, the famous Cousin problems of 1895

which have had a great influence on the development of complex analysis in Cn.

Problem 1.10.1 (First Cousin Problem). Are there meromorphic functions on Ω ⊂ Cn with
arbitrarily prescribed local infinitary behaviour (of appropriate type)?

A meromorphic function f is defined as a function which can locally be represented as a quotient
of holomorphic functions. The local data may thus be supplied in the following way. One is given
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a covering {Uλ} of Ω by (connected) open subsets and for each set Uλ, an associated quotient
fλ = gλ/hλ of holomorphic functions with hλ 6≡ 0. One wants to determine a meromorphic function
f on Ω which on each set Uλ becomes infinite just like fλ, that is, f − fλ ∈ O(Uλ). Naturally, the
data Uλ, fλ must be compatible in the sense that fλ − fµ ∈ O(Uλ ∩ Uµ) for all λ, µ.

For n = 1 Mittag-Leffler had shown that such a problem is always solvable. For example, if Ω is
the right half-plane {Re z > 0} in C, a meromorphic function f with pole set {λ = 1, 2, . . .} and
such that f(z)− 1/(z − λ) is holomorphic on a neighbourhood of λ is provided by the sum of the
series ∑∞

λ=1

(
1

z − λ
+ 1
λ

)
.

For n ≥ 2 it turned out that the first Cousin problem is not generally solvable for every domain
Ω in Cn. However, the problem is generally solvable on domains of holomorphy Ω (Oka 1937). The
global solution is constructed by patching together local pieces. There is a close connection between
the solvability of the first Cousin problem and the global solvability of a related ∂ equation [Chapters
7, 11]. Oka’s original method has developed into the important technique of sheaf cohomology
(Cartan-Serre 1951-1953, see Chapter 12 and cf. [21]).

Problem 1.10.2 (Second Cousin Problem). Are there holomorphic functions f on Ω ⊂ Cn with
arbitrarily prescribed local vanishing behaviour (of appropriate type)?

The data will consist of a covering {Uλ} of Ω by (connected) open subsets and for each set
Uλ, an associated holomorphic function fλ 6≡ 0. One wants to determine a holomorphic function f
on Ω which on each set Uλ vanishes just like fλ. Here one must require that on the intersections
Uλ ∩ Uµ, the functions fλ and fµ vanish in the same way, that is, fλ/fµ must be equal to a zero
free holomorphic function. The family {Uλ, fλ} and equivalent Cousin-II data determine a so-called
divisor D on Ω. The desired function f ∈ O(Ω) must have the local vanishing behaviour given by
D. One says that f must have D as a divisor. In the given situation this means that on every set
Uλ, the quotient f/fλ must be holomorphic and zero free.

For n = 1 Weierstrass had shown that such a problem is always solvable. For example, if Ω is
the right half-plane {Re z > 0} in C, a holomorphic function f with zero zet {λ = 1, 2, . . .} and
corresponding multiplicities 1 is provided by the infinite product∏∞

λ=1

(
1− z

λ

)
ez/λ.

For n ≥ 2 the second Cousin problem or divisor problem is not generally solvable, not even if Ω
is a domain of holomorphy. General solvability on such a domain requires an additional condition
of topological nature (Oka 1939) which may also be formulated in cohomological language (Serre
1953), see Chapter 12. The divisor problem is important for algebraic geometry.

From the preceding, the reader should not get the impression that all problems in the Cousin
I, II area have now been solved. Actually, after the solution of the classical Cousin problems,
the situation for Cn is much like the situation was for one complex variable after the work of
Mittag-Leffler and Weierstrass. In the case of C, one then turned to much more difficult problems
such as the determination of holomorphic functions of prescribed growth with prescribed zero set,
cf. [9]. The corresponding problems for Cn are largely open, although a start has been made, cf.
[53] and [38].

1.11 Exercises

Exercise 1.1. Use the definition of holomorphy (1.11) to prove that a holomorphic function on
Ω ⊂ Cn has a complex (partial) derivative with respect to each variable zj throughout Ω.
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Exercise 1.2. Prove that O(Ω) is a ring relative to ordinary addition and multiplication of
functions. Which elements have a multiplicative inverse in O(Ω)? Cf. (1.1.9) for the notation.

Exercise 1.3.

(i) Prove that there is exactly one complex line through any two distinct points a and b in Cn.

(ii) Determine a parametric representation for the complex hyperplane c · (z − a) = 0 in Cn.

Exercise 1.4. The real hyperplane V through a = a′ + ia′′ in Cn ∼ R2n with normal direction
(α1, β1, . . . , αn, βn) is given by the equation

α1(x1 − a′1) + β1(y1 − a′′1) + . . .+ αn(xn − a′n) + βn(yn − a′′n) = 0.

Show that V can also be represented in the form

Re{c · (z − a)} = 0.

Verify that a real hyperplane through a in Cn contains precisely one complex hyperplane through a.

Exercise 1.5. Prove that the composition of differentiable maps ζ = f(w) : D ⊂ Cp ∼ R2p to C
and w = g(z) : Ω ⊂ Cn ∼ R2n to D is differentiable, and that

∂(f ◦ g)
∂zj

=
p∑
k=1

{
∂f

∂wk
(g)∂gk

∂zj
+ ∂f

∂wk
(g)∂gk

∂zj

}
, j = 1, . . . , n.

Deduce that for holomorphic f and g (that is, f and g1, . . . , gp holomorphic), the composite function
f ◦ g is also holomorphic.

Exercise 1.6. Let f be holomorphic on Ω ⊂ Cn and let V be a complex hyperplane intersecting
Ω. Prove that the restriction of f to the intersection Ω ∩ V may be considered as a holomorphic
function on an open set in Cn−1.

Exercise 1.7. Analyze the boundary of the polydisc ∆3(0, r). Then use the maximum principle
for the case of one complex variable to prove that all holomorphic functions f on ∆3(0, r) assume
their maximum absolute value on T3(0, r).

Exercise 1.8. Let b be an arbitrary point of the torus T (0, r) ⊂ Cn. Determine a holomorphic
function f on the closed polydisc ∆(0, r) for which |f | assumes its maximum only at b. [First take
n = 1, then n ≥ 2.]

Exercise 1.9. Let b be an arbitrary point of the sphere S(0, r) ⊂ Cn. Prove that for f(z) = b · z,
one has |f(z)| ≤ r2 on B(0, r) with equality if and only if z = eiθb for some θ ∈ R. Deduce that for
f(z) = b · z + 1, one has |f(z)| < |f(b)| throughout B(0, r)− {b}.

Exercise 1.10. Let f be holomorphic on ∆(0, r). Apply Cauchy’s integral formula to g = fp and
let p→∞ in order to verify that

|f(z)| ≤ sup
T (0,r)

|f(ζ)|, ∀z ∈ ∆(0, r).

Exercise 1.11. Extend the Cauchy integral formula for polydiscs to polydomainsD = D1×· · ·×Dn,
where Dj ⊂ C is the interior of a piecewise smooth simple closed curve Γj , j = 1, . . . , n.
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Exercise 1.12. Represent the following functions by double power series with center 0 ∈ C2 and
determine the respective domains of convergence (without grouping the terms of the power series):

1
(1− z1)(1− z2) ,

1
1− z1z2

,
1

1− z1 − z2
,

ez1

1− z2
.

Exercise 1.13. Suppose that the power series
∑
cα(z − a)α converges throughout the open set

U ⊂ Cn. Prove that

(i) the series is absolutely convergent on U ;

(ii) the convergence is locally uniform on U for any given order of the terms;

(iii) the sum function is holomorphic on U .

Exercise 1.14. Let f be analytic on a connected domain Ω ⊂ Cn and such that Dαf(a) = 0 for a
certain point a ∈ Ω and all α ∈ C0. Prove that f ≡ 0.

Exercise 1.15. Let f be analytic on a connected domain D ⊂ C and f 6≡ 0. Verify that for every
point a ∈ D there is an integer m ≥ 0 such that f(z) = (z − a)mg(z), with g analytic on D and
zero free on a neighbourhood of a. Show that in C2, there is no corresponding general factorization
f(z) = (z1 − a1)m1(z2 − a2)m2g(z), with g zero free around a.

Exercise 1.16. Let D be a connected domain in C and {zk} a sequence of distinct points in D
with limit a ∈ D. Verify that an analytic function f on D which vanishes at the points zk must be
identically zero. Devise possible extensions of this result to C2.

Exercise 1.17. For the unit bidisc ∆(0, 1) = ∆1(0, 1) ×∆1(0, 1) in C2, a small planar domain
around 0 may be a set of uniqueness, depending on what plane it lies in. Taking 0 < r < 1

2 , show
that the square

E1 = {x+ iy ∈ ∆ : |x1| < r, |x2| < r, y1 = y2 = 0}

is a set of uniqueness for the analytic functions f on ∆, whereas the square

E2 = {x+ iy ∈ ∆ : |x1| < r, |y1| < r, x2 = y2 = 0}

is not. [One may use a power series, or one may begin by considering f(z1, x2) with fixed x2 ∈ (−r, r).]

Exercise 1.18. Does the Cauchy transform (1.6.1) define an analytic function on the exterior of
the closed polydisc ∆(a, r)? Compare the cases n = 1 and n = 2.

Exercise 1.19. Let f(x1 + iy1, . . . , xn + iyn) be of class C1 on Ω ⊂ Cn ∼ R2n as a function of
x1, y1, . . . , xn, yn and such that ∂f ≡ 0. Prove that f(z) = f(z1, . . . , zn) is analytic on Ω.

Exercise 1.20. Let D be a connected domain in Cn. Prove that the ring O(D) has no zero divisors:
if fg ≡ 0 with f, g ∈ O(D) and f(a) 6= 0 at a point a ∈ D, then g ≡ 0.

Exercise 1.21. (Extension of Liouville’s theorem) Prove that a bounded holomorphic function on
Cn must be constant.

Exercise 1.22. Let f be holomorphic on a connected domain D of the form Cn − E where n ≥ 2
and E is compact. Suppose that f(z) remains bounded as |z| → ∞. Prove that f = constant (so
that the ‘singularity set’E is removable). [Consider the restrictions of f to suitable complex lines.]
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Exercise 1.23. Let f be holomorphic on the closed polydisc ∆(0, r) ⊂ C2. Prove the following
mean value properties:

f(0) = 1
m2(T )

∫
T (0,r)

f(ζ)dm2(ζ) = 1
m3(∂∆)

∫
∂∆

f(ζ)dm3(ζ).

Here dmj denotes the appropriate area or volume element. [Since the circles ζ1 = r1e
it1 , ζ2 =

constant and ζ1 = constant, ζ2 = r2e
it2 on T (0, r) intersect at right angles, the area element dm2(ζ)

is simply equal to the product of the elements of arc length, r1dt1 and r2dt2. Again by orthogonality,
the volume element dm3(ζ) of C(0, r1)×∆1(0, r2) may be represented in the form r1dt1 · ρdρdt2,
etc.]

Exercise 1.24. Prove that holomorphic functions f on the closed unit ball B ⊂ C2 have the
following mean value property:

f(0) = 1
m3(S)

∫
S

f(ζ)dm3(ζ), S = ∂B.

[S is a union of tori T (0, r) with r1 = ρ, r2 = (1 − ρ2) 1
2 . The parametrization ζ1 = ρeit1 , ζ2 =

(1− ρ2) 1
2 eit2 introduces orthogonal curvilinear coordinates on S and dm3(ζ) = ρdt1(1− ρ2) 1

2 dt2dρ.]
Used in conjunction with suitable holomorphic automorphisms of the ball, this mean value

property gives a special integral representation for f(z) on B in terms of the boundary values of f
on S, cf. exercise 10.28.

Exercise 1.25. Let f(z1, z2) be continuous on the closed polydisc ∆2(a, r) and holomorphic on
the interior. Take ζ1 on C(a1, r1). Now use Weierstrass’s limit theorem to prove that f(ζ1, w) is
holomorphic on the disc ∆1(a2, r2).

Exercise 1.26. Prove the holomorphy of f in Corollary 1.72 by showing that f(z) can be written
as a Cauchy integral. [First write K(z, t) as a Cauchy integral.]

Exercise 1.27. Let K(z, t) be defined and continuous on Ω× I where Ω ⊂ Cn is open and I is a
compact rectangular block in Rm. Suppose that K(z, t) is holomorphic on Ω for each t ∈ I. Prove
that DjK(z, t) is continuous on Ω× I (Dj = ∂/∂zj). Finally show that for f(z) =

∫
I
K(z, t)dt one

has Djf(z) =
∫
I
DjK(z, t)dt.

Exercise 1.28. Prove that a locally bounded family F of functions inO(Ω) is locally equicontinuous,
that is, every point a ∈ Ω has a neighbourhood U with the following property. To any given ε > 0
there exists δ > 0 such that |f(z′)− f(z′′)| < ε for all z′, z′′ ∈ U for which |z′ − z′′| < δ and for all
f ∈ F .

Exercise 1.29. Give an example of a holomorphic map f = (f1, f2) of C2 to C2, with nonconstant
components f1 and f2, that fails to be open.

Exercise 1.30. (Extension of Schwarz’s lemma) Let f be holomorphic on the unit ball B = B(0, 1)
in Cn and in absolute value bounded by 1. Supposing that f(0) = 0, prove that |f(z)| ≤ |z| on
B. What can you say if f vanishes at 0 of order ≥ k, that is, Dαf(0) = 0 for all α’s with |α| < k?
[One may work with complex lines.]
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Chapter 2

Analytic continuation, part I

In the present chapter we discuss classical methods of analytic continuation – techniques based on
power series, the Cauchy integral for a polydisc and Laurent series. More recent methods may be
found in the next chapter.

After a general introduction on analytic continuation and a section on convexity, we make a
thorough study of the domain of (absolute) convergence of a multiple power series with center 0.
Such a domain is a special kind of connected multicircular domain: if z = (z1, . . . , zn) belongs to it,
then so does every point z′ = (eiθ1z1, . . . , e

iθnzn) with θj ∈ R. For n = 1 such connected domains
are annuli or discs. Holomorphic functions on annuli are conveniently represented by Laurent series
and the same is true for multicircular domains in Cn.

2.1 General theory of analytic continuation

Consider tripels (a, U, f), where a ∈ Cn, U is an open neighborhood of a and f is a function on U
into some non specified, but fixed set X. Two tripels (a, U, f), (a′, U ′, f ′) are called equivalent is
a = a′ and f = f ′ on a neighborhood U ′′ of a contained in U ∩ U ′. This is indeed an equivalence
relation, as is easily seen. The equivalence class of (a, U, f) is called the germ of f at a. We will
meet germs of continuous and of smooth functions, with values in R, C or worse, but the most
prominent case will be that f is holomorphic. The tripel (a, U, f) is then called a function element
(a, U, f) at a point a ∈ Cn. Using Theorem 1.5.4 one sees that elements (a, U, f) and (a, Ũ , f̃) at
the same point a are equivalent if f and f̃ have the same power series at a : fa = f̃a. Thus germs
of holomorphic functions can be identified with convergent power series. If no confusion is possible
we may occasionally identify germs of holomorphic functions with their representatives.

a

b

x

x

x

x

γ

U=U0

ak

ak-1

Uk-1

V=Up

Uk

Figure 2.1.
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Definition 2.1.1. A function element (b, V, f) is called a direct analytic continuation of the element
(a, U, f) if V ∩ U is nonempty and g = f on a component of V ∩ U . [Some authors require that g
be equal to f on every component of V ∩ U .] More generally, an element (b, V, g) at b is called an
analytic continuation of (a, U, f) if there is a finite chain of elements (ak, Uk, fk), k = 0, 1, . . . , p
which links (a, U, f) to (b, V, g) by successive direct continuations:

(a0, U0, f0) = (a, U, f), (ap, Up, fp) = (b, V, g)

and
(ak, Uk, fk) is a direct analytic continuation of (ak−1, Uk−1, fk−1)

for k = 1, . . . , p.

One loosely speaks of an analytic continuation of f ∈ O(U) to V . If V ∩ U is nonempty, the
uniqueness theorem shows that (a, U, f) has at most one direct analytic continuation (b, V, g) for
given b ∈ V and a given component of V ∩ U . [On a different component of V ∩ U , g may be
different from f .] In the case of a chain as above, one may insert additional elements to ensure
that ak belongs to Uk ∩ Uk−1 for k = 1, . . . , p. Such a chain may be augmented further to obtain
analytic continuation along an arc γ : [0, 1] → Cn from a to b, namely, if γ is chosen as follows:
γ(0) = a, γ(1) = b and there is a partitioning 0 = t0 < t1 < . . . < tp = 1 such that γ(tk) = ak and
the subarc of γ corresponding to the interval [tk−1, tk] belongs to Uk−1, k = 1, . . . , p. One can then
define a continuous chain of elements (at, U t, f t), 0 ≤ t ≤ 1 which links (a, U, f) to (b, V, g).

Given an element (a, U, f) at a and a point b, different chains starting with (a, U, f) may lead to
different [more precisely, inequivalent] elements at b. For example, one may start with the function
element

(1, {Re z > 0}, p.v. log z) (2.1.1)

at the point z = 1 of C. Here the principal value of

log z = log |z|+ i arg z, z 6= 0

denotes the value with imaginary part > −π but ≤ +π. Hence in our initial element, log z has
imaginary part between −π/2 and π/2. One may continue this element analytically to the point
z = −1 along the upper half of the unit circle. At any point eit, 0 ≤ t ≤ π one may use the half-plane
{t−π/2 < arg z < t+π/2} as basic domain and on it, one will by continuity obtain the holomorphic
branch of log z with imaginary part between t − π/2 and t + π/2. On the half-plane {Re z < 0}
as basic domain around z = −1, our analytic continuation will thus give the branch of log z with
imaginary part between π/2 and 3π/2. However, one may continue the original element (2.1.1) also
along the lower half of the unit circle. The intermediate elements will be similar to those above,
but this time 0 ≥ t ≥ −π. Thus the new analytic continuation will give the branch of log z on the
half-plane {Re z < 0} with imaginary part between −π/2 and −3π/2.

Definition 2.1.2 (Weierstrass). The totality of all equivalence classes of function elements (b, V, g)
(or of all convergent power series gb) at points b ∈ Cn, which may be obtained from a given element
(a, U, f) by unlimited analytic continuation, is called the complete analytic function F generated by
(a, U, f).

RIEMANN DOMAIN for F . As the example of log z shows, a complete analytic function F may
be multivalued over Cn. In order to get a better understanding of such a function, one introduces
a multilayered Riemann domain R for F over Cn (a multisheeted Riemann surface when n = 1)
on which F may be interpreted as a single-valued function. Most readers will have encountered
concrete Riemann surfaces for log z and

√
z. We briefly describe the general case.
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The points of the Riemann domain R for F in Definition 2.1.2 have the form p = [(b, V, g)] or
p = (b, gb) where [(b, V, g)] stands for an equivalence class of elements at b. One says that the point
p lies “above" b and the map π : p = (b, gb) → b is called the projection of R to Cn. The points
[(c,W, h)] or (c, hc), corresponding to direct analytic continuations (c,W, h) of (b, V, g) for which
c lies in V and hc = gc, will define a basic neighbourhood N = N (p, V, g) of p in R. Small basic
neighbourhoods will separate the points of R. The restriction π | N establishes a homeomorphism
of N in R onto V in Cn. Over each point b of Cn, the Riemann domain R for F will have as
many layers as there are different equivalence classes [(b, V, g)] in F at b. If the element (b, V, g)
is obtained by analytic continuation of (a, U, f) along an arc γ in Cn, the Riemann domain will
contain an arc σ above γ which connects the points of R corresponding to the two elements, cf.
[Conway].

On the Riemann domain, the complete analytic function F is made into a single-valued function
through the simple definition F(p) = F((b, gb)) = g(b). We now let q = (z, hz) run over the
neighbourhood N (p, V, g) in R. The result is

F(q) = F((z, hz)) = h(z) = g(z), ∀q = (z, hz) ∈ N (p, V, g).

Thus on the Riemann domain, F is locally given by an ordinary holomorphic function g on a
domain V ⊂ Cn “under" R. Taking this state of affairs as a natural definition of holomorphy on R,
the function F will be holomorphic. Setting (a, U, f) = p0 and identifying N (p0, U, f) with U , one
will have F = f on U . In that way the Riemann domain R will provide a maximal continuation
or existence domain for the function f ∈ O(U): every germ of every analytic continuation is
represented by a point of R. Cf. Section 5.7.

There are also more geometric theories of Riemann domains, not directly tied to functions F .
Riemann domains are examples of so-called domains X = (X,π) over Cn. The latter are Hausdorff
spaces X with an associated projection π to Cn. Every point of X must have a neighbourhood on
which π establishes a homeomorphism onto a domain in Cn. The Cn coordinates zj can serve as
local coordinates on X; different points of X over the same point z ∈ Cn may be distinguished by
means of an additional coordinate. Cf. Section 5.7 and [Narasimhan].

Given a function element (a, U, f) and a boundary point b of U , there may or may not exist a
direct analytic continuation (b, V, g) at b. In the case n = 1 there always exist functions f ∈ O(U)
that can not be continued analytically across any boundary point of U . This is easily seen: using
Weierstrass theorem mentioned at the end of Section 1.10 one constructs a holomorphic function f
on U such that the boundary of U is in the closure of the zeroes of f , cf. Chapter 6. However, as
mentioned already in Section 1.9, the situation is completely different in Cn with n ≥ 2. There
are connected domains D ⊂ Cn such that every function f ∈ O(D) can be continued analytically
to a certain larger connected domain D′ ⊂ Cn (independent of f). In many cases one can find a
maximal continuation domain D∗ in Cn:

Definition 2.1.3. A (connected) domainD∗ in Cn is called a [or the] envelope or hull of holomorphy
for D ⊂ Cn if

(i) D ⊂ D∗ and every f ∈ O(D) has an extension f∗ in O(D∗);

(ii) For every boundary point b of D∗, there is a function f ∈ O(D) which has no analytic
continuation to a neighborhood of b. [The corresponding complete analytic function F has no
element at b.]

It is perhaps surprising that there exist connected domains D ⊂ Cn which have no envelope
of holomorphy in Cn. However, for such a domain D, all functions in O(D) have an analytic
continuation to a certain domain XD over Cn, see Section 2.9.
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A maximal continuation domain D∗ as in Definition 2.1.3 (which may coincide with D) will be
a domain of holomorphy, cf. Chapter 6 where the latter domains are studied and characterized by
special convexity properties. It will be useful to start here with a discussion of ordinary convexity.

2.2 Auxiliary results on convexity

When we speak of convex sets we always think of them as lying in a real Euclidean space Rn.
Convex sets in Cn will be convex sets in the corresponding space R2n.

Definition 2.2.1. A set E ⊂ Rn is called convex if for any pair of points x and y in E, the whole
straight line segment with end points x and y belongs to E. In other words, x ∈ E, y ∈ E must
imply

(1− λ)x+ λy ∈ E, ∀λ ∈ [0, 1].

Every convex set is connected. The closure E and the interior E0 of a convex set E are also
convex. The intersection of any family of convex sets in Rn is convex.

For nonempty convex sets E ⊂ R2, one easily verifies the following properties:

(i) If there is a straight line L′ ⊂ R2 which does not meet E, there is a supporting line L parallel
to L′, that is, a line L through a boundary point x0 of E such that the interior E0 lies entirely
on one side of L.

(ii) If x′ lies outside E, there is a supporting line L separating x′ from E0 and passing through a
point x0 ⊂ E closest to x′. [Take L through x0 perpendicular to [x0, x

′].]

(iii) If E is closed (or open), it is the intersection of the closed (or open, respectively) half-planes
H containing E.

(iv) For every boundary point x0 of E there are one or more supporting lines L passing through
x0. [The vectors x− x0 for x ∈ E belong to an angle ≤ π.]

There are corresponding results for convex sets E ⊂ Rn, n ≥ 3. The supporting lines L then
become supporting hyperplanes V , that is, affine subspaces of real dimension n− 1. For a closed
convex set E ⊂ Rn, the intersection of E with a supporting hyperplane V is a closed convex set of
lower dimension. More precisely, E ∩ V will be a closed convex set, congruent to a closed convex
set in Rn−1.

x

x

L

L'

E

x0

x'

Figure 2.2.
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Definition 2.2.2. For an arbitrary (nonempty) set S in Rn, the smallest convex set containing S
is called its convex hull, notation E = CH(S).

It is easy to verify that the convex hull CH(S) consists of all finite sums of the form

x =
m∑
j=1

λjsj with sj ∈ S, λj ≥ 0,
∑

λj = 1. (2.2.1)

Indeed, induction on m and the definition of convexity will show that CH(S) must contain all
points of the form (2.2.1). On the other hand, the set of all those points is convex and contains S,
hence it contains CH(S).

In the case of a compact set S in the plane, one readily shows that m can always be taken ≤ 3.
[If x belongs to CH(S) but not to S, one may choose an arbitrary point s1 ∈ S and join it to x; the
half-line from s1 through x must meet the boundary of CH(S) at or beyond x.] For any set S in
Rn, every point x in CH(S) has a representation (2.2.1) with m ≤ n+ 1 (Carathéodory’s theorem,
cf. [Cheney]). For our application to power series we need the notion of logarithmic convexity.
Let Rn+ denote the set of points x ∈ Rn with xj ≥ 0, ∀j. We would like to say that F ⊂ Rn+ is
logarithmically convex if the set

logF def= {(log r1, . . . , log rn) : (r1, . . . , rn) ∈ F}

is convex. However, in order to avoid difficulties when rj = 0 for some j so that log rj = −∞ [cf.
exercise 2.7], we will use the following

Definition 2.2.3. A set F in Rn+ is called logarithmically convex if r′ ∈ F and r′′ ∈ F always
implies that F contains every point r of the symbolic form

r = (r′)1−λ(r′′)λ, 0 ≤ λ ≤ 1,

that is,
rj = (r′j)1−λ(r′′j )λ, ∀j.

The logarithmically convex hull of a set S ⊂ Rn+ is the smallest logarithmically convex set
containing S.

Example 2.2.4. Let S be the union of the rectangles

S1 = {(r1, r2) ∈ Rn+ : r1 < 2, r2 <
1
2}, S2 = {(r1, r2) ∈ Rn+ : r1 <

1
2 , r2 < 2}.

Then logS is the union of the quadrants

logS1 = {(ρ1, ρ2) ∈ R2 : ρ1 < log 2, ρ2 < log 1
2},

logS2 = {(ρ1, ρ2) ∈ R2 : ρ1 < log 1
2 , ρ2 < log 2},

including some points with a coordinate −∞. The convex hull of logS consists of the points (ρ1, ρ2)
such that

ρ1 < log 2, ρ2 < log 2, ρ1 + ρ2 < 0
(Figure 2.3, left). The logarithmically convex hull of S consists of the points (r1, r2) = (eρ1 , eρ2)
with (ρ1, ρ2) ∈ CH(logS), or more precisely, of the points (r1, r2) ≥ 0 such that (cf. Figure 1.5):

r1 < 2, r2 < 2, r1r2 = eρ1+ρ2 < 1.

Example 2.2.5. Let S consist of a single point s = (s1, . . . , sn) > 0 and a neighbourhood of 0 in
Rn+ given by 0 ≤ rj < εj (< sj), j = 1, . . . , n. Then the logarithmically convex hull of S contains
the set given by 0 ≤ rj < sj , j = 1, . . . , n, cf. Figure 2.3, right.
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2.3 Multiple power series and multicircular domains

In the following we will study sets of convergence of power series and of more general Laurent series∑
α∈Zn

cαz
α =

∑
α1∈Z,...,αn∈Z

cα1...αnz
α1
1 . . . zαnn . (2.3.1)

In order to avoid problems with the order of the terms, we only consider absolute convergence
here.

Definition 2.3.1. Let A be the set of those points z ∈ Cn where the Laurent series (2.3.1) [or
power series (2.3.2)] is absolutely convergent. The interior A0 of A will be called the domain of
(absolute) convergence of the series.

In the case n = 1 the domain of convergence is an open annulus or disc (or empty). For general
n, our first observation is that the absolute convergence of a Laurent series (2.3.1) at a point
z implies its absolute convergence at every point z′ with |z′j | = |zj |, ∀j. Indeed, one will have
|cα(z′)α| = |cαzα|, ∀α. It is convenient to give a name to the corresponding sets of points:

Definition 2.3.2. E ⊂ Cn is called a multicircular set (or Reinhardt set) if

a = (a1, . . . , an) ∈ E implies a′ = (eiθ1a1, . . . , e
iθnan) ∈ E

for all real θ1, . . . , θn. A multicircular domain or Reinhardt domain is an open multicircular set.

Multicircular sets are conveniently represented by their “trace" in the space Rn+ “of absolute
values", in which all coordinates are nonnegative. Cf. Figure 1.5, where the multicircular domain
D = ∆(0, 0; 2, 1

2 ) ∪∆(0, 0; 1
2 , 2) in C2 is represented by its trace.

Definition 2.3.3. The trace of a multicircular set E ⊂ Cn is given by

trE = {(|a1|, . . . , |an|) ∈ Rn+ : (a1, . . . , an) ∈ E}.

A multicircular set E is determined by its trace. If E is connected, then so is trE (and conversely).
If E is open, trE is open in Rn+.

Our primary interest is in multiple power series∑
α∈Zn≥0

cαz
α =

∑
α1≥0,...,αn≥0

cα1...αnz
α1
1 . . . zαnn . (2.3.2)
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The absolute convergence of a power series (2.3.2) at a point z implies its absolute convergence
at every point z′ with |z′j | ≤ |zj |, ∀j. The corresponding sets are called complete multicircular sets:

Definition 2.3.4. E ⊂ Cn is called a complete multicircular set (or complete Reinhardt set) if or
Reinhardt set!complete

(a1, . . . , an) ∈ E implies (a′1, . . . , a′n) ∈ E

whenever |a′j | ≤ |aj |, ∀j.

Observe that a complete multicircular set E is connected: a ∈ E or Reinhardt domain!complete
is joined to the origin by the segment z = λa, 0 ≤ λ ≤ 1 in E. A complete multicircular domain (=
open set) will be a union of (open) polydiscs centered at the origin, and conversely. Cf. D and D̂
illustrated in Figure 1.5.

Proposition 2.3.5. The domain of (absolute) convergence A0 of a multiple power series (2.3.2)
with center 0 is a complete multicircular domain [but may be empty].

Proof. Let A0 be nonempty and choose any point a in A0. Then A0 contains a ball B(a, δ), and this
ball will contain a point b such that |bj | > |aj |, ∀j. The absolute convergence of the series (2.3.2)
at z = b implies its absolute convergence throughout the polydisc ∆(0, . . . , 0; |b1|, . . . , |bn|). This
polydisc in A0 contains all points a′ with |a′j | ≤ |aj |, ∀j. Thus A0 is a complete multicircular set.
A0 will be a connected domain.

2.4 Convergence domains of power series and analytic continuation

Let B denote the set of those points z ∈ Cn at which the terms cαzα, α ∈ Zn≥0 of the power
series (2.3.2) form a bounded sequence:

B = {z ∈ Cn : |cαzα| ≤M = M(z) < +∞, ∀α ∈ Zn≥0}. (2.4.1)

The set B is clearly multicircular and it also has a certain convexity property:

Lemma 2.4.1. The trace of B is logarithmically convex.

Proof. Let r′ ≥ 0 and r′′ ≥ 0 be any two points in trB. Then there is a constant M [for example,
M = max{M(r′),M(r′′)}] such that

|cα|(r′1)α1 . . . (r′n)αn ≤M, |cα|(r′′1 )α1 . . . (r′′n)αn ≤M, ∀α ∈ Zn≥0.

It follows that for any r = (r1, . . . , rn) with components of the form rj = (r′j)1−λ(r′′j )λ [with
λ ∈ [0, 1] independent of j] and for all α′s,

|cα|rα1
1 . . . rαnn = {|cα|(r′1)α1 . . . (r′n)αn}1−λ{|cα|(r′′1 )α1 . . . (r′′n)αn}λ ≤M.

Thus r ∈ B and hence trB is logarithmically convex [Definition 2.2.3].

Abusing the language, a multicircular domain is called logarithmically convex when its trace is.
We can now prove

Theorem 2.4.2. The domain of absolute convergence A0 of a multiple power series (2.3.2) with
center 0 is a logarithmically convex complete multicircular domain [but may be empty]. The power
series will converge uniformly on every compact subset of A0.
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Proof. Consider a power series (2.3.2) for which A0 is nonempty. We know that A0 is a complete
multicircular domain [Proposition 2.3.5], hence it suffices to verify its logarithmic convexity. Clearly,
A ⊂ B, cf. (2.4.1), hence A0 ⊂ B0. We will show that also B0 ⊂ A0. Choose b ∈ B0. Then B must
contain a point c with |cj | = rj > |bj |, ∀j. The boundedness of the sequence of terms {cαzα}
at z = c or z = r implies the absolute convergence of the power series (2.3.2) throughout the
polydisc ∆(0, r) [Lemma 1.4.1]. Hence b ∈ A0 so that B0 ⊂ A0; as a result, A0 = B0. Since trB is
logarithmically convex [Lemma 2.4.1], trA0 = trB0 will also be logarithmically convex [basically
because the interior of a convex set is convex].

We know that A0 is a union of polydiscs ∆(0, s). The convergence of our power series is uniform
on every smaller polydisc ∆(0, λs) with λ ∈ (0, 1) [Lemma 1.4.1], hence it is uniform on every
compact subset of A0. Indeed, such a set may be covered by finitely many polydiscs ∆(0, s) in A0

and hence by finitely many polydiscs ∆(0, λs).

Corollary 2.4.3 (Analytic continuation by power series). Suppose f is holomorphic on a complete
multicircular domain D in Cn. Then f has an analytic continuation to the logarithmically convex
hull D̂ of D. The continuation is furnished by the sum of the power series for f with center 0.

Indeed, D is a union of polydiscs ∆(0, r). On each of those polydiscs, the power series
∑
cαz

α

for f with center 0 converges absolutely, and it converges to f(z), cf. Corollary 1.6.3. The domain of
convergence A0 of the power series thus contains D. Being logarithmically convex, A0 must contain
D̂, the smallest logarithmically convex multicircular domain containing D. The power series is
uniformly convergent on every compact subset of D̂ ⊂ A0. Its sum is therefore holomorphic on D̂;
it extends f analytically throughout D̂.

Figure 1.5 illustrates the case

D = ∆(0, 0; 2, 1
2 ) ∪∆(0, 0; 1

2 , 2)

in C2, cf. Example 2.2.4. Here the logarithmically convex hull D̂ is the exact domain of convergence
of the power series with center 0 for the function

f(z) = 1
2− z1

+ 1
2− z2

+ 1
1− z1z2

.

The logarithmically convex hull D̂ of a complete multicircular domain D in Cn is at the same
time its envelope of holomorphy [Definition 2.1.3]. Indeed, D̂ will be a domain of holomorphy and
(hence) also the maximal domain of existence for a certain holomorphic function [see Sections 6.3,
6.4.] The latter property implies that every logarithmically convex complete multicircular domain
is the exact domain of convergence for some power series with center 0.

2.5 Analytic continuation by Cauchy integrals

We will show how the Cauchy integral or Cauchy transform

f̂r(z)
def= 1

(2πi)n

∫
T (0,r)

f(ζ)
(ζ1 − z1) . . . (ζn − zn)dζ1 . . . dζn, (2.5.1)

for all z ∈ ∆(0, r), can be used for analytic continuation. Here T (0, r) = C(0, r1)× · · · × C(0, rn),
with positive orientation of the circles C(0, rj).

Theorem 2.5.1. Let D ⊂ Cn be a connected multicircular domain containing the origin and let f
be holomorphic on D. Then the Cauchy transforms f̂r, where r > 0 runs over the interior of trD
jointly furnish an analytic continuation of f to D′, the smallest complete multicircular domain
containing D.
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Proof. We take n = 2 and choose δ = (δ1, δ2) > 0 such that the closed polydisc ∆(0, δ) belongs to
D. To each point r = (r1, r2) > 0 in trD we associate the Cauchy transform f̂r (2.5.1).

(i) Since f is holomorphic on ∆(0, δ) we have

f̂δ(z) = f(z), ∀z ∈ ∆(0, δ),

cf. the Cauchy integral formula, Theorem 1.3.1.
(ii) We next show that for arbitrary r > 0 and s > 0 in trD:

f̂r(z) = f̂s(z) on some polydisc ∆(0, δ′), δ′ = δ′rs. (2.5.2)

To this end we connect r to s in the interior of trD by a polygonal line S, whose straight segments
are parallel to the coordinate axes (Figure 2.4). In order to prove (2.5.2) it is sufficient to consider
the special case where S is a segment S1 parallel to one of the axes, for example

S1 = {(t1, t2) ∈ R2
+ : s1 = t1 = r1, s2 ≤ t2 ≤ r2}.

For fixed ζ1 with |ζ1| = r1 = s1 and fixed z2 with |z2| < s2, the function

g(w) def= f(ζ1, w)
w − z2

will be holomorphic on some annulus {ρ < |w| < R} in C such that ρ < s2 < r2 < R, cf. Figure 2.4
and 2.5. Hence by Cauchy’s theorem for an annulus,∫

C(0,r2)

f(ζ1, ζ2)
ζ2 − z2

dζ2 =
∫
C(0,r2)

g(w)dw

=
∫
C(0,s2)

g(w)dw

=
∫
C(0,s2)

f(ζ1, ζ2)
ζ2 − z2

dζ2.

(2.5.3)

We now multiply the first and the last member of (2.5.3) by 1/(ζ1 − z1), taking |z1| < s1 = r1,
and integrate the result with respect to ζ1 along C(0, r1) = C(0, s1). Replacing the repeated
integrals by double integrals, we obtain (2.5.2) for the end points r and s of S1 [and, in our example,
for all z ∈ ∆(0, s)]. The general case (2.5.2) follows by a finite number of steps of this kind.
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Figure 2.4.
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Combining (i) and (ii) we conclude that for every r > 0 in trD

f̂r(z) = f(z) on some polydisc ∆(0, δ′′), δ′′ = δ′′r . (2.5.4)

Now the Cauchy transform f̂r is holomorphic on ∆(0, r) [Theorem 1.6.1]. It follows that f̂r is equal
to f throughout the component of 0 of ∆(0, r)∩D [Uniqueness Theorem 1.5.4]. Jointly, the Cauchy
transforms f̂r furnish an analytic continuation F of f to the domain

D′ = ∪r ∆(0, r), union over all r > 0 in trD. (2.5.5)

D′ is the smallest complete multicircular domain containing D, cf. Figure 2.4.

Corollary 2.5.2 (Once again, analytic continuation by power series). Suppose f is holomorphic
on a connected multicircular domain D ⊂ Cn that contains the origin. Then the power series for f
with center 0 converges to f throughout D and it furnishes an analytic continuation of f to the
logarithmically convex hull D̂ of D.

Proof. Indeed, for any r > 0 in trD, the power series for f̂r with center 0 converges to f̂r on ∆(0, r)
[Corollary 1.6.3], but this series is none other than the power series for f with center 0, because
of (2.5.4). Hence the latter converges to the analytic continuation F of f throughout D′ (2.5.5), and
in particular to f throughout D. By Corollary 2.4.3 applied to F and the complete multicircular
domain D′, the power series for F or f around 0 actually provides an analytic continuation of F or
f to the logarithmically convex hull (D′)∧ of D′.

Observe finally that (D′)∧ = D̂. Indeed, D̂ must contain D′ [and hence (D′)∧], because D̂ will
contain every polydisc ∆(0, s) with s > 0 in trD, cf. Example 2.2.5.

2.6 Laurent series in one variable with variable coefficients;
removability of isolated singularities

Let A = A(0; ρ,R) denote the annulus 0 ≤ ρ < |w| < R ≤ +∞ in C (cf. Figure 2.5) and let g(w)
be holomorphic on A. Then there is a unique Laurent series with center 0 that converges to g for
some total ordering of its terms at each point of A. It is the series

∞∑
−∞

ckw
k with ck = 1

2πi

∫
C(0,r)

g(w)w−k−1dw, (2.6.1)
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where one may integrate over any (positively oriented) circle C(0, r) with ρ < r < R. The series
actually converges absolutely, and uniformly on every compact subset of A(0; ρ,R). To prove the
existence of the series representation one uses the Cauchy integral formula for an annulus: for
ρ < r1 < |w| < r2 < R,

g(w) = 1
2πi

∫
C(0,r2)

g(v)
v − w

dv − 1
2πi

∫
C(0,r1)

g(v)
v − w

dv. (2.6.2)

The first integral gives a power series
∑∞

0 ckw
k on the disc ∆(0, r2) [which will in fact converge

throughout the disc ∆(0, R)]. The second integral gives a power series in 1/w, which may be written
as −

∑−1
−∞ ckw

k and which converges for |w| > r1 [and in fact, for |w| > ρ]. Combining the series
one obtains (2.6.1). As to the other assertions above, cf. Section 2.7.

A holomorphic function g(w) on A(0; ρ,R) will have an analytic continuation to the disc ∆(0, R)
if and only if all Laurent coefficients ck with negative index are equal to 0. Indeed, if there is such
a continuation [which we also call g], then by Cauchy’s theorem, the second integral in (2.6.2) is
identically zero for |w| > r1.

We now move on to Cn with n ≥ 2. Treating our complex variables z1, . . . , zn asymmetrically
for the time being, we will write z′ for (z1, . . . , zn−1) and w for zn. Using Laurent series in w with
coefficients depending on z′, we will prove:

Theorem 2.6.1 (Hartogs’ Continuity Theorem). Let

f(z′, w) = f(z1, . . . , zn−1, w)

be holomorphic on a domain D ⊂ Cn (n ≥ 2) of the form

D = D′ ×A(0; ρ,R) ∪D′0 ×∆(0, R),

where D′ is a connected domain in Cn−1 and D′0 a nonempty subdomain of D′ (Figure 2.6). Then
f has an analytic continuation to the domain

D̃ = D′ ×∆(0, R).

Proof. For fixed z′ ∈ D′ the function g(w) = f(z′, w) is holomorphic in w on the annulus A(0; ρ,R),
hence it may be represented by a Laurent series in w,

f(z′, w) = g(w) =
∑∞

−∞
ck(z′)wk. (2.6.3)
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By (2.6.1) the coefficients are given by

ck(z′) = 1
2πi

∫
C(0,r)

f(z′, w)w−k−1dw = 1
2π

∫ π

−π
f(z′, reit)r−ke−iktdt, (2.6.4)

where ρ < r < R. We may now apply the holomorphy theorem for integrals [Corollary 1.7.2]
to conclude that each of the coefficients ck(z′) is holomorphic in z′ on D′. Indeed, f(z′, w) is
holomorphic and hence continuous in (z′, w) on D. It follows that the final integrand

K(z′, t) = f(z′, reit)r−ke−ikt

is continuous on D′ × [−π, π]. Furthermore, for fixed t this integrand will be holomorphic in z′ on
D′, because f(z′, w) is holomorphic in z′ for fixed w = reit in A(0; ρ,R).

We next observe that for fixed z′ in D′0, the function g(w) = f(z′, w) is holomorphic on the
whole disc ∆(0, R). Hence for such z′, the Laurent series (2.6.3) must reduce to a power series. In
other words, for every k < 0,

ck(z′) = 0 throughout D′0.

Thus by the uniqueness theorem for holomorphic functions, ck(z′) = 0 on all of D′ for each
k < 0. Conclusion:

f(z′, w) =
∞∑
0
ck(z′)wk throughout D′ ×A. (2.6.5)

This power series with holomorphic coefficients actually defines a holomorphic function f̃(z′, w)
throughout D̃ = D′ ×∆(0, R). Indeed, we will show that the series is absolutely and uniformly
convergent on every compact subset of D̃; Weierstrass’s Theorem 1.7.1 on the holomorphy of
uniform limits will do the rest. Let E′ be any compact subset of D′ and set E = E′×∆(0, s) where
s < R. Choosing r ∈ (ρ,R) such that r > s, the coefficient formula (2.6.4) furnishes a uniform
estimate

|ck(z′)| ≤Mr−k for z′ ∈ E′, with M = sup |f | on E′ × C(0, r) ⊂ D.

This estimate implies the uniform convergence of the series in (2.6.5) on E, where |w| ≤ s < r.
The holomorphic sum function f̃ on D̃ is equal to f on D′×A and hence on D. Thus it provides

the desired analytic continuation of f to D̃.

Application 2.6.2 (Removability of isolated singularities when n ≥ 2). Let f be holomorphic on
a “punctured polydisc” D = ∆n(a, r)− {a}. Then f has an analytic extension to D̃ = ∆n(a, r).

[By translation, it may be assumed that a = 0. Now apply Theorem 2.6.1, takingD′ = ∆n−1(0, r′)
with r′ = (r1, . . . , rn−1), ρ = 0, R = rn and D′0 = D′ − {0}. An alternative proof may be based
on the one-dimensional Cauchy integral formula, cf. exercise 2.14.]

Application 2.6.3. Holomorphic functions on open sets Ω ⊂ Cn, n ≥ 2 can not have isolated
zeros.

[An isolated zero of f would be a nonremovable isolated singularity for 1/f .]

2.7 Multiple Laurent series on general multicircular domains

For the time being, we assume that our connected multicircular domain D in Cn does not contain
any point z with a vanishing coordinate; the exceptional case will be considered in Section 2.8.
When n = 1, D is an annulus A(0; ρ,R) on which holomorphic functions are uniquely representable
by Laurent series with center 0. The analog for general n is a Laurent series in n variables:
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Theorem 2.7.1. Let f be holomorphic on a connected multicircular domain D ⊂ Cn, n ≥ 1 that
does not meet any hyperplane {zj = 0}. Then there is a unique n-variable Laurent series with center
0 (and constant coefficients) which converges to f at every point of D for some total ordering of its
terms. It is the series ∑

α1∈Z,...,αn∈Z
cα1...αnz

α1
1 . . . zαnn (2.7.1)

whose coefficients are given by the formula

cα1...αn = 1
(2πi)n

∫
T (0,r)

f(z)z−α1−1
1 . . . z−αn−1

n dz1 . . . dzn (2.7.2)

for any r = (r1, . . . , rn) > 0 in the trace of D. The series will actually be absolutely convergent on
D and it will converge uniformly to f on any compact subset of D.

Proof. We treat the typical case n = 2. For r = (r1, r2) > 0 and 0 < δ = (δ1, δ2) < r we introduce
the “annular domains”

Aδ(r) = {(z1, z2) ∈ C2 : rj − δj < |zj | < rj + δj , j = 1, 2}.

(i) Uniqueness of the Laurent series and coefficient formula. For given r > 0 in trD we choose
ε < 1

2r so small that A2ε(r) belongs to D. Suppose now that we have a series (2.7.1) which converges
pointwise to some function f(z) on A2ε(r), either for some total ordering of the terms or when the
series is written as a repeated series. In the former case we know and in the latter case we explicitly
postulate that the terms form a bounded sequence at each point of A2ε(r).

From the boundedness of the sequence {cαzα} at the point z = r+ 2ε, it follows that the power
series ∑

α1≥0,α2≥0
cαz

α1
1 zα2

2

is absolutely and uniformly convergent on the polydisc ∆(0, r + ε) and in particular on Aε(r), cf.
Lemma 1.4.1. We next use the boundedness of the sequence {cαzα} at the point z = (r1−2ε1, r2+2ε2)
or 1/z1 = 1/(r1 − 2ε1), z2 = r2 + 2ε2. It implies that the power series

∑
−α1>0,α2≥0

cα

(
1
z1

)−α1

zα2
2

in 1/z1 and z2 is absolutely and uniformly convergent for |1/z1| < 1/(r1 − ε1) or |z1| > r1 − ε1 and
|z2| < r2 + ε2, hence in particular on Aε(r). Also using the boundedness of the sequence {cαzα} at
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z = r−2ε and at z = (r1 + 2ε1, r2−2ε2), we conclude that the whole series (2.7.1) is absolutely and
uniformly convergent on Aε(r). The sum will be equal to f(z) for any arrangement of the terms.

Termwise integration of the absolutely and uniformly convergent series

f(z)z−β−1 =
∑
α∈Z2

cαz
α−β−1 [β + 1 = (β1 + 1, β2 + 1)]

over the torus T (0, r) in Aε(r) gives

1
(2πi)2

∫
T (0,r)

f(z)z−β−1dz =
∑
α

cα
1

(2πi)2

∫
T (0,r)

zα−β−1dz, (2.7.3)

where dz stands for dz1dz2. Since

1
2πi

∫
C(0,rj)

z
αj−βj−1
j dzj =

{
1 for αj = βj

0 for αj 6= βj ,
(2.7.4)

the sum in (2.7.3) reduces to cβ . We have thus proved formula (2.7.2) at least for n = 2 and with
β instead of α.

If f is represented by a series (2.7.1) at each point of D [in the sense indicated at the beginning
of (i)], the coefficients are given by (2.7.2) for each r > 0 in trD, hence such a representation is
surely unique. We will then have absolute and uniform convergence of the Laurent series on any
compact subset E ⊂ D, since such an E can be covered by finitely many annular domains Aε(r)
for which A2ε(r) belongs to D.

(ii) Existence of the Laurent series. Let f be holomorphic on D. For r > 0 in trD, so that
T (0, r) ⊂ D, the right-hand side of (2.7.2) defines coefficients cα(r) which might depend on r. Do
they really? No, using the method of polygonal lines as in part (ii) of the proof of Theorem 2.5.1,
one readily shows that cα(r) is independent of r. Indeed, referring to Figure 2.4∫

C(0,r2)
f(z1, z2)z−α2−1

2 dz2 =
∫
C(0,s2)

f(z1, z2)z−α2−1
2 dz2

whenever z1 ∈ C(0, r1) = C(0, s1). Multiplying by z−α1−1
1 and integrating with respect to z1, one

concludes that cα(r) = cα(s).
Thus we may use (2.7.2) to associate constant coefficients cα to f . With these coefficients, the

terms in the series (2.7.1) will form a bounded sequence at each point of D. Indeed, choose w in D
and take rj = |wj |, j = 1, 2 [as we may]. Then by (2.7.2),

|cα1α2w
α1
1 wα2

2 | =

∣∣∣∣∣ 1
(2πi)2

∫
T (0,r)

f(z)
(
w1

z1

)α1 (w2

z2

)α2 dz1

z1

dz2

z2

∣∣∣∣∣
≤ sup
T (0,r)

|f(z)|, ∀α.

(2.7.5)

We now fix r > 0 in trD and take ε < r so small that Aε(r) belongs to D. For fixed z2 in
the annulus r2 − ε2 < |z2| < r2 + ε2, the function f(z1, z2) is holomorphic in z1 on the annulus
r1− ε1 < |z1| < r1 + ε1, hence f has the absolutely convergent one-variable Laurent representation

f(z1, z2) =
∑
α1∈Z

dα1(z2)zα1
1 , z ∈ Aε(r) (2.7.6)
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with

dα1(z2) = 1
2πi

∫
C(0,r1)

f(z1, z2)z−α1−1
1 dz1

= 1
2π

∫ π

−π
f(r1e

it, z2)r−α1
1 e−iα1tdt .

(2.7.7)

The coefficients dα1(z2) will be holomorphic on the annulus r2 − ε2 < |z2| < r2 + ε2, cf. the
holomorphy theorem for integrals, Corollary 1.7.2. Hence the coefficients have the absolutely
convergent Laurent representations

dα1(z2) =
∑
α2∈Z

dα1α2z
α2
2 (2.7.8)

with
dα1α2 = dα1α2(r) = 1

2πi

∫
C(0,r2)

dα1(z2)z−α2−1
2 dz2. (2.7.9)

Substituting (2.7.8) into (2.7.6) we finally obtain the representation

f(z1, z2) =
∑
α1

{∑
α2

dα1α2(r)zα2
2

}
zα1

1 , ∀z ∈ Aε(r).

Here by (2.7.9) and (2.7.7), also making use of the continuity of f on T (0, r) to rewrite a repeated
integral as a double integral,

dα1α2(r) = 1
(2πi)2

∫
C(0,r2)

{∫
C(0,r1)

f(z1, z2)z−α1−1
1 dz1

}
z−α2−1

2 dz2

= 1
(2πi)2

∫
T (0,r)

f(z1, z2)z−α1−1
1 z−α2−1

2 dz1dz2 = cα1α2(r) = cα1α2 .

(2.7.10)

Conclusion: f has a representation as a series (2.7.1),(2.7.2), locally on D and hence globally,
when the terms are arranged in a repeated series. The terms form a bounded sequence at each
point w ∈ D (2.7.5). Thus by part (i), the corresponding double series is absolutely convergent and
hence converges to f on D for any arrangement of the terms.

2.8 Spherical shell theorem

In C, a connected multicircular domain D containing the point w = 0 is just a disc around 0. In
that case the Laurent series (2.6.1) for f ∈ O(D) on D − {0} reduces to a power series: ck = 0 for
all k < 0. Something similar happens in Cn:

Lemma 2.8.1. Let D ⊂ Cn be a connected multicircular domain containing a point b with jth
coordinate bj = 0. Let f be holomorphic on D and let

∑
cαz

α be its Laurent series (7a, b) on
D̃ = D − {z ∈ Cn : z1 . . . zn = 0}. [All points with a vanishing coordinate have here been removed
from D so as to make Theorem 2.71 applicable as it stands.] Then cα1...αn = 0 for all α’s with
αj < 0.

Proof. We may take n = 2 and j = 1. Shifting b = (0, b2) a little if necessary, we may assume
r2 = |b2| 6= 0 [D is open]. Since trD is open in R2

+, it will contain a short closed horizontal
segment from the point (0, r2) to a point (r1, r2) > 0. D will then contain all points (z1, z2) with
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|z1| ≤ r1, |z2| = r2 (Figure 2.8). Thus for each fixed z2 ∈ C(0, r2), f(z1, z2) will be analytic in z1
on the closed disc |z1| ≤ r1. Hence by Cauchy’s theorem,∫

C(0,r1)
f(z1, z2)z−α1−1

1 dz1 = 0 for z2 ∈ C(0, r2)

whenever −α1 − 1 ≥ 0. Conclusion:

cα1α2 = 1
(2πi)2

∫
C(0,r2)

(∫
C(0,r1)

f(z1, z2)z−α1−1
1 dz1

)
z−α2−1

2 dz2 = 0, ∀α1 < 0.

We single out the important case where D meets each of the hyperplanes {zj = 0}:

Theorem 2.8.2 (Analytic continuation based on multiple Laurent series). Let D ⊂ Cn be a
connected multicircular domain which for each j, 1 ≤ j ≤ n contains a point z with zj = 0, and let
f be any holomorphic function on D. Then the Laurent series for f on D̃ = D − {z1 . . . zn = 0}
with center 0 is a power series. Its sum function furnishes an analytic continuation of f to the
logarithmically convex hull D̂ of D.

Proof. By Lemma 2.8.1 the Laurent series (7a, b) for f [on D̃] has cα = cα1...αn = 0 whenever [at
least] one of the numbers αj is negative, hence the Laurent series is a power series. This power
series converges to f throughout D̃ [Theorem 2.7.1], hence it converges on every polydisc ∆(0, r)
with r > 0 in tr D̃ or trD [Proposition 1.42]. Since the sum is equal to f on ∆(0, r) ∩ D̃ it is equal
to f on ∆(0, r) ∩D [uniqueness theorem] and hence throughout D. Naturally, the power series
furnishes an analytic continuation of f to the smallest complete multicircular domain D′ containing
D and to its logarithmically convex hull (D′)∧, cf. the discussion following Corollary 2.5.2. As in
that case, (D′)∧ will coincide with D̂. [Indeed, D̂ will contain a neighbourhood of the origin, cf.
exercise 2.7, hence it contains every polydisc ∆(0, s) with s > 0 in trD (Figure 2.3), and thus D̂
contains D′.]

Application 2.8.3 (Hartogs’ spherical shell theorem). Let f be holomorphic on the spherical shell
given by ρ < |z| < R in Cn with n ≥ 2, ρ ≥ 0. Then f has an analytic continuation to the ball
B(0, R).

[A more general theorem of this kind will be proved in Chapter 3.]
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2.9 Envelopes of holomorphy may extend outside Cn !

We will first construct a domain D in C2 and a Riemann domain X over C2 with the following
property: every holomorphic function on D can be continued analytically to X, and the Riemann
domain X is really necessary to accomodate single-valued analytic continuations of all functions in
O(D).

We start with the multicircular domain D0 in C2 given by

D0 = {|z1| < 1, |z2| < 2} ∪ {|z1| < 2, 1 < |z2| < 2}.

[Make a picture of trace D0 ! Figure 2.10 shows, among other things, the 3-dimensional inter-
section of D0 with the real hyperplane y2 = 0.] As we know, every function in O(D0) extends
analytically to the bidisc ∆(0, 2) = ∆(0, 0; 2, 2), cf. Section 2.5.

We next choose an arc γ of the circle C(4i, 4) in the z1-plane (z2 = 0) as follows: γ starts at
the origin and, running counterclockwise, it terminates in the half-plane
{Re z1 < 0} between the circles C(0, 1) and C(0, 2) (Figure 2.9). For example,

γ : z1 = 4i+ 4eit, z2 = 0, −π/2 ≤ t ≤ 3π/2− π/8.

Around this arc we construct a thin tube T in C2, say an ε-neighbourhood of γ. Here ε is chosen
so small that the part

T1
def= T ∩∆(0, 2) ∩ {Re z1 < 0}

does not meet D0. Our domain D ⊂ C2 will be (cf. Figure 2.10)

D
def= D0 ∪ T.

Now let f be any function in O(D). Then the restriction f |D0 has an analytic continuation to
∆(0, 2). However, on the part T1 of T that continuation may very well be different from the original
function f . For example, one may take for f(z) that holomorphic branch of

log(z1 − 4i) on D

for which Im f runs from −π/2 to 3π/2−π/8 on γ. On T1 the values of Im f will be approximately
3π/2− π/8, while on the part of T close to the origin, Im f will be approximately −π/2. Hence the
analytic continuation f∗ of the restriction f | D0 to ∆(0, 2) will have its imaginary part on T1 in
the vicinity of π/2− π/8 !

All functions in O(D) have an analytic continuation to a Riemann domain X over C2 which
contains ∆(0, 2) and a copy of the tube T . The two are connected where Re z1 > 0, but where T

γ

4i

T

z1-plane

T1

x

0

x

Figure 2.9.
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(going “counterclockwise”) again reaches ∆(0, 2), now in the half-space {Re z1 < 0}, the end T1
must remain separate from ∆(0, 2): it may be taken “over ∆(0, 2)”.

SIMULTANEOUS ANALYTIC CONTINUATION: general theory. The construction of the
maximal Riemann continuation domain R for a holomorphic function f in Section 2.1 can be
extended to the case of simultaneous analytic continuation for the members of a family of holomorphic
functions. We deal with indexed families; in the following discussion, the index set Λ is kept fixed.
Mimicking the procedure for a single function, we now define Λ-elements (a, U, {fλ}) at points
a ∈ Cn. Such elements consist of a connected domain U ⊂ Cn containing a and a family of functions
{fλ} ⊂ O(U) with index set Λ. Two Λ-elements (a, U, {fλ}) and (a, Ũ , {f̃λ}) at the same point
a are called equivalent if the power series (fλ)a and (f̃λ)a agree for every λ ∈ Λ. A Λ-element
(b, V, {gλ}) is called a direct Λ-continuation of (a, U, {fλ}) if V ∩ U is nonempty and gλ = fλ, ∀λ
on a fixed component of V ∩ U . General Λ-continuations are introduced by means of both finite
chains and continuous chains of direct Λ-continuations.

Starting with a given Λ-element (a, U, {fλ}) and carrying out unlimited Λ-continuation, one
arrives at a Riemann domain X = (X,π) over Cn whose points p are equivalence classes of
Λ-continuations at points b ∈ Cn: let us write p = [(b, V, {gλ})]. Basic neighbourhoods N =
N (p, V, {gλ}) in X shall consist of the points q corresponding to the direct Λ-continuations
(c,W, {hλ}) of (b, V, {gλ}) for which c ∈ V and (hλ)c = (gλ)c, ∀λ. The projection π : π(p) = b,
when restricted to N , establishes a homeomorphism of N in X onto V in Cn. Every function fλ of
the original Λ-element has an analytic continuation Fλ to X given by Fλ(p) = gλ(b). Indeed,

Fλ(q) = hλ(z) = gλ(z), ∀q = [(z,W, {hλ})] ∈ N (p, V, {gλ}),

so that Fλ is holomorphic on X in the accepted sense: on N ⊂ X it is given by an ordinary
holomorphic function on the domain V = π(N ) ⊂ Cn. Finally, setting p0 = [(a, U, {fλ})] and
identifying N (p0, U, {fλ}) with U , one has Fλ = fλ on U .

We have thus obtained a common continuation domain X for the family of holomorphic functions
{fλ} on U . It is plausible and one can show that this “Λ-continuation domain” X is maximal; one
speaks of a Λ-envelope for U , cf. [Narasimhan].

Application 2.9.1 (Envelope of holomorphy). Let D be a connected domain in Cn. Applying the
preceding construction to U = D or U ⊂ D and Λ = O(D), one obtains an O(D)-continuation
domain XD = (XD, π) for D. Being maximal, XD is called an envelope of holomorphy for D. Every
function f ∈ O(D) has a (unique) analytic continuation Ff to XD. On a suitable neighbourhood
N of p in XD, the functions Ff are given by Ff (q) = gf (z), z = π ◦ q, where the functions
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gf on V = π(N ) may be obtained from the functions f on U by analytic continuation along a
common path. Observe in particular that for f ≡ c, also Ff ≡ c. More generally, if Ff = c on some
neighbourhood N in X, then Ff = c everywhere.

What was said in the last four sentences is also true for arbitrary (connected) O(D)-continuation
domains X for D, in or over Cn. It is perhaps surprising that on such a domain X, the analytic
continuations f∗ of the functions f ∈ O(D) can not take on new values:

Proposition 2.9.2. Suppose that the equation f(z) = c, c ∈ C has no solution z ∈ D. Then the
equation f∗(q) = c can not have a solution q in any O(D)-continuation domain X.

Indeed, by the hypothesis there is a function g ∈ O(D) such that

{f(z)− c}g(z) ≡ 1 on D.

Introducing the simultaneous analytic continuations to X, one obtains

{f∗(q)− c} g∗(q) = (f − c)∗(q) g∗(q) = 1∗ = 1 on X.

It is not hard to deduce the following corollary, cf. exercise 2.24:

Corollary 2.9.3. Let D ⊂ D′ be a connected domain in Cn to which all functions in O(D) can be
continued analytically. Then D′ belongs to the convex hull CH(D).

2.10 Exercises

Exercise 2.1. Give an example of two function elements (a, U, f), (b, V, g) such that g = f on one
component of V ∩ U , while g 6= f on another component.

Exercise 2.2. Let b be an arbitrary boundary point of the polydisc ∆(0, r) in C2. Show that there
is a holomorphic function on ∆(0, r) that tends to infinity as z → b. [One may conclude that ∆(0, r)
is a domain of holomorphy, cf. Section 1.9.]

Exercise 2.3. Prove that hulls of holomorphy in Cn are unique when they exist [Definition 2.1.3].

Exercise 2.4.

(i) Let E be a compact convex set in Rn and let V be a supporting hyperplane. Prove that the
intersection E ∩ V is also a compact convex set.

(ii) Let S be a compact subset of Rn. Prove the Carathéodory representation (2.2.1) for the
points of the convex hull CH(S) with m ≤ n+ 1.

Exercise 2.5. Let S be a compact set in Rn. Show that

(i) For every direction (or unit vector) c there is a point b ∈ S such that
max x∈S c · x = c · b ;

(ii) The convex hull CH(S) is the set of all points x ∈ Rn such that c · x ≤ max s∈S c · s for every
vector c ∈ Rn.

Exercise 2.6. What sort of equation “y = f(x)" does the logarithmically convex hull of the set of
two points r′ > 0 and r′′ > 0 in R2

+ = {(r1, r2) ≥ 0} have?

Exercise 2.7. Determine the logarithmically convex hull in R2
+ of :
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(i) the set {s, t} of two points s = (s1, s2) > 0 and t = (t1, 0);

(ii) (ii) the set {s, t} when s = (s1, 0) and t = (0, t2);

(iii) the set consisting of the neighbourhood {s1 − ε < r1 < s1 + ε, 0 ≤ r2 < ε} of (s1, 0) and the
neighbourhood {0 ≤ r1 < ε, t2 − ε < r2 < t2 + ε} of (0, t2).

Exercise 2.8. Prove that a closed or open set F in Rn+ is logarithmically convex if and only if
r′ ∈ F and r′′ ∈ F always implies that r = (r′r′′) 1

2 is in F . Deduce that the unit ball B = B(0, 1)
in C2 is logarithmically convex [that is, trB is logarithmically convex].

Exercise 2.9. Let S = S(0, 1) denote the unit sphere in Cn ∼ R2n:

S = {z ∈ Cn : z1z1 + . . .+ znzn = 1}

and let b be any point of S. Show that

(i) The (2n − 1)-dimensional (real) tangent hyperplane to S at b may be represented by the
equation Re(b · z) = 1;

(ii) Re(b · z) < 1 throughout the unit ball B;

(iii) The complex tangent hyperplane at b, of complex dimension n− 1 (real dimension 2n− 2)
may be represented by the equation c · (z − b) = 0 with c = . . . ;

(iv) There is a holomorphic function f on the unit ball B that tends to infinity as z → b. [Thus
B is a domain of holomorphy, cf. Section 1.9.]

Exercise 2.10. Let D be a connected (multicircular) domain in C2. Prove that D − {z1 = 0} and
D − {z1z2 = 0} are also connected (multicircular) domains.

Exercise 2.11. Prove that the multicircular domain in C2 given by |z1| < 2, |z2| < 2, |z1z2| < 1
is a domain of holomorphy. [Cf. exercise 2.2]

Exercise 2.12. (Relation between the sets A and A0 of Section 2.3) Let
∑
cαz

α be a multiple
power series with center 0. Prove that every point a ∈ A (point of absolute convergence) with
|aj | > 0, ∀j belongs to closA0. Then give an example to show that a point b ∈ A for which one
coordinate is zero may be very far from A0.

Exercise 2.13. Let
∑
cαz

α be a power series in C2 for which ∆(0, 0; r1, r2) is a polydisc of
convergence that is maximal for the given r1 as far as r2 is concerned, that is, the power series does
not converge throughout any polydisc ∆(0, 0; r1, s2) with s2 > r2. Prove that the sum function f(z)
of the power series must become singular somewhere on the torus T (0, r) = C(0, r1) × C(0, r2).
[Hence if f ∈ O(∆(0, r)) becomes singular at a point b in ∆1(0, r1) × C(0, r2), it must have a
singularity on every torus C(0, ρ)× C(0, r2) with |b1| < ρ ≤ r1.]

Exercise 2.14. (Analytic continuation across a compact subset) Let D ⊂ C2 be the domain given
by

{|z1| < 1 + ε, 1− ε < |z2| < 1 + ε} ∪ {1− ε < |z1| < 1 + ε, |z2| < 1 + ε}
for 0 < ε < 1, or more generally, let D be any connected domain in Cn (n ≥ 2) that contains the
boundary ∂∆(0, 1) of the unit polydisc, but not all of ∆(0, 1) itself. Let f be any function in O(D).
Prove that the formula

F (z) def= 1
2πi

∫
C(0,1)

f(z′, w)
w − zn

dw, z ∈ ∆(0, 1), z′ = (z1, . . . , zn−1)

furnishes an analytic continuation of f to ∆(0, 1).
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Exercise 2.15. Let B denote the set of those points z ∈ Cn at which the terms cαzα, α ∈ Zn of
the Laurent series (2.3.1) form a bounded sequence. Prove that (the trace of) B is logarithmically
convex.

Exercise 2.16. Prove that the domain of (absolute) convergence A0 of a Laurent series with center
0 in Cn is logarithmically convex.

Exercise 2.17. Let D be a multicircular domain in Cn which contains the origin, or which at least
for each j contains a point z with zj = 0. Prove that the logarithmically convex hull D̂ contains
the whole polydisc ∆(0, s) whenever s > 0 belongs to trD.

Exercise 2.18. Use appropriate results to determine the envelopes of holomorphy for the following
multicircular domains in C2:

(i) {|z1| < 1, |z2| < 2} ∪ {|z1| < 2, 1 < |z2| < 2};

(ii) {1 < |z1| < 2, |z2| < 2} ∪ {|z1| < 2, 1 < |z2| < 2}.

Exercise 2.19. Let f be holomorphic on Cn, n ≥ 2 and f(0) = 0. Prove that the zero set Zf of f
is closed but unbounded.

Exercise 2.20. Let f be holomorphic on D = B(0, 1)−{z1 = 0} in C2. Suppose f has an analytic
continuation to a neighbourhood of the point (0, 1

2 ). Prove that f has an analytic continuation to
B(0, 1).

Exercise 2.21. Let D be a multicircular domain in C2 that contains the point (0, r2) with r2 > 0
and let ε = (ε1, ε2) > 0 be so small that D contains the closure of the domain U2ε given by
|z1| < 2ε1, r2 − 2ε2 < |z2| < r2 + 2ε2. Prove that the Laurent series for f ∈ O(D) is absolutely
and uniformly convergent on Uε. [Cf. Lemma 2.81 and part (i) of the proof of Theorem 2.7.1.]

Exercise 2.22. (Isolated singularities in Cn, n ≥ 2 are removable) Give two alternative proofs for
Application 2.6.2.

Exercise 2.23. Derive the spherical shell theorem from Hartogs’ continuity theorem. [Let f be
holomorphic for ρ < |z| < R and suppose that the boundary point (ρ, 0, . . . , 0) would be singular
for f .]

Exercise 2.24. Let D ⊂ Cn be connected and bounded and let D′ ⊂ Cn be a connected domain
containing D to which all functions in O(D) can be continued analytically. Determine the analytic
continuations of the functions f(z) = c · z, where c = α− iβ ∈ Cn and prove that

Re c · z ≤ max
ζ∈D

Re c · ζ, ∀z ∈ D′.

Deduce that D′ belongs to the convex hull of D, hence of D. [Cf. exercise 2.5.]

Exercise 2.25. LetD ⊂ C2 be a bounded connected multicircular domain containing the origin. Use
the monomials p(z) = zα1

1 zα2
2 to show that a point z ∈ C2 outside the closure of the logarithmically

convex hull D̂ of D can not belong to an O(D)-continuation domain D′ ⊃ D in C2.

Exercise 2.26. Try to find an example of a domain D in Cn, for which the envelope of holomorphy
XD over Cn has infinitely many layers.
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Chapter 3

Analytic continuation, part II

This chapter deals with more recent methods of analytic continuation, based on the ∂ equation
and the so-called partial derivatives lemma. 3. We have already discussed Hartogs’ spherical shell
theorem, Theorem 2.8.3, but there is a much more general result on the removal of compact
singularity sets, the Hartogs-Osgood-Brown continuation theorem [Section 3.4]. We will present
a modern proof of that result (due to Ehrenpreis) in which one starts with a C∞ continuation g
across an appropriate compact set and then subtracts off the “nonanalytic part” u, cf. Section 1.9.
In the present instance the correction term u has to satisfy a ∂ equation

∂u = v =
n∑
1
vjdzj or ∂u

∂zj
= vj , j = 1, . . . , n

on Cn with C∞ coefficients vj of compact support. The analytic continuation problem requires a
smooth solution u on Cn which likewise has compact support. The local integrability conditions

∂vk/∂zj = ∂vj/∂zk, ∀ j, k

being satisfied, it turns out that there is a compactly supported solution u whenever n ≥ 2 [Section
3.2]. It will be obtained with the aid of a useful one-variable device, Pompeiu’s integral formula for
smooth functions.

There are various situations in real and complex analysis where one has good bounds on a
family of directional derivatives(

d

dt

)m
f(a+ tξ)

∣∣
t=0, ξ ∈ E ⊂ S(0, 1), m = 1, 2, . . . (a fixed)

of a C∞ function f . If the set of directions E is substantial enough, a partial derivatives lemma of
the authors provides related bounds for all derivatives Dαf(a). Under appropriate conditions, the
power series for f with center a can then be used for analytic extension.

To illustrate the method we give a simple proof of the Behnke–Kneser ‘recessed-edge theo-
rem’[Section 3.5]. Another application leads to a form of Bogolyubov’s famous edge-of-the-wedge
theorem. This result which came from a problem in quantum field theory provides a remarkable
Cn extension of Schwarz’s classical reflection principle.

3.1 Inhomogeneous Cauchy-Riemann equation for n = 1

As preparation for the case of Cn we consider the case of one variable,
∂u

∂z
= 1

2

(
∂u

∂x
− 1
i

∂u

∂y

)
= v on C, (3.1.1)
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where v is a function with compact support. The support, abbreviation supp, of a function [or
distribution, or differential form] is the smallest closed set outside of which it is equal to zero. Our
functions v(z) = v(x+ iy) will be smooth, that is, at least of class C1 on C = R2 as functions of x
and y.

For the solution of equation (3.1.1) we start with Pompeiu’s formula [also called the Cauchy-
Green formula]:

Proposition 3.1.1. Let D be a bounded domain in C whose boundary Γ consists of finitely
many piecewise smooth Jordan curves, oriented in such a way that D lies to the left of Γ. Let
f(z) = f(x+ iy) be of class C1 on D as a function of x and y. Then

f(a) = 1
2πi

∫
Γ

f(z)
z − a

dz − 1
π

∫
D

∂f

∂z

1
z − a

dxdy, ∀a ∈ D. (3.1.2)

Observe that the area integral over D is well-defined because 1/(z − a) is absolutely integrable
over a neighbourhood of a, cf. the proof below. Formula (3.1.2) reduces to Cauchy’s integral formula
if f is holomorphic on D, so that ∂f/∂z = 0. The formula occurred in work of Pompeiu around
1910, but its usefulness for complex analysis only became apparent around 1950.

The proof will be based on Green’s formula for integration by parts in the plane:∫
∂D

Pdx+Qdy =
∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy,

where P (x, y) and Q(x, y) are functions of class C1(D) and ∂D denotes the oriented boundary of
D. Applied to P = F and Q = iF with F (z) = F (x+ iy) in C1(D), we obtain a complex form of
Green’s formula: ∫

∂D

F (z)dz =
∫
∂D

Fdx+ iFdy =
∫
D

(
i
∂F

∂x
− ∂F

∂y

)
dxdy

= 2i
∫
D

∂F

∂z
dxdy.

(3.1.3)

Proof of Proposition 3.1.1. One would like to apply Green’s formula (3.1.3) to the function

F (z) = f(z)
z − a

, a ∈ D.
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However, this F is in general not smooth at z = a. We therefore exclude a small closed disc
Bε = B(a, ε) from D, of radius ε < d(a,Γ). Below, we will apply Green’s formula to F on

Dε
def= D −Bε.

The correctly oriented boundary ∂Dε will consist of Γ and −C(a, ε): the circle C(a, ε) traversed
clockwise.

Since 1/(z − a) is holomorphic throughout Dε, the product rule of differentiation gives

∂F

∂z
= ∂f

∂z

1
z − a

+ f(z) ∂
∂z

1
z − a

= ∂f

∂z

1
z − a

, z ∈ Dε.

Thus by (3.1.3), ∫
Γ

f(z)
z − a

dz +
∫
−C(a,ε)

f(z)
z − a

dz = 2i
∫
Dε

∂f

∂z

1
z − a

dxdy. (3.1.4)

Passage to the limit as ε ↓ 0 will give (3.1.2). Indeed, by the continuity of f at a,∫
−C(a,ε)

f(z)
z − a

dz = −i
∫ π

−π
f(a+ εeit)dt→ −2πif(a) as ε ↓ 0.

Furthermore, since ∂f/∂z is continuous on D while 1/(z − a) is (absolutely) integrable over
discs B(a,R), the product is integrable over D, hence the last integral in (3.1.4) will tend to the
corresponding integral over D. In fact, if M denotes a bound for |∂f/∂z| on D, then

∫
D

−
∫
Dε

 =
∫

Bε

∂f

∂z

1
z − a

dxdy
 ≤M ∫

Bε

1
|z − a|

dxdy

= M

∫ ε

0

∫ π

−π

1
r
r drdt = M 2πε→ 0 as ε ↓ 0.

Corollary 3.1.2. Any C1 function f(z) = f(x+iy) on C of compact support has the representation

f(z) = − 1
π

∫
C

∂f

∂z
(ζ) 1

ζ − z
dξdη (ζ = ξ + iη), ∀z ∈ C. (3.1.5)

Indeed, fixing a ∈ C, one may apply Pompeiu’s formula (3.1.2) to a disc D = B(0, R) which
contains both a and the support of f . Then the integral over Γ = C(0, R) will vanish; the integral
over D = B(0, R) will be equal to the corresponding integral over C or over supp f . One may finally
replace the variable z under the integral sign in (3.1.2) by ζ = ξ + iη and then replace a by z.

Formula (3.1.5) can also be verified directly and the condition that f have compact support
may be relaxed to a smallness condition on f and ∂f/∂z at infinity, cf. exercises 3.1, 3.2. Thus if
our equation ∂u/∂z = v has a solution which is small at infinity, it will be given by the Cauchy
transform or Cauchy-Green transform u of v:

u(z) def= − 1
π

∫
C or supp v

v(ζ)
ζ − z

dξdη (ζ = ξ + iη), ∀z ∈ C. (3.1.6)

We will show that this candidate is indeed a solution:

Theorem 3.1.3. Let v be a Cp function (1 ≤ p ≤ ∞) on C of compact support [briefly, v ∈ Cp0 (C)].
Then the Cauchy-Green transform u of v (3.1.6) provides a Cp solution of the equation ∂u/∂z = v
on C. It is the unique smooth solution which tends to 0 as |z| → ∞.
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Proof. Replacing ζ by ζ ′ + z in (3.1.6) and dropping the prime ’ afterwards, we may write the
formula for u as

u(z) = − 1
π

∫
C

v(z + ζ ′)
ζ ′

dξ′dη′ = − 1
π

∫
C

v(z + ζ)
ζ

dξdη. (3.1.7)

We will show that u has first order partial derivatives and that they may be obtained by differenti-
ation under the integral sign. Fixing a and varying z = a+ h over a small disc B(a, r), the function
v(z + ζ) will vanish for all ζ outside a fixed large disc B = B(0, R). Focusing on ∂u/∂x we take h
real and 6= 0, so that

v(a+ h+ ζ)− v(a+ ζ)
h

− ∂v

∂x
(a+ ζ) = 1

h

∫ h

0

{
∂v

∂x
(a+ t+ ζ)− ∂v

∂x
(a+ ζ)

}
dt. (3.1.8)

Since ∂v/∂x is continuous and of compact support it is uniformly continuous on C, hence the
right-hand side ρ(ζ, h) of (3.1.8) tends to 0 as h → 0 uniformly in ζ. Multiplying (3.1.8) by the
absolutely integrable function 1/ζ on B and integrating over B, we conclude that

−πu(a+ h)− u(a)
h

−
∫
B

∂v

∂x
(a+ ζ) · 1

ζ
dξdη =

∫
B

ρ(ζ, h)1
ζ
dξdη → 0

as h→ 0. Thus the partial derivative ∂u/∂x exists at a and

∂u

∂x
(a) = − 1

π

∫
B or C

∂v

∂x
(a+ ζ) · 1

ζ
dξdη. (3.1.9)

The uniform continuity of ∂v/∂x also ensures continuity of ∂u/∂x.
Differentiation with respect to y goes in much the same way, hence u is of class C1. Combining

the partial derivatives we find that

∂u

∂z
(a) = − 1

π

∫
C

∂v

∂z
(a+ ζ) · 1

ζ
dξdη = − 1

π

∫
C

∂v

∂z
(ζ) 1

ζ − a
dξdη. (3.1.10)

Now v is a Cp function of bounded support, hence by Corollary 3.1.2, the final member of (3.1.10)
is equal to v(a). Thus u satisfies the differential equation (3.1.1).

If p ≥ 2, one may also form higher order partial derivatives by differentiation under the integral
sign in (3.1.7) to show that all partial derivatives of u of order ≤ p exist and are continuous on C.

The Cauchy-Green transform u(z) tends to 0 as |z| → ∞ and it is the only smooth solution
of (3.1.1) with that property. Indeed, the other smooth solutions have the form u+ f , where f is
smooth and satisfies the Cauchy-Riemann condition ∂f/∂z = 0, hence f must be an entire function.
However, by Liouville’s theorem, f(z)→ 0 as |z| → ∞ only if f ≡ 0.

Remarks 3.1.4. For v ∈ Cp0 , p ∈ C0, the Cauchy-Green transform u (3.1.6) will actually be of class
Cp+α, ∀α ∈ (0, 1): u ∈ Cp and its partial derivatives of order p will satisfy a Lipschitz condition
of order α, cf. exercise 3.6. In general, the transform u will not have compact support, in fact, as
|z| → ∞,

zu(z)→ (1/π)
∫
C
v(ζ)dξdη

and this limit need not vanish. [Cf. also exercise 3.5.] Formula (3.1.6) defines a function u under
much weaker conditions than we have imposed in the Theorem: continuity of v and integrability of
|v(ζ)/ζ| over C will suffice. The corresponding transform u will be a weak or distributional solution
of equation (3.1.1), cf. exercise 3.8.

50



3.2 Inhomogeneous C −R equation for n ≥ 2, compact support case

Saying that a differential form

f =
n∑
j=1

(ujdzj + vjdzj) (3.2.1)

is defined and of class Cp on Ω ⊂ Cn means that the coefficients uj , vj are defined and of class Cp
on Ω as functions of the real variables x1, y1, . . . , xn, yn. By definition, such a form vanishes on an
open subset of Ω only if all coefficients vanish there. There will be a maximal open subset of Ω on
which f = 0; its complement in Ω is the support of f . The differential form f in (3.2.1) is called a
first order form or a 1-form; if it contains no terms ujdzj , one speaks of a (0, 1)-form.

Theorem 3.2.1. Let E be a compact subset of Cn, n ≥ 2 with connected complement Ec = Cn−E.
Let

v =
n∑
1
vjdzj

be a (0, 1)-form of class Cp (1 ≤ p ≤ ∞) on Cn whose support belongs to E and which satisfies the
integrability conditions ∂vk/∂zj = ∂vj/∂zk, ∀ j, k. Then the equation ∂u = v, or equivalently, the
system

∂u

∂zj
= vj , j = 1, . . . , n (3.2.2)

has a unique solution u of class Cp on Cn with support in E.

A result of this kind is sometimes called a Grothendieck-Dolbeault lemma, cf. [21]. The solution
u will actually be of class Cp+α, ∀α ∈ (0, 1), see exercise 3.9. For arbitrary compact E, supp u
need not be contained in supp v [cf. the proof below].

Proof. We will solve the first equation (3.2.2) by means of the Cauchy-Green transform relative to
z1, cf. Theorem 3.1.3. It will then miraculously follow from the integrability conditions that the
other equations are also satisfied!

It is convenient to set (z2, . . . , zn) = z′, so that z = (z1, z
′). For fixed z′, the smooth function

v1(z1, z
′) of z1 has bounded support in C, hence Theorem 3.1.3 gives us a solution of the equation

∂u/∂z1 = v1 in the form of the Cauchy-Green transform of v1 relative to z1:

u(z) = u(z1, z
′) = − 1

π

∫
C

v1(ζ, z′)
ζ − z1

dξdη = − 1
π

∫
C

v1(z1 + ζ, z′)
ζ

dξdη, z ∈ Cn. (3.2.3)

Here the integration variable ζ = ξ + iη runs just over the complex plane. The method of
differentiation under the integral sign of Section 3.1, applied to the last integral, shows that u is of
class Cp on Cn as a function of x1, y1, . . . , xn, yn.

We now go back to the first integral in (3.2.3) to obtain an expression for ∂u/∂zj when j ≥ 2.
In the second step below we will use the integrability condition ∂v1/∂zj = ∂vj/∂z1:

∂u

∂zj
(z) = − 1

π

∫
C

∂v1

∂zj
(ζ, z′) 1

ζ − z1
dξdη = − 1

π

∫
C

∂vj
∂z1

(ζ, z′) 1
ζ − z1

dξdη. (3.2.4)

Observe that for fixed z′, the smooth function vj(z1, z
′) of z1 also has bounded support in C. Hence

by the representation for such functions in Corollary 3.1.2, the last integral (3.2.4) is just equal to
vj(z1, z

′) = vj(z). Since we knew already that ∂u/∂z1 = v1, we conclude that ∂u = v.
It follows in particular that ∂u = 0 throughout Ec, hence u is holomorphic on the domain Ec.

We will show that u = 0 on Ec. For suitable R > 0, the set E and hence supp v will be contained in
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the ball B(0, R). Thus v1(ζ, z′) = 0 for |z′| > R and arbitrary ζ. Hence by (3.2.3), u(z1, z
′) = 0 for

|z′| > R and all z1, so that u = 0 on an open subset of Ec. The uniqueness theorem for holomorphic
functions, Theorem 1.5.4, now shows that u = 0 throughout the connected domain Ec, in other
words, supp u ⊂ E.

Naturally, the equation ∂u = v can not have another smooth solution on Cn with support in E.
[What could one say about the difference of two such solutions?]

3.3 Smooth approximate identities and cutoff functions

In various problems, the first step towards a holomorphic solution is the construction of smooth
approximate solutions. For that step we need smooth cutoff functions and they are constructed
with the aid of suitable C∞ functions of compact support. The latter play an important role in
analysis, for example, as test functions in the theory of distributions, cf. Chapter 11.

The precursor is the C∞ function on R defined by

σ(x) =
{
e−1/x for x > 0
0 for x ≤ 0;

(3.3.1)

its first and higher derivatives at 0 are all equal to 0. One next defines a C∞ function τ on R with
support [−1, 1] by setting

τ(x) = σ{2(1 + x)}σ{2(1− x)} =


exp

(
− 1

1−x2

)
for |x| < 1

0 for |x| ≥ 1.
(3.3.2)

Moving on to Rn , the function τ(|x|) will provide a C∞ function whose support is the closed
unit ball B(0, 1); here |x| stands for the length of x : |x|2 = x2

1 + . . . + x2
n. We like to make the

integral over Rn equal to 1, hence we introduce

ρ(x) = cnτ(|x|) =


cn exp

(
− 1

1−|x|2

)
for |x| < 1

0 for |x| ≥ 1, x ∈ Rn,
(3.3.3)

where the constant cn is chosen such that
∫
Rn ρ(x)dx = 1. [Here dx denotes the volume element of

Rn.]
From the function ρ we derive the important family of C∞ functions

ρε(x) def= 1
εn
ρ
(x
ε

)
, x ∈ Rn, ε > 0 (3.3.4)

with supp ρε = B(0, ε). Observe that by change of scale,∫
Rn
ρε(x)dx =

∫
B(0,ε)

1
εn
ρ
(x
ε

)
dx =

∫
B(0,1)

ρ(x)dx = 1.

Definition 3.3.1 (Approximate Identities). . The directed family of functions {ρε}, ε ↓ 0 of
(3.3.3), (3.3.4) is the standard example of a C∞ (nonnegative) approximate identity on Rn relative
to convolution. The usual requirements on an approximate identity {ρε} are:
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(i) ρε(x)→ 0 as ε ↓ 0, uniformly outside every neighbourhood of 0;

(ii) ρε is integrable over Rn and
∫
Rn ρε(x)dx = 1;

(iii) ρε(x) ≥ 0 throughout Rn.

Properties (i)–(iii) readily imply that for any continuous function f on Rn of compact support, the
convolution f ? ρε converges to f as ε ↓ 0:

(f ? ρε)(x) def=
∫
Rn
f(x− y)ρε(y)dy → f(x) =

∫
Rn
f(x)ρε(y)dy

uniformly on Rn.
[An approximation ρε to the identity may be considered as an approximation to the so-called

delta function or delta distribution δ. The latter acts as the identity relative to convolution:
δ ? f = f ? δ = f , cf. exercise 11.5]

Proposition 3.3.2. To any set S in Rn and any ε > 0 there is a C∞ cutoff function ω on Rn
which is equal to 1 on S and equal to 0 at all points of Rn at a distance ≥ 2ε from S. One may
require that 0 ≤ ω ≤ 1.

Proof. We will obtain ω as the convolution of the characteristic function of a neighbourhood of
S with the C∞ approximation ρε to the identity of (3a, b) [taking ε > 0 fixed]. Let Sε denote the
ε-neighbourhood of S, that is, the set of all points x ∈ Rn at a distance < ε from S [Sε is an open
set containing S]. Let χε be the characteristic function of Sε, that is, χε equals 1 on Sε and 0
elsewhere. We define ω as the convolution of χε and ρε:

ω(x) = (χε ? ρε)(x) =
∫
Rn
χε(x− y)ρε(y)dy =

∫
B(0,ε)

χε(x− y)ρε(y)dy

=
∫
Rn
χε(y)ρε(x− y)dy =

∫
Sε

ρε(x− y)dy.
(3.3.5)

First taking x ∈ S, the second integral shows that ω(x) = 1 : the points x − y will belong to Sε
for all y ∈ B(0, ε), so that χε(x− y) = 1 throughout B(0, ε) and ω(x) =

∫
B(0,ε) ρε(y)dy = 1. Next

taking x outside S2ε, the same integral shows that now ω(x) = 0 : this time, all points x− y with
|y| < ε lie outside Sε. Furthermore, since ρε ≥ 0 we have 0 ≤ ω(x) ≤

∫
ρε = 1 throughout Rn.

In order to prove that ω is of class C∞ one may use the last integral in (3.3.5). For x in the
vicinity of a point a, one need only integrate over the intersection of Sε with some fixed ball B(a, r),
hence over a bounded set independent of x. The existence and continuity of the partial derivatives
∂ω/∂x1, etc. may now be established by the method of formula (3.1.8) [cf. exercise 3.12; the partial
derivatives of ρε are uniformly continuous on Rn]. Repeated differentiation under the integral sign
will show that ω has continuous partial derivatives of all orders.
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3.4 Use of the ∂ equation for analytic continuation

We can now prove the Hartogs-Osgood-Brown continuation theorem:

Theorem 3.4.1. Let D be a connected domain in Cn with n ≥ 2 and let K be a compact subset of
D such that D −K is connected. Then every holomorphic function f on D −K has an analytic
continuation to D.

Proof. Let f be any function in O(D −K).
(i) We first construct a C∞ approximate solution g to the continuation problem. Since we

do not know how f behaves near K, we will start with the values of f at some distance from
K. For any ρ > 0, let Kρ denote the ρ-neighbourhood of K. Choosing 0 < ε < d(K, ∂D)/3, we
set S = Cn −K3ε, so that the open set S contains the whole boundary ∂D. For later use, the
unbounded component of S is called S∞.

Now select a C∞ cutoff function ω on Cn ∼ R2n which is equal to 1 on S and equal to 0 on Kε.
[Use Proposition 3.3.2 with 2n instead of n.] We then define g on D by setting

g =
{
ωf on D −K,
0 on K.

(3.4.1)

This g is of class C∞ [because ω vanishes near ∂K] and

g = f on D ∩ S

[where ω = 1]. Thus g furnishes a C∞ continuation to D of the restriction of f to D ∩ S.
(ii) We will modify g so as to obtain an analytic continuation

h = g − u

of f . By the uniqueness theorem 1.5.4, it will be enough to require that h be holomorphic on D and
equal to f on a subdomain of D −K; here D ∩ S∞ will work best. The correction term u then has
to vanish on D ∩ S∞ [where g = f ] and it must make ∂h = 0. Hence u must solve the ∂ problem

∂u = ∂g on D, u = 0 on D ∩ S∞. (3.4.2)
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One may extend g to a C∞ form v on Cn by setting

v =
{
∂g on D
0 on Cn −D;

(3.4.3)

indeed, ∂g = ∂f = 0 on D ∩ S and hence near ∂D. The (0, 1)-form v of course satisfies the
integrability conditions ∂vk/∂zj = ∂vj/∂zk. Its support belongs to Cn − S = K3ε which is part of
the compact set E = Cn − S∞.

We now take for u the C∞ solution of the extended ∂ problem

∂u = v on Cn, u = 0 on S∞ = Ec.

[Existence and uniqueness of u are assured by Theorem 3.2.1.] Then the function h = g − u
will be holomorphic on D by (3.4.2), (3.4.3). Being equal to g = f on D ∩ S∞, h will be equal to f
throughout the connected domain D −K. Thus h provides the desired analytic continuation of f
to D.

Remark 3.4.2. Another proof of Theorem 3.4.1 may be obtained by means of the integral formula
of Martinelli and Bochner, see Section 10.7.

3.5 Partial derivatives lemma and recessed-edge theorem

The following special case of the partial derivatives lemma suffices for most applications. For the
general case and for a proof, see Section 8.7.

Lemma 3.5.1. [34] For any nonempty open subset E of the unit sphere Sn−1 in Rn, there exists
a constant β = β(E) > 0 such that for every C∞ function f in a neighbourhood of a point a ∈ Rn
and every integer m ≥ 0,

max
|α|=m

1
α! |D

α
xf(a)| ≤ sup

ξ∈E

1
m!

∣∣∣∣( d

dt

)m
f(a+ tξ)

∣∣
t=0

∣∣∣∣/βm.

We will use the Lemma to prove an interesting result on analytic continuation which goes back
to Behnke and Kneser, cf. [30]. Let Ω be a connected domain in Cn ∼ R2n with n ≥ 2 and let
X ⊂ Ω be the intersection of two real hypersurfaces V : ϕ = 0 and W : ψ = 0, with ϕ and ψ of
class C1(Ω), gradϕ 6= 0 on V , gradψ 6= 0 on W . The hypersurface V will divide Ω into two parts,
one where ϕ > 0 and one where ϕ < 0; similarly for W . We suppose that gradϕ and gradψ are
linearly independent at each point of X, so that the real tangent hyperplanes to V and W are
different along X. We finally set

Ω0 = {z = x+ iy ∈ Ω : min
(
ϕ(x, y), ψ(x, y)

)
< 0}

(Figure 3.4, left). For Ω0, X is a “recessed edge”.

Theorem 3.5.2.

(i) Suppose that the vectors

p =
(
∂ϕ

∂z1
, . . . ,

∂ϕ

∂zn

)
and q =

(
∂ψ

∂z1
, . . . ,

∂ψ

∂zn

)
are linearly independent over C at the point b ∈ X, so that the hypersurfaces V and W
even have different complex tangent hyperplanes at b [cf. Example 1.2.1]. Then there is a
neighborhood of b to which all holomorphic functions f on Ω0 can be continued analytically.
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(ii) If for every point b ∈ X there is a holomorphic function on Ω0 which can not be continued
analytically to a neighborhood of b, then X is a complex analytic hypersurface. More precisely,
after appropriate complex linear coordinate transformation, X has local representation zn =
g(z1, . . . , zn−1) with holomorphic g.

Proof of part (i). Since pj = ∂ϕ/∂zj = 1
2∂ϕ/∂xj −

1
2 i∂ϕ/∂yj , etc., the real tangent hyperplanes

to V and W at 0 have the respective representations

Re(p1z1 + . . .+ pnzn) = 0, Re(q1z1 + . . .+ qnzn) = 0

[cf. Example 1.2.1]. The vectors p and q being linearly independent, there is a 1-1 complex linear
coordinate transformation of the form

z′1 = p1z1 + . . .+ pnzn, z
′
2 = q1z1 + . . .+ qnzn, z

′
3 = . . . , . . . , z′n = . . . .

Carrying out such a transformation, it may be assumed that the real tangent hyperplanes to V
and W are given by the equations

x1 = 0, x2 = 0
and that the point

a = (a1, a2, a3, . . . , an) = (−ε,−ε, 0, . . . , 0)
of Cn belongs to Ω0 for all small ε > 0.

Geometric considerations (cf. Figure 3.4, right) next show that there is a constant R > 0 such
that for all small ε > 0, Ω0 contains the compact set

K = B(a,R) ∩ {z ∈ Cn : x2 + ε = (x1 + ε) tan θ, 5π/8 ≤ θ ≤ 7π/8}.

Observe that the corresponding real “directions”, or unit vectors ξ = (ξ1, ξ2, . . . , ξn) with ξ2 =
ξ1 tan θ, 5π/8 < θ < 7π/8 form a nonempty open subset E of the unit sphere Sn−1 in Rn.

Now let f be in O(Ω0), supK |f | = C = C(f,K). Any complex line L through a of the form
z = a+ wξ, ξ ∈ E intersects K in a disc ∆ of radius R. The restriction of f to ∆ is represented
by the function

h(w) = f(a+ wξ), |w| ≤ R.
Applying the Cauchy inequalities to h on ∆1(0, R) we find that

1
m!

∣∣∣∣( d

dw

)m
f(a+ wξ)

∣∣
w=0

∣∣∣∣ ≤ C

Rm
, ∀ξ ∈ E, ∀m ∈ C0. (3.5.1)

56



W+

W-

z

z

Γ

Γ

R

H

_
x

x

Figure 3.5.

Hence by the partial derivatives lemma, considering the restriction of f to Ω0 ∩ Rn and taking
w = t ∈ R,

max
|α|=m

1
α!
∣∣Dα

xf(a)
∣∣ ≤ C/(βR)m, ∀m; β = β(E) > 0. (3.5.2)

Since f is analytic on Ω0, the derivatives Dα
z f(a) are equal to the derivatives Dα

xf(a). Thus
around a,

f(z) =
∑

cα(z − a)α =
∑
α≥0

1
α!D

α
xf(a) (z1 − a1)α1 . . . (zn − an)αn .

By (3.5.2), the power series will converge at every point z with |zj − aj | < βR, ∀j:

∣∣cα(z − a)α
∣∣ ≤ C∣∣∣∣z1 − a1

βR

∣∣∣∣α1

. . .

∣∣∣∣zn − anβR

∣∣∣∣αn , ∀α.
Conclusion: f has an analytic continuation to the polydisc ∆(a, βR) and in fact, letting ε ↓ 0 so

that a→ 0, to the polydisc ∆(0, βR)..
Remark on part (ii): The crucial observation is that under the hypothesis of part (ii), the complex

tangent hyperplanes to V andW must coincide along X. As a consequence, the (2n−2)-dimensional
real tangent spaces to X are complex hyperplanes. This being the case, one may conclude that X
is complex analytic (‘Levi-Civita lemma’). For more detailed indications of the proof, see exercise
3.19.

3.6 The edge-of-the-wedge theorem

We will discuss a simple version for Cn and begin with the special case n = 1 in order to bring
out more clearly why the theorem is so remarkable for n ≥ 2. Let W+ be a(n open) rectangular
domain in the upper half-plane in C, of which one side falls along the real axis. The reflected
rectangle in the lower half-plane is called W− and the (open) common boundary segment is called
H (Figure 3.5). We finally set

W = W+ ∪H ∪W−.

For n = 1 our simple edge-of-the-wedge theorem reduces to the following well-known facts:

(i) (A segment as removable singularity set). Any continuous function f on W which is holomor-
phic on W+ and on W− is actually holomorphic on W .
[The integral of fdz along any piecewise smooth simple closed curve Γ in W will be zero,
cf. Figure 3.5, hence f is analytic on W . One may appeal to Morera’s theorem here, or
observe directly that f will have a well-defined primitive F (z) =

∫ z
a
f(ζ)dζ on W . Since F is

differentiable in the complex sense, it is analytic, hence so is f = F ′.]
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Figure 3.6.

(ii) (Analytic continuation by Schwarz reflection). Any continuous function g on
W+ ∪H which is holomorphic on W+ and real-valued on H has an analytic continuation to
W . For z ∈W− the continuation is given by reflection: g(z) = g(z).
[Apply part (i) to the extended function g. The condition that g (or f in part (i)) be continuous
at the points of H can be weakened, cf. [Carleman] and Remarks 3.6.2.

the case of Cn (n ≥ 1). LetH (for “horizontal”) be a connected domain in the real space Rn = Rn+i0
in Cn and let V (for ’) be a (usually truncated) connected open cone with vertex at the origin in
(another) Rn. To get a simple picture, we assume that V and −V meet only at the origin. To H
and V we associate two (connected) domains in Cn as follows:

W+ = H + iV = {z = x+ iy ∈ Cn : x ∈ H, y ∈ V }, W− = H − iV

(“wedges” with common “edge” H). We again define

W = W+ ∪H ∪W−.

Observe that W is not an open set when n ≥ 2: W does not contain a Cn neighborhood of any
point a ∈ H (Figure 3.6, left). For n ≥ 2, the set H is a peculiarly small part of the boundary of
W+: it only has real dimension n instead of 2n− 1, as one would expect of a “normal” piece of the
boundary of a Cn domain. For the purpose of illustration when n = 2, only one line segment of H
has been drawn on the right in Figure 3.6. In that way one clearly sees two wedges with a common
edge.

Theorem 3.6.1. Let H, V, W+, W− and W be as described above. Then there exists a connected
domain D in Cn containing W such that the following is true:

(i) Any continuous function f on W which is holomorphic on W+ and on W− has an analytic
continuation to D;

(ii) Any continuous function g on W+ ∪ H which is holomorphic on W+ and real-valued on
H has an analytic continuation to D; for z ∈ W−, the continuation is given by reflection:
g(z) = g(z).

Remarks 3.6.2. For every point a ∈ H there will be a fixed Cn neighborhood to which all
functions f and g as in the Theorem can be analytically continued. Actually, the hypothesis that
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f ∈ O(W+ ∪W−) has a continuous extension to W can be weakened considerably. It is sufficient if
for y → 0 in V , the function

Fy(x) = f(x+ iy)− f(x− iy), x ∈ H ⊂ Rn

tends to 0 in weak or distributional sense ([69], cf. [58], [36]; weak convergence is defined in Chapter
11). It even suffices to have convergence here in the sense of hyperfunctions [52]. There are several
forms of the edge-of-the-wedge theorem and many different proofs have been given, cf. [58] and [62].

Proof of the Theorem. One need only consider part (i) since part (ii) will follow as in the case
n = 1. It is sufficient to show that there is a polydisc ∆(a, ρ), ρ = ρa around each point a ∈ H to
which all functions f as in part (i) can be continued analytically. We focus on one such function f .
The key observation will be that W contains closed squares Qξ(a) of constant size with center a in
a substantial family of complex lines (cf. Figure 3.6, right):

z = a+ wξ, ξ ∈ E ⊂ Sn−1 ⊂ Rn, w = u+ iv ∈ C.

By the one-variable result, the (continuous) restrictions f |Qξ(a) are analytic. The Cauchy
inequalities now imply bounds on certain directional derivatives of f |H. Such bounds (at and
around a) and the partial derivatives lemma will ensure that f |H is locally represented by a power
series

∑
cα(x− a)α; replacing x by z one obtains the desired analytic continuation.

Let us first look at V . The directions from 0 that fall within the cone V determine a nonempty
open subset E′ of the unit sphere Sn−1. We choose some open subset E with compact closure in
E′. There will then be a number R > 0 such that V ∪ 0 contains the closed truncated cone

V0 = {y ∈ Rn : y = vξ, ξ ∈ E, 0 ≤ v ≤ R}.

For a ∈ H, the domain H ⊂ Rn contains the real ball U(a, d): |x− a| < d = d(a, ∂H). Choosing
R < d, our set W will contain the squares

Qξ(a) = {z ∈ Cn : z = a+ wξ, ξ ∈ E, w = u+ iv, −R ≤ u, v ≤ R}.

The union of these squares for ξ running over E is a compact subset of W [contained in
U(a,R)± iV0], on which |f | will be bounded, say by C = Cf .

The restriction of f to Qξ(a) is represented by

h(w) = f(a+ wξ), −R ≤ u, v ≤ R.

The function h is continuous on its square and analytic for v = Imw 6= 0, hence it is analytic on the
whole square. Thus as in Section 3.5, the Cauchy inequalities give a family of inequalities (3.5.1).
Here C and R (may) depend on a, but if we fix b in H and restrict a to a small neighbourhood H0
of b in H, we may take Cf and R constant.

The inequalities (3.5.1), with w = t ∈ R and a running over H0, will imply that f0 = f |H0 is
of class C∞ around b and that it has a holomorphic extension f̃ to a Cn neighbourhood of b. We
sketch a proof; another proof may be derived from exercise 3.23. Choose a convex neighbourhood
H1 of b in H0 such that d(H1, ∂H0) = δ > 0. Now “regularize”f0 through convolution with the
members of the approximate identity {ρε} of (3a, b), 0 < ε < δ. One thus obtains C∞ functions
fε = f0 ? ρε on H1 whose derivatives in the directions ξ ∈ E satisfy the inequalities (3.5.1) (with
w = t ∈ R) for all a ∈ H1 and all ε ∈ (0, δ). By the partial derivatives lemma, the derivatives
Dα
x of the functions fε will then satisfy the inequalities (3.5.2) for every a ∈ H1. Taylor’s formula

with remainder next shows that the real Taylor series for fε with center a ∈ H1 converges to fε on
∆(a, βR) ∩H1. Complexifying such Taylor series for fε, one obtains holomorphic extensions f̃ε of
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the functions fε to the union D1 of the polydiscs ∆(a, βR) with a ∈ H1. [H1 is a set of uniqueness
for D1, cf. exercise 1.18.] The family {f̃ε}, 0 < ε < δ will be locally bounded on D1 and f̃ε → f0 on
H1 as ε ↓ 0. Thus by Vitali’s Theorem 1.7.4, the functions f̃ε converge to a holomorphic extension
f̃ of f0 on D1.

Since f̃ = f0 = f on H1, f̃ will also agree with f on the intersection of D1 with any complex
line z = a + wξ for which a ∈ H1 and ξ ∈ E. It follows that f̃ = f throughout open subsets of
W+ and W−. Conclusion: f̃ provides an analytic continuation of f to D1 and in particular, to the
polydisc ∆(a, βR) for every a ∈ H1.

3.7 Exercises

Exercise 3.1. (Direct verification of the representation (3.1.5)) Let a be fixed and z variable in
C, z = a+ reiθ. Let f be a C1 function on C of compact support. Prove that

∂f

∂z
= 1

2e
iθ

(
∂f

∂r
− 1
ir

∂f

∂θ

)
and deduce that for ε ↓ 0:∫

|z−a|>ε

∂f

∂z

1
z − a

dxdy = −1
2

∫ π

−π
f(a+ εeiθ)dθ → −πf(a).

Exercise 3.2. Extend formula (3.1.5) to arbitrary functions f in C1(C) which tend to 0 as |z| → ∞
while |∂f/∂z|/|z| is integrable over C.

Exercise 3.3. Why can not one calculate ∂u/∂z by differentiation under the integral sign in
formula (3.1.6) as it stands?

Exercise 3.4. Prove a formula for (∂u/∂y)(a) analogous to (1i), starting with an appropriate
analog to (3.1.8).

Exercise 3.5. Let v ∈ C(C) be of compact support and let u be its Cauchy-Green transform (3.1.6).
Prove that u is holomorphic outside supp v. Expand u in a Laurent series around ∞ to obtain
conditions on the “moments”

∫
C v(ζ)ζkdξdη which are necessary and sufficient in order that u

vanish on a neighbourhood of ∞.

Exercise 3.6. Let v be a continuous function on C of compact support and let u be its Cauchy-
Green transform (3.1.6). Prove that u is of class Lipα for each α ∈ (0, 1) or even better, that

|u(z + h)− u(z)| ≤M |h| log(1/|h|)

for some constant M and all z ∈ C, all |h| ≤ 1
2 . [Take 0 < |h| ≤ 1

2 , ζ ∈ supp v ⊂ B(0, R) for
some R ≥ 1, |z| ≤ 2R. Substituting ζ − z = hζ ′, the variable ζ ′ may be restricted to the disc
B(0, 3R/|h|).]

Exercise 3.7. Let D ⊂ C be a domain as in Proposition 3.1.1 and let v be of class C1(D). Suppose
one knows that the equation ∂u/∂z = v has a solution f on D which extends to a C1 function on
D. Prove that

u(z) def= − 1
π

∫
D

v(ζ)
ζ − z

dξdη, ζ = ξ + iη

is also a C1 solution on D.
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Exercise 3.8. (Continuation) Let D be as in Proposition 3.1.1 and let v be continuous on D.
Prove that the Cauchy-Green transform u of v on D (exercise 3.7) is also continuous and that it
provides a weak solution of the equation ∂u/∂z = v on D. That is,

〈∂u
∂z
, ϕ〉 def= −〈u, ∂ϕ

∂z
〉 def= −

∫
D

u
∂ϕ

∂z
dxdy

is equal to
〈v, ϕ〉 def=

∫
D

vϕ dxdy

for all test functions ϕ on D (all C∞ functions ϕ of compact support in D). [If v belongs to C1(D)
the function u will be an ordinary solution, cf. Section 11.2.]

Exercise 3.9. Verify that the function u(z) in formula (3.2.3), with v as in Theorem 3.2.1, is of
class Cp as a function of x1, y1, . . . , xn, yn. Next use the method of exercise 3.6 to show that the
partial derivatives of u of order p are of class Lipα, ∀α ∈ (0, 1).

Exercise 3.10. Verify that the functions σ and τ introduced in Section 3.3 are of class C∞ on R.

Exercise 3.11. Verify that the functions ρε of (3.3.3), (3.3.4) constitute a C∞ approximate identity
on Rn as ε ↓ 0.

Exercise 3.12. Let ω be the cutoff function of (3.3.5) and let e1 denote the unit vector in the x1
direction. Prove that

∂ω

∂x1
(a) = lim

h→0

ω(a+ he1)− ω(a)
h

exists and equals ∫
Sε

∂ρε
∂x1

(a− y)dy.

Exercise 3.13. Let u be continuous on Rn and let {ρε} be a C∞ approximate identity with
supp ρε ⊂ B(0, ε). Prove that the “regularization” uε = u ? ρε is of class C∞ and that uε → u as
ε ↓ 0, uniformly on every compact subset of Rn.

Exercise 3.14. (Weak solutions of Du = 0 are holomorphic) Let u be continuous on C and such
that ∂u/∂z = 0 in the weak sense, cf. exercise 3.8. Prove that u is holomorphic. [Show first that
∂uε/∂z = 0, where uε is as in exercise 3.13.]

Exercise 3.15. Show by an example that there is no Hartogs-Osgood-Brown continuation theorem
for n = 1. Where does the proof of Theorem 3.4.1 break down when n = 1?

Exercise 3.16. Let D be a simply connected domain in C, K ⊂ D a compact subset such that
D −K is connected. Prove that a holomorphic function f on D −K can be continued analytically
to D if and only if

∫
Γ{f(ζ)/(ζ − z)}dζ = 0 for some [and then for every] piecewise smooth simple

closed curve Γ around K in D −K and for all z outside Γ.

Exercise 3.17. (Continuation) Prove that the following moment conditions are also necessary and
sufficient for the possibility of analytic continuation of f across K :

∫
Γ f(ζ)ζkdζ = 0, ∀k ≥ 0 for

some curve Γ as above.

Exercise 3.18. Prove that every holomorphic function on the domain D = {z = x + iy ∈ C2 :
min(x1, x2) < 0} has an analytic continuation to all of C2.
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Exercise 3.19. (Proof of Theorem 3.5.2 part (ii)) Let V, W, Ω0 and X satisfy the hypotheses of
Theorem 3.5.2 part (ii). Verify the following assertions:

(i) At every point b ∈ X, the hypersurfaces V and W have the same complex tangent hyperplane.

(ii) The real tangent spaces to X are complex hyperplanes.

(iii) The real tangent hyperplanes to V andW at b ∈ X being different, one has ∂ψ/∂zj = λ∂ϕ/∂zj
at b, j = 1, . . . , n, with λ = λ(b) nonreal.

(iv) Supposing from here on that ∂ϕ/∂zn 6= 0 at the point b ∈ X, the vectors (∂ϕ/∂xn, ∂ϕ/∂yn)
and (∂ψ/∂xn, ∂ψ/∂yn) are linearly independent at b.

(v) By real analysis, X has a local representation zn = xn + iyn = g(z′) =
g(z1, . . . , zn−1) around b. [Cf. Remarks 5.1.3.]

(vi) The function g satisfies the Cauchy-Riemann equations around b′. [Cf. assertion (ii) above.]

Exercise 3.20. Let H = R2, let V be the positive “octant” {y1 > 0, y2 > 0} of (another) R2 and
set W = (H + iV ) ∪H ∪ (H − iV ) in C2. Which points z = a+ iy near a ∈ H are outside W ? [Cf.
Figure 3.6, left]

Exercise 3.21. (Continuation) Prove that any function f which is continuous on W and analytic
on W+ and W− has an analytic continuation to all of C2.

Exercise 3.22. Let f0 be a continuous function on the domain H0 ⊂ Rn which possesses derivatives
of all orders in the directions ξ ∈ E throughout H0. Suppose that these derivatives satisfy the
inequalities (3.5.1) with w = t ∈ R at all points a ∈ H0. Let H1 be a subdomain of H0 such that
d(H1, ∂H0) = δ > 0 and let {ρε} be the approximate identity of (3a, b), with 0 < ε < δ. Prove that
the regularizations fε = f0 ? ρε satisfy the inequalities (3.5.1) (with w = t) at every point a ∈ H1.

Exercise 3.23. Let f be a continuous function on a domain H in Rn such that for n linearly
independent unit vectors ξ and every m ≥ 1, the directional derivatives (d/dt)mf(x+ tξ)|t=0 exist
and are bounded functions on a neighbourhood H0 of each point b ∈ H. Prove that f is of class
C∞. [By a linear coordinate transformation it may be assumed that the unit vectors ξ are equal to
e1, . . . , en. Multiplying f by a C∞ cutoff function with support in H0 which is equal to 1 around b,
one may assume that f has its support in the hypercube −π < x1, . . . , xn < π. Taking n = 2 for
a start, one knows that Dm

1 f and Dm
2 f exist and are bounded for m = 1, 2, . . . . Introducing the

Fourier series
∑
cpq exp{i(px1 + qx2)} for f on the square −π < x1, x2 < π, one may conclude

that the multiple sequence {(|p|m + |q|m)cpq}, (p, q) ∈ C2 is bounded for each m. Deduce that the
(formal) series for Dαf is uniformly convergent for every α, hence ... .]

Exercise 3.24. (Alternative proof of Theorem 3.6.1) We adopt the notation of Section 3.6.

(i) Show that we may assume that H contains the cube |xi| < 6 and that V contains the
truncated cone 0 < vi < 6 and that assuming this, it suffices to show that f extends to the
unit polydisc ∆ = ∆(0, 1).

(ii) Let c =
√

2− 1 and let ϕ(w, λ) = w+λ/c
1+cλw . Check the following:

(iii) If |λ| = 1 or w is real, then Imϕ. Imλ ≥ 0.

(iv) |ϕ| < 6 for |λ|, |w| < 1.

(v) ϕ(w, 0) = w.
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(vi) Form
Φ(z, λ) = (ϕ(z1, λ), . . . , ϕ(zn, λ)

and consider gz(λ) = f(Φ(z, λ)). Show that gz is well defined for z ∈ H ∩∆, |λ| ≤ 1 and for
|λ| = 1 and z ∈ ∆. Show that for z ∈ H ∩∆, gz(λ) is analytic on |λ| < 1. Use Corollary 1.7.2
to see that

F (z) :=
∫ π

−π
gz(eiθ)

dθ

2π

is analytic on ∆.

(vii) Show that for z ∈ H ∩∆ one has F (z) = gz(0) = f(z).

(viii) Show that F is an analytic extension of f to ∆.
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Chapter 4

Local structure of holomorphic functions.
Zero sets and singularity sets

We will study germs of holomorphic functions at a point a. These germs form a ring Oa, addition
and multiplication being defined by the like operations on representatives. One loosely speaks of
the ring of holomorphic functions at a.

For the study of O0 in Cn, it is customary to single out one of the variables. In the following
this will be zn; we denote (z1, . . . , zn−1) by z′, so that

z = (z1, . . . , zn−1, zn) = (z′, zn), z′ ∈ Cn−1, zn ∈ C.

We similarly split the radii of polydiscs ∆(0, r) ⊂ Cn:

r = (r1, . . . , rn−1, rn) = (r′, rn), rj > 0.

In this context the origin of Cn−1 will usually be called O′.
Suppose now that f is holomorphic in some unspecified neighborhood of 0 in other words:

[f ] ∈ O0 and that f(0) = 0, f 6≡ 0. In the case n = 1 the local structure of f and the local zero
set Zf are very simple: in a suitably small neighborhood of 0, the function f(z) can be written as
E(z)zk, where k ≥ 1 and E is zero free in a neighborhood of 0. In the case n ≥ 2 the origin can
not be an isolated zero of f , but the fundamental Weierstrass preparation theorem (Section 4.4)
will furnish a related factorization. After an initial linear transformation which favors the variable
zn, one obtains a local representation

f(z) = E(z)W (z)

on some small neighborhood of 0, that is [f ] = [E][W ] in O0. Here W is a so-called Weierstrass
polynomial in zn and E is zero free and holomorphic in some neighborhood of the origin. This
means: W is a polynomial in zn with leading coefficient 1; the other coefficients are analytic in
z′ = (z1, . . . , zn−1) near 0′ and they vanish at 0′. Around 0, W will have the same zero set as f
and this fact prepares the way for further study of Zf .

The detailed investigation of ZW will be based on a study of the polynomial ring O′0[zn], where
O′0 stands for the ring O0 in Cn−1 (Sections 4.5, 4.6).

After we have obtained a good description of the zero set, it becomes possible to prove some
results on removable singularities. We will also see that certain “thin” singularity sets are at the
same time zero sets.
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4.1 Normalization relative to zn and a basic auxiliary result

Let f be holomorphic in a neighborhood of the origin in Cn. In the (absolutely convergent) power
series

∑
cαz

α for f(z) around 0, we may collect terms of the same degree:

f(z) = P0(z) + P1(z) + P2(z) + . . . ,

Pj(z) =
∑
|α|=j

cαz
α homogeneous in z1, . . . , zn of degree j. (4.1.1)

Definition 4.1.1. The function f is said to vanish (exactly) of order k ≥ 1 at the origin if

Pj ≡ 0, j = 0, . . . , k − 1; Pk 6≡ 0.

An equivalent statement would be [cf. Section 1.5]:
Dαf(0) = Dα1

1 . . . Dαn
n f(0) = 0, ∀α with |α| = α1 + . . .+ αn < k,

Dβf(0) 6= 0 for some β with |β| = k.
(4.1.2)

Definition 4.1.2. The function f is said to be normalized relative to zn at the origin if f(0′, zn)
does not vanish identically in a neighborhood of zn = 0. Such an f is said to vanish (exactly) of
order k relative to zn at the origin if f(0′, zn) has a zero of order (exactly) k for zn = 0. Equivalently:

Dj
nf(0) = 0, j = 0, . . . , k − 1; Dk

nf(0) 6= 0.

Corresponding definitions apply at a point a ∈ Cn: one may consider f(a+ z) instead of f(z).
If f is normalized relative to zn at 0 [so that Dk

nf(0) 6= 0, say], then f is also normalized relative
to zn at all points a close to 0.

Example 4.1.3. The function f(z) = z1z2 on C2 vanishes of order 2 at the origin. It is not
normalized relative to z2, but one can normalize it relative to the final variable by the substitution
z1 = ζ1 + ζ2, z2 = ζ2. Then f goes over into the analytic function g(ζ) = ζ1ζ2 + ζ2

2 which vanishes
of order 2 relative to ζ2 at the origin.

Lemma 4.1.4. Suppose f vanishes (exactly) of order k at the origin. Then one can always carry
out a 1-1 linear coordinate transformation z = Aζ in Cn to ensure that f vanishes of order (exactly)
k at 0 relative to the (new) n-th coordinate.

Proof. Write f as a sum of homogeneous polynomials of different degree as in (4.1.1), so that
Pk 6≡ 0. Choose b 6= 0 such that Pk(b) 6= 0 and then construct an invertible n× n matrix A with
n-th column b. Now put z = Aζ and set

g(ζ) def= f(Aζ) = Pk(Aζ) + Pk+1(Aζ) + . . . .

Observe that A times the (column) vector (0, . . . , 0, ζn) equals (b1ζn, . . . , bnζn), so that

g(0, . . . , 0, ζn) = f(b1ζn, . . . , bnζn) = Pk(b1ζn, . . . , bnζn)+
+ Pk+1(. . . ) + . . . = Pk(b)ζkn + Pk+1(b)ζk+1

n + . . . .
(4.1.3)

Clearly Dk
ng(0) 6= 0.
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Auxiliary Theorem 1. Let f be holomorphic on the polydisc ∆(0, r) ⊂ Cn, n ≥ 2 and suppose
that f vanishes (exactly) of order k relative to zn at the origin. Then there exist a smaller polydisc
∆(0, ρ):

0 < ρ = (ρ1, . . . , ρn−1, ρn) = (ρ′, ρn) < r = (r′, rn)

and a number ε > 0 such that

f(0′, zn) 6= 0 for0 < |zn| ≤ ρn, (4.1.4)

f(z′, zn) 6= 0 forz′ ∈ ∆n−1(0′, ρ′), ρn − ε < |zn| < ρn + ε(≤ rn). (4.1.5)

For any z′ ∈ ∆(0′, ρ′), the function g(zn) = f(z′, zn) will have precisely k zeros in the disc ∆1(0, ρn)
(counting multiplicities ).

Proof. The function f(0′, zn) is holomorphic on the disc ∆1(0, rn) and it has a zero of order k
at zn = 0. Since the zeros of f(0′, zn) are isolated, there exists a number ρn ∈ (0, rn) such that
f(0′, zn) 6= 0 for 0 < |zn| ≤ ρn.

The function f(z′, zn) is holomorphic and hence continuous on a Cn neighborhood of the circle

γ : {z′ = 0′, |zn| = ρn}.

It is different from 0 on γ, hence 6= 0 on some Cn polydisc around each point (0′, w) ∈ γ. Covering
γ by a finite number of such polydiscs ∆n−1(0′, s′)×∆1(w, sn), we conclude that f(z′, zn) 6= 0 on
a Cn neigborhood of γ in ∆(0, r) of the form

∆n−1(0′, ρ′)× {ρn − ε < |zn| < ρn + ε}.

We now fix z′ ∈ ∆(0′, ρ′) for a moment. The function g(w) = f(z′, w) is holomorphic on the
closed disc ∆1(0, ρn) and zero free on the circumference C(0, ρn). The number of zeros Ng = N(z′)
of g in ∆1(0, ρn) (counting multiplicities) may be calculated with the aid of the residue theorem:

N(z′) = Ng = 1
2πi

∫
C(0,ρn)

g′(w)
g(w) dw = 1

2πi

∫
C(0,ρn)

∂f(z′, w)/∂w
f(z′, w) dw. (4.1.6)

[Cf. Section 1.8. For any holomorphic h(w), the residue of hg′/g at a µ-fold zero w0 of g will be
µh(w0).]

With formula (4.1.6) in hand, we let z′ vary over ∆(0′, ρ′). The final integrand is continuous in
(z, w) on ∆(0′, ρ′)×C(0, ρn) [which is a subset of ∆(0, r)], since the denominator f(z′, w) does not
vanish there [see (4.1.5)]. Furthermore, the integrand is holomorphic in z′ for each w on C(0, ρn).
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Applying the holomorphy theorem for integrals 1.7.2 [cf. also Section 2.6], it follows that N(z′) is
holomorphic on ∆(0′, ρ′). Since N(z′) is integer-valued, it must be constant, hence

N(z′) = N(0′) = k,

the number of zeros of f(0′, w) or f(0′, zn) in ∆1(0, ρn) [always counting multiplicities].

4.2 An implicit function theorem

Let f, r and ρ be as in Auxiliary Theorem 1 so that in particular f is holomorphic on ∆(0, ρ).
Supposing that k = 1, the equation

g(w) = f(z′, w) = 0 with arbitrary fixed z′ in ∆(0′, ρ′)

has precisely one root w = w0 = ϕ(z′) inside the disc ∆1(0, ρn) [and no root on the boundary
C(0, ρn)]. With the aid of the residue theorem we can represent this root by an integral similar
to (4.1.6):

ϕ(z′) = w0 = 1
2πi

∫
C(0,ρn)

w
g′(w)
g(w) dw = 1

2πi

∫
C(0,ρn)

w
∂f(z′, w)/∂w
f(z′, w) dw. (4.2.1)

Letting z′ vary over ∆(0′, ρ′), this integral shows that ϕ(z′) is holomorphic, cf. the preceding
proof. The result is important enough to be listed as a theorem:

Theorem 4.2.1 (Implicit function theorem). Let f be holomorphic on the polydisc ∆(0, r) ⊂ Cn
and suppose that f vanishes (exactly) of order 1 relative to zn at the origin:

f(0) = 0, Dnf(0) 6= 0.

Then there exists ρ = (ρ′, ρn) with 0 < ρ < r such that on the polydisc ∆(0′, ρ′) ⊂ Cn−1, there
is a unique holomorphic function ϕ(z′) with the following properties:

(i) ϕ(0′) = 0,

(ii) ϕ(z′) ⊂ ∆1(0, ρn),∀z′ ∈ ∆(0′, ρ′),

(iii) f(z′, zn) = 0 at a point z ∈ ∆(0, ρ) if and only if zn = ϕ(z′) with z′ ∈ ∆(0′, ρ′).

Corollary 4.2.2. Let f be holomorphic on D ⊂ Cn and vanish (exactly) of order 1 at the point
a ∈ D. Then there is a neighborhood of a in which the zero set Zf is homeomorphic to a domain in
Cn−1. [In this case a is called a regular point of Zf . Since homeomorphisms preserve dimension,
the zero set has complex dimension n− 1 or real dimension 2n− 2.]
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Indeed, taking a = 0 and normalizing relative to zn as in Lemma 4.1.4, we will have f(0) =
0, Dnf(0) 6= 0. By Theorem 4.2.1 there is then a polydisc ∆(0, ρ) ⊂ D in which Zf has the form

Zf ∩∆(0, ρ) = {(z′, ϕ(z′)) ∈ Cn : z′ ∈ ∆(0′, ρ′)}

with ϕ ∈ O(∆(0′, ρ′)). The correspondence z′ ↔ (z′, ϕ(z′)) between ∆(0′, ρ′) and Zf (the graph of
ϕ) in ∆(0, ρ) is 1-1 and bicontinuous.

In the following sections we will investigate the zero set in the vicinity of a point where f
vanishes of order > 1.

4.3 Weierstrass polynomials

Let f, r and ρ again be as in Auxiliary Theorem 4.15, so that in particular f is holomorphic on
∆(0, ρ). Taking k ≥ 1 arbitrary this time, the equation

g(w) = f(z′, w) = 0 [with arbitrary fixed z′ ∈ ∆(0′, ρ′)] (4.3.1)

has precisely k roots inside the disc ∆1(0, ρn), counting multiplicities [and no root on the boundary
C(0, ρn)]. We may number the roots in some order or other:

w1 = w1(z′), . . . , wk = wk(z′); wj(0′) = 0, ∀j. (4.3.2)

However, occasionally some roots may coincide, and in general it is not possible to define the
individual roots wj(z′) in such a way that one obtains smooth functions of z′ throughout ∆(0′, ρ′).
[Think of f(z′, w) = z1 − wk.]

In this situation it is natural to ask if the functions (4.3.2) might be the roots of a nice algebraic
equation. Let us consider the product

(w − w1) . . . (w − wk) = wk +
k∑
j=1

ajw
k−j , aj = aj(z′). (4.3.3)

Apart from a ± sign, the coefficients aj are equal to the so-called elementary symmetric functions
of the roots:

a1 = −(w1 + . . .+ wk),
a2 = w1w2 + . . .+ w1wk + w2w3 + . . .+ wk−1wk,

...
ak = (−1)kw1 . . . wk.

(4.3.4)

Observe that aj(0′) = 0, j = 1, . . . , k. We will show that the coefficient aj(z′) depend analyti-
cally on z′. The proof may be based on an algebraic relation between symmetric functions (to be
found in [Van der Waerden] for example) of which we will give an analytic proof.

Lemma 4.3.1. The coefficients aj = aj(z′) in (4.3.3) can be expressed as polynomials in the power
sums

sp = sp(z′) = wp1 + . . . wpk, p = 1, 2, . . .

and (hence) they are holomorphic functions of z′ on ∆(0′, ρ′).
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Proof. (i) it is convenient to divide by wk in (4.3.3) and to set 1/w = t. Thus

Πk
ν=1(1− wνt) =

k∑
j=0

ajt
j def= P (t), a0 = 1.

Taking the logarithmic derivative of both sides and multiplying by t, one obtains the two answers

t
P ′(t)
P (t) =

{∑k
j=1 jajt

j/
∑k
m=0 amt

m,∑k
ν=1

−wνt
1−wνt = −

∑k
ν=1

∑∞
p=1 w

p
νt
p = −

∑∞
p=1 spt

p.
(4.3.5)

We now multiply through by the first denominator and find:

k∑
1
jajt

j = −
k∑
0
amt

m
∞∑
1
spt

p.

Equating coefficients of like powers of t on both sides, the result is

jaj = −(aj−1s1 + aj−2s2 + . . .+ a0sj), j = 1, . . . , k. (4.3.6)

Hence by induction, aj can be expressed as a polynomial in s1, . . . , sj .
(ii) We complete the proof of the Lemma by showing that the power sums sp(z′) are holomorphic

in z′ on ∆(0′, ρ′). To this end we write sp(z′) as an integral: by the residue theorem, cf. (4.1.6),

sp(z′) =
k∑
ν=1

wpν = 1
2πi

∫
C(0,ρn)

wp
g′(w)
g(w) dw = 1

2πi

∫
C(0,ρn)

wp
∂f(z′, w)/∂w
f(z′, w) dw. (4.3.7)

The holomorphy now follows as usual from the holomorphy theorem for integrals 1.7.2.

The polynomial (4.3.3) is called the Weierstrass polynomial belonging to the roots w1, . . . , wk
of the equation f(z′, w) = 0. Replacing w by zn we formulate:

Definition 4.3.2. A Weierstrass polynomial in zn of degree k is a holomorphic function in a
neighborhood of the origin in Cn of the special form

W (z′, zn) = zkn +
k∑
j=1

aj(z′)zk−jn , (k ≥ 1) (4.3.8)

where the coefficients aj(z′) are holomorphic in a neighborhood of 0′ in Cn−1 and such that
aj(0′) = 0, j = 1, . . . , k.

An arbitrary polynomial in zn with coefficients that are holomorphic in z′ is called a (holomorphic)
pseudopolynomial in zn.

4.4 The Weierstrass theorems

Let f, r and ρ be as in Auxiliary Theorem 1, so that in particular f is holomorphic on ∆(0, ρ).
Moreover, the equation f(z′, w) = 0 with z′ fixed in ∆(0′, ρ′) has precisely k roots (4.3.2) inside the
disc ∆1(0, ρn) and no roots on the boundary C(0, ρn). Dividing g(w) = f(z′, w) by the Weierstrass
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polynomial W (w) (4.3.3) with these same roots, we obtain a zero free holomorphic function E(w)
on the closed disc ∆1(0, ρn). Explicitly reintroducing z′, we have

f(z′, zn)
W (z′, zn) = E(z′, zn), (z′, zn) ∈ ∆n−1(0′, ρ′)×∆1(0, ρn). (4.4.1)

Here E(z′, zn) is holomorphic in zn on ∆1(0, ρn) for each z′ ∈ ∆(0′ρ′). Also, E(z′, zn) is different
from 0 throughout δ(0′, ρ′)×∆1(0, ρn).

We will show that E is holomorphic in z = (z′, zn) on ∆(0, ρ). For this we use the one-variable
Cauchy integral formula, initially with fixed z′:

E(z) = E(z′, zn) = 1
2πi

∫
C(0,ρn)

f(z′, w)
W (z′, w)

dw

w − zn
, z = (z′, zn) ∈ ∆(0, ρ) (4.4.2)

The holomorphy of E(z) now follows from the holomorphy theorem for integrals 1.7.2. Indeed,
the integrand is continuous in (z, w) = (z′, zn, w) on ∆(0, ρ)× C(0, ρn) since W (z′, w)(w − zn) is
different from zero there. Furthermore, for each w ∈ C(0, ρn), the integrand is holomorphic being
a product of holomorphic functions in z′ and zn on ∆(0′, ρ′)×∆1(0, ρn). Conclusion from (4.4.1,
4.4.2)

Theorem 4.4.1 (Weierstrass’s preparation theorem). Let f be holomorphic on a neighborhood
of the origin in Cn. Suppose f vanishes at 0 (exactly) of order k relative to zn. Then there is a
neighborhood of the origin in which f has a unique holomorphic factorization

f(z) = E(z)W (z′, zn),

where W is a Weierstrass polynomial in zn of degree k (4.3.8) and E is zero free.

The factorization is unique because W is uniquely determined by f . For the local study of
zero sets one may apparently restrict oneself to Weierstrass polynomials. The question of further
decomposition of such polynomials will be taken up in Section 4.5.

There is also a preparation theorem for C∞ functions, see [39] or [27].
There is a second (somewhat less important) Weierstrass theorem which deals with the division

of an arbitrary holomorphy function F by a preassigned Weierstrass polynomial [division with
remainder]:

Theorem 4.4.2 (Weierstrass’s division theorem). Let F be holomorphic in a neighborhood of the
origin in Cn and let W be an arbitrary Weierstrass polynomial in zn of degree k (4.3.8). Then F
has a unique representation around 0 of the form

F = QW +R, (4.4.3)

where Q is holomorphic and R is a (holomorphic) pseudopolynomial in zn of degree < k.

We indicate a proof. Assuming that F and W are holomorphic on ∆(0, r) we choose ρ < r such
that W (z) 6= 0 for z′ ∈ ∆(0′, ρ′) and |zn| = ρn, cf. Auxiliary Theorem 1. Then Q may be defined
by

Q(z) def= 1
2πi

∫
C(0,ρn)

F (z′, w)
W (z′, w)

dw

w − zn
, z ∈ ∆(0, ρ). (4.4.4)

One readily shows that Q and hence R def= F −QW are holomorphic on ∆(0, ρ) and that R is a
pseudopolynomial in zn of degree < k, cf. exercise 4.6. For the uniqueness of the representation, cf.
exercise 4.7.
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4.5 Factorization in the rings O0 and O′
0[zn]

As indicated before, the symbol Oa or Oa(Cn) denotes the ring of germs of holomorphic functions
at a, or equivalently, all power series

f(z) =
∑
α≥0

cα(z − a)α =
∑
α≥0

cα1...αn(z1 − a1)α1 . . . (zn − an)αn

in z1, . . . , zn with center a that have nonempty domain of (absolute) convergence [cf. Section 2.3].
For [f ] and [g] in Oa one defines the sum [f ] + [g] = [f + g] and the product [f ][g] = [fg] via
representatives f, g. Product and sum are well defined at least throughout the intersection of the
domains of f and g and this intersection will contain a.

As seen above, in working with germs, one strictly speaking has to take representatives, work
with these on suitably shrunken neighborhoods and pass to germs again. Usually the real work is
done on the level of the representatives, while the other parts of the process are a little tiresome.
To avoid the latter, we will write f ∈ Oa, indicating both a germ at a or a representative on a
suitable neighborhood, or even its convergent power series at a. This will not lead to confusion.
Obviously there will be no loss of generality by studying O0 only.

The zero element in O0 is the constant function 0. There is also a multiplicative identity, namely,
the constant function 1. The ring O0 is commutative and free of zero divisors cf. exercise 1.21].
Thus O0 is an integral domain. A series or function f ∈ O0 has a multiplicative inverse 1/f in O0 if
and only if f(0) 6= 0; such an f is called a unit in the ring. The nonunits are precisely the series or
functions which vanish at the origin; they form a maximal ideal. For factorizations “at” the origin
(around the origin) and for the local study of zero sets, units are of little interest.

Definition 4.5.1. An element f ∈ O0 different from the zero element is called reducible (in or
over O0) if it can be written as a product g1g2, where g1 and g2 are nonunits of O0. An element
f 6= 0 is irreducible if for every factorization f = g1g2 in O0, at least one factor is a unit.

In reducibility questions for O0 we may restrict ourselves to Weierstrass polynomials, cf. the
preparation theorem 4.4.1.

Examples 4.5.2. It is clear that z2
3 and z2

3 − z1z2z3 are reducible in O0(C3), but how about

W (z) = z2
3 − z2

1z2 ? (4.5.1)

Proposition 4.5.3. Every (holomorphic) factorization of a Weierstrass polynomial into nonunits
of O0 is a factorization into Weierstrass polynomials, apart from units with product 1.

Proof. Let W be a Weierstrass polynomial in zn of degree k (4.3.8) and suppose that W = g1g2,
where the factors gj are holomorphic in a neighborhood of 0 and gj(0) = 0. Setting z′ = 0′ we find

zkn = W (0′, zn) = g1(0′, zn)g2(0′, zn),

hence gj(0′, zn) 6≡ 0, so that the functions gj are normalized relative to zn at the origin [Definition
4.12]. Thus we can apply the preparation theorem to each gj :

gj = EjWj , j = 1, 2

in some neighborhood of 0. Here the Wj ’s are Weierstrass polynomials in zn and the Ej ’s are zero
free. It follows that

W = 1 ·W = E1E2W1W2

in some neighborhood of 0. Now W1W2 is also a Weierstrass polynomial in Zn and E1E2 is zero free.
The uniqueness part of the preparation theorem thus shows that W1W2 = W and E1E2 = 1.
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We can now show that the Weierstrass polynomial (4.5.1) is irreducible (over O0). Otherwise
there would be a decomposition of the form

z2
3 − z2

1z2 = (z3 − w1(z′))(z3 − w2(z′))

with holomorphic functions wj at 0. This would imply w1 + w2 = 0, w1w2 = −w2
1 = −z2

1z2, but
the latter is impossible since z1

√
z2 is not holomorphic at 0. [The function W of (4.5.1) is reducible

over Oa for some points a where W (a) = 0 and a2 6= 0. Which precisely ?]

Definition 4.5.4. An integral domain A with identity element is called a unique factorization
domain (ufd) if every nonunit ( 6= 0) can be written as a finite product of irreducible factors in A
and this in only one way, apart from units and the order of the factors.

Properties 4.5.5. Suppose A is a unique factorization domain. Then:

(i) The polynomial ring A[x] is also a ufd (“Gauss’s lemma”);

(ii) For any two relatively prime elements f and g in A[x] (that is, any nonzero f and g which do
not have a nonunit as a common factor), there are relatively prime elements S and T in A[x],
with degreeS < degree g, degT < deg f , and a nonzero element R in A such that

Sf + Tg = R (“resultant of f and g”). (4.5.2)

We indicate proofs, but refer to algebra books for details. For part (i) we need only consider
primitive polynomials f in A[x], that is, polynomials whose coefficients have no common factors
others than units. By looking at degrees, it becomes clear that such f can be decomposed into
finitely many irreducible factors in A[x]. For the uniqueness one may first consider the case where A
is a (commutative) field. Then the Euclidean algorithm holds for the greatest common divisor (f, g)
in A[x], hence (f1, g) = (f2, g) = 1 implies (f1f2, g) = 1. It follows that irreducible decompositions
f = f1 . . . fr in A[x] must be unique. In the general case one first passes from A to the quotient
field QA. A factorization of f in A[x] gives one in QA[x]. For the converse, one observes that the
product of two primitive polynomials in A[x] is again primitive. It follows that any factorization
of f in QA[x] can be rewritten as a factorization into primitive polynomials in A[x]. Hence since
AA[x] is a ufd, so is A[x].

As to part (ii), relatively prime elements f and g in A[x] are relatively prime in QA[x], hence by
the Euclidean algorithm for the greatest common divisor, there exist S1 and T1 in QA[x], degS1 <
deg g, degT1 < deg f such that S1f + T1g = 1. The most economical removal of the denominators
in S1 and T1 leads to (4.5.2).

Theorem 4.5.6. The rings O′0[zn] and O0 = O0(Cn) are unique factorization domains. Here O′0
stands for O0(Cn−1).]

Proof. Concentrating on O0 we use induction on the dimension n. For n = 0 the ring O0 = C is
a field and every nonzero element is a unit, hence there is nothing to prove. Suppose now that
the theorem has been proved for O′0 = O0(Cn−1). It then follows from Gauss’s lemma that the
polynomial ring O′0[zn] of the pseudopolynomials in zn is also a ufd.

Next let f be an arbitrary nonunit 6= 0 in O0 = O0(Cn). By a suitable linear coordinate
transformation we ensure that f is normalized relative to zn, cf. Lemma 4.14. Weierstrass’s
preparation theorem then gives a factorization f = EW , where E is a unit in O0 and W ∈ O′0[zn]
is a Weierstrass polynomial. As a consequence of the induction hypothesis, W can be written as a
finite product of irreducible polynomials in O′0[zn]. The factors are Weierstrass polynomials (apart
from units with product 1) and they are also irreducible over O0, cf. Proposition 4.5.3.
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The uniqueness of the decomposition (apart from units and the order of the factors) follows by
normalization from the uniqueness of the factorization f = EW at 0 and the uniqueness of the
factorization in O′0[zn].

Corollary 4.5.7 (Irreducible local representation). Let f be holomorphic at 0 in Cn and normalized
relative to zn. Then f has a holomorphic product repesentation at 0 (in a neighborhood of 0) of the
form

f = EW p1
1 . . .W ps

s . (4.5.3)
Here E is zero free, the Wj’s are pairwise distinct irreducible Weierstrass polynomials in zn and
the pj’s are positive integers. The representation is unique up to the order of W1, . . . ,Ws.

We finally show that the rings O0(Cn) are Noetherian:

Definition 4.5.8. A commutative ring A with identity element is called Noetherian if every ideal
I ⊂ A is finitely generated, that is, if there exist elements g1, . . . , gk in I such that every f ∈ I has
a representation f =

∑
ajgj with aj ∈ A.

The so-called Hilbert basis theorem asserts that for a Noetherian ring A, the polynomial ring
A[x] is also Noetherian, cf. [70, section 84].

Theorem 4.5.9. O0 = O0(Cn) are Noetherian.

Proof. One again uses induction on the dimension n. For n = 0 the ring O0 = C is a field, so that
the only two ideals are the ones generated by 0 and by 1. Suppose, therefore, that n ≥ 1 and that
the theorem has been proved for O′0 = O0(Cn−1). Then by the above remark, the polynomial ring
O′0[zn] is also Noetherian.

Now let I be any ideal in O0 = O0(Cn) which contains a nonzero element g. By change of
coordinates and the Weierstrass preparation theorem we may assume that g = EW , where E is a
unit in O0 and W is a Weierstrass polynomial in zn. Observe that W will also belong to I and
thus to the intersection J = I ∩ O′0[zn].

This intersection J is an ideal in the ring O′0[zn], hence by the induction hypothesis, it is
generated by finitely many elements g1, . . . , gp. We claim that in O0, the elements W and g1, . . . , gp
will generate I. Indeed, let F be any element of I. By the Weierstrass division theorem, F = QW+R,
where Q ∈ O0 and R ∈ O′0[zn]. Clearly R is also in I, hence R ∈ J , so that R = b1g1 + . . .+ bpgp
with bj ∈ O′0[zn]. Thus F = QW + b1g1 + . . .+ bpgp.

4.6 Structure of zero sets

We first discuss some global properties. Let f be a holomorphic function 6≡ 0 on a connected domain
D in Cn. What sort of subset is the zero set Zf = Z(f) of f in D ?

Theorem 4.6.1. Zf is closed (relative to D) and thin: it has empty interior. The zero set does
not divide D even locally: to every point a ∈ Zf there are arbitrarily small polydiscs ∆(a, ρ) in D
such that ∆(a, ρ)− Zf is connected. Ω = D − Zf is a connected domain.

Proof. It is clear that Zf is closed [f is continuous] and that it has no interior points: if f would
vanish on a small ball in D, it would have to vanish identically. [More generally, Zf can not contain
a set of uniqueness 1.55 for O(D).]

Next let a be any point in Zf . We may assume that a = 0 and that f vanishes at 0 of order k
relative to zn. By Auxiliary Theorem 4.15, there will be arbitrarily small polydiscs ∆(0, ρ) ⊂ D
and ε > 0 such that f(0′, zn) 6= 0 for 0 < |zn| ≤ ρn and

f(z′, zn) 6= 0 throughout U = ∆(0′, ρ′)× {ρn − ε < |zn| < ρn}.
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Observe that the subset U ⊂ ∆(0, ρ) − Zf is connected. Furthermore, every point (b′, c) of
∆(0, ρ) − Zf may be connected to U by a straight line segment in ∆(0, ρ) lying in the complex
plane z′ = b′ but outside Zf . Indeed, the disc z′ = b′, |zn| < ρn contains at most k distinct points
of Zf (Figure 4.3). Thus ∆(0, ρ)− Zf is connected.

Any two point p and q in Ω can be joined by a polygonal path in D. Such a path may be covered
by finitely many polydiscs ∆(a, ρ) ⊂ D such that ∆(a, ρ)− Zf is connected. The latter domains
will connect p and q in Ω.

We now turn our attention to the local form of Zf . We have already encountered regular points
of Zf , that is, points a around which Zf is homeomorphic to a domain in Cn−1. Regularity of a
point a ∈ Zf is assured if f vanishes at a of order exactly 1, see Corollary 4.2.2.

Suppose from here on that f vanishes of order k at a, we may again take a = 0 and normalize
relative to zn to obtain the local irreducible representation (4.5.3) for f . We will now consider
Zf purely as a set without regard to multiplicities. In that case it may be assumed that f is a
Weierstrass polynomial in zn of the form

f = W1 . . .Ws, (4.6.1)

where the factors are distinct and irreducible.

Theorem 4.6.2 (local form of the zero set). Let f be a Weierstrass polynomial in zn of degree k
that is either irreducible or equal to a product (4.6.1) of distinct irreducible Weierstrass polynomials
W1, . . . ,Ws. Then there is a neighborhood ∆(0, ρ) = ∆(0′, ρ′) ×∆1(0, ρn) of the origin in Cn in
which the zero set Zf may be described as follows. There exists a holomorphic function R(z′) 6≡ 0
on ∆(0′, ρ′) such that for every point z′ in ∆(0′, ρ′)− ZR, there are precisely k distinct points of
Zf in ∆(0, ρ) which lie above z′; all those points are regular points of Zf . For z′ in ZR some roots
of the equation f(z′, zn) = 0 in ∆1(0, ρn) will coincide. We say that the local zero set

Zf ∩∆(0, ρ)

is a k-sheeted complex analytic hypersurface above ∆(0′, ρ′) ⊂ Cn−1 which branches (and can have
nonregular points) only above the thin subset ZR of ∆(0′, ρ, ).

Proof. The Weierstrass polynomial f in zn of degree k (4.6.1) and its partial derivative

∂f

∂zn
=

s∑
i=1

W1 . . .Wi−1
∂W

∂zn
Wi+1 . . .Ws (4.6.2)

of degree k − 1 must be relatively prime in O′0[zn]. Indeed, none of the irreducible factor Wj of
f can divide ∂f/∂zn. This is so because Wj divides all the terms in the sum (4.6.2) with i 6= j, but
not the term with i = j: degree ∂Wj/∂zn < degWj .
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The greatest common divisor representation (4.5.2) for the ufd O′0[zn] now provides a relation

Sf + T
∂f

∂zn
= R = R(z′) (4.6.3)

relatively prime elements S and T in O′0[zn], degS < k − 1, degT < k, and a nonzero element
R(z′) in O′0. [A resultant R of f and ∂f/∂zn is also called a discriminant of f as a pseudopolynomial
in zn. The special case k = 1 is trivial, but fits in if we take S = 0, T = 1 to yield R = 1.]

Relation (4.6.3) may be interpreted as a relation among holomorphic functions on some polydisc
∆(0, r). We now choose ∆(0, ρ) as in auxiliary theorem 1. For any point b′ ∈ ∆(0′, ρ′), the equation

f(b′, zn) = 0 (4.6.4)

then has precisely k roots in ∆1(0, ρn), counting multiplicities. Suppose b′ is such that some of
these roots coincide, in other words, equation (4.6.4) has a root zn = c of multiplicity ≥ 2. Then

f(b′, c) = ∂f

∂zn
(b′, c) = 0, (4.6.5)

hence by (4.6.3), R(b′) = 0.
Conclusion: the k roots zn of the equation f(z′, zn) = 0 in ∆1(0, ρn) are all distinct whenever

R(z′) 6= 0 or z′ ∈ ∆(0′, ρ′) − ZR. The corresponding points (z′, zn) of Zf are regular: at those
points ∂f/∂zn 6= 0 because of (4.6.3); now see Corollary 4.2.2.

If R(b′) = 0, the k roots of (4.6.4) must satisfy T∂f/∂zn = 0, hence if T (b′, zn) 6≡ 0, (4.6.5)
must hold for some c ∈ ∆1(0, ρn). However, even then (b′, c) may be a regular point of Zf :

Example 4.6.3. For f(z) = z2
3 − z2

1z2 in O0(C3) we have ∂f/∂z3 = 2z3, hence

R(z′) = 2f(z)− z3∂f/∂z3 = −2z2
1z2

will be a resultant. The zero set Zf has two sheets over C2, given by z3 = ±z1
√
z2; the sheets meet

above ZR. The points of ZR have the forms z′ = (a, 0) and z′ = (0, b); the corresponding points
(a, 0, 0) and (0, b, 0) of Zf are of different character. Around (0, b, 0) with b 6= 0, Zf decomposes
into two separate zero sets that meet along the complex line z1 = z3 = 0. However, the points
(a, 0, 0) with a 6= 0 are regular for Zf , as is shown by the local representation z2 = z2

3/z
2
1 !

Theorem 4.6.2 has various important consequences such as the so-called “Nullstellensatz", cf.
exercises 4.17, 4.18.

Analytic Sets
A subset X of a domain D ⊂ Cn is called an analytic set if throughout D, it is locally the set of
common zeros of a family of holomorphic functions. [Since the rings Oa are Noetherian, one may
limit oneself to finite families.] A point a ∈ X is called regular if the intersection of X with a (small)
polydisc ∆(a, r) is homeomorphic to a domain in a space Ck; the number k is called the complex
dimension of X at a. By dimX one means the maximum of the dimensions at the regular points.

Taking D connected and f ∈ O(D), f 6≡ 0, the zero set Zf is an analytic set of complex
dimension n− 1. The set of the nonregular points of Zf is locally contained in the intersection of
the zero sets of two relatively prime holomorphic functions, in the preceding proof, f and ∂f/∂zn.
The nonregular points belong to an analytic set of complex dimension n− 2: locally, there are at
most a fixed number of nonregular points above each point of a zero set ZR in Cn−1. Cf. [22, 25].
In the case n = 2, Zf is a complex analytic surface (real dimension 2) and the local sets ZR in C
consist of isolated points; in this case, the nonregular points of Zf in D also lie isolated.
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4.7 Zero sets and removable singularities

For g ∈ O(D) g 6≡ 0, the zero set Zg ⊂ D ⊂ Cn is at the same time a singularity set: think of
h = 1/g on the domain D − Zg. However, we will see that Zg can not be the singularity set of
a bounded holomorphic function on D − Zg. For n = 1 this is Riemann’s theorem on removable
singularities in C. The latter is a consequence of the following simple lemma.

Lemma 4.7.1. A bounded, holomorphic function f on a punctured disc ∆1(0, ρ)− {0} in C has
an analytic extension to the whole disc ∆1(0, ρ).

Proof. In the Laurent series
∑∞
−∞ ckw

k for f(w) with center 0, all coefficients ck with negative
index must be zero. Indeed, for k < 0 and 0 < r < ρ.

ck =
∣∣∣∣ 1
2πi

∫
C(0,r)

f(w)w−k−1dw

∣∣∣∣ ≤ sup |f | · r|k| → 0 as r ↓ 0. (4.7.1)

Thus the Laurent series is actually a power series which furnishes the desired extension.

The corresponding Cn result is also called the Riemann removable singularities theorem:

Theorem 4.7.2. Let D be a connected domain in Cn and let Zg be the zero set of a nonzero
function g ∈ O(D). Let f be holomorphic on the domain Ω = D−Zg and bounded on a neighborhood
in Ω) of every point a ∈ Zg. Then f has an analytic extension F to the whole domain D.

Proof. Take n ≥ 2 and choose a ∈ Zg, then adjust the coordinate system so that a = 0 while g
vanishes at 0 of some finite order k relative to zn. Next choose ∆(0, ρ) ⊂ D such that f is bounded
on ∆(0, ρ)−Zg and g(0′, zn) 6= 0 for 0 < |zn| ≤ ρn, g(z′, zn) 6= 0 on ∆(0′, ρ′)×C(0, ρn), cf. auxiliary
theorem 1. For fixed z′ ∈ ∆(0′, ρ′), the function g(z′, zn) then has precisely k zeros w1(z′), . . . , wk(z′)
in ∆1(0, ρn) and no zero on C(0, ρn). By the hypothesis, f(z′, zn) will be holomorphic and bounded
on ∆1(0, ρn)− {w1, . . . , wk}. Hence by Riemann’s one-variable theorem, f(z′, zn) has an analytic
extension F (z′, zn) to the disc ∆1(0, ρn). Since F (z′, w) = f(z′, w) in particular for w ∈ C(0, ρn),
the one-variable Cauchy integral formula gives the representation

F (z) = F (z′, zn) = 1
2πi

∫
C(0,ρn)

f(z′, w)
w − zn

dw, zn ∈ ∆1(0, ρn), z′ ∈ ∆(0′, ρ′). (4.7.2)

How will F behave as a function of z = (z′, zn) ∈ ∆(0, ρ) ? The function f(z′, w) is holomorphic
and hence continuous on the set ∆(0′, ρ′)× C(0, ρn), on which g(z′, w) 6= 0. Thus the integrand
in (4.7.2) is continuous in (z, w) = (z′, zn, w) on the set ∆(0, ρ) × C(0, ρn). Moreover, for fixed
w ∈ C(0, ρn), the integrand is holomorphic in z = (z′, zn), cf. the proof at the beginning of Section
4.4. So it follows as usual from the holomorphy theorem for integrals 1.7.2 that F (z) is holomorphic
on ∆(0, ρ); naturally, F = f outside Zg on ∆(0, ρ).

We know now that f extends analytically to some polydisc ∆(a, ρ) around each point a ∈ Zg.
The uniqueness theorem will show that the various extensions F = Fa are compatible: if the
polydiscs ∆(a, ρ) and ∆(b, σ) for Fa and Fb overlap, the intersection contains a small ball of D−Zg
and there Fa = f = Fb, hence Fa = Fb throughout the intersection.

Remarks 4.7.3. In Theorem 4.7.2, the zero set Zg may be replaced by an aribtrary analytic set X
in D of complex dimension ≤ n− 1 [thus, a set X which is locally contained in the zero set of a
nonzero function, cf. 4.6]. If X has complex dimension ≤ n− 2, it will be a removable singularity
set for every holomorphic function on D −X. This is clear when n = 2, since an analytic set of
dimension 0 consists of isolated points. For the general case, see exercise 4.26.

Another remarkable result on removable singularities is Rado’s theorem, see exercises 4.27, 4.28.
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Figure 4.4.

4.8 Hartogs’ singularities theorem

Roughly speaking, the theorem asserts that singularity sets X in Cn of complex dimension n− 1
are zero sets of analytic functions. The setup is as follows, cf. Figure 4.4. The basic domain Ω will

Ω = Ω′ ×∆1(0, R),

where Ω′ is a connected domain in Cn−1. The subset X ⊂ Ω will be the graph of an arbitrary
function g : Ω′ → ∆1(0, R):

X = {z = (z′, zn) = (z′, w) : z′ ∈ Ω′, zn = w = g(z′)}.

We will say that a holomorphic function f on Ω−X becomes singular at the point a ∈ X [and
that a is a singular point for f ] if f has no analytic continuation to a neighborhood for a. Under a
mild restriction on X, a function f ∈ O(Ω−X) will either become singular everywhere on X or
nowhere on X:

Proposition 4.8.1. Let supK |g(z′)| = RK < R for every compact subset K ⊂ Ω′. [This is certainly
the case if g is continuous.] Let f in O(Ω − X) become singular at some point a ∈ X. Then f
becomes singular at every point of X and g is continuous.

Proof. Let E ⊂ Ω′ consist of all points z′ such that (z′, g(z′)) is a singular point for f(z′, w). Then
E is nonempty and closed in Ω′ and the restriction g | E is continuous. Indeed, let {z′ν} be any
sequence in E with limit b′ ∈ Ω′ and let c be any limit point of the sequence {g(z′ν)}. Then |c| ≤
lim sup|g(z′ν)| ≤ RK < R where K = {z′ν}∞1 ∪ {b′}. Thus (b′, c) belongs to Ω and as a limit point
of singular points, (b′, c) must be a singular point for f . Hence c = g(b′) and b′ ∈ E. The argument
shows that E is closed and that g | E is continuous at b′.

Using Hartogs’ continuity theorem 2.6.1 we can now show that the open set Ω′0 = Ω′ − E
is empty. Indeed, if Ω′0 is not empty, E and Ω′0 must have a common boundary point z′0 in the
connected domain Ω′. Since g | E is continuous at z′0, there is a polydisc ∆(z′0, r′) ⊂ Ω′ above which
the singular points (z′, g(z′)) of f have g(z′) very close to w0 = g(z′0). It follows that f(z′, w) is
analytic on a subdomain of Ω of the form

∆(z′0, r′)× {ρn < |w − w0| < rn} ∪D′0 ×∆1(w0, rn),

where D′0 = ∆(z′0, r′)∩Ω′0 is nonempty. But then f has an analytic continuation to the neighborhood
∆(z′0, r′) × ∆1(w0, rn) of (z′0, w0) ! This contradiction proves that E is all of Ω′ and that g is
continuous.
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Theorem 4.8.2. Let Ω, g and X be as described at the beginning of the Section. Suppose that
there is a holomorphic function f on Ω −X which becomes singular at every point of X. Then
g is holomorphic on Ω′, hence the singularity set X is the zero set of the holomorphic function
h(z) = zn − g(z′) in Ω.

Proof. We will sketch how to show that g is smooth; if one knows that g is of class C1, the recessed
edge theorem 3.5.2 may be used to prove that g is holomorphic, see part (v) below. The smoothness
proof depends on the smoothness of continuous functions that possess the mean value property
for circles or spheres: such functions are harmonic. In order to prove that a certain continuous
auxiliary function has the mean value property, it will first be shown that it has the sub mean value
property, in other words, that it is subharmonic. Readers who have not encountered subharmonic
functions before may wish to postpone the proof until they have studied Chapter 8.

(i) The function g is continuous. Indeed, let z′ → b′ in Ω′. Then one limit point of g(z′) must be
c = g(b′): the singular point (b′, g(b′)) can not be isolated. If there are other limit points w of g(z′),
they must have |w| = R, since |w| < R would imply that there would be more than one singular
point of f above b′. Thus for small ε > 0 there is a small polydisc ∆(b′, r′) such that for any z′
in it, either |g(z′)− c| ≤ ε or |g(z′)− c| ≥ 2ε. Denoting the corresponding subsets of ∆(b′, r′) by
E and Ω′0, respectively, the argument of the preceding proof shows that E is closed, that g | E is
continuous and that Ω′0 is empty.

(ii) The function –log |g(z′)− w| will be subharmonic in z′. We give a proof for n = 2, taking
g(0) = 0 and writing z instead of z′ for the time being. Working close to the origin, it will be shown
that the continuous function Ω′ → R ∪ {−∞} given by

Gw(z) = G(z, w) = − log |g(z)− w| (4.8.1)

is subharmonic in z around 0 whenever |w| = s is not too small and not too large. We have to
prove then that Gw has the sub mean value property for small r > 0:

G(z, w) ≤ 1
2π

∫ π

−π
G(z + reit, w)dt. (4.8.2)

For c 6= 0 fixed, w close to c and z near 0, [so that |g(z)| is small], one may repesent f(z, w) by a
power series in w − c with holomorphic coefficients ak(z):

f(z, w) =
∑
k≥0

ak(z)(w − c)k. (4.8.3)

Cf. Section 2.6: our function f is holomorphic on a neighborhood of the point (0, c) in C2.]
For fixed z, the point w = g(z) may be a singular point for f(z, w), but other singularities must

be as far away as the boundary of Ω. Hence if |c| is not too large, f(z, w) will be analytic in w (at
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least) for |w− c| < |g(z)− c|. Thus by the Cauchy-Hadamard formula for the radius of convergence
of a power series in one variable,

1/lim sup|ak(z)|1/k ≥ |g(z)− c|,

so that
A(z) def= lim sup

k→∞

1
k

log |ak(z)| ≤ − log |g(z)− c| = G(z, c). (4.8.4)

In the following, we will show that for b near 0,

A∗(b) def= lim sup
z→b

A(z) = lim
ρ↓0

sup
|z−b|<ρ

A(z)equals G(b, c). (4.8.5)

By the holomorphy of the coefficients ak(z), the functions (1/k) log |ak(z)| are subharmonic
around 0. There they are uniformly bounded from above, hence their sub mean value property
is inherited by the lim sup, A(z) in (4.8.4). [Use Fatou’s lemma.] In the same way, the sub mean
value property carries over to the lim sup A∗(b) in (4.8.5), considered as a function of b.

Now suppose for a moment that A∗(b) < G(b, c) for some b. Then there are small δ and ε > 0
such that A(z) < G(b, c)− 2δ for |z − b| < 2ε. At this stage we appeal to a lemma of Hartogs on
sequences of subharmonic functions with a uniform upper bound [exercise 8.31]. It implies that the
subharmonic functions (1/k) log |ak(z)| with lim sup < G(b, c)− 2δ must satisfy the fixed inequality

(1/k) log |ak(z)| < G(b, c)− δ for |z − b| < ε

for all k which exceed some index k0. By simple estimation, it would then follow that the series
in (4.8.3) is uniformly convergent on the product domain |z − b| < ε, |w − c| < (1 + δ)|g(b)− c|.
Thus f would have an analytic continuation to a neighborhood of the singular point (b, g(b)).

This contradiction shows that G(b, c) = A∗(b). Being continuous, it follows that G(b, c) is
subharmonic as a function of b.

(iii) Actually, − log |g(z′)− w| will be harmonic in z′. Indeed, since

(1/2π)
∫ π

π

log |ζ − seiθ|dθ = log s

whenever |ζ| < s, integration of (4.8.2) over a suitable circle |w| = s leads to the result

− log s = 1
2π

∫ π

−π
G(z, seiθ)dθ ≤ 1

4π2

∫ π

−π

∫ π

−π
G(z + reit, seiθ)dtdθ = − log s.

It follows that one must have equality in (4.8.2) for all small r > 0 and |w| = s. The resulting mean
value property implies that Gw(z) is harmonic and in particular also C∞ smooth, cf. Section 8.1
and exercise 8.14.

(iv) The function g is smooth. Indeed, by exponentiation it follows from (iii) that (g−w)(g−w)
is smooth for each w of absolute value s. Choosing w = ±s, subtraction will show that Re g is
smooth. The choices w = ±is will show that Im g is smooth.

(v) We finally show that g is holomorphic. Setting ϕ = Re(g − zn), ψ = Im(g − zn), our set X
is the intersection of the smooth real hypersurfaces V : ϕ = 0 and W : ψ = 0 in Ω. The gradients of
ϕ and ψ are linearly independent:

∂ϕ/∂xn = −1, ∂ϕ/∂yn = 0 while ∂ψ/∂xn = 0, ∂ψ/∂yn = −1.

Now the hypothesis of the theorem implies that the restriction of f to Ω0, the part of Ω where
min(ϕ,ψ) < 0, can not be continued analytically to a neighborhood of any point of X. Thus part
(ii) of the recessed edge theorem 3.5.2 shows that g is holomorphic, cf. exercise 3.19.

Remark 4.8.3. Hartogs’ original proof [Hartogs 1909] had different final steps, cf. exercises 4.32,
4.33 and [42].
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4.9 Exercises

Exercise 4.1. Suppose that f vanishes of order k ≥ 2 relative to zn at 0. Show that f need not
vanish of order k relative to z at 0.

Exercise 4.2. Carry out an invertible linear transformation of C3 in order to make f(z) = z1z2z3
vanish of order 3 relative to the new third coordinate at 0.

Exercise 4.3. Let f and g be holomorphic at the origin of Cn and not identically zero. Prove
that f and g can be simultaneously normalized relative to zn at 0. (A single linear coordinate
transformation will normalize both functions.)

Exercise 4.4. Determine a polydisc ∆(0, ρ) as in Auxiliary Theorem 1 for the function f(z) =
2z2

1 + z2z3 + 2z2
3 + 2z3

3 on C3. How many zeros does f(z′, z3) have in ∆1(0, ρ3) for z′ ∈ ∆(0′, ρ′)?

Exercise 4.5. Apply Weierstrass’s factorization theorem to f(z) = z1z2z3 + z3(ez3 − 1) in O0(C3).
[Determine both W (z′, z3) and E(z′, z3).]

Exercise 4.6. Prove Weierstrass’s division formula (4.4.3). [Defining Q as in formula (4.4.4), show
that

R(z) def= F (z)−Q(z)W (z) = 1
2πi

∫
C(0,ρn)

F (z′, w)
W (z′, w)

W (z′, w)−W (z′, zn)
w − zn

dw,

z ∈ ∆(0, ρ)
(4.9.1)

is a pseudopolynomial in zn of degree< k = degW.]

Exercise 4.7. Let F and W be as in Weierstrass’s division theorem. Prove that there is only one
holomorphic representation F = QW + R around 0 with a pseudopolynomial R of degree< k =
degW . [If also F = Q1W +R1, then (Q1 −Q)W = R−R1.]

Exercise 4.8. Suppose that P = QW in O0 where P is a pseudopolynomial in zn and W a
Weierstrass polynomial in zn. Prove that Q is a pseudopolynomial in zn.

Exercise 4.9. Prove that the pseudopolynomial z2
2 − z2

1 in z2 is divisible by the pseudopolynomial
z1z

2
2 − (1 + z2

1)z2 + z1 in O0, but that the quotient is not a pseudopolynomial.

Exercise 4.10. Prove that a power series f in O0 has a multiplicative inverse in O0 if and only if
f(0) 6= 0.

Exercise 4.11. Characterize the irreducible and the reducible elements in O0(C1).

Exercise 4.12. Prove directly that O0(C1) is a unique factorization domain.

Exercise 4.13. Determine a resultant of f(z) = z2
3 − z1 and g(z) = z2

3 − z2 as elements of O′0[z3].

Exercise 4.14. Let A be a ufd. Prove that nonconstant polynomials f and g in A[x] have
a (nonconstant) common factor in A[x] if and only if there are nonzero polynomials S and T ,
degS < deg g, deg T < deg f such that Sf + Tg = 0.

Exercise 4.15. The Sylvester resultant R(f, g) of two polynomials

f(x) = a0x
k + . . .+ ak, g(x) = b0x

m + . . .+ bm
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with coefficients in a commutative ring A with identity is defined by the following determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 · · · ak
. . . . . .

a0 · · · ak
b0 · · · bm

. . . . . .
b0 · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m rows

k rows

Denote the cofactors of the elements in the last column by c0, . . . , cm−1, d0, . . . , dk−1 and set

c0x
m−1 + . . .+ cm−1 = S(x), d0x

k−1 + . . .+ dk−1 = T (x).

Prove that Sf + Tg = R(f, g). [Add to the last column xk+m−1 times the first, plus xk+m−2 times
the second, etc. Expand.]

Exercise 4.16. Describe the zero sets of the Weierstrass polynomials z2
3 − z1z2 and z4

3 − z1z2z3
around 0 in C3. Identify the nonregular points.

Exercise 4.17. Let f and g be relatively prime in O0 and normalized relative to zn. Prove that
around 0, the zero sets Zf and Zg can coincide only above the zero set ZR of a nonzero holomorphic
function R(z′), defined around 0′ in Cn−1.

Exercise 4.18. (Nullstellensatz) Let f be irreducible over O0 with f(0) = 0 and suppose that
g ∈ O0 vanishes everywhere on Zf around 0. Prove that f is a divisor of g in O0. Extend to the
case where f is a product of pairwise relatively prime irreducible factors.

Exercise 4.19. Let f and g be relatively prime in O0. Prove that they are also relatively prime in
Oa for all points a in a neighborhood of 0.

Exercise 4.20. Describe the ideals in O0(C1) and verify that O0(C1) is a Noetherian ring.

Exercise 4.21. Prove that an analytic set is locally the set of common zeros of finitely many
holomorphic functions.

Exercise 4.22. Let Ω′, Ω, g and X be as at the beginning of Section 4.8. Let f be holomorphic
on Ω and zero free on Ω−X. Suppose that f vanishes at a point a ∈ X. Prove (without using the
results of Section 4.8) that f = 0 everywhere on X and that g is holomorphic on Ω′.

Exercise 4.23. Let X be an analytic subset of a connected domain D ⊂ Cn of complex dimension
≤ n − 1. Let f be holomorphic on Ω = D −X and bounded on a neighborhood (in Ω) of every
point a ∈ X. Prove that f has an analytic extension F to the whole domain D.

Exercise 4.24. Use the preceding removable singularities theorem to verify that Ω = D −X is
connected. [If Ω = Ω0 ∪ Ω1 with disjoint open Ωj and f = 0 on Ω0, f = 1 on Ω1, then . . . ].

Exercise 4.25. Let f be continuous on D ⊂ C2 and holomorphic on D − V , where V is a real
hyperplane, for example, {y1 = 0}. Prove that f is holomorphic on D.

Exercise 4.26. (An analytic singularity set in Cn of complex dimension ≤ n − 2 is removable)
Let X be an analytic subset of D ⊂ Cn which is locally contained in the set of common zeros
of two relatively prime holomorphic functions. Suppose that f is holomorphic on D −X. Prove
that f has an analytic extension to D. Begin by treating the case n = 2! [Taking a ∈ X equal to

82



0, one may assume that X is locally contained in, or equal to, Zg ∩ Zh, where g is a Weierstrass
polynomial in zn with coefficients in z′ = (z1, . . . , zn−1) and h (obtained via a resultant) a
Weierstrass polynomial in zn−1 with coefficients in z′′ = (z1 . . . , zn−2). Choose ρ > 0 such that
g(z′, zn) 6= 0 for |zn| = ρn, z

′ ∈ ∆(0′, ρ′) and h(z′′, zn−1) 6= 0 for |zn−1| = ρn−1, z
′′ ∈ ∆(0′′, ρ′′).

Extend f(z) = f(z′′, zn−1, zn) analytically to the closed bidisc |zn−1| ≤ ρn−1, |zn| ≤ ρn for each
z′′ ∈ ∆(0′′, ρ′′). How can one represent the analytic extension F (z′′, zn−1, zn)? Show that F (z) is
holomorphic on ∆(0, ρ).]

Exercise 4.27. (Special case of Rado’s theorem) Let f be continuous on the closed disc ∆(0, 1) ⊂ C
and holomorphic on Ω = ∆(0, 1)− Zf . Let F be the Poisson integral of f on the disc. Prove that

(i) F = f on Ω. [Take |f | ≤ 1 and apply the maximum principle to harmonic functions such as
Re (F − f) + ε log |f | on Ω.]

(ii) F provides an analytic extension of f to ∆(0, 1). [G = DF = ∂F/∂z will be antiholomorphic:
DG = ∂G/∂z = ∂2F/∂z∂z = 0 and on Ω, . . .]

Exercise 4.28. (Rado’s removable singularities theorem) Let Ω ⊂ D ⊂ Cn be open and suppose
that f is holomorphic on Ω and such that f(z)→ 0 whenever z tends to a boundary point ζ of Ω
in D. Prove that f has an analytic extension to D, obtained by setting f = 0 on D − Ω.

Exercise 4.29. Let D be a connected domain in Cn, let V be a complex hyperplane intersecting D
and let f be holomorphic on D−V . Give two proofs for the following assertion: If f has an analytic
continuation to a neighborhood of some point a ∈ V ∩D, then f has an analytic continuation to
the whole domain D.

Exercise 4.30. For D ⊂ C2 and X = D ∩ R2, let f be analytic on D −X. Prove that f has an
analytic extension to D. [One approach is to set z1 + iz2 = z′1, z1 − iz2 = z′2, so that X becomes a
graph over C.]

Exercise 4.31. Proposition 4.8.1 has sometimes been stated without the restriction supK |g(z′)| =
RK < R. Show by an example that some restriction is necessary.

Exercise 4.32. (Proof of Hartogs’ theorem for n = 2 without appeal to the recessed edge theorem)
For z in a small neighborhood of 0, let g = g(z) have its values close to 0. Suppose one knows that
− log |g − w| is harmonic in z for every w in a neighborhood of the circle C(0, s). Deduce that

gzz
g − w

− gzgz
(g − w)2 = constant.

Conclude that gzz = 0 and gzgz = 0, so that either Dg = gz ≡ 0 or Dg ≡ 0.

Exercise 4.33. (Continuation) Rule out the possibility Dg ≡ 0 in the proof of Hartog’ theorem
for n = 2 by a coordinate transformation, (z, w) = (z, z + w̃). [The singularity set X becomes
w̃ = g̃(z) = g(z)− z.]
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Chapter 5

Holomorphic mappings and complex
manifolds

Holomorphic mappings ζ = f(z) from a connected domain D in a space Cm to some space Cp are a
useful tool in many problems. They are essential for the definition and study of complex manifolds
[Section 5.6–5.8]. Holomorphic maps may be defined by a system of equations

ζj = fj(z1, . . . , zm), j = 1, . . . , p with fj ∈ O(D). (5.0.1)

It is a basic property that compositions of such maps are again holomorphic, cf. exercise 1.5.
One often encounters 1-1 holomorphic maps. In the important case m = p = n, such a map

will take D ⊂ Cn onto a domain D′ in Cn, and the inverse map will also be holomorphic (the map
f is “biholomorphic”), see Section 5.2. In this case the domains D and D′ are called analytically
isomorphic, or (bi)holomorphically equivalent; the classes of holomorphic functions O(D) and O(D′)
are closely related.

In C (but not in Cn), there is a close connection between 1-1 holomorphic and conformal
mappings. A famous result, the Riemann mapping theorem, asserts that any two simply connected
planar domains, different from C itself, are conformally or holomorphically equivalent. However, in
Cn with n ≥ 2, different domains are rarely holomorphically equivalent, for example, the polydics
and the ball are not. Similarly, Cn domains rarely have nontrivial analytic automorphisms. However,
if they do, the automorphism groups give important information. We will discuss some of the
classical results of H. Cartan on analytic isomorphisms in Cn which make it possible to determine
the automorphism groups of various special domains [Section 5.3, 5.4].

One-to-one holomorphic maps continue to be an active subject of research. In recent years the
main emphasis has been on boundary properties of such maps. Some of the important developments
in the area are indicated in Section 5.9; see also the references given in that Section.

5.1 Implicit mapping theorem

The level set (where f =constant) or zero sets of holomorphic maps (5.0.1) are a key to their study
and applications. The level set of f through the point a ∈ D is the solution set of the equation
f(z) = f(a) or of the system

0 = fj(z)− fj(a) =
m∑
k=1

∂fj
∂zk

(a)(zk − ak) + higher order terms, j = 1, . . . , p. (5.1.1)

The interesting case is that where the number m of unknowns is at least as large as the number
p of equations.
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An approximation to the level set is provided by the zero set of the linear part or differential
mapping,

df

a

: dfj =
m∑
k=1

∂fj
∂zk

(a)dzk, j = 1, . . . , p. (5.1.2)

We will assume that our holomorphic map f is nonsingular at a. By that one means that the
linear map df


a
is nonsingular, that is, it must be of maximal rank. Taking m ≥ p, the (rectangular)

Jacobi matrix or Jacobian

Jf (a) def=
[
∂fj
∂zk

(a)
]
, j = 1, . . . , p; k = 1, . . . ,m

thus will have rank equal to p. The solution set of the linear system df

a

= 0 will then be a linear
subspace of Cm of complex dimension n = m− p.

We now turn to a more precise description of the level set of f when m − p = n ≥ 1. It is
convenient to renumber the variables zk in such a way that the final p × p submatrix of Jf (a)
becomes invertible. Renaming the last p variables w1, . . . , wp and setting a = 0, f(a) + 0, the
system (5.1.1) for the level set becomes

fj(z, w) = fj(z1, . . . , zn, wn, . . . , wp) = 0, j = 1, . . . , p (5.1.3)

with fj(0) = 0 and

det J(0) def= det
[
∂fj
∂wk

(0)
]
6= 0. (5.1.4)

Under these conditions one has the following extension of the Implicit function theorem 4.2.1:

Theorem 5.1.1 (Implicit mapping theorem). Let f = (f1, . . . , fp), fj = fj(z, w) be a holomorphic
map of the polydisc ∆(0, r) ⊂ Cnz × Cpw to Cp such that

f(0) = 0, det J(0) 6= 0.

Then there exist a polydisc ∆(0, ρ) = ∆n(0, ρ′)×∆p(0, ρ′′) in ∆(0, r) and a unique holomorphic
map w = ϕ(z) = (ϕ1, . . . , ϕp) from ∆n(0, ρ′) ⊂ Cnz to ∆p(0, ρ′′) ⊂ Cpw such that ϕ(0) = 0 and

f(z, w) = 0 at a point (z, w) ∈ ∆(0, ρ)

if and only if
w = ϕ(z) with z ∈ ∆n(0, ρ′).

Corollary 5.1.2. (Local form of the zero set for the map f). In ∆(0, ρ) ⊂ Cn+p, the zero set of
the holomorphic map f is the graph of the holomorphic map ϕ on ∆n(0, ρ′). Equivalently, the zero
set of f in ∆(0, ρ) is the image of the 1-1 holomorphic map ψ = (id, ϕ) on ∆(0, ρ′) ⊂ Cn. This
map is bicontinuous, hence the zero set of f around the origin is homeomorphic to a domain in Cn
and hence has complex dimension n.

Proof. In the following, a map ϕ from ∆n(0, ρ′) to ∆p(0, ρ′′) will be loosely referred to as a map
with associated polydisc ∆n(0, ρ′)×∆p(0, ρ′′).

We will use the Implicit function theorem 4.2.1 and apply induction on the number p of
equations (5.1.3). By hypothesis (5.1.4) at least one of the partial derivatives Dpfj = ∂fj/∂wp, j =
1, . . . , p must be 6= 0 at the origin, say Dpfp(0) 6= 0. One may then solve the corresponding equation

fp(z, w1, . . . , wp) = 0
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for wp: around 0, it will have a holomorphic solution

wp = χ(z, w′) = χ(z, w1, . . . , wp−1) (5.1.5)

with χ(0) = 0 and associated polydisc ∆n+p−1(0, s′)×∆1(0, s′′).
Substituting the solution (5.1.5) into the other equations, one obtains a new system of p− 1

holomorphic equations in p− 1 unknown functions on some neighborhood of the origin:

gj(z, w′)
def= fj(z, w′, χ(z, w′)) = 0, j = 1, . . . , p− 1 (5.1.6)

with gj(0) = 0. The new Jacobian J ′ will have the elements

∂gj
∂wk

= ∂fj
∂wk

+ ∂fj
∂wp

∂χ

∂wk
= ∂fj
∂wk

− ∂fj
∂wp

(
∂fp
∂wk

/
∂fp
∂wp

)
j, k = 1, . . . , p− 1. (5.1.7)

In the final step we have used the identity fp(z, w′, χ(z, w′)) = 0 to obtain the relations

∂fp
∂wk

+ ∂fp
∂wk

∂χ

∂wk
≡ 0, k = 1, . . . , p− 1.

By (5.1.7) the k-th column of J ′ is obtained by taking the k-th column of J and subtracting
from it a multiple of the final column of J . The zeros which then appear in the last row of J are
omitted in forming J ′, but taken into account for the evaluation of det J :

det J = (det J ′) · ∂fp
∂wp

.

Conclusion: det J ′ 6= 0 at the origin.
If we assume now that the theorem had been proved already for the case of p− 1 equations in

p− 1 unknown functions, it follows that the new system (5.1.6) has a holomorphic solution w′ =
(ϕ1, . . . , ϕp−1) around 0 which vanishes at 0 and has associated polydisc ∆n(0, σ′)×∆p−1(0, σ′′).
Combination with (5.1.5) finally furnishes a holomorphic solution w = (ϕ1, . . . , ϕp) of our sys-
tem (5.1.3) around 0 which vanishes around 0 and has associated polydisc ∆n(0, ρ′)×∆p(0, ρ′′).
That the map ϕ is unique follows from the observation that the corresponding map ψ = (id, ϕ) on
∆n(0, ρ′) is uniquely determined by the zero set of f in ∆(0, ρ).

Remarks 5.1.3. Theorem 5.1.1 may also be derived from a corresponding implicit mapping theorem
of real analysis. Indeed, the system of p holomorphic equations (5.1.3) in p unknown complex
functions wj = uj + ivj of z1, . . . , zn can be rewritten as a system of 2p real equations in the 2p
unknown real functions uj , vj of x1, y1, . . . , xn, yn. The new Jacobian JR(0) will also have nonzero
determinant, cf. exercise 5.3, hence the real system is uniquely solvable and will furnish smooth
solutions uj(x, y), vj(x, y) around the origin. Writing ϕj(x) = uj(z) + ivj(z), the identities

fj(z1, . . . , zn, ϕ1(z), . . . , ϕp(z)) ≡ 0, j = 1, . . . , p

may be differentiated with respect to each zν to show that the functions ϕj satisfy the Cauchy-
Riemann equations, hence they are holomorphic.

Actually, the contemporary proofs of the real analysis theorem involve successive approximation
or a fixed point theorem, and such techniques may be applied directly to the holomorphic case as
well, cf. exercise 5.7.
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5.2 Inverse maps

We first prove a theorem on the existence of a local holomorphic inverse when the given map has
nonvanishing Jacobi determinant. The derivation will be based on the preceding result, but it will
be more natural now to interchange the roles of z and w.

Theorem 5.2.1 (local inverse). Let g be a holomorphic map of a neighborhood of 0 in Cn to Cn
such that g(0) = 0 and det Jg(0) 6= 0. Then there is a (connected open) neighborhood U of 0 on
which g is invertible. More precisely, there is a holomorphic map h of a Cn neighborhood V of 0
onto U which inverts g |U :

w = g(z) for z ∈ U ⇐⇒ z = h(w) for w ∈ V.

Proof. Letting w vary over all of Cn and z over a suitable neighborhood of 0 in Cn, the equation

ζ = f(w, z) def= w − g(z) [ or ζj = wj − gj(z), ∀j]

will define a holomorphic map of a polydisc ∆(0, r) in C2n to Cn. This map will satisfy the conditions
of the Implicit mapping theorem 5.1.1 with p = n and (w, z) instead of (z, w):

f(0) = 0, det
[
∂fj
∂zk

(0)
]

= ±det
[
∂gj
∂zk

(0)
]
6= 0.

Hence there are a polydisc ∆(0, ρ) = ∆n(0, ρ′)×∆n(0, ρ′′) in Cnw × Cnz and a unique holomorphic
map z = h(w) from ∆n(0, ρ′) to ∆n(0, ρ′′) such that h(0) = 0 and

f(w, z) ≡ w − g(z) = 0 for (w, z) ∈ ∆(0, ρ)
⇐⇒ z = h(w) for w ∈ ∆n(0, ρ′).

(5.2.1)

We still have to identify suitable sets U and V . For U one may take any (connected open)
neighborhood of 0 in ∆n(0, ρ′′) for which V def= g(U) belongs to ∆n(0, ρ′). Indeed, for such a choice
of U and any z ∈ U, the point (g(z), z) lies in ∆(0, ρ), hence by (5.2.1) z = h ◦ g(z), so that
h | V is the inverse of g | U and conversely. Finally, by the arrow pointing to the left, g = h−1 on
h(∆n(0, ρ′)), hence since h is continuous, V = h−1(U) will be open.

We can now prove the fundamental result that a 1-1 holomorphic map in Cn (with n-dimensional
domain) is biholomorphic, that is, the inverse is also holomorphic ( Clements1912, [14]):

Theorem 5.2.2 (Holomorphy of global inverse). Let Ω ⊂ Cn be a connected domain and let
w = f(z) be a 1-1 holomorphic map of Ω onto a set Ω′ in Cn. Then Ω′ is also a connected domain
and the Jacobi determinant, det Jf (z) is different from zero throughout Ω, hence f−1 will be a
holomorphic map of Ω′ onto Ω.

Proof. The proof is a nice application of the local theory of zero sets and will use induction on the
dimension n. In view of Theorem 5.2.1 we need only show that det Jf (a) 6= 0, ∀a ∈ Ω; it will follow
that Ω′ is open. Whenever convenient, we may take a = f(a) = 0.

(i) for n = 1 it is well known that the map w = f(z) is 1-1 around the origin (if and) only if
f ′(0) 6= 0. Indeed, if

f(z) = bzk + higher order terms, b 6= 0, k ≥ 2,

the f(z) will assume all nonzero values c close to 0 at k different points z near the origin. Cf. the
proof of the Open mapping theorem 1.8.1; the k roots will be distinct because f ′(z) cannot vanish
for small z 6= 0.
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(ii) Now the induction step – first an outline. We have to prove that the analytic function
det Jf (z) on Ω ⊂ Cn, n ≥ 2 is zero free. Supposing on the contrary that for our 1-1 map f , the
zero set Z = Z(det Jf ) is nonempty, the induction hypothesis will be used to show that all elements
of the matrix Jf must vanish on Z. From this it will be derived that f=constant on Z around the
regular points, contradicting the hypothesis that f is 1-1.

For simplicity we focus on the typical case n = 3, assuming the result for n = 2. Thus, let f :

wj = fj(z1, z2, z3), j = 1, 2, 3 (5.2.2)

be a 1-1 holomorphic map on Ω ⊂ C3, 0 ∈ Ω, with f(0) = 0 and suppose that

det Jj =

∣∣∣∣∣∣
D1f1 D2f1 D3f1
D1f2 D2f2 D3f2
D1f3 D2f3 D3f3

∣∣∣∣∣∣ = 0 for z = 0 (5.2.3)

(a) We first assume that the Jacobi matrix Jj(0) contains a nonzero element; renumbering
coordinates we may take D3f3(0) 6= 0. Replacing wi by wi − ciw3 with suitable ci, i = 1, 2 we can
ensure that for the representation of our map, D3fi(0) = 0, i = 1, 2. Then by (5.2.3) also∣∣∣∣D1f1 D2f1

D1f2 D2f2

∣∣∣∣ = 0 for z = 0. (5.2.4)

Around the origin the zero set Z(f3) will be the graph of a holomorphic function z3 = ϕ(z1, z2)
with ϕ(0) = 0 [Implicit function theorem 4.2.1]. The restriction of f to Z(f3) must be 1-1; around
0 this restriction is given by

wi = hi(z1, z2) def= fi(z1, z2, ϕ(z1, z2)), i = 1, 2; w3 = 0.

It follows that the holomorphic map h must be 1-1 around 0 ∈ C2, hence by the induction hypothesis,
det Jh(0) 6= 0. However, since D3fi(0) = 0,

Djhi(0) = Djfi(0) +D3fi(0)Djϕ(0) = Djfi(0), i, j = 1, 2

so that by (5.2.4), det Jh(0) = 0. This contradiction proves that all elements in Jf (0) must vanish.
(b) By the preceding argument, all elements Dkfj of the Jacobian Jf must vanish at every point

of the zero set Z = Z(det Jf ) in Ω. This zero set can not be all of Ω, for otherwise Dkfj ≡ 0, ∀j, k
and then f would be constant on Ω, hence not 1-1.

Thus det Jf 6≡ 0 and the zero set Z will contain a regular point a [cf. Theorem 4.6.2]. By suitable
manipulation we may assume that Z is the graph of a holomorphic function z3 = ψ(z1, z2) around
a. Then the restriction f | Z is locally given by

wi = ki(z1, z2) def= fi(z1, z2, ψ(z1, z2)), i = 1, 2, 3.

However, the derivatives Djki will all vanish around a′ = (a1, a2). Indeed, they are linear combina-
tions of Djfi and D3fi on Z, hence equal to zero. The implication is that k=constant around a′
hence f | Z is constant around a, once again a contradiction.

The final conclusion is that det Jf 6= 0 throughout Ω, thus completing the proof for n = 3. The
proof for general n is entirely similar.

Remarks 5.2.3. Let us first consider holomorphic maps f from Ω ⊂ Cm to Ω′ ⊂ Cp. In the 1-1 case
such a map f is biholomorphic if p = m, but if p > m, the inverse map need not be holomorphic
on f(Ω) [it need not even be continuous!], cf. exercise 5.9.

For p = m biholomorphic maps f : Ω→ f(Ω) are examples of so-called proper maps. A map
f : Ω→ Ω′ is called proper if for any compact subset K ⊂ Ω′ the pre-image f−1(K) is compact
in Ω. When Ω and Ω′ are bounded, this means that for any sequence of points {z(ν)} in Ω which
tends to the boundary ∂Ω, the image sequence {f(z(ν))} must tend to the boundary ∂Ω′.
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5.3 Analytic isomorphisms I

In Sections 5.3 and 5.4, D will always denote a connected domain in Cn.

Definition 5.3.1. A 1-1 holomorphic (hence biholomorphic) map of D onto itself is called an
(analytic) automorphism of D. The group of all such automorphisms is denoted by AutD.

Domains that are analytically isomorphic must have isomorphic automorphism groups. Indeed,
if f establishes an analytic isomorphism of D onto D′ ⊂ Cn and h runs over the automorphisms of
D, then f ◦ h ◦ f−1 runs over the automorphisms of D′. H. Cartan’s 1931 theorem below will make
it possible to determine the automorphism groups of some simple domains and to establish the
non-isomorphy of certain pairs of domains, cf. Section 5.4.

Examples 5.3.2. What are the automorphisms f of the unit disc ∆(0, 1) in C? Suppose first that
f(0) = 0. Schwarz’s lemma will show that such an automorphism must have the form

f(z) = eiθz for some θ ∈ R.

[Indeed, by the maximum principle |f(z)/z| must be bounded by 1 on ∆ and similarly, using
the inverse map, |z/f(z)| ≤ 1. Thus |f(z)/z| = 1, so that f(z)/z must be constant.]

There also are automorphisms f that take the origin to an arbitrary point a ∈ ∆(0, 1), or that
take such a point a to 0. An example of the latter is given by

f(z) = z − a
1− az . (5.3.1)

[Formula (5.3.1) defines a 1-1 holomorphic map on C− {1/a} and |f(z)| = 1 for |z| = 1, hence
|f(z)| < 1 for |z| < 1. Every value w ∈ ∆(0, 1) is taken on by f on ∆(0, 1).]

On the unit bidisc ∆2(0, 1) = ∆(0, 0; 1, 1) in C2 the formulas

wj = gj(z) = zj − aj
1− ajzj

, j = 1, 2 (5.3.2)

define an automorphism that carries a = (a1, a2) ∈ ∆2(0, 1) to the origin.

Examples 5.3.3. The unitary transformations of Cn are the linear transformations

w = Az or wj =
n∑
k=1

ajkzk, j = 1, . . . , n

that leave the scalar product invariant [and hence all norms and all distances]:

(Az,Az′) = (z,ATAz′) = (z, z′), ∀z, z′.

[Thus they may also be described by the condition A
T
A = In or AT = A−1.] In particular

|Az| = |z|, ∀z: unitary transformations define automorphisms of the unit ball B(0, 1) in Cn.
There are also automorphisms of the ball that carry an arbitrary point a ∈ B(0, 1) to the origin.

First carrying out a suitable unitary transformation, it will be sufficient to consider the case where
a = (c, 0, . . . , 0) with c = |a| > 0. If n = 2 one may then take

w1 = z1 − c
1− cz1

, w2 = (1− c2) 1
2

1− cz1
z2. (5.3.3)

Cf. also exercises 5.21, 5.22 and [58].
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Theorem 5.3.4. Let D ⊂ Cn be bounded and let w = f(z) be a holomorphic map of D into itself
with fixed point a : f(a) = a. Suppose furthermore that the Jacobian Jf (a) is equal to the n × n
identity matrix In, so that the development of f around a can be written in vector notation as

f(z) = a+ (z − a) + P2(z − a) + . . .+ Ps(z − a) + . . . ,

where Ps(ζ) is a vector [n-tuple] of homogeneous polynomials Psj in ζ1, . . . , ζn of degree s. Then f
is the identity map:

f(z) ≡ z.

Proof. The essential idea of the proof is to iterate the map f . The iterates f ◦ f, f ◦ f ◦ f, . . . will
also be holomorphic maps D → D with fixed point a. Taking a = 0 as we may, the components of
f become

fj(z) =
∑
α≥0

c(j)α zα = zj + P2j(z) + . . .+ Psj(z) + . . . ,

where Psj is a homogeneous polynomial of degree s. We choose positive vectors r = (r1, . . . , rn)
and R = (R1, . . . , Rn) such that

∆(0, r) ⊂ D ⊂ ∆(0, R).

Then fj will in particular be holomorphic on ∆(0, r) and |fj | will be bounded by Rj . Hence by the
Cauchy inequalities 1.6.5:

|c(j)α | ≤ Rj/rα, ∀α, j = 1, . . . , n. (5.3.4)

Now let s be the smallest integer ≥ 2 such that

f(z) = z + Ps(z) + h(igher) o(rder) t(erms)

with Ps 6≡ 0 [if there is no such s we are done]. Then the composition f ◦ f has the expansion

f ◦ f(z) = f(z) + Ps ◦ f(z) + h.o.t.

= z + Ps(z) + h.o.t.+ Ps(z) + h.o.t.

= z + 2Ps(z) + h.o.t.

(5.3.5)

[It is convenient to use components and to begin with the cases n = 1 and n = 2.] Quite generally,
the k times iterated map will have the expansion

f◦k(z) = f ◦ f ◦ . . . ◦ f(z) = z + kPs(z) + h.o.t.

[Use induction.] This is also a holomorphic map of D into itself, hence inequality (5.3.4) may be
applied to the coefficients in kPsj :

|kc(j)α | ≤ Rj/rα, |α| = s; j = 1, . . . , n; k = 1, 2, . . . .

The conclusion for k →∞ is that Ps ≡ 0 and this contradiction shows that f(z) ≡ z.

5.4 Analytic isomorphisms II: circular domains

Definition 5.4.1. D ⊂ Cn is called a circular domain if a ∈ D implies that eiθa = (eiθa1, . . . , e
iθan)

belongs to D for every real number θ.
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For a 6= 0, the points z = eiθa, θ ∈ R for a circle with center 0 in the complex line through 0
and a. (Circular domains need not be multicircular!) Circular domains admit the one-parameter
family of automorphisms {kθ}, given by the formula

kθ(z) = eiθz, z ∈ D. (5.4.1)

Observe that linear mappings commute will transformations kθ:

Akθ(z) = Aeiθz = eiθAz = kθ(Az). (5.4.2)

The proof of the main theorem will depend on the following fact:

Lemma 5.4.2. Linear mappings are the only holomorphic mappings f = (f1, . . . , fn) of a neigh-
borhood of 0 in Cn that commute with all kθ’s.

Proof. Indeed, suppose that

f(eiθz) ≡ eiθf(z) or fj(eiθz) ≡ eiθfj(z), ∀j.

Expanding fj(z) =
∑
α≥0 bαz

α, it follows that

fj(eiθz) =
∑

bα(eiθz1)α1 . . . (eiθzn)αn =
∑

bαe
i|α|θzα ≡ eiθ

∑
bαz

α,

hence by the uniqueness of the power series representation,

(ei|α|θ − eiθ)bα = (ei(|α|−1)θ − 1)eiθbα = 0.

If this holds for all θ’s [or for a suitable subset!], the conclusion is that bα = 0 whenever |α| 6= 1,
and then fj is linear.

Theorem 5.4.3. Let D and D′ be bounded circular domains in Cn containing the origin. Suppose
that f = (f1, . . . , fn) is an analytic isomorphism of D onto D′ such that f(0) = 0. Then the map f
must be linear:

fj(z) = aj1z1 + . . .+ ajnzn, j = 1, . . . , n.

Proof. The proof will involve a number of holomorphic maps ϕ [of a neighborhood of 0 in Cn to
Cn] with ϕ(0) = 0. We will represent the differential or linear part of such a ϕ at the origin by

dϕ = dϕ
∣∣
0 : wj =

n∑
k=1

∂ϕj
∂zk

(0)zk.

Observe that such linear parts obey the following rules:

d(ϕ ◦ ψ) = dϕ ◦ dψ, dϕ−1 ◦ dϕ = d(ϕ−1 ◦ ϕ) = id, dkθ = kθ (5.4.3)

[cf. (5.4.1); the differential of a linear map is the map itself].
To the given analytic isomorphism f we associate the auxiliary map

g = k−θ ◦ f−1 ◦ kθ ◦ f, θ ∈ R fixed. (5.4.4)

This will be an automorphism of D with g(0) = 0. Linearization gives

dg = dk−θ ◦ df−1 ◦ dkθ ◦ df = k−θ ◦ kθ ◦ df−1 ◦ df = id,
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because kθ commutes with linear maps. Thus the development of g around the origin has the form

g(z) = z + P2(z) + h.o.t.

Applying Theorem 5.3.4 to g we find that g(z) ≡ z or g = id. Returning to the definition of
g (5.4.4), the conclusion is that

f ◦ kθ = kθ ◦ f, ∀θ ∈ R,

hence by Lemma 5.4.2, f is linear.

As an application one may verify a classical result of Poincaré, [47]:

Theorem 5.4.4. The unit polydisc ∆(0, 1) and the unit ball B(0, 1) in C2 are not analytically
isomorphic.

Proof. Suppose that f is an analytic isomorphism of ∆ onto B. It may be assumed that f(0) = 0.
Indeed, if f initially carried ζ ∈ δ to 0 in B, we could replace f by f ◦g−1 where g is an automorphism
of ∆ that takes ζ to 0, cf. (5.3.1).

Theorem 5.4.3 now shows that f = (f1, f2) must be linear:

f1(z) = az1 + bz2, f2(z) = cz1 + dz2.

Here |fj(z)| must be < 1 for |zν | < 1. Setting z1 = reit and z2 = r, it follows for r ↑ 1 and suitable
choices of t that

|a|+ |b| ≤ 1, |c|+ |d| ≤ 1. (5.4.5)

We also know that z → ∂∆ must imply f(z)→ ∂B [the map f must be proper, cf. 5.2.3]. Setting
z = (r, 0) or (0, r) it follows for r ↑ 1 that

|a|2 + |c|2 = 1, |b|2 + |d|2 = 1. (5.4.6)

Combination of (5.4.6) and (5.4.5) shows that

2 = |a|2 + |c|2 + |b|2 + |d|2 ≤ (|a|+ |b|)2 + (|c|+ |d|)2 ≤ 2,

hence |a||b|+ |c||d| = 0, so that
ab = cd = 0. (5.4.7)

If b = 0 we must have |d| = 1 (5.4.6), hence c = 0 (5.4.7) and thus |a| = 1 (5.4.6); if a = 0 we must
have |c| = 1, d = 0 and |b| = 1. In conclusion, the matrix of the linear transformation f must have
one of the following forms: (

eiθ1 0
0 eiθ2

)
or

(
0 eiθ2

eiθ1 0

)
However, the corresponding maps take ∆ onto itself, not onto B! This contradiction shows that
there is no analytic isomorphism of ∆ onto B.

A different proof that readily extends to Cn is indicated in exercise 5.13. For further results on
AutD, see [6].
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5.5 Biholomorphic mappings on Cn

As is well known, biholomorphic maps from C onto C are necessarily affine maps: z 7→ az+ b. In Cn
this is no longer the case. Indeed, the boundedness condition in Theorem 5.4.3 cannot be omitted
from the assumptions. Consider maps of the form

Ff : (z, w) 7→ (z + f(w), w), (5.5.1)

where f is an entire function of one variable. The map Ff maps C2 biholomorphically onto C2,
sends 0 to 0, its Jacobian determinant is identically 1, and it is far from being a linear map! Of
particular importance are the Hénon maps :

Fa,b : (z, w) 7→ (w,w2 + a+ bz), (5.5.2)

as we shall see shortly.
It is a remarkable fact that there exist injective holomorphic maps F : Cn → F (Cn) ( Cn.

Apparently Cn is biholomorphically equivalent to proper subdomains of itself! Proper subdomains
of Cn that are biholomorphc to Cn are called Fatou–Bieberbach domains. Such domains are usually
constructed as basin of attraction ofa fixed point of an analytic automorphism of Cn. We start by
introducing some terminology.

In this section we will write fn for f ◦ f · · · f the n-times iterate of f .

Definition 5.5.1. Let f : D → D be a holomorphic map from a domain D in Cn to itself. A point
a ∈ D is called a fixed point of f if f(a) = a. A fixed point a is called attracting (resp. repelling)
if every eigenvalue of f ′(a) has absolute value less than (resp. greater than) 1.

The basin of attraction of a is the set

Ω = {z ∈ D : lim
n→∞

fn(z) = a}.

We will consider a Hénon map with an attracting fixed point at the origin, (z, w) 7→ (w,w2 +bz),
0 < |b| < 1. Conjugating with the map (z, w) 7→ (z, cw), where c is any square root of b, brings it
into the form

f : (z, w) 7→ (cw, cz + w2), (0 < |c| < 1), (5.5.3)
which is the map we will consider.

Lemma 5.5.2. For given c, let |c| < ε < 1. There exists r > 0 such that |f(z, w)| < ε|(z, w)| for
(z, w) ∈ B(0, r), and therefore |fn(z, w)| < εn|(z, w)| ≤ εnr on B(0, r).

Proof. Indeed,

|cw|2 + |cz + w2|2 ≤ |c|2|z|2 + (|c|2 + 2|c||z|+ |w|2)|w|2 < ε2(|z|2 + |w|2)

if |z|2 + |w|2 < r2 for r sufficiently small.

Corollary 5.5.3. The basin of attraction of (0, 0) is the open set

Ω =
∞⋃
n=0

f−n(B(0, r)).

Proof. It is clear from Lemma 5.5.2 that for (z, w) ∈ B(0, r) we have limk→∞ fk(z, w) = 0, hence
B(0, r) ⊂ Ω. But then als f−n(B(0, r) ⊂ Ω, showing that Ω ⊃

⋃∞
n=0 f

−n(B(0, r)). On the other
hand if (z, w) ∈ Ω, then limn→∞ fn(z, w) = 0, hence there exists n0 with fn0(z, w) ∈ B(0, r),
therefore (z, w) ∈ f−n0(B(0, r).
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Proposition 5.5.4. Let V = {|w| > 10, |z| < |w|}. Then V ∩ Ω = ∅. In particular Ω 6= C.

Proof. Let (z, w) ∈ V and set (z1, w1) = f(z, w). Then |w1| = |w2 + cz|| ≥ |w|2 − |c||w| =
|w|(|w| − |c|) > 9|w| and hence |w1| > 10 and |z1| = |cw| < |w1|, therefore f(z, w) ∈ V . Moreover,
the second coordinate of fn((z, w) tends to ∞ with n, so (z, w) /∈ Ω.

In the rest of this section we will show that Ω is biholomorphically equivalent with C2. The

Jacobian of f at (0, 0) is the linear map A =
(

0 c
c 0

)
.

Lemma 5.5.5. There exists a positive constant C such that

|A−1F (z, w)− (z, w)| < C(|z|2 + |w|2).

Proof. Direct computation gives

|A−1F (z, w)− (z, w)| = |1
c
w2|.

Lemma 5.5.6. The sequence of maps (A−jf j)j converges uniformly on compact subsets of Ω.

Proof. We keep the notation and choose ε as in Lemma 5.5.2 with the additional requirement that
ε2 < |c|(< ε < 1). Let K be compact in Ω, then K for some n0 we have K ⊂

⋃n0
j=0 f

−j(B(0, r)).
Hence, if (z, w) ∈ K then fn0(z, w) ∈ B(0, r). We estimate for n > n0 with Lemma 5.5.5 and
Lemma ??

|A−n+1fn+1(z, w)−A−nfn(z, w)| = |A−n(A−1f)fn(z, w)−A−nfn(z, w)|
= |A−n(A−1f)− I)(fn(z, w))|2 ≤ |c|−n|fn(z, w)|2 = |c|−n|fn−n0(fn0(z, w))|2

≤ |c|−n(εn−n0r)2 =
(
ε2

|c|

)n
r2

εn0
.

Then for n > m > n0 we find

|A−nfn(z, w)−A−mfm(z, w)|
= |A−nfn(z, w)−A−n+1fn−1(z, w) +A−n+1fn−1(z, w)− · · · −A−mfm(z, w)|

≤
n−1∑
j=m

(
ε2

|c|

)j
r2

εn0
≤
(
ε2

|c|

)j ( 1
1− ε2/|c|

)
r2

εn0
.

This becomes arbitrarily small if n > m are sufficiently large, because ε2 < |c|.

Let Ψ = limn→∞A−nfn. By the previous lemma Ψ is a well-defined holomorphic map on Ω.

Theorem 5.5.7. Ψ maps Ω biholomorphically onto C2.

Proof. The Jacobian (A−nfn)′(0, 0) = id for all n, hence Ψ′(0, 0) = id and ψ maps a ball B(0, r1))
biholomorphically onto a neighborhood V of the origin. We can assume r1 < r. For (z, w) ∈
f−n0(B(0, r1))

Ψ(z, w) = lim
n→∞

A−n0A−n+n0fn−n0fn0(z, w) = A−n0 lim
n→∞

A−n+n0fn−n0fn0(z, w) = A−n0Ψ(fn0(z, w)).
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Now let (z1, w1) and (z2, w2) be points in Ω with Ψ(z1, w1) = Ψ(z2, w2). Choose n0 such that
(z1, w1), (z2, w2) ∈ f−n0(B(0, r1)). Then it follows that fn0(z1, w1) = fn0(z2, w2), hence (z1, w1) =
(z2, w2), and Ψ is injective.

For surjectivity, let p ∈ C2. Then for some n0 p = A−n0(q) with q ∈ V . Then

p = A−n0Ψ((z, w) = A−n0Ψ(fn0(f−n0(z, w)) = Ψ(f−n0(z, w)).

5.6 Complex submanifolds of Cn

It is useful to start with a discussion of local holomorphic coordinates.

Definition 5.6.1. Suppose we have a system of functions

w1 = g1(z), . . . , wn = gn(z) (5.6.1)

which defines a 1-1 holomorphic map g of a neighborhood U of a in Cnz onto a neighborhood V of
b = g(a) in Cnw. Such a system is called a local coordinate system for Cn at a, or a holomorphic
coordinate system for U .

The reasons for the names are: (i) there is a [holomorphic] 1-1 correspondence between the
points z ∈ U and the points w = g(z) of the neighborhood V of b = g(a); (ii) every holomorphic
function of z on U can be expressed as a holomorphic function of w on V (and conversely), cf.
Section 5.2. By the same Section, holomorphic functions (5.6.1) will form a local coordinate system
for Cn at a if and only if

det Jg(a) 6= 0. (5.6.2)

Lemma 5.6.2. Suppose we have a family of p < n holomorphic functions

{w1 = g1(z), . . . , wp = gp(z)}

with
rank J(g1, . . . , gp) = p

at a. Such a family can always be augmented to a local coordinate system (5.6.1) for Cn at a.

Proof. Indeed, the vectors

c1 =
[
∂g1

∂zk
(a)
]
k=1,...,n

, . . . , cp =
[
∂gp
∂zk

(a)
]
k=1,...,n

will be linearly independent in Cn. Thus this set can be augmented to a basis of Cn by adding
suitable constant vectors

cq = [cqk]k=1,...,n, q = p+ 1, . . . , n.

Defining gq(z) =
∑
k cqkzk for p+ 1 ≤ q ≤ n, the holomorphic functions

w1 = g1(z), . . . , wn = gn(z)

will satisfy condition (5.6.2), hence they form a coordinate system for Cn at a.
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Definition 5.6.3. A subsetM of Cn is called a complex submanifold if for every point a ∈M , there
are a neighborhood U of a in Cn and an associated system of holomorphic functions g1(z), . . . , gp(z),
with rank J(g1, . . . , gp) equal to p on U , such that

M ∩ U = {z ∈ U : g1(z) = . . . = gp(z) = 0}. (5.6.3)

All values of p ≥ 0 and ≤ n are allowed; it is not required that p be the same everywhere on M .

Examples 5.6.4. The zero set Zf of a holomorphic function f on open Ω ⊂ Cn is in general not
a complex submanifold, but the subset Z∗f of the regular points of Zf is one, cf. Section 4.6. Any
open set Ω ⊂ Cn is a complex submanifold. The solution set of a system of p ≤ n linear equations
over Cn with nonsingular coefficient matrix is a complex submanifold.

Locally, a complex submanifold M is homeomorphic to a domain in some space Cs, 0 ≤ s ≤ n.
In fact, the Implicit mapping theorem 5.1.1 will give an effective dual representation. Using the
defining equations (5.6.3) for M around a, one can express p of the coordinates zj in terms of the
other n− p with the aid of a holomorphic map ϕ. One thus obtains the following

DUAL REPRESENTATION
Up to an appropriate renumbering of the coordinates, the general point a ∈M in Definition 5.6.3
will have a neighborhood ∆(a, ρ) ⊂ U such that

M ∩∆(a, ρ) = {z ∈ Cn : z = ψ(z′) = (z′, ϕ(z′)), z′ ∈ ∆s(a′, ρ′) ⊂ Cs}. (5.6.4)

Here ψ = (id, ϕ) is a 1-1 holomorphic map on ∆(a′, ρ′) such that g1 ◦ ψ = . . . = gp ◦ ψ ≡ 0 and
s = n− p.

Such a map ψ is called a local (holomorphic) parametrization of M at a and the number s is
called the (complex) dimension of M at a. The dimension will be locally constant; the maximum
of the local dimensions is called dimM . If M is connected, dimaM = dimM for all a ∈M .

One may use the dual representation (5.6.4) to define holomorphic functions on a complex
submanifold M of Cn:

Definition 5.6.5. A function f : M → C is called holomorphic at (or around) a ∈M if for some
local holomorphic parametrization ψ ofM at a, the composition f ◦ψ is holomorphic in the ordinary
sense.

In order to justify this definition, one has to show that different local parametrizations of M at
a will give the same class of holomorphic functions on M at a. We do this by proving the following
characterization:

Theorem 5.6.6. A function f on a complex submanifold M of Cn is holomorphic at a ∈ M if
and only if it is locally the restriction of a holomorphic function on some Cn neighborhood of a.

Proof. (i) The difficult part is to extend a given holomorphic function f on M to a holomorphic
function on a Cn neighborhood of a ∈M . The idea is simple enough: start with a set of local defining
functions w1 = g1, . . . , wn = gn for Cn at a [Lemma 5.6.2]. In the w-coordinates M is locally given
by w1 = . . . = wp = 0 and one can use wp+1, . . . , wn as local coordinates for M . It turns out
that the given f on M can be considered locally as a holomorphic function F (wp+1, . . . , wn). The
latter actually defines a holomorphic function on a Cn neighborhood of a which is independent of
w1, . . . , wp.
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We fill in some details. In a small neighborhood U = ∆(a, ρ) of a we will have two representations
forM . There is a certain local parametrization ψ (5.6.4) which was used to define f as a holomorphic
function on M at a:

f ◦ ψ(z′) ∈ O{∆(a′, ρ′)}.
We also have the initial representation (5.6.3). Using the augmentation of Lemma 5.52 and taking
U small enough, the neighborhood V = g(U) of b = g(a) in Cnw will give us representations

U = h(V ) = {z ∈ Cn : z = h(w), w ∈ V }, h = g1,

M ∩ U = h(V ∩ {w1 = . . . = wp = 0}) = {z ∈ Cn : z = h(0, w̃), (0, w̃) ∈ V }.
(5.6.5)

Here (0, w̃) = (0, . . . , 0, wp+1, . . . , wn). In view of (5.6.4) we obtain from (5.6.5) a holomorphic
map of the (0, w̃-part of V onto ∆(a′, ρ′):

z′ = h′(0, w̃) : written out, zj = hj(0, w̃), j = 1, . . . , s.

Thus in terms of the w-coordinates, f |M ∩ U is given by

F (w) def= f ◦ ψ ◦ h′(0, w̃), (5.6.6)

(0, w̃) ∈ V . If we now let w run over all of V , formula (5.6.6) furnishes a holomorphic function F (w)
on all of U which is independent of w1, . . . , wp.

(ii) The proof in the other direction is simple. Indeed, if f∗(z) is any holomorphic function
on a Cn neighborhood of a ∈ M and ψ is any local parametrization (5.6.4) of M at a, then the
restriction f∗ |M is holomorphic at a since

f∗
∣∣
M
◦ ψ = f∗ ◦ ψ

will be holomorphic on ∆(a′, ρ′) ⊂ Cs for small ρ′.

5.7 Complex manifolds

A topological manifold X of (real) dimension n is a Hausdorff space, in which every point has
a neighborhood that is homeomorphic to a (connected) domain in Rn. Further structure may be
introduced via an atlas for X, that is, a family U of coordinate systems (U, ρ), consisting of domains
U which jointly cover X and associated homeomorphisms ρ (“projections”) onto domains in Rn. If
(U, ρ), (V, σ) ∈ U , U ∩ V 6= ∅ are “overlapping coordinate systems”, the composition

σ ◦ ρ−1 : ρ(U ∩ V )→ σ(U ∩ V ) (5.7.1)

must be a homeomorphism between domains in Rn.

Definition 5.7.1. A complex (analytic) manifold X, of complex dimension n, is a topological
manifold of real dimension 2n with a complex structure. The latter is given by a complex (analytic)
atlas U = {(U, ρ)}, that is, an atlas for which the projections ρ(U) are domains in Cn while the
homeomorphisms (5.7.1) are 1-1 (bi)holomorphic maps.

The complex structure makes it possible to define holomorphic functions on X:

Definition 5.7.2. Let X be a complex manifold, Ω a domain in X. A function f : Ω → C is
called holomorphic if for some covering of Ω by coordinate systems (U, ρ) of the complex atlas, the
functions

f ◦ ρ−1 : ρ(Ω ∩ U)→ C (5.7.2)
are ordinary holomorphic functions on domains in a space Cn.
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The property of holomorphy of f at a ∈ X will not depend on the particular coordinate
system that is used around a [the maps (5.7.1) are biholomorphic.] Many results on ordinary
holomorphic functions carry over to the case of complex manifolds, for example, the Uniqueness
theorem (1.5.4) and the Open mapping theorem (1.8.1). Thus if X is connected and compact, an
everywhere holomorphic function f on X must be constant. [Indeed, |f | will assume a maximum
value somewhere on X.]

Holomorphic functions on a complex manifold are holomorphic maps from the manifold to C.
In general holomorphic maps are defined in much the same way:

Definition 5.7.3. Let X1, X2 be complex manifolds with atlanta U1, U2, respectively and let
Ω1 ⊂ X1, Ω1 ⊂ X1 be domains. A map f : Ω1 → Ω2 is called holomorphic if for any (U, ρ) ∈ U1,
(V, σ) ∈ U2 with V ∩ f(U ∩ Ω1) 6= ∅ the map

σ ◦ f ◦ ρ−1 : ρ(U ∩ Ω1)→ σ(V )

is holomorphic.

One similarly tranfers notions like biholomorphic map and analytically equivalence to complex
manifolds. It should be noticed that a topological manifold may very well carry different complex
structures, leading to complex manifolds that are not analytically equivalent, cf. exercise 5.34,
5.35.

Example 5.7.4. Let Ce be the extended complex plane C ∪ {∞} or the Riemann sphere with the
standard topology. We may define a complex structure by setting

(U, ρ) = (Ce − {∞}, ρ(z) = z), (V, σ) = (Ce − {0}, σ(z) = 1/z).

Both U and V are homeomorphic to the complex plane. Clearly U ∩ V = C− {0} and the same
holds for ρ(U ∩ V ) and σ(U ∩ V );

σ ◦ ρ−1(z) = 1/z
is a 1-1 holomorphic map of ρ(U ∩ V ) onto σ(U ∩ V ).

A function f on a domain Ω ⊂ Ce containing ∞ will be holomorphic at ∞ if f ◦ σ−1(z) =
f ◦ ρ−1(1/z) is holomorphic at σ(∞) = 0 [or can be extended to a function holomorphic at 0]. A
function which is holomorphic everywhere on Ce must be constant.

One may also obtain the Riemann sphere Ce from C via the introduction of homogeneous
coordinates. Starting with the collection of nonzero complex pairs (w0, w1), one introduces the
equivalence relation

(w0, w1) ∼ (w′0, w′1)⇐⇒ w′0 = λw0, w′1 = λw1

for some nonzero λ ∈ C. The point z ∈ C is represented by (1, z) and equivalent pairs. Points
far from the origin have the form (1, µ) with large (complex µ and they are also conveniently
represented by (1/µ, 1). The point at ∞ will be represented by the limit pair (0, 1). This approach
leads to the complex projective plane P1 which is analytically isomorphic to the Riemann sphere,
cf. Section 5.8 below.

Example 5.7.5. Let R be the Riemann surface for the complete analytic function log z on C−{0},
cf. Section 2.1. All possible local power series for log z may be obtained from the special function
elements (ak, Hk, fk), k ∈ Z defined below, where Hk is a half-plane containing ak and fk(z) a
corresponding holomorphic branch of log z:

ak = eikπ/2, Hk = {z ∈ C : (k − 1)π/2 < arg z < (k + 1)π/2},

fk(z) = branch of log z on Hk with (k − 1)π/2 < Im fk(z) < (k + 1)π/2.
(5.7.3)
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The points of R have the form
p = (b, gb), b ∈ C{0},

gb = power series at b for a branch g(z) of log z on, say, a
convex neighborhood V of b in C− {0}.

(5.7.4)

Corresponding basic neighborhoods N (p, V, g) in R consist of all points q = (z, hz) such that
z ∈ V and hz = gz. There is a projection ρ of R onto C− {0} given by

ρ(p) = ρ((b, gb)) = b.

It is not difficult to verify that R is a Hausdorff space and that the restriction of ρ to N (p, V, g)
is a homeomorphism onto V ⊂ C. Finally, the multivalued function log z on C − {0} may be
redefined as a single-valued function Log on R:

Log p = Log g(b, gb) = g(b). (5.7.5)

We now use the special basic neighborhoods N (ak, Hk, fk) and the projection ρ to define a
complex structure on R:

Uk = N (ak, Hk, fk), ρk = ρ | Uk, ∀k ∈ Z. (5.7.6)

For nonempty Uj∩Uk, the map ρk ◦ρ−1
j is simply the identity map on ρj(Uj∩Uk) = ρk(Uj∩Uk).

We will verify that the function Log is holomorphic on R in the sense of Definition 5.62. Indeed, ρk
is a homeomorphism of Uk onto Hk and the points q = (z, hz) in Uk have the form ρ−1

k (z), z ∈ Hk,
implying that hz = (fk)z. Hence

Log ρ−1
k (z) = Log q = Log (z, hz) = h(z) = fk(z), ∀z ∈ Hk.

Remark 5.7.6. The equation ew − z = 0 defines a complex submanifold M of C2. One can show
that this M is analytically isomorphic to the Riemann surface R for log z. In fact, every Riemann
domain over Cn (even when defined in a more general way than in Section 2.1) is analytically
isomorphic to a submanifold of some space CN , cf. [26].

5.8 Complex projective space Pn

Geometrically one may think of Pn as the collection of all complex lines through the origin in
Cn+1. Such a line is determined by an arbitrary point w = (w0, w1, . . . , wn) 6= 0; equivalently, one
can use any other point w = (λw0, . . . , λwn), λ ∈ C, λ 6= 0.

Definition 5.8.1. The elements of Pn are equivalence classes [w] of points w in Cn+1 − {0}:

w′ ∼ w if w′ = λw for some λ ∈ C− {0}.

Neighborhoods of [w] in Pn are obtained from neighborhoods of a representing point w in
Cn+1 − {0} by identifying equivalent elements.

For the topology, it is convenient to choose a representing point w and a neighborhood of w on
the unit sphere S in Cn+1.

A complex structure is defined on Pn by the following coordinate systems (Uj , ρj), j = 0, 1, . . . , n:
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Uj consists of the classes [w] in which w has (j + 1)st coordinate wj 6= 0,

[w] = [(w0, . . . , wn)] =
[(

w0

wj
, . . . ,

wj−1

wj
, 1, wj+1

wj
, . . . ,

wn
wj

)]
,

and
ρj ◦ [w] =

(
w0

wj
, . . . ,

wj−1

wj
,
wj+1

wj
, . . . ,

wn
wj

)
, [w] ∈ Uj . (5.8.1)

Every element [w] of Uj has precisely one representative in Cn+1−{0} with (j+ 1)st coordinate
wj equal to 1; the elements of Uj are in 1-1 correspondence with the points of the affine hyperplane
Hj : {wj = 1} in Cn+1. This correspondence is a homeomorphism, hence Uj is topologically the
same as Cn. We will check the holomorphy of the composite map ρk ◦ ρ−1

j when j < k. If [w] is any
element of Uj ∩ Uk, where w denotes a Cn+1 representative, then wj 6= 0 and wk 6= 0. By (5.8.1),
ρj(Uj ∩ Uk) consists of the points z = (z1, . . . , zn) with

z1 = w0

wj
, . . . , zj = wj−1

wj
, zj+1 = wj+1

wj
, . . . , zk = wk

wj
, . . . , zn = wn

wj
,

that is, we get all points z ∈ Cn with zk 6= 0. Applying ρk ◦ ρ−1
j to such z we find, cf. (5.8.1),

ρk ◦ ρ−1
j (z1, . . . , zn) = ρk ◦ [(z1, . . . , zj , 1, zj+1, . . . , zn)]

=
(
z1

zk
, . . . ,

zj
zk
,

1
zk
,
zj+1

zk
, . . . ,

zk−1

zk
,
zk+1

zk
, . . . ,

zn
zk

)
.

(5.8.2)

This formula indeed defines a 1-1 holomorphic map of ρj(Uj ∩Uk) onto ρk(Uj ∩Uk) [the (j+1)st
coordinate is 6= 0]. For j > k the proof is similar, although there are minor differences.

Conclusion: Pn is a complex manifold of dimension n.

Example 5.8.2. The complex projective plane P1 is covered by two coordinate systems (U0, ρ0)
and (U1, ρ1). Here

U0 = {[(1, z)] : z ∈ C}, ρ0 ◦ [(1, z)] = z,

U1 = {[(w, 1)] : w ∈ C} = {[(1, z)] : z ∈ C− {0}} ∪ [(0, 1)],

ρ1 ◦ [(w, 1)] = ρ1 ◦ [(1, z)] = w = 1
z

for w = 1
z
6= 0, ρ1 ◦ [(0, 1)] = 0.

(5.8.3)

Cf. Example 5.7.4 !

A function f will be holomorphic at a point [a] of Pn, with aj 6= 0, if f ◦ ρ−1
j is holomorphic at

the point ρj ◦ [a] of Cn. For P1 the rule agrees with the standard definition of holomorphy at a
point of the Riemann sphere.

We observe that Pn is compact for every n. Indeed, the formula

ϕ(w0, w1, . . . , wn) = [(w0, w1, . . . , wn)], |w| = 1 (5.8.4)

defines a continuous map of the unit sphere S in Cn+1 onto Pn; the image of a compact set under
a continuous map is compact.

It is useful to consider Pn as a compactification of Cn. Starting with Cn one introduces
homogeneous coordinates:

z = (z1, . . . , zn) is represented by (λ, λz1, . . . , λzn)
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for any nonzero λ ∈ C. This gives an imbedding of Cn in Pn. In order to obtain the whole Pn one
has to add the elements

[(w0, w1, . . . , wn)] with w0 = 0.
It is reasonable to interpret those elements as complex directions (w1, . . . , wn) in which one can go
to infinity in Cn, or as points at infinity for Cn. Indeed, if z = µw, w ∈ Cn − {0}, then

(z1, . . . , zn)←→ [(1, µw1, . . . , µwn)] = [( 1
µ
,w1, . . . , wn)]

−→ [(0, w1, . . . , wn)] as µ→∞.
(5.8.5)

Observe that the imbedding of Cn in Pn reveals a complex hyperplane {w0 = 0} of “points at
infinity” for Cn; strictly speaking, it is a copy of Pn−1.

By a projective transformation

wj =
n∑
k=0

ajkw
′
k, j = 0, 1, . . . , n, det[ajk] 6= 0,

any point of Pn can be mapped onto any other point of Pn; the hyperplane {w0 = 0} can be
mapped onto any other (complex) hyperplane.

Let f be a meromorphic function on Ω ⊂ C. We can write f = g/h with g, h, holomorphic and
without common zeroes. Thus we can associate to f the map F : Ω→ P, F (z) = [(h(z), g(z)]. On
the other hand, let F be a map from Ω to P. It follows from the definitions that we may write
F (z) = [(f1(z), f2(z))], with (composition with ρ0) f2/f1 holomorphic if f1 6= 0 and (composition
with ρ1) f1/f2 holomorphic if f2 6= 0. In other words, f1/f2 has singular points precisely at the
zeroes of the function f2/f1, and thus is meromorphic. Its associated map to P is again F . In
the higher dimensional case mappings to P will form meromorphic functions, but meromorphic
functions may have intersecting zero and polar set and then don’t give rise to mappings to P.

Theorem 5.8.3. Any holomorphic map f from Pn to P is of the form

f [(z0, . . . , zn)] = [P (z0, . . . , zn), Q(z0, . . . , zn)]

where P and Q are homogeneous polynomials of the same degree on Cn+1.

Proof. We leave the case n = 1 to the reader and assume from now on n ≥ 2. Define F :
Cn+1 \ {0} :→ P by

F (z) = f ◦ π(z) = [(g(z), h(z))],
where π : Cn+1 → Pn is the projection π(z) = [z]. By the definition of holomorphic map, we find
that {g = 0} ∩ {h = 0} = ∅ and g/h is holomorphic when h 6= 0 and also 1

g/h = h/g is holomorphic
when g 6= 0. Thus g/h is meromorphic on Cn+1 \ {0}. As we shall see in Chapter 12, if n ≥ 2,
Cn+1 \ {0} is special in the sense that every meromorphic function on it is the quotient of two
globally defined holomorphic functions. Thus g/h = g′/h′ with g′ and h′ holomorphic on Cn+1 \{0}.
Now we use the sperical shell theorem to extend g′ and h′ analytically to all of Cn+1. Since F
factorizes through Pn. We also have homogeneity:

g′(λz)/h′(λz) = g′(z)/h′(z), for z ∈ Cn+1 \ {0} and λ ∈ C \ {0}. (5.8.6)

Now we expand g′(z) =
∑
j≥j0

Pj(z) and h′(z) =
∑
k≥k0

Qk(z), where Pj and Qk are homogeneous
polynomials of degree j and k and Pj0 , Qk0 6≡ 0. We can regard (5.8.6) as an identity for holomorphic
functions in λ:

h′(z)
∑
j≥j0

Pj(z)λj = g′(z)
∑
k≥k0

Qk(z)λk.
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It follows that j0 = k0 and that for every j and every z ∈ Cn+1 \ {0}

h′(z)Pj(z) ≡ g′(z)Qj(z).

Comparing degrees this implies that for all j and k

PjQk = QjPk. (5.8.7)

For (5.8.7) to be true,we must have for each j: either Pj0/Qj0 = Pj/Qj or Pj ≡ Qj ≡ 0. In other
words g′/h′ = Pj0/Qj0 .

Theorem 5.8.4. Every map f : Pn → Pm can be written in the form

f([z]) = [P0(z), P1(z), . . . , Pm(z)],

where the Pj are homogeneous of the same degree.

Proof. We clearly may write f in the above form with Pj suitable (not necessarily holomorphic !)
functions, which don’t have a common zero and satisfy Pi/Pj is holomorphic outside the zeroes of
Pj . Hence outside the zeroes of Pk, k arbitrary, we find that

Pi
P0

= Pi/Pk
P0/Pk

,

hence Pi/P0 is meromorphic. It follows as in the proof of the previous theorem that Pi/P0 is a
quotient of homogeneous polynomials of the same degree and we are done.

5.9 Recent results on biholomorphic maps

The (unit) ball B in Cn is homogeneous in the sense that the group AutB acts transitively: any
point of B can be taken to any other point by an analytic automorphism. For n = 1 it follows from
the Riemann mapping theorem that all simply connected planar domains are homogeneous (also
true for C itself). However, from a Cn point of view, homogeneous domains turn out to be rare.
Limiting oneself to bounded domains with C2 boundary and ignoring holomorphic equivalence, the
ball is in fact the only connected domain with transitive automorphism group. For n ≥ 2 almost
all small perturbations of the ball lead to inequivalent domains. Furthermore, there are no proper
holomorphic mappings of the ball to itself besides automorphisms when n ≥ 2. [For n = 1, all finite
products of fractions as in (5.3.1) define proper maps B → B.]

Suppose now that D1 and D2 are holomorphically equivalent (bounded connected) domains in
Cn with smooth boundary, Question: Can every biholomorphic map f of D1 onto D2 be extended
to a smooth map on D1? In the case n = 1 a classical result of Kellogg, cf. [48], implies that
the mapping functions are [nearly] as smooth up to the boundary as the boundaries themselves.
Since 1974 there are also results of such type for n ≥ 2. The major breakthrough was made by
C. Fefferman, [18]: If D1 and D2 are strictly pseudoconvex domains [for this notion, see Section
9.3] with C∞ boundary, then any biholomorphic map between them extends C∞ to the boundary.
Subsequently, the difficult proof has been simplified, while at the same time the condition of
strict pseudoconvexity could be relaxed, cf. [7]. The most recent result is due J. McNeal, cf. [41].
However sofar one has not succeeded to show that beyond smoothness and pseudoconvexity, one
need not make any assumptions at all. It follows from the above that strict pseudoconvexity is a
biholomorphic invariant. It has also become possible to prove relatively sharp results for the case of
Ck boundaries. Finally, many of the results have been extended to proper mappings.
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Conversely one may ask under what conditions maps from [part of] ∂D1 onto [part of] ∂D2 can
be extended to biholomorphic maps. This problem has led to the discovery of important differential
invariants of boundaries ( [68, 13]). Lately there has been much activity in the area by the Moscow
school of complex analysis.

References: [15, 37, 50, 58, 62, 16, 17].

5.10 Exercises

Exercise 5.1. Let f = (f1, . . . , fp) be a holomorphic map from a connected domain D ⊂ Cm to
Cp such that Dkfj ≡ 0, ∀j, k. What can you say [and prove] about f?

Exercise 5.2. Write out a complete proof of the Implicit Mapping Theorem 5.1.1 for the case
p = 2.

Exercise 5.3. Let fj(z, w), j = 1, . . . , p be a family of holomorphic functions of (z, w) on a
neighborhood of 0 in Cn × Cp such that

det J(O) =
∣∣∣∣ ∂(f1, . . . , fp)
∂(w1, . . . , wp)

(0)
∣∣∣∣ 6= 0.

Write fj = gj + ihj , wk = uk + ivk and show that the unique solvability of the system of equations

d̃f
∣∣
0 = 0 :

p∑
k=1

∂fj
∂wk

(0)dwk = 0, j = 1, . . . , p

for dw1, . . . , dwp implies the unique solvability of the related real system d̃g|0 = d̃h|0 = 0 (variables
du1, dv1, . . . , dvp). Deduce that

det JR(0) =
∣∣∣∣∂(g1, h1, . . . , gp, hp)
∂(u1, v1, . . . , up, vp)

(0)
∣∣∣∣ 6= 0.

[One can show more precisely that det JR(0) = |det J0)|2.]

Exercise 5.4. (Continuation). Let wj = ϕj(z) = ϕj(x+ iy), j = 1, . . . , p be a C1 solution of the
system of equations fj(z, w) = 0, j = 1, . . . , p (where fj(0) = 0) around the origin. Prove that the
functions ϕj(z) must be holomorphic.

Exercise 5.5. Let g be an infinitely differentiable map R → R with g(0) = 0, g′(0) 6= 0. Prove
that g is invertible in a neighborhood of 0 and that h = g−1 is also of class C∞ around 0.

Exercise 5.6. Give an example of a 1-1 map f of R onto R with f(0) = 0 which is of class C∞
while f−1 is not even of class C1.

Exercise 5.7. Use successive approximation to give a direct proof of Theorem 5.2.1 on the existence
of a local holomorphic inverse. [By suitable linear coordinate changes it may be assumed that
Jg(0) = In, so that the equation becomes w = g(z) = z − ϕ(z), where ϕ vanishes at 0 of order ≥ 2.
For small |w| one may define

z(0) = w, z(ν)(w) = w + ϕ(z(ν−1)), ν = 1, 2, . . . .]

Exercise 5.8. Give a complete proof of Theorem 5.22 on the holomorphy of the global inverse.

Exercise 5.9. (i) Let w = f(z) be the holomorphic map of D = C − {1} C2 given by w1 =
z(z − 1), w2 = z2(z − 1). Prove that f is 1-1 but that f−1 is not continuous on f(D).
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(ii) Prove that a 1-1 holomorphic map f of Ω ⊂ Cn onto Ω′ ⊂ Cn is proper.

Exercise 5.10. Construct biholomorphic maps of

(i) the right half-plane H : {Re z > 0} in C onto the unit disc ∆(0, 1);

(ii) the product H ×H : {Re z1 > 0, Re z2 > 0} in C2 onto the unit bidisc ∆2(0, 1).

Exercise 5.11. Determine all analytic automorphisms of ∆2(0, 1) and of B2(0, 1) that leave the
origin fixed.

Exercise 5.12. Let D1 and D2 be connected domains in Cn containing the origin and suppose
that there is a 1-1 holomorphic map of D1 onto D2 which takes 0 to ). Let Aut0 Dj denote the
subgroup of the automorphisms of Dj that leave 0 fixed. Prove that Aut0 D1 is isomorphic to
Aut0 D2.

Exercise 5.13. Use exercise 5.12 to verify that ∆2(0, 1) and B2(0, 1) are not analytically isomorphic.
Also compare the groups Aut0 Dj for D1 = ∆n(0, 1), D2 = Bn(0, 1).

Exercise 5.14. Let D ⊂ C be a bounded connected domain and let f be a holomorphic map of D
into itself with fixed point a. Prove:

(i) |f ′(a)| ≤ 1;

(ii) If f is an automorphism of D, then |f ′(a)| = 1;

(iii) If f ′(a) = 1 then f(z) ≡ z.

Exercise 5.15. Let D1 and D2 be bounded connected domains in Cn. Prove that for given
a ∈ D1, b ∈ D2 and n×x matrix A, there is at most one biholomorphic map f of D1 onto D2 such
that f(a) = b and Jf (a) = A.

Exercise 5.16. Let D1 and D2 be bounded connected domain in C, a ∈ D1, b ∈ D2. Prove that
ther is at most one biholomorphic map f of D1 onto D2 such that f(a) = b and f ′(a) > 0.

Exercise 5.17. Determine all analytic automorphisms of

(i) the disc ∆(0, 1) ⊂ C;

(ii) the bidisc ∆2(0, 1) ⊂ C2.

Exercise 5.18. (i) Prove that the (analytic) automorphisms of C have the form w = az + b.

(ii) The situation in C2 is more complicated. Verify that the equations w1 = z1, w2 = g(z1) + z2
define an automorphism of C2 for any entire function g on C. Cf. Theorem 5.4.3 and exercise
5.32.

Exercise 5.19. Prove that the Cayley transformation:

w1 = ϕ1(z) = z1

1 + z2
, w2 = ϕ2(z) = i

1− z2

1 + z2

furnishes a 1-1 holomorphic map of the unit ball B2 = B2(0, 1) in C2 onto the Siegel upper half-space:

D2
def= {(w1, w2) ∈ C2 : Im w2 > |w1|2}.
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Exercise 5.20. (Continuation) The boundary ∂D2 = {(w, t + i|w|2) : w ∈ C, t ∈ R} is
parametrized by C× R. Show that ∂D2 becomes a nonabelian group (Heisenberg group) under the
multiplication

(w, t) · (w′, t′) = (w + w′, t+ t′ + 2 Im w · w′).

Exercise 5.21. (Continuation) Show that the “translation” (w1, w2)→ (w1, w2 + t), t ∈ R is an
automorphism of D2. Deduce that the ball B2 admits an automorphism that carries the origin to a
point a at prescribed distance |a| = c from the origin.

Exercise 5.22. Derive the automorphism (5.3.3) of the unit ball B2(0, 1) ⊂ C2 that takes a = (c, 0)
to the origin by trying z′1 = ϕ(z1), z′2 = ψ(z1)z2. [Set z2 = 0 to determine the form of ϕ.]

Exercise 5.23. What is the difference between a complex submanifold M of Cn and an analytic
set V (4.6)?

Exercise 5.24. Prove that a connected complex submanifold M of Cn has the same dimension m
at each of its points. Verify that such an M is a complex manifold of dimension m in the sense of
Definition 5.7.1. Finally, show that there exist nonconstant holomorphic functions on such an M ,
provided M contains more than just one point.

Exercise 5.25. (Riemann domain over D ⊂ Cn). Let (a, U, f), a ∈ Cn be a function element, F
the classical complete analytic function generated by the element. Describe the Riemann domain R
for F and show that it is a Hausdorff space. Verify that R can be made into a complex manifold
of dimension n and describe how F becomes a holomorphic function on R. [Cf. Section 2.1 and
Example 5.7.5.]

Exercise 5.26. Prove that the equation ew − z = 0 defines a complex submanifold M of C2. Show
that M is analytically isomorphic to the Riemann surface R for log z described in Example 5.7.5

Exercise 5.27. Prove the statements about holomorphic functions on a complex manifold made
right after Definition 5.7.2.

Exercise 5.28. This is an exercise about Pn. The notations are as in Section 5.8.

(i) Describe the map ρk ◦ ρ−1
j ; ρj(Uj ∩ Uk)→ ρk(Uj ∩ Uk) also when j > k and verify that it is

1-1 holomorphic.

(ii) Prove that the map ϕ (5.8.4) of the unit sphere S in Cn+1 to Pn is continuous.

(iii) Describe ϕ−1 ◦ [w] for [w] ∈ Pn. Conclusion: There is a 1-1 correspondence between the points
of Pn and . . . on S.

Exercise 5.29. Let f be defined on a domain in P1. What does analyticity of f at the point
[a] = [(a0, a1)] of P1 mean? Show that f is analytic at the point [(0, 1)] of P1 (the point ∞ for C )
if and only if

f ◦ ρ−1
1 (w) = f ◦ [(w, 1)] (= f ◦ ρ−1

0

(
1
w

)
when w 6= 0)

is analytic at w = 0.

Exercise 5.30. Let f be analytic and bounded on a ‘conical set’ Γ = |(z2/z1)− b| < δ, |z1| > A
around the direction (1, b) in C2

z considered as a subset of P2. Prove that f can be continued
analytically to a neighborhood of the “infinite point” [(0, 1, b)]. That is, using P2, f ◦ ρ−1

1 (ζ) has
an analytic continuation to a neighborhood of (0, b) in C2

ζ . [Where will f ◦ ρ−1
1 (ζ) be analytic and

bounded?]
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Exercise 5.31. (Behavior of entire functions at infinity) Let f be an entire function on C2 which is
analytic at (that is, in a neighborhood of) one infinite point, say [(0, 1, b)]. Prove that f is constant.
Show quite generally that a nonconstant entire function on Cn must become singular at every
infinite point. [Cf. Hartogs’ singularities theorem 4.8.2.]

Exercise 5.32. Determine the automorphisms of P1 and Pn (cf. exercise 5.18).

Exercise 5.33. Let A ∈ Gl(n+ 1,C) such that A leaves the quadratic form −|z0|2 + |z1|2 + |z2|2 +
· · ·+ |zn|2 invariant. Show that A gives rise to an automorphism of Pn which leaves the unit sphere
in the coordinate system U0 = {z0 6= 0} invariant. Describe all automorphisms of the unit ball in
Cn.

Exercise 5.34. Consider the topological manifold D = {(x, y) ∈ R2 : x2 + y2 < 1}. For 0 ≤ t ≤ 1
we put different complex structures on D, each consisting of one coordinate system (D, ρt):

ρt : D → C, ρt(x, y) = r

1− tr (x+ iy),

where x2 + y2 = r2. Thus we have for each 0 ≤ t ≤ 1 a complex manifold. Which ones are
biholomorphically equivalent?

Exercise 5.35. Consider the torus:

T = {F (s, t) ∈ R3 : F (s, t) = 2(cos s, sin s, 0)
+ (cos t cos s, cos t sin s, sin t), s, t ∈ R}

Let V1 = {1 < s, t < 6}, V2 = {1 < s < 6,−2 < t < 2}, V3 = {−2 < s < 2, 1 < t < 6},
V4 = {−2 < s, t < 2} and Fj = F |Vj , j = 1, . . . , 4. We describe coordinate systems for T locally
inverting F : For j = 1 . . . , 4, let

Uj = {F (s, t) ∈ T : (s, t) ∈ Vj}, ρj(x, y, z) = ga,b(F−1
j (x, y, z)),

where ga,b(s, t) = as + ibt. Show that for a, b ∈ R \ {0} this defines an analytic structure on T .
Which values of a and b give rise to analytically equivalent manifolds?

Exercise 5.36. Show that the projection

π : Cn+1 \ {0} → Pn, (z0, . . . , zn) 7→ [(z0, . . . zn)]

is a holomorphic mapping. Relate this to the Spherical Shell Theorem 2.8.2.
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Chapter 6

Domains of holomorphy

As was indicated in Section 1.9, there are many areas of complex analysis where it is necessary
or advantageous to work with domains of holomorphy, cf. Chapters 7, 11, 12. In C, every domain
is a domain of holomorphy, but in Cn, n ≥ 2, the situation is quite different. One reason is that
holomorphic functions in Cn can not have isolated singularities: singularities are “propagated” in a
certain way.

In order to get insight into the structure of domains of holomorphy, we will study several different
characterizations, most of them involving some kind of (generalized) convexity. In fact, there are
striking parallels between the properties of convex domains and those of domains of holomorphy. To
mention the most important one, let d(·, ∂Ω) denote the boundary distance function on Ω. Convex
domains may be characterized with the aid of a mean value inequality for the function log 1/d on
(real) lines. Domains of holomorphy are characterized by so-called pseudoconvexity; the latter may
be defined with the aid of a circular mean value inequality for log 1/d on complex lines.

In the present chapter it is shown that domains of holomorphy are pseudoconvex. One form of
that result goes back to Levi (about 1910), who then asked if the converse is true. His question
turned out to be very difficult. A complete proof that every pseudoconvex domain is indeed a
domain of holomorphy was found only in the 1950’s. Although different approaches have been
developed, the proof remains rather complicated, cf. Chapters 7, 11.

A special reference for domains of holomorphy is [46].

6.1 Definition and examples

For n = 1 the example

Ω = C− (−∞, 0], f(z) = p(rincipal) v(alue) log z

shows that one has to be careful in defining a domain of existence or a domain of holomorphy.
Indeed, the present function f could not be continued analytically to a neighbourhood U of any
boundary point b on the negative real axis if one would simultaneously consider the values of f in
the upper half-plane and those in the lower half-plane (Figure 6.1).

Of course, one should only pay attention to the values of f on one side of R, those on Ω1, say,
and then one will (for small U) obtain an analytic continuation “above” the original domain of
definition. There are similar examples in Cn, cf. Section 2.9.

Definition 6.1.1. A domain (open set) Ω in Cn is called a domain of holomorphy if for every
(small) connected domain U that intersects the boundary ∂Ω and for every component Ω1 of U ∩Ω,
there is a function f in O(Ω) whose restriction f |Ω1 has no (direct) analytic continuation to U .
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An open set Ω will be a domain of holomorphy if and only if all its connected components are
domains of holomorphy.

Simple Criterion
The following condition is clearly sufficient for Ω to be a domain of holomorphy: for every point
b ∈ ∂Ω and every sequence of points {ζν} in Ω with limit b, there is a function f in O(Ω) which is
unbounded on the sequence {ζν}. [Actually, this condition is also necessary, see Exercise 6.22.]

Examples 6.1.2.

(i) In C every domain Ω is a domain of holomorphy, just think of f(z) = 1/(z − b), b ∈ ∂Ω.
[What if Ω = C?]

(ii) In Cn every “polydomain” Ω = Ω1 × . . .× Ωn with Ωj ⊂ C, is a domain of holomorphy, just
consider functions f(z) = 1/(zj − bj), bj ∈ ∂Ωj .

(iii) In Cn with n ≥ 2 no connected domain D−K (K ⊂ D compact) is a domain of holomorphy,
think of the Hartogs-Osgood-Brown continuation theorem 3.4.1.

Example 6.1.3 (CONVEX DOMAINS). Every convex domain D ⊂ Cn = R2n is a domain of
holomorphy. Indeed, for any given boundary point b of D there is a supporting real hyperplane V ,
that is, a hyperplane through b in R2n which does not meet D (so that D lies entirely on one side
of V , Figure 6.2, left).

We introduce the unit normal (α1, β1, α2, . . . , βn) to V at b which points away from D; in
complex notation: α + iβ = c, say. The component of the vector z = x + iy in the direction of
c = α+ iβ will be given by

α1x1 + β1y1 + α2x2 + . . .+ βnyn = Re (α− iβ)(x+ iy) = Re c · z.
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Thus the hyperplane V has the equation Re c·z = Re c·b and throughoutD one has Re c·z < Re c·b.
It follows that the function

f(z) = 1
c · (z − b)

is holomorphic on D and tends to infinity as z → b. [Observe that this f becomes singular at all
points of the supporting complex hyperplane c · (z − b) = 0 through b which is contained in V .]

A domain of holomorphy need not be convex in the ordinary sense: think of the case n = 1 and
of the case of logarithmically convex complete multicircular domains in Cn, cf. Figure 2.4. The
latter are always domains of holomorphy, see Sections 6.3 and 6.4. On the other hand, we have:

Example 6.1.4. Let 0 be a boundary point of a connected domain D ⊂ C2 which contains a
punctured disc z1 = 0, 0 < |z2| ≤ R as well as full discs z1 = −δ, |z2| ≤ R arbitrarily close to the
punctured disc (Figure 6.2, right). Then D can not be a domain of holomorphy. Indeed, by Hartogs’
continuity theory 2.6.1, every f ∈ O(D) has an analytic continuation to a neighbourhood of 0.

6.2 Boundary distance functions and ordinary convexity

In characterizations of domains of holomorphy, boundary distance functions play an essential role.
It is instructive to begin with characterizations of convex domains in terms of such functions.

Definition 6.2.1. Let Ω be a domain in Rn or Cn. For the points x ∈ Ω, the distance to the
boundary is denoted by

d(x) def= d(x, ∂Ω) def= inf
ξ∈∂Ω

d(x, ξ). (6.2.1)

For a nonempty part K of Ω, the distance to the boundary is denoted by

d(K) def= d(K, ∂Ω) def= inf
x∈K

d(x, ∂Ω). (6.2.2)

If Ω is not the whole space, the infimum in (6.2.1) is attained for some point b ∈ ∂Ω. Observe
that the function d(x) is continuous. If K is compact and ∂Ω nonempty, the distance d(K) is also
attained. Note that d(x) is the radius of the largest ball about x which is contained in Ω. Similarly,
d(K) is the largest number ρ such that Ω contains the ball B(x, ρ) for every point x ∈ K.

Suppose now that D is a convex domain and that x′ and x′′ belong to D. Then D will contain
the balls B(x′, d(x′)) and B(x′′, d(x′′)) and also their convex hull. The latter will contain the ball
about the point 1

2 (x′ + x′′) with radius 1
2{d(x′) + d(x′′)} [geometric exercise, cf. Figure 6.3], hence

d( 1
2 (x′ + x′′)) ≥ 1

2{d(x′) + d(x′′)} ≥
√
d(x′)d(x′′). (6.2.3)
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It follows that the function

v(x) def= log 1/d(x) = − log d(x) (6.2.4)

satisfies the following mean value inequality on the line segments in D:

v( 1
2 (x′ + x′′)) ≤ 1

2{v(x′) + v(x′′)}; (6.2.5)

the value of v at the midpoint of a line segment is majorized by the mean of the values at the end
points.

A continuous function v on a domain D with property (6.2.5) is a so-called convex function:
the graph on line segments in D lies below [never comes above] the chords. In formula:

v((1− λ)x′ + λx′′) ≤ (1− λ)v(x′) + λv(x′′), ∀λ ∈ [0, 1], ∀[x′, x′′] ⊂ D. (6.2.6)

For dyadic fractions λ = p/2k this follows from the mean value inequality by repeated bisection
of segments; for other λ one uses continuity. [For our special function v one can also derive (6.2.6)
from Figure 6.3 and properties of the logarithm, cf. Exercise 6.6.] We have thus proved:

Proposition 6.2.2. On a convex domain D, the function v = log 1/d is convex.

Conversely, one can show that convexity of the function v = log 1/d on a connected domain D
implies convexity of the domain, cf. Exercises 6.7, 6.8.

We still remark that on any bounded domain Ω, the function log 1/d is a so-called exhaustion
function:

Definition 6.2.3. Let Ω in Rn or Cn be open. A continuous real function α on Ω is called
exhaustion function for Ω if the open sets

Ωt = {z ∈ Ω : α(z) < t}, t ∈ R (6.2.7)

have compact closure [are “relatively compact”] in Ω.

Observe that the sets Ωt jointly exhaust Ω : ∪Ωt = Ω. For Ω equal to the whole space Rn, the
function |x|2 is a convex exhaustion function:∣∣ 1

2 (x′ + x′′)
∣∣2 ≤ 1

2 (|x′|2 + |x′′|2).

Every convex domain has a convex exhaustion function, and every connected domain with a convex
exhaustion function is convex, cf. Exercises 6.7, 6.8.

Another characteristic property of convex domains. Let D be a connected domain in Rn or Cn
and let K be a nonempty compact subset of D. To start out we again suppose that D is convex.
Then the convex hull CH(K) will also be a compact subset of D. We will in fact show that it has
the same boundary distance as K itself:

d(CH(K)) = d(K). (6.2.8)

Indeed, as we know [Section 2.2], any point x ∈ CH(K) can be represented as a finite sum

x =
m∑
1
λjsj with sj ∈ K, λj ≥ 0 and

∑
λj = 1.

Now by (6.2.6) or Figure 6.3, all points y = (1− λ)s1 + λs2, 0 ≤ λ ≤ 1 of a segment [s1, s2] ⊂ D
satisfy the inequality

d(y) ≥ min{d(s1), d(s2)}.
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Hence for our point x, using induction,

d(x) ≥ min{d(s1), . . . , d(sm)} ≥ d(K).

Thus d(CH(K)) ≥ d(K) and (6.2.8) follows.
Conversely, let D be any domain with property (6.2.8), or simply a domain such that CH(K) is

a compact subset of it whenever K is one. Then D must be convex. Indeed, for any two points
x′, x′′ ∈ D one may take K = {x′, x′′}. Then CH(K) is the line segment [x′, x′′] and by the
hypothesis it belongs to D.

We summarize as follows:

Proposition 6.2.4. The following conditions on a connected domain D in Rn or Cn are equivalent:

(i) D is convex;

(ii) d(CH(K)) = d(K) for every compact subset K of D;

(iii) CH(K) is a compact subset of D for every compact K ⊂ D.

In Section 6.4 we will prove an analogous characterization for domains of holomorphy Ω in Cn. It
will involve the so-called holomorphically convex hull of K in Ω.

6.3 Holomorphic convexity

As an introduction we characterize the ordinary convex hull CH(K) for compact K ⊂ Cn with the
aid of holomorphic functions. One may describe CH(K) as the intersection of all closed half-spaces
containing K [cf. Section 2.2]. It is of course sufficient to take the minimal half-spaces containing
K — those that are bounded by a supporting hyperplane. In Cn those half-spaces are given by the
inequalities

Re c · z ≤ Re c · b = sup
ζ∈K

Re c · ζ, c ∈ Cn − {0}, (6.3.1)

where b is an appropriate boundary point of K associated with the direction c (cf. 6.14). Thus the
convex hull of K ⊂ Cn may be described as follows:

CH(K) = {z ∈ Cn : Re c · z ≤ sup
ζ∈K

Re c · ζ, ∀c ∈ Cn}

= {z ∈ Cn : |ec·z| ≤ sup
ζ∈K
|ec·ζ |, ∀c ∈ Cn}.

(6.3.2)

In the last line, CH(K) is described with the aid of the special class of entire functions
f(z) = exp(c · z), c ∈ Cn. If one uses a larger class of holomorphic functions, one obtains a smaller
[no larger] hull for K, depending on the class [see for example Exercise 6.16]. In the following
definition, the class of admissible holomorphic functions and the resulting hull are determined by a
domain Ω containing K.

Definition 6.3.1. Let Ω ⊂ Cn be a domain K ⊂ Ω nonempty and compact (or at least bounded).
The O(Ω)-convex hull K̂Ω, or holomorphically convex hull of K relative to Ω, is the set

K̂Ω
def= {z ∈ Ω : |f(z)| ≤ ‖f‖K = sup

ζ∈K
|f(ζ)|, ∀f ∈ O(Ω)}. (6.3.3)

Before turning to examples we give another definition.
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Definition 6.3.2. Let Ω be a domain in Cn and let ϕ be a continuous map from the closed unit
disc ∆1(0, 1) ⊂ C to Ω which is holomorphic on the open disc ∆1 = ∆1(0, 1). Then ϕ, or rather

∆ = ∆ϕ
def= ϕ(∆1)

is called a (closed) analytic disc in Ω. The image Γ = Γϕ = ϕ(C) of the boundary C = ∂∆1 will be
called the edge of the analytic disc:

edge ∆ϕ
def= Γϕ = ϕ(∂∆1).

Examples 6.3.3.

(i) Let ∆ = ∆1(a, r) be a closed disc in Ω ⊂ C and let Γ = ∂∆. Then by the maximum principle

|f(w)| ≤ ‖f‖Γ ∀w ∈ ∆, ∀f ∈ O(Ω),

hence the holomorphically convex hull Γ̂Ω contains the disc ∆. The function f(w) = w − a
shows that Γ̂Ω = ∆. Compare Exercise 6.12, however.

(ii) More generally, let Ω be a domain in Cn and let ∆ϕ be an analytic disc in Ω. Now let f be in
O(Ω). Applying the maximum principle to the composition f ◦ ϕ on ∆1, we find that the
hull Γ̂Ω of the edge Γ must contain the whole analytic disc ∆ϕ:

|f(z)| = |f ◦ ϕ(w)| ≤ ‖f ◦ ϕ‖C(0,1) = ‖f‖Γ, ∀z = ϕ(w) ∈ ∆ϕ.

(iii) Let D ⊂ C2 be the multicircular domain (Figure 6.4)

D = {|z1| < 1, |z2| < 3} ∪ {|z1| < 3, 1 < |z2| < 3},

Γ the circle {z1 = 2, |z2| = 2} in D. Every function f in O(D) has an analytic continuation
to the equiradial bidisc ∆2(0, 3), cf. Section 2.5. The holomorphically convex hull of Γ relative
to the bidisc will be the disc {z1 = 2, |z2| ≤ 2} [why not more?]. Hence Γ̂D is the part of
that disc which belongs to D:

Γ̂D = {z ∈ C2 : z1 = 2, 1 < |z2| ≤ 2}.

Properties 6.3.4.

(i) K̂Ω is closed relative to Ω since we are dealing with continuous functions f in Definition 6.31.
Also, K̂Ω is a bounded set even if Ω is not, since by (6.3.2)

K̂Ω ⊂ CH(K) ⊂ B(0, R) whenever K ⊂ B(0, R).

However, K̂Ω need not be compact, cf. Example (iii) above. We will see in Section 6.4 that
noncompactness of K̂Ω can occur only if Ω fails to be a domain of holomorphy.

(ii) For any point z0 ∈ Ω − K̂Ω and arbitrary constants A ∈ C, ε > 0 there is a function g in
O(Ω) such that

g(z0) = A, ‖g‖K < ε. (6.3.4)

Indeed, there must be a function f in O(Ω) for which |f(z0)| > ‖f‖K . Now take g =
Afp/f(z0)p with sufficiently large p.
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Definition 6.3.5. A domain Ω ⊂ Cn is called holomorphically convex if the O(Ω)-convex hull K̂Ω
is compact for every compact subset K of Ω.

Holomorphic convexity will provide a characterization for domains of holomorphy [Section 6.4].

Examples 6.3.6.

(i) Every domain Ω ⊂ C is holomorphically convex. Indeed, for any compact K ⊂ Ω, the bounded,
relatively closed subset K̂Ω of Ω must be closed in C [and hence compact]. Otherwise K̂Ω
would have a limit point b in ∂Ω. The function 1/(z − b) which is bounded on K would then
fail to be bounded on K̂Ω.

(ii) Every logarithmically convex complete multicircular domain D ⊂ Cn is holomorphically
convex. We sketch the proof, taking n = 2 for convenience. Let K ⊂ D be compact. Enlarging
K inside D, we may assume that K is the union of finitely many closed polydiscs. Now let b be
any point in ∂D. In the plane of |z1|, |z2|, there will be a curve α1 log |z1|+α2 log |z2| = c with
αj ≥ 0 that separates the point (|b1|, |b2|) from the trace of K. To verify this, one may go to
the plane of log |z1|, log |z2| in which log tr D is a convex domain. It may finally be assumed
that the numbers αj are rational or, removing denominators, that they are nonnegative
integers. The monomial f(z) = zα1

1 zα2
2 will then satisfy the inequality |f(b)| > ‖f‖K , hence b

can not be a limit point of K̂D.

6.4 The Cartan-Thullen characterizations of domains of holomorphy

We begin with an important auxiliary result on simultaneous analytic continuation (see also Exercise
6.26!):

Proposition 6.4.1. Let K be a compact subset of Ω ⊂ Cn, let a be a point of the O(Ω)-convex
hull K̂Ω and let f be any holomorphic function on Ω. Then the power series for f with center a
converges (at least) throughout the ball B(a, d(K)) and uniformly on every compact subset of that
ball. More generally, if g is any function in O(Ω) which is majorized by the boundary distance
function d on K:

|g(ζ)| ≤ d(ζ), ∀ζ ∈ K, (6.4.1)

then the power series for f around a converges throughout the ball B(a, |g(a)|).
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Proof. The first result is the special case g ≡ d(K) of the second. We will prove the first result and
then indicate what has to be done to obtain the more general one.

Observe that the unit ball B(0, 1) is the union of the maximal polydiscs ∆(0, r) which it contains,
that is, the polydiscs for which r = (r1, . . . , rn) has length 1. Taking 0 < λ < d(K), let Kλ be the
λ-neighbourhood of K, that is, the set of all points in Cn at a distance < λ from K. The closure
Kλ will be a compact subset of Ω; note that we may represent it in the form

Kλ =
⋃
ζ∈K

B(ζ, λ) =
⋃

ζ∈K, |r|=1

∆(ζ, λr).

Naturally, Mλ = sup |f | on Kλ will be finite. Applying the Cauchy inequalities 1.65 to f on
∆(ζ, λr), ζ ∈ K, |r| = 1, we obtain∣∣Dαf(ζ)

∣∣ ≤ Mλα!
(λr)α = Mλα!

(λr1)α1 . . . (λrn)αn , ∀α ≥ 0. (6.4.2)

For given α, the right-hand side furnishes a uniform bound for the modulus of the holomorphic
function Dαf throughout K, hence a bound for ‖Dαf‖K . Since a belongs to K̂Ω, the same bound
must be valid for |Dαf(a)|. [Use (6.3.3) for Dαf .] It follows that the power series for f with center
a, ∑

α≥0

Dαf(a)
α! (z − a)α, (6.4.3)

will converge at every point z with |zj − aj | < λrj , j = 1, . . . , n. In other words, it converges
throughout the polydisc ∆(a, λr). This holds for all λ < d(K) and all r with |r| = 1, hence the
series converges throughout the union B(a, d(K)) of those polydiscs, and it converges uniformly on
every compact subset of that ball. [Cf. Theorem 2.4.2.]

For the second result one takes 0 < λ < 1 and introduces the set

K∗λ =
⋃
ζ∈K

B(ζ, λ|g(ζ)|).

This too is a compact subset of Ω [use (6.4.1) and the continuity of g]. Instead of (6.4.2) one now
obtains |Dαf(ζ)| ≤M∗λα!/(λ|g(ζ)|r)α or

∣∣Dαf(ζ) · g(ζ)|α|
∣∣ ≤ M∗λα!

(λr)α , ∀α ≥ 0, |r| = 1. (6.4.4)

These inequalities hold throughout K [also where g(ζ) = 0]; they will extend to the point
a ∈ K̂Ω. Via the convergence of the series (6.4.3) throughout the polydiscs ∆(a, λ|g(a)|r) with
λ < 1 and |r| = 1, one obtains its convergence on the union B(a, |g(a)|).

One more definition and we will be ready for the main result.

Definition 6.4.2. Ω ⊂ Cn is called the (maximal) domain of existence for the function f ∈ O(Ω)
if for every (small) connected domain U that intersects the boundary of Ω and for every component
Ω1 of U ∩ Ω, it is impossible to continue the restriction f |Ω1 analytically to U , cf. Figure 6.1.

Theorem 6.4.3 (Cartan-Thullen). The following conditions on a domain Ω ⊂ Cn are equivalent:

(i) Ω is a domain of holomorphy;
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(iia) For every compact subset K ⊂ Ω, the holomorphically convex hull K̂Ω has the same distance
to the boundary ∂Ω as K:

d(K̂Ω) = d(K);

(iib) All holomorphic functions g on Ω which are majorized by the function d on K are majorized
by d on K̂Ω:

|g(ζ)| ≤ d(ζ), ∀ζ ∈ K =⇒ |g(z)| ≤ d(z), ∀z ∈ K̂Ω; (6.4.5)

(iii) Ω is holomorphically convex, that is, K̂Ω is a compact subset of Ω whenever K is;

(iv) Ω is the maximal domain of existence for some function f ∈ O(Ω).

Proof. For the proof we may assume that Ω is connected: if Ω is a domain of holomorphy, so are
all its components and conversely. We may also assume Ω 6= Cn and will write K̂ for K̂Ω.

(i) ⇒ (ii-a). Since K ⊂ K̂ one has d(K̂) ≤ d(K). For the other direction, choose any point a
in K̂. For any function f in O(Ω), the power series with center a converges (at least) throughout
the ball B = B(a, d(K)) [Proposition 6.4.1]. The sum of the series furnishes a direct analytic
continuation of f [from the component of Ω ∩B that contains a] to B and this holds for all f in
O(Ω). However, by the hypothesis Ω is a domain of holomorphy, hence B must belong to Ω or we
would have a contradiction. It follows that d(a) ≥ d(K) and, by varying a. that d(K̂) ≥ d(K).

(i) ⇒ (ii-b). This implication also follows from Proposition 6.4.1. If (6.4.1) holds for g ∈ O(Ω),
the power series for any f ∈ O(Ω) with center a ∈ K̂ will define a holomorphic extension of f to
B(a, |g(a)|), hence such a ball must belong to Ω. Thus d(a) ≥ |g(a)| and (6.4.5) follows.

(ii-a) or (ii-b) ⇒ (iii). Let K ⊂ Ω be compact. Because (ii-b) implies (ii-a) [take g ≡ d(K)] we
may assume (ii-a). We know that K̂ ⊂ Ω is bounded and closed relative to Ω [Properties 6.34].
Since by the hypothesis K̂ has positive distance to ∂Ω, it follows that K̂ is compact.

(iii) ⇒ (iv). We will construct a function f in O(Ω) that has zeros of arbitrarily high order
associated to any boundary approach.

Let {aν} be a sequence of points that lies dense in Ω and let Bν denote the maximal ball in Ω
with center aν . Let {Eν} be the “standard exhaustion” of Ω by the increasing sequence of compact
subsets

Eν = {z ∈ Ω : |z| ≤ ν, d(z, ∂Ω) ≥ 1/ν}, ν = 1, 2, . . . ;

∪Eν = Ω. By changing scale if necessary we may assume that E1 is nonempty. By (iii) the
subsets Êν ⊂ Ω are also compact. Since Bν contains points arbitrarily close to ∂Ω, we can choose
points

ζν in Bν − Êν , ν = 1, 2, . . . .

We next choose functions gν in O(Ω) such that

gν(ζν) = 1, ‖gν‖Eν < 2−ν , ν = 1, 2, . . .

[cf. formula (6.3.4)]. Our function f is defined by

f(z) =
∞∏
ν=1
{1− gν(z)}ν , z ∈ Ω; (6.4.6)

we will carefully discuss its properties. For the benefit of readers who are not thoroughly familiar
with infinite products, we base our discussion on infinite series.

We begin by showing that the infinite product in (6.4.6) is uniformly convergent on every set
Eµ. Let z be any point in Eµ. Then for ν ≥ µ

|gν(z)| ≤ ‖gν‖Eµ ≤ ‖gν‖Eν < 2−ν .
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Using the power series −
∑
ws/s for the principal value of log(1−w) on the unit disc {|w| < 1},

it follows that
ν|p.v. log{1− gν(z)}| ≤ ν|gν(z) + 1

2gν(z)2 + . . . | < 2ν2−ν .

Thus the series ∑
ν≥µ

νp.v. log{1− gν(z)}

is uniformly convergent on Eµ; the sum function is holomorphic on the interior E0
µ. Exponentiating,

we find that the product ∏
ν≥µ

{1− gν(z)}ν

is also uniformly convergent on Eµ; the product function is zero free on Eµ and holomorphic on E0
µ.

Multiplying by the first µ − 1 factors, the conclusion is that the whole product in (6.4.6)
converges uniformly on Eµ. The product defines f as a holomorphic function on E0

µ and hence
on Ω. Since f is zero free on E1 it does not vanish identically; on Eµ it vanishes precisely where
one of the first µ− 1 factors of the product is equal to zero. At the point z = ζν ∈ Bν the factor
{1− gν(z)}ν vanishes of order ≥ ν, hence the same holds for f .

We will show that f can not be continued analytically across ∂Ω. Suppose on the contrary that
f has a direct analytic continuation F to a connected domain U intersecting ∂Ω if one starts from
the component Ω1 of U ∩Ω. Now choose a point b in ∂Ω1 ∩U and select a subsequence {a′k = aνk}
of {aν} which lies in Ω1 and converges to b. The associated balls B′k = Bνk must also tend to
b, hence for large k they lie in Ω1 and by omitting a few, we may assume that they all do. At
z = ζ ′k = ζνk ∈ B′k our function f vanishes of order ≥ νk ≥ k and the same must then hold for F .
Thus

DαF (ζ ′k) = 0 for all |α| < k.

Since ζ ′k → b it follows by continuity that DαF (b) = 0 for every multi-index α, hence F ≡ 0.
By the uniqueness theorem this would imply f ≡ 0, but that is a contradiction.

(iv) ⇒ (i): clear.

Remark 6.4.4. One can show that a result like Theorem 6.4.3 (ii-a) is also valid for other distance
like functions, e.g., as introduced in exercise 6.27. , cf. [46].

6.5 Domains of holomorphy are pseudoconvex

On a convex domain Ω the function v = log 1/d is convex: it satisfies the linear mean value
inequality (6.2.5), or with different letters,

v(a) ≤ 1
2{v(a− ξ) + v(a+ ξ)} (6.5.1)

for every straight line segment [a− ξ, a+ ξ] in Ω. Pseudoconvexity of a domain Ω in Cn may be
defined in terms of a weaker mean value inequality for the function v = log 1/d. In the case n = 1
this will be the inequality that characterizes subharmonic functions:

Definition 6.5.1. A continuous subharmonic function v on Ω ⊂ C is a continuous real valued
function that satisfies for every point a ∈ Ω and all sufficiently small vectors ζ ∈ C− {0}, v the
circular mean value inequality:

v(a) ≤ v(a; ζ) def= 1
2π

∫ π

−π
v(a+ eitζ)dt, 0 < |ζ| < ra. (6.5.2)
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In the present case of C one may write ζ = reiϕ and thus v(a; ζ) = v(a; r), the mean value of v
over the circle C(a, r). For subharmonic v as defined here, the mean value inequality (6.5.2) will
automatically hold for every ζ with 0 < |ζ| < d(a) [one may take ra = d(a), Section 8.2].

In the case of Cn, the mean value inequality relative to circles in complex lines leads to the
class of plurisubharmonic functions:

Definition 6.5.2. A continuous plurisubharmonic (psh) function v on Ω ⊂ Cn is a continuous real
function with the property that its restrictions to the intersections of Ω with complex lines are
subharmonic. Equivalently, it is required that for every point a ∈ Ω and every vector ζ ∈ Cn − {0},
the function v(a + wζ), w ∈ C satisfy circular mean value inequalities at the point w = 0. The
condition may also be expressed by formula (6.5.2), but now for vectors ζ ∈ Cn.

It may be deduced from (6.5.1) [by letting ξ run over a semicircle] that convex functions on
Ω ⊂ Cn are plurisubharmonic. An important example is given by the function |z|2. Observe also
that the sum of two psh functions is again psh

More general [not necessarily continuous] subharmonic and plurisubharmonic functions will be
studied in Chapter 8. The following lemma is needed to prove circular mean value inequalities for
continuous functions.

Lemma 6.5.3. Let f be a continuous real function on the closed unit disc ∆1(0, 1) ⊂ C with the
following special property:

(i) For every polynomial p(w) such that Re p(w) ≥ f(w) on the circumference C(0, 1), one also
has Re p(0) ≥ f(0).

Then f satisfies the mean value inequality at 0 relative to the unit circle:

f(0) ≤ f(0; 1) = 1
2π

∫ π

−π
f(eit)dt.

Proof. By Weierstrass’s theorem on trigonometric approximation, any 2π-periodic continuous real
function on R can be uniformly approximated, within any given distance ε, by real trigonometric
polynomials ∑

k≥0
(ak cos kt+ bk sin kt) = Re

∑
k≥0

(ak − ibk)eikt = Re p(eit).

Here p(w) stands for the polynomial
∑
k≥0(ak − ibk)wk. For our given f , we now approximate

f(eit) + ε with error ≤ ε by Re p(eit) on R:

−ε ≤ f(eit) + ε− Re p(eit) ≤ ε.

Then
f(w) ≤ Re p(w) ≤ f(w) + 2ε on C(0, 1).

Hence by property (Π) of f ,

f(0) ≤ Re p(0) = a0 = 1
2π

∫ π

−π
Re p(eit)dt

≤ 1
2π

∫ π

−π
f(eit)dt+ 2ε = f(0, 1) + 2ε.

(6.5.3)

The proof is completed by letting ε ↓ 0.
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Definition 6.5.4. A domain (open set) Ω in Cn is called pseudoconvex if the function

v(z) = log 1/d(z) = log 1/d(z, ∂Ω) (6.5.4)

is plurisubharmonic on Ω.

There are also other definitions of pseudoconvexity possible, cf. Remark 6.5.7 and Theorem
9.3.5.

Theorem 6.5.5. Every domain of holomorphy in Cn is pseudoconvex.

Proof. Let Ω ⊂ Cn be a domain of holomorphy. Choose any point a in Ω. We will show that the
function v = − log d satisfies the mean value inequality (6.5.2) for every ζ ∈ Cn with 0 < |ζ| < d(a).
Fixing such a ζ, the flat analytic disc

∆ = {z ∈ Cn : z = a+ wζ, |w| ≤ 1}

will belong to Ω. We set

f(w) = v(a+ wζ) = − log d(a+ wζ), w ∈ ∆1(0, 1) (6.5.5)

and get ready to apply Lemma 6.5.3 to this continuous real f .
Thus, let p(w) be any polynomial in w such that

Re p(w) ≥ f(w) = − log d(a+ wζ), ∀w ∈ C(0, 1). (6.5.6)

In order to exploit the fact that Ω is a domain of holomorphy, we have to reformulate (6.5.6) as an
inequality for a holomorphic function on Ω. This is done by choosing a polynomial q(z) in z such
that

q(a+ wζ) = p(w), ∀w ∈ C; (6.5.7)

singling out a nonzero coordinate ζj of ζ, one may simply take q(z) = p{(zj − aj)/ζj}. Then for
z = a+ wζ with w ∈ C(0, 1), (6.5.6) gives

Re q(z) = Re p(w) ≥ − log d(z),

or equivalently,
|e−q(z)| ≤ d(z), ∀z ∈ Γ = edge ∆. (6.5.8)

We know that ∆ ⊂ Ω belongs to the holomorphically convex hull of Γ relative to Ω, cf.
Examples 6.3.3. Now Ω is a domain of holomorphy, hence by the Cartan-Thullen theorem 6.4.3,
inequality (6.5.8) must also hold everywhere on ∆ ⊂ Γ̂Ω, cf. (6.4.5). It will hold in particular for
z = a, hence |e−q(a)| ≤ d(a) or

Re p(0) = Re q(a) ≥ − log d(a) = f(0). (6.5.9)

Summing up, (6.5.6) always implies (6.5.9), so that f has property (
∏

) of Lemma 6.5.3.
Conclusion:

f(0) ≤ f(0; 1) or v(a) ≤ v(a; ζ).

We close with an important auxiliary result for the solution of the Levi problem in Chapters 7,
11.
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Proposition 6.5.6. Every pseudoconvex domain Ω has a plurisubharmonic exhaustion function:
It is “psh exhaustible” The intersection Ω′ = Ω ∩ V of a psh exhaustible domain Ω with a complex
hyperplane V is also psh exhaustible.

Proof. (i) If Ω = Cn, then the function |z|2 will do. For other pseudoconvex Ω, the function

α(z) = log 1
d(z) + |z|2, z ∈ Ω

will be a psh exhaustion function. Indeed, α is a sum of psh functions, hence psh, cf. Definition
6.54 and the lines following Definition 6.5.2. The term |z|2 ensures the compactness of the subsets
Ωt of Ω when Ω is unbounded, cf. Definition 6.2.3.

(ii) If α is any psh exhaustion function for Ω, then α′ = α |Ω′ will be a psh exhaustion function
for Ω′ = Ω ∩ V . [Verify this.]

Remark 6.5.7. Psh exhaustion functions are essential in the solution of the ∂ problem on pseudocon-
vex domains as presented in Chapter 11. For that reason, one sometimes defines pseudoconvexity
in terms of the existence of psh exhaustion functions. In fact, every psh exhaustible domain is also
pseudoconvex in the sense of Definition 6.5.4 [cf. Section 9.3].

6.6 Exercises

Exercise 6.1. Prove directly from the definition that Uj = {z ∈ Cn : zj 6∈ 0} is a domain of
holomorphy. Prove also that Uj ∩ Uk is a domain of holomorphy.

Exercise 6.2. Let Ω1 and Ω2 be domains of holomorphy in Cm and Cp, respectively. Prove that
the product domain Ω = Ω1 × Ω2 is a domain of holomorphy in Cm+p.

Exercise 6.3. (Analytic polyhedra) Let P be an analytic polyhedron in Cn, that is, P is compact
and there exist a neighbourhood U of P and a finite number of holomorphic functions f1, . . . , fk
on U such that

P = {z ∈ U : |fj(z)| < 1, j = 1, . . . , k}.

Prove that P is a domain of holomorphy. [Examples: the polydisc ∆(a, r) with r < ∞, the
multicircular domain in C2 given by the set of inequalities |z1| < 2, |z2| < 2, |z1z2| < 1.]

Exercise 6.4. Prove directly that the Hartogs triangle

D = {(z1, z2) ∈ C2 : 0 < |z1| < |z2| < 1}

is a domain of holomorphy. [This is a logarithmically convex multicircular domain which, however,
is not complete.]

Exercise 6.5. Prove that the closure D of the Reinhardt triangle can not be the intersection of
a family of domains of holomorphy. [Cf. Section 2.5.] Show in addition that every holomorphic
function on D which is bounded with all its derivatives of arbitrary order, extends to the polydisc
∆2(0, 1). [Cf. [63] for related examples.]

Exercise 6.6. Let D be convex and let x′, x′′ lie in D. Show that

d((1− λ)x′ + λx′′) ≥ (1− λ)d(x′) + λd(x′′), ∀λ ∈ [0, 1].

Now use the fact that the function log t is increasing and concave [the graph lies above the chords]
to prove inequality (6.2.6) for v = − log d.

121



AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

D

AA
AA
AA
AA
AA
AA|z

2
|

0 1

|z
1
|

Figure 6.5. The Reinhardt triangle

Exercise 6.7. Let D be a connected domain in Rn. A point b ∈ ∂D is called a boundary point of
nonconvexity for D if there is a straight line segment S throught b in D whose end points belong to
D and which is the limit of a continuous family of line segments inside D. Suppose now that D is
nonconvex. Prove that D has a boundary point of nonconvexity. [There must be points x′, x′′ in D
such that the segment [x′, x′′] does not belong to D. Connecting x′ to x′′ by a polygonal path in
D, one may deduce that D must contain segments [x0, x1] and [x0, x2] such that [x1, x2] does not
belong to D. Now consider segments parallel to [x1, x2].]

Exercise 6.8. (Continuation) Let D be a connected domain in Rn.

(i) Suppose that the function v(x) = log 1/d(x) is convex on D. Deduce that D is convex.

(ii) Prove that D is convex if and only if it has a convex exhaustion function.

Exercise 6.9. Let K ⊂ Rn be compact. Characterize the points x of the convex hull CH(K) by
means of a family of inequalities involving real linear functions, cf. (6.3.2).

Exercise 6.10. Let K ⊂ Ω ⊂ Cn be compact, K̂ = K̂Ω the holomorphically convex hull of K
relative to Ω. Prove that

(i) (K̂)∧ = K̂;

(ii) if |zj | ≤ rj for all z ∈ K, then |zj | ≤ rj for all z ∈ K̂ [hence K̂ is bounded].

Exercise 6.11. Suppose K ⊂ Zf ⊂ Ω, where Zf is the zero set of a function f ∈ O(Ω). Prove
that K̂ ⊂ Zf .

Exercise 6.12. Let Ω ⊂ C be the annulus A(0, ρ, R) and let K be the circle C(0, r), where
ρ < r < R. Determine K̂Ω.

Exercise 6.13. Let K ⊂ C be compact, C−K connected, a ∈ C−K. Prove that there is a simple
holomorphic function f on a neighbourhood Ω of K ∪ {a} with connected complement Ce −Ω such
that

|f(z)| ≤ 1 on K, |f(a)| > 1.

Next use Runge’s theorem 1.7.5 to show that there is a polynomial p(z) such that

|p(z)| ≤ 1 on K, |p(a)| > 1.

Finally, describe K̂C.

Exercise 6.14. Let K be an arbitrary compact set in C [C−K need not be connected]. Describe
K̂C.
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Exercise 6.15. Let ∆ ⊂ Ω ⊂ Cn be a flat analytic disc, ∆ = {z ∈ Cn : z = a + wζ, |w| ≤ 1},
where ζ ∈ Cn − {0}. Determine Γ̂Ω where Γ = edge ∆.

Exercise 6.16. (Polynomially convex hull) For K ⊂ Cn compact, the polynomially convex hull K̃
is defined by

K̃ = {z ∈ Cn : |p(z)| ≤ ‖p‖K for all polynomials p}.

Prove:

(i) For any domain Ω containing K, K̂Ω ⊂ K̃;

(ii) For any polydisc ∆ containing K, K̂∆ = K̃;

(iii) K̃ = K̂Cn ⊂ CH(K).

Exercise 6.17. Let K ⊂ Ω ⊂ Cn be compact and let E be the set of those points z ∈ Ω, for which
there is a constant Mz such that |f(z)| ≤Mz‖f‖K for all f ∈ O(Ω). Prove that E = K̂Ω.

Exercise 6.18. Prove directly from Definition 6.3.5 that the following domains are holomorphically
convex:

(i) Cn;

(ii) polydiscs in Cn;

(iii) convex domains in Cn.

Exercise 6.19. Prove that the intersection of two domains of holomorphy is again a domain of
holomorphy.

Exercise 6.20. LetD1 be a connected domain of holomorphy in Cn and letD2 ⊂ Cn be analytically
isomorphic to D1. Prove that D2 is also a domain of holomorphy.

Exercise 6.21. Let Ω be a domain of holomorphy and let Ωε be the “ε-contraction” of Ω, that is,
Ωε = {z ∈ Ω : d(z) > ε}. Prove that Ωε is also a domain of holomorphy. [For K ⊂ Ωε, K̂Ωε ⊂ K̂Ω.]

Exercise 6.22. (Another characterization of domains of holomorphy) Prove that Ω ⊂ Cn is a
domain of holomorphy if and only if the following condition is satisfied:

“For every boundary point b and every sequence of points {ζν} in Ω that converges to
b, there is a holomorphic function f on Ω which is unbounded on the sequence {ζν}”.

[Let Ω be a domain of holomorphy and {Kν} an increasing exhaustion of Ω by compact
subsets, determined in such a way that Kµ+1 − K̂µ contains a point θµ of the sequence {ζν}.
Define f =

∑
gµ, where the functions gµ ∈ O(Ω) are determined inductively such that

|gµ(θµ)| > µ+
µ−1∑
ν=1
|gν(θµ)|, ‖gµ‖Kµ < 2−µ.

What can you say about |f(θµ)| ?]

Exercise 6.23. Prove that Ω ⊂ Cn is a domain of holomorphy if and only if the following condition
is satisfied: For every compact K ⊂ Ω and every function f ∈ O(Ω),

sup
K

|f(z)|
d(z) = sup

K̂

|f(z)|
d(z) .
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Exercise 6.24. Let D be a connected domain of holomorphy, K ⊂ D compact. An Analytic
Polyhedron P in D is a subset P = {z : |fj(z)| < 1, fj ∈ O(D), j = 1, . . . , n}. Prove that there
is an analytic polyhedron P such that K ⊂ P ⊂ D. Deduce that D is the limit of an increasing
sequence of analytic polyhedra {Pν} such that P ν ⊂ P 0

ν+1. [Assuming K = K̂ (as we may), associate
certain functions to the boundary points of an ε-neighbourhood of K.]

Exercise 6.25. Use the mean value inequality (6.5.1) for v = log 1/d on straight line segments to
prove that every convex domain in Cn is pseudoconvex.

Exercise 6.26. (Continuity principle for analytic discs, cf. Hartogs’ continuity theorem 2.6.1)
Let D be a connected domain in Cn and let {∆ν}, ν = 1, 2, . . . be a sequence of analytic discs
in D which converges to a set E in Cn. Suppose that the edges Γν of the discs ∆ν all belong to
a compact subset K of D. Setting d(K) = ρ and taking any point b ∈ E, prove that (suitable
restrictions of) the functions f ∈ O(D) can be continued analytically to the ball B(b, ρ).

Exercise 6.27. Let Ω be a domain of holomorphy. For a ∈ Cn \ {0} let

da(z) = da(z, ∂Ω) = sup{r : (z + λa) ∈ Ω ∀|λ| < r}.

Let Γ be the edge of an analytic disc ∆̄ in Ω. Show that

da(Γ) = da(∆̄).

Next show that − log da(z) is psh on Ω and deduce a proof of step ii of Hartogs’ singularity theorem
4.8.2, for all n ≥ 2.

Exercise 6.28. (Prism Lemma). Let Hx be a domain in Rnx which contains two closed line
segments [x0, x1] and [x0, x2] that do not belong to a straight line and let f be holomorphic on
Hx+iRny ⊂ Cn. Prove that f has an analytic continuation to a neighborhood of Tx+iRny , where Tx is
the closed triangular region with vertices x0, x1, x2. [ Take x0 = (0, 0, 0, . . . , 0), x1 = (1, 1, 0, . . . , 0),
x2 = (−1, 1, 0, . . . , 0). By translation invariance, it is sufficient to prove that f has an analytic
extension to a neighborhood of an arbitrary point a = (a1, a2, . . . , 0) ∈ T 0

x : |a1| < a2 < 1.
Determine c and d such that a lies on the parabola x2 = cx2

1 + d through x1 and x2 and then
consider the family of analytic discs ∆λ = {z ∈ T + iRny : z2 = cz2

1 + λ, z3 = · · · = zn = 0},
0 ≤ λ ≤ d = 1−c. The boundaries Γλ belong to {[x0, x1]∩ [x0, x2]}+ iRny . Verify that the projection
of ∆λ onto the z1-plane is given by the inequality |x1| ≤ c(x2

1 − y2
1) + λ.]
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Chapter 7

The first Cousin problem, ∂ and the Levi
problem

Towards the end of the nineteenth century, prominent mathematicians solved the following problems:
– Construct a meromorphic function f on C, or on a domain Ω ⊂ C, with poles at prescribed points
and with a prescribed way of becoming infinite at the poles (results of Mittag-Leffler); – Construct
a holomorphic function f on C, or on Ω ⊂ C, with zeros at prescribed points and with prescribed
multiplicities of the zeros (results of Weierstrass).

The corresponding questions for Cn and for domains Ω ⊂ Cn were also raised and led to the
important first and second Cousin problem, respectively, see Section 1.10. However, solutions for
domains other than simple product domains did not appear until Oka started to make his major
contributions around 1936. It seemed then that the Cousin problems are best considered on domains
of holomorphy. Still, that was not the whole story. Complete understanding came only with the
application of sheaf cohomology [Cartan-Serre, early 1950’s, cf. Chapter 12 and the monograph
[21]]. More recently, there has been increased emphasis on the role of the ∂ equation, especially after
Hörmander found a direct analytic solution for the general ∂ problem on pseudoconvex domains [cf.
Chapter 11].

Let us elaborate. The Cousin problems require a technique, whereby local solutions may be
patched together to obtain a global solution. Techniques for the first Cousin problem can be applied
also to other problems, such as the holomorphic extension of functions, defined and analytic on the
intersection of a domain with a complex hyperplane, and the patching together of local solutions of
the ∂ equation to a global solution. In this Chapter it will be shown that the reduced, so-called
holomorphic Cousin-I problem is generally solvable on a domain Ω ⊂ Cn if and only if the “first
order” ∂ equation ∂u = v is generally solvable on Ω. Indeed, smooth solutions of the holomorphic
Cousin-I problem exist no matter what domain Ω one considers. Such smooth solutions can be
modified to a holomorphic solution by the method of “subtraction of nonanalytic parts” if an only
if one can solve a related ∂ equation.

In Chapter 11 it will be shown analytically that every pseudoconvex domain is a ∂ domain,
that is, a domain on which all (first order) ∂ equations are solvable. For C2 it will then follow that
pseudoconvex domains, ∂ domains, Cousin-I domains (domains on which all first Cousin problems
are solvable) and domains of holomorphy are all the same, cf. Sections 7.2, 7.7. The situation in Cn
with n ≥ 3 is more complicated: see Sections 7.2, 7.5 and the discussion of the Levi problem in
Section 7.7; cf. also Chapter 12.
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7.1 Meromorphic and holomorphic Cousin-I

A meromorphic function f on an open set Ω ⊂ C is a function which is holomorphic except for
poles. The poles must be isolated: they can not have a limit point inside Ω, but there are no other
restrictions. [A limit point of poles inside Ω would be a singular point of f but not an isolated
singularity, hence certainly not a pole.] The classical existence theorem here is Mittag-Leffler’s:
For any open set Ω ⊂ C, any family of isolated points {aλ} ⊂ Ω and any corresponding family of
principal parts

fλ(z) =
mλ∑
s=1

cλs(z − aλ)−s,

there is a meromorphic function f on Ω which has principal part fλ at aλ for each λ but no poles
besides the points aλ. That is, for each point aλ there is a small neighbourhood Uλ ⊂ Ω such that

f = fλ + hλ on Uλ, with hλ ∈ O(Uλ) (7.1.1)

[hλ holomorphic on Uλ], while f is holomorphic on Ω−∪λUλ. For a classical proof of Mittag-Leffler’s
theorem, cf. Exercise 7.1, for a proof in the spirit of this Chapter, cf. Exercise 7.3.

Since analytic functions in Cn with n ≥ 2 have no isolated singularities [Chapters 2, 3],
meromorphy in Cn must be defined in a different way:

Definition 7.1.1. A meromorphic function f on Ω ⊂ Cn [we write f ∈M(Ω)] is a function which,
in some (connected) neighbourhood Ua of each point a ∈ Ω, can be represented as a quotient of
holomorphic functions,

f = ga/ha on Ua, with ha 6≡ 0.

[The question of global quotient representations of meromorphic functions f will be considered
in Theorem 12.7.3.]

Observe that a meromorphic function need not be a function in the strict sense that it has a
precise value everywhere: it is locally defined as an element of a quotient field. On Ua, the above
f may be assigned a precise value, which could be ∞, (at least) wherever ha 6= 0 or ga 6= 0. A
meromorphic function is determined by its finite values, cf. Exercise 7.5.

Suppose now that for Ω ⊂ Cn one is given a covering by open subsets Uλ, where λ runs over
some index set Λ, and that on each set Uλ one is given a meromorphic function fλ. One would like
to know if there is a global meromorphic function f on Ω which on each set Uλ becomes singular
just like fλ, in other words, f should satisfy the conditions (7.1.1). Of course, this question makes
sense only if on each nonempty intersection

Uλµ = Uλ ∩ Uµ, (7.1.2)

the functions fλ and fµ have the same singularities. One thus arrives at the following initial form
of the first Cousin problem:

Problem 7.1.2 (Meromorphic First Cousin Problem). Let {Uλ}, λ ∈ Λ be a covering of Ω ⊂ Cn
by open subsets and let the meromorphic functions fλ ∈M(Uλ) satisfy the compatibility conditions

fλ − fµ = hλµ on Uλµ with hλµ ∈ O(Uλµ), ∀λ, µ ∈ Λ. (7.1.3)

The question is if there exists a meromorphic function f ∈M(Ω) such that

f = fλ − hλ on Uλ with hλ ∈ O(Uλ), ∀λ ∈ Λ. (7.1.4)
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In looking for f , one may consider the holomorphic functions hλ as the unknowns. They must
then be determined such that hλ−hµ = hλµ on Uλµ, cf. (7.1.4) and (7.1.3). By (7.1.3), the functions
hλµ will have to satisfy certain requirements:

hλµ = −hµλ on Uλµ, hλµ = hλν + hνµ on Uλµν = Uλ ∩ Uµ ∩ Uν ,

etc. It turns out that the meromorphic Cousin problem can be reduced to a holomorphic problem
involving the known functions hλµ and the unknown functions hλ:

Problem 7.1.3 ((Holomorphic) Cousin-I Problem or Additive Cousin Problem). Let {Uλ}, λ ∈ Λ
be an open covering of Ω ⊂ Cn and let {hλµ} be a family of holomorphic functions on the nonempty
intersections Uλµ that satisfy the compatibility conditions

hλµ + hµλ = 0 on Uλµ, ∀λ, µ, ν ∈ Λ

hλµ + hµν + hνλ = 0 on Uλµν , ∀λ, µ, ν ∈ Λ.
(7.1.5)

The question is if there exist holomorphic functions hλ ∈ O(Uλ) such that

hλ − hµ = hλµ on Uλµ, ∀λ, µ ∈ Λ. (7.1.6)

A family {Uλ, fλ} with functions fλ ∈M(Uλ) that satisfy condition (7.1.3) will be called a set
of meromorphic Cousin data on Ω; a family {Uλ, hλµ} with holomorphic functions hλµ ∈ O(Uλµ)
that satisfy the conditions (7.1.5) will be called a set of (holomorphic) Cousin-I data on Ω. The
above forms of the first Cousin problem are related in the following way:

Proposition 7.1.4. The meromorphic first Cousin problem on Ω with data {Uλ, fλ} has a solution
f (in the sense of (7.1.4) if and only if there is a solution {hλ} to the holomorphic Cousin-
I problem on Ω with the data {Uλ, hλµ} derived from (7.1.3). In particular, if all holomorphic
Cousin-I problems on Ω are solvable, then so are all meromorphic first Cousin problems on Ω.

Proof. If the family {hλ} solves the holomorphic problem corresponding to the functions hλµ
coming from (7.1.3), then in view of (7.1.6):

fλ − hλ = fµ − hµ on Uλµ, ∀λ, µ,

hence one may define a global meromorphic function f on Ω by setting

f
def= fλ − hλ on Uλ, ∀λ.

Conversely, if f solves the meromorphic problem, then the family {hλ} given by (7.1.4) solves the
corresponding holomorphic problem.

We will see in the sequel that the theory for the holomorphic Cousin-I problem has a number of
applications besides the meromorphic problem.

Definition 7.1.5. An open set Ω in Cn will be called a Cousin-I domain if all holomorphic first
Cousin problems on Ω are solvable. By Proposition 7.1.4, all meromorphic first Cousin problems on
such a domain are also solvable. If it is only known that all meromorphic first Cousin problems on
Ω are solvable, one may speak of a meromorphic Cousin-I domain.

Are all meromorphic Cousin-I domains in Cn also holomorphic Cousin-I domains? The answer
is known to be yes for n = 2, cf. Exercise 7.26. For n = 1 the answer is yes for a trivial reason: by
the theory below, all domains Ω in C are Cousin-I domains! For n > 2 again the answer is yes, but
the proof is much more involved, cf. [26].
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Example 7.1.6. Let U1 and U2 be domains in C with nonempty intersection U12. Let h12 be
any holomorphic function on U12. All boundary points of U12 may be bad singularities for h12!
Nevertheless, by the Cousin-I theory h12 can be represented as h2 − h1 with hj ∈ O(Uj). It does
not seem easy to prove this directly! Cf. also Exercise 7.14.

Not all domains in C2 are Cousin-I domains:

Example 7.1.7. Take Ω = C2 − {0},

Uj = {z ∈ C2 : zj 6= 0}, j = 1, 2; h12 = −h21 = 1
z1z2

, h11 = h22 = 0.

Question 7.1.8. Can one write h12 as h2 − h1 with hj ∈ O(Uj) ?

Observe that U1 is a multicircular domain and that U1 = [C − {0}] × C. Every holomorphic
function h1 on U1 is the sum of a (unique) absolutely convergent Laurent series∑

p,q

apqz
p
1z
q
2 ,

at least where z1z2 6= 0, cf. Section 2.7. Here apq = 0 whenever q < 0: indeed, for fixed z1 6= 0,

h1(z1, z2) =
∑
q

(∑
p

apqz
p
1

)
zq2

will be an entire function of z2, hence
∑
p apqz

p
1 = 0 for every q < 0 and all z1 6= 0. Another

application of the uniqueness theorem for Laurent series in one variable completes the proof that
apq = 0 for all (p, q) with q < 0. Similarly every holomorphic function h2 on U2 is the sum of a
Laurent series ∑

p,q

bpqz
p
1z
q
2

with bpq = 0 whenever p < 0. It follows in particular that

a−1,−1 = b−1,−1 = 0.

Thus a difference h2 − h1 with hj ∈ O(Uj) can not possibly be equal to the prescribed function h12
on U1 ∩ U2: the latter has Laurent series

∑
cpqz

p
1z
q
2 = z−1

1 z−1
2 hence 1 = c−1,−1 6= b−1,−1 − a−1,−1.

The present Cousin-I problem is not solvable. [A shorter but less informative proof is suggested in
Exercise 7.6.]

The domain Ω = C2 − {0} is not a domain of holomorphy. [All holomorphic functions on Ω
have an analytic continuation to C2, cf. Sections 2.6, 3.4.] This is not a coincidence: on a domain of
holomorphy, all Cousin-I problems will be solvable [see Theorem 7.7.1].

7.2 Holomorphic extension of analytic functions defined on a
hyperplane section

Certain holomorphic extensions may be obtained by solving Cousin problems:

Theorem 7.2.1. Let Ω ⊂ Cn be a [meromorphic] Cousin-I domain and let Ω′ be the nonempty
intersection of Ω with some (affine) complex hyperplane V ⊂ Cn. Then every holomorphic function
h on Ω′ [interpreted as a subset of Cn−1] has a holomorphic extension g to Ω.
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Proof. By suitable choice of coordinates it may be assumed that V is the hyperplane {zn = 0},
so that the (n− 1)-tuples (z1, . . . , zn−1) = z′ can serve as coordinates in Ω′ = V ∩ Ω. The given
holomorphic function h(z′) on Ω′ can, of course, be extended to a holomorphic function [independent
of zn] on the cylinder Ω′ × C by setting h̃(z′, zn) = h̃(z′, 0) = h(z′). This observation solves the
extension problem if Ω ⊂ Ω′ × C; the general case will be handled via a meromorphic Cousin
problem.

We introduce a covering of Ω by a family of polydiscs contained in Ω; the polydiscs which
contain no point z with zn = 0 will be called Up’s, those containing some point of V will be called
Vq’s. Observe that if (z′, zn) ∈ Vq, then also (z′, 0) ∈ Vq ⊂ Ω, hence z′ ∈ Ω′ [see Figure 7.1 and cf.
Exercise 7.11.]

One associates meromorphic Cousin data to the above covering that depend on the given
function h:

fp = 0 on each Up, fq(z′, zn) = h(z′)
zn

on each Vq. (7.2.1)

Since an intersection Up ∩ Vq contains no points z with zn = 0, the corresponding difference
fp − fq = hpq is holomorphic on that intersection.

By the hypothesis, our meromorphic first Cousin problem is solvable. Let f be a meromorphic
solution on Ω:

f =


fp + hp = hp on Up, hp ∈ O(Up), ∀p,

fq + hq = h(z′)/zn + hq on Vq, hq ∈ O(Vq), ∀q.
(7.2.2)

We now define

g = znf =


znhp on the polydisc Up, ∀p.

h(z′) + znhq at each point (z′, zn)
in the polydisc Vq, ∀q.

(7.2.3)

The function g is clearly holomorphic on Ω. It is equal to h on Ω′: the points of Ω with zn = 0
belong to polydiscs Vq, hence g(z′, 0) = h(z′).

Appropriate choice of h will provide the following important step in an inductive solution of the
Levi problem:

Theorem 7.2.2. Let Ω ⊂ Cn be a [meromorphic] Cousin-I domain. Suppose that the (nonempty)intersections
of Ω with the complex hyperplanes in Cn are domains of holomorphy when considered as subsets of
Cn−1. Then Ω is a domain of holomorphy.
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Proof. Choose any (small) connected domain U that intersects the boundary of Ω and any component
Ω0 of U ∩ Ω. We will construct a function g ∈ O(Ω) whose restriction g | Ω0 can not be continued
analytically to U [cf. Definition 6.1.1].

Take a point b ∈ U ∩ ∂Ω0 and a point a ∈ Ω0 such that the segment [a, b] belongs to U ; let c be
the point of [a, b] ∩ ∂Ω0 closest to a [so that c ∈ ∂Ω; c may coincide with b].

We next select a complex hyperplane V which contains [a, b]. Since by hypothesis the intersection
Ω′ = V ∩ Ω is a domain of holomorphy, there is a holomorphic function h on Ω′ which becomes
singular at c for approach along [a, c). [One may take a function h that is unbounded on [a, c), cf.
Exercise 6.22. For n = 2, cf. also Exercise 7.12.] Let g, finally, be a holomorphic extension of h to
the Cousin-I domain Ω. Then the restriction of g to Ω0 has no analytic continuation to U : g must
also become singular at c for approach along [a, c).

Corollary 7.2.3. Let Ω ⊂ Cn be a [meromorphic] Cousin-I domain and suppose that the same is
true for the intersection of Ω with any affine complex subspace of Cn of any dimension k between 1
and n. Then Ω is a domain of holomorphy.

[Use induction on n; the intersections of Ω with complex lines are planar open sets, hence
domains of holomorphy.]

Corollary 7.2.4. In C2, every [meromorphic] Cousin-I domain is a domain of holomorphy.

This is no longer true in Cn with n ≥ 3. For example, it was shown by Cartan that Ω =
Cn \ Cm × {(0, . . . , 0)}, n ≥ m+ 3 is a Cousin-I domain, cf. Exercise 7.10.

The method of proof of Theorem 7.2.2 gives another interesting criterion for a domain of
holomorphy, see Exercise 7.27.

7.3 Refinement of coverings and partitions of unity

It is sometimes desirable to refine a given covering of Ω by open subsets. A covering {Vj}, j ∈ J of
Ω is called a refinement of the covering {Uλ}, λ ∈ Λ if each set Vj is contained in some set Uλ. In
order to transform given Cousin data for the covering {Uλ} into Cousin data for the covering {Vj},
we introduce a refinement map, that is, a map σ : J → Λ such that

Vj ⊂ Uσ(j) for each j ∈ J. (7.3.1)

[There may be several possible choices for Uσ(j): we make one for each j.]
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Refinement of Cousin data
Let {Vj} be an open covering of Ω, ϕjk ∈ O(Vjk). The data {Vj , ϕjk} are called a refinement of
given Cousin-I data {Uλ, hλµ} on Ω if the covering {Vj} is a refinement of {Uλ}, and if the functions
ϕjk are obtained from the functions hλµ via a refinement map σ, combined with restriction:

ϕjk = hσ(j)σ(k) |Vjk , ∀j, k ∈ J [Vjk ⊂ Uσ(j)σ(k)]. (7.3.2)

Let {Uλ, hλµ} be given holomorphic Cousin-I data for Ω and let {Vj , ϕjk} be a refinement. It is
clear that the functions ϕjk (7.3.2) will then satisfy the compatibility conditions for the covering
{Vj}, cf. (7.1.5), hence the data {Vj , ϕjk} are also Cousin-I data for Ω.

Proposition 7.3.1. The original Cousin-I problem {Uλ, hλµ} on Ω is (holomorphically) solvable
if and only if the refined problem {Vj , ϕjk} is.

Proof. Suppose we have a solution {ϕj} of the refined problem:

ϕk − ϕj = ϕjk = hσ(j)σ(k) on Vjk ⊂ Uσ(j)σ(k), ∀j, k ∈ J.

We want to construct appropriate functions hλ on the sets Uλ from the functions ϕj and hλµ.
By the compatibility conditions (7.1.5),

hσ(j)σ(k) + hσ(k)λ − hσ(h)λ = 0 on Uσ(j)σ(k) ∩ Uλ.

Combination of the two formulas shows that

ϕk + hσ(k)λ = ϕj + hσ(j)σ(k) + hσ(k)λ = ϕj + hσ(j)λ on Vjk ∩ Uλ.

For each λ ∈ Λ we may therefore define a function hλ in a consistent manner throughout Uλ by
setting

hλ
def= ϕj + hσ(j)λ on Uλ ∩ Vj , ∀j. (7.3.3)

[Each point of Uλ belongs to some set Vj .] The (holomorphic) functions hλ, hµ will then satisfy
the relation

hµ − hλ = ϕj + hσ(j)µ − ϕj − hσ(j)λ = hλµ on Uλµ ∩ Vj
for each j, hence hµ − hλ = hλµ throughout Uλµ. Thus the family {hλ} will solve the original
Cousin-I problem.

The proof in the other direction is immediate: if {hλ} solves the original problem, the family
obtained via the map σ, combined with restriction, will solve the refined problem. Indeed, if

ϕj
def= hσ(j) | Vj , ∀j ∈ J,

then
ϕk − ϕj = hσ(k) − hσ(j) = hσ(j)σ(k) = ϕjk on Vjk.

Special open coverings
It is convenient to consider open coverings {Vj} of Ω that have the following properties:

{Vj} is locally finite, that is, every compact subset of Ω
intersects only finitely many sets Vj ;

(7.3.4)

Vj has compact closure on Ω for each j.. (7.3.5)
Every special open covering {Vj} as above will be countably infinite: by (7.3.5) it must be

infinite, and by (7.3.4) it is countable [cf. the proof below].
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Lemma 7.3.2. Every open covering {Uλ} of Ω has a special refinement {Vj} – one that satisfies
the conditions (3d, e).

Proof. One may obtain such a refinement {Vj} of {Uλ} with the aid of the standard exhaustion of
Ω by the compact subsets

Eν = {z ∈ Ω : d(z, ∂Ω) ≥ 1/ν, |z| ≤ ν}, ν = 1, 2, . . . .

Assuming E2 nonempty (as we may by changing the scale if necessary), one picks out finitely many
sets Uλ that jointly cover E2. The corresponding subsets Uλ ∩E0

3 [E0=interior of E] will provide
the first sets Vj ; together, they cover E2. One next covers E3 − E0

2 by finitely many sets Uλ and
uses the corresponding subsets Uλ ∩ (E0

4 − E1) as the next sets Vj ; jointly they cover E3 − E0
2 . In

the next step one covers E4 − E0
3 by infinitely many sets Uλ ∩ (E0

5 − E2), etc.

Definition 7.3.3. A C∞ partition of unity on Ω subordinate to an open covering {Uλ} is a family
of nonnegative C∞ functions {βλ} on Ω such that∑

λ

βλ ≡ 1 on Ω and supp βλ ⊂ Uλ, ∀λ,

Here supp βλ is the support relative to Ω, that is, the smallest relatively closed subset of Ω
outside of which βλ is equal to 0.

Proposition 7.3.4. For every special covering {Vj}, j = 1, 2, . . . of Ω satisfying the conditions
(3d, e) there exists a C∞ partition of unity {βj} on Ω with βj ∈ C∞0 (Vj), that is, supp βj is a
compact subset of Vj , ∀j.

[Actually, there exist C∞ partitions of unity subordinate to any open covering {Uλ}; they may
be obtained from those for special coverings by a simple device, cf. Exercise 7.15.]

Proof of the Proposition. We begin by constructing a family of nonnegative C∞ functions {αj} on
Ω such that supp αj is a compact subset of Vj while α =

∑
j αj is a strictly positive C∞ function

on Ω. For appropriate εj > 0 with 4εj < diamVj , let Wj denote the set of all points in Vj whose
distance to the boundary ∂Vj is greater than 2εj . It may and will be assumed that the numbers
εj have been chosen in such a way that the family {Wj} is still a covering of Ω. [One may first
choose ε1 so small that the family W1, V2, V3, . . . is still a covering, then choose ε2 so small that
the family W1, W2, V3, . . . is still a covering, etc.]

For each j we now determine a nonnegative C∞ function αj on Ω which is strictly positive on
Wj and has compact support in Vj . [One may obtain αj by smoothing of the characteristic function
of Wj through convolution with a nonnegative C∞ approximation to the identity ρε, ε = εj , whose
support is the ball B(0, εj), cf. Section 3.3.] Observe that at any given point a ∈ Ω, at least one
function αj will be > 0.

Since the covering {Vj} is locally finite, a closed ball B ⊂ Ω intersects only finitely many sets
Vj . Hence all but a finite number of functions αj are identically zero on B. It follows that the sum∑
j αj defines a C∞ function α on B, and hence on Ω. By the preceding, the sum function α will

be > 0 throughout Ω.
The proof is completed by setting

βj
def= αj/α, ∀j.
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7.4 Analysis of Cousin-I and existence of smooth solutions

Suppose that the holomorphic Cousin-I problem with data {Uλ, hλµ} on Ω has a holomorphic or
smooth solution {hλ} : hλ ∈ O(Uλ) or hλ ∈ C∞(Uλ) and hµ − hλ = hλµ on Uλµ. By refinement
of the data we may assume that the covering {Uλ} is locally finite and that we have been able to
construct a C∞ partition of unity {βλ} on Ω, subordinate to the covering {Uλ}, cf. Section 7.3.

We wish to analyze the function hλ and focus on a point a in Uλ. At such a point a we will
have

hλ = hν + hνλ (7.4.1)

for all indices ν such that a ∈ Uν . There are only finitely many such indices ν ! We multiply (7.4.1)
by βν and initially sum over precisely those indices ν for which a ∈ Uν (symbol

∑a

ν

):

(∑a

ν

βν

)
hλ =

∑a

ν

βνhν +
∑a

ν

βνhνλ (at the point a ∈ Uλ). (7.4.2)

The value of the first sum will not change if we add the terms βν (equal to 0 !) which correspond
to the indices ν for which a 6∈ Uν . The sum over all ν’s is equal to 1 and this will hold at every
point a ∈ Uλ: ∑a

ν

βν =
∑
ν∈Λ

βν = 1 (at a ∈ Uλ). (7.4.3)

Products βνhν , whether they occur in the second sum (7.4.2) or not, may be extended to C∞
functions on Ω by defining βνhν = 0 on Ω− Uν ; indeed, βνhν = 0 outside a closed subset of Uν
anyway [closed relative to Ω]. The value of the second sum will not change if we add the terms zero
corresponding to those ν’s, for which a 6∈ Uν :∑a

ν

βνhν =
∑
ν∈Λ

βνhν (at a ∈ Uλ). (7.4.4)

What can we say about the last sum (7.4.4) on Uλ or elsewhere?
On a closed ball B ⊂ Ω, only finitely many terms in the full sum

∑
βνhν are ever 6= 0. Thus

the full sum defines a C∞ function on B and hence on Ω:∑
ν∈Λ

βνhν
def= u ∈ C∞(Ω). (7.4.5)

We now turn to the third sum in (7.4.2), but there we will not go outside Uλ. Products βνhνλ
are defined only on Uλν . Such products can be extended to C∞ functions on Uλ by setting them
equal to 0 on Uλ − Uν : they vanish at the points of Uν close to Uλ − Uν anyway (Figure 7.3). For
indices ν such that Uν does not meet Uλ, we may simply define βνhνλ as 0 throughout Uλ. We are
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again going to sum over all ν’s; at a ∈ Uλ this only means that we add a number of zero terms to
the original sum: ∑a

ν

βνhνλ =
∑
ν∈Λ

βνhνλ (at a ∈ Uλ). (7.4.6)

What can we say about the last sum (7.4.6)?
On a closed ball B in Uλ, only finitely many terms in the full third sum

∑
βνhνλ are ever 6= 0.

Thus that sum defines a C∞ function on B and hence on Uλ:∑
ν∈Λ

βνhνλ
def= gλ ∈ C∞(Uλ). (7.4.7)

Conclusion. Combining (7.4.2-7.4.7) we see that at any point a ∈ Uλ:

hλ =
(∑a

ν

βν

)
hλ =

∑
ν∈Λ

βνhν +
∑
ν∈Λ

βνhνλ = u+ gλ.

Thus any holomorphic or C∞ solution of the Cousin-I problem under consideration can be repre-
sented in the form

hλ = u+ gλ on Uλ, ∀λ ∈ Λ, (7.4.8)
where gλ ∈ C∞(Uλ) is given by (7.4.7) and u ∈ C∞(Ω).

Conversely, if we define functions hλ by (7.4.8, 7.4.7), they will always form at least a smooth
solution of the Cousin-I problem, no matter what open set Ω we have [see below]:

Theorem 7.4.1. Let {Uλ, hλµ} be any family of holomorphic Cousin-I data on Ω ⊂ Cn which has
been refined so that the covering {Uλ} is locally finite and there is a C∞ partition of unity {βλ} on
Ω subordinate to {Uλ}. Then the functions hλ defined by (4h, g), with an arbitrary C∞ function u
on Ω, constitute a C∞ solution of the Cousin-I problem with the given data, and every C∞ solution
of the problem is of that form.

Proof. For functions hλ as in (7.4.8, 7.4.7) one has

hµ − hλ = gµ − gλ =
∑
ν∈Λ

(
βνhνµ − βνhνλ

)
=
(∑
ν∈Λ

βν

)
hλµ = hλµ on Uλµ, ∀λ, µ

(7.4.9)

because of the compatibility conditions (7.1.5). Thus the functions hλ form a C∞ solution of the
Cousin-I problem, cf. (7.1.6). That all C∞ solutions of the problem have the form (7.4.8, 7.4.7)
follows from the earlier analysis.

Remark 7.4.2. That every holomorphic (or C∞!) Cousin-I problem for arbitrary open Ω is C∞
solvable can also be proved without refinement of the Cousin data – it suffices to refine the covering
(if necessary), cf. Exercise 7.20.

7.5 Holomorphic solutions of Cousin-I via ∂

In Section 7.4 we have determined all C∞ solutions {hλ} of a given (suitably refined) holomorphic
Cousin-I problem {Uλ, hλµ} on an open set Ω. For a fixed C∞ partition of unity {βλ} subordinate
to {Uλ}, they have the form (7.4.8):

hλ = u+ gλ on Uλ,

with gλ as in (7.4.7) and an arbitrary C∞ function u on Ω.
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Question 7.5.1. Will there be a holomorphic solution among all the C∞ solutions {hλ} ?

We still have the function u at our disposal. For holomorphy of the smooth functions hλ it is
necessary and sufficient that

0 = ∂hλ = ∂u+ ∂gλ,

or
∂u = −∂gλ on Uλ, ∀λ ∈ Λ. (7.5.1)

The second members in (7.5.1) can be used to define a global differential form v on Ω. Indeed, on
an intersection Uλ ∩ Uµ, (4i) gives

∂(gµ − gλ) = ∂(hµ − hλ) = ∂hλµ = 0 (7.5.2)

since hλµ ∈ O(Uλµ)! Thus we obtain a C∞ form v on Ω by setting

v =
n∑
j=1

vjdzj
def= −∂gλ = −

n∑
j=1

∂gλ
∂zj

dzj on Uλ, ∀λ ∈ Λ. (7.5.3)

The conditions (7.5.1) on u can now be summarized by the single equation ∂u = v on Ω. If u
satisfies this condition, then ∂hλ = 0, so that hλ is a holomorphic function for each λ. We have
thus proved:

Proposition 7.5.2. The (suitably refined) holomorphic Cousin-I problem 7.13 on Ω has a holo-
morphic solution {hλ} if and only if the associated ∂ equation

∂u = v on Ω, (7.5.4)

with v given by (7.5.3) and (7.4.7), has a C∞ solution u on Ω.

Incidentally, it is clear from (7.5.3) that v satisfies the integrability conditions ∂vk/∂zj =
∂vj/∂zk. It will be convenient to introduce the following terminology:

Definition 7.5.3. An open set Ω ⊂ Cn will be called a ∂ domain if all equations ∂u = v on Ω,
with (0, 1)-forms v of class C∞ that satisfy the integrability conditions, are C∞ solvable on Ω.

We will now prove the following important

Theorem 7.5.4. Every ∂ domain Ω in Cn is a Cousin-I domain 7.15, and conversely.

Proof of the direct part. Let Ω be a ∂ domain. Then equation (7.5.4) is C∞ solvable, hence by
Proposition 7.5.2, every suitable refined (holomorphic) Cousin-I problem on Ω is holomorphically
solvable. Proposition 7.3.1 on refinements now tells us that every Cousin-I problem on Ω is
holomorphically solvable, hence Ω is a Cousin-I domain.

For the converse we need an auxiliary result on local solvability of the ∂ equation that will be
proved in Section 7.6:

Proposition 7.5.5. Let v be a differential form
∑n

1 vjdzj of class Cp(1 ≤ p ≤ ∞) on the polydisc
∆(a, r) ⊂ Cn that satisfies the local integrability conditions ∂vk/∂zj = ∂vj/∂zk. Then the equation
∂u = v has a Cp solution f = fs on every polydisc ∆(a, s) with s < r.

[If a certain differential dzk is absent from v (that is, if the coefficient vk is identically 0), one
may take the corresponding number sk equal to rk. The solution constructed in Section 7.6 will
actually be of class Cp+α, ∀α ∈ (0, 1).]
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Proof of Theorem 7.5.4, converse part. Let Ω be a Cousin-I domain and let v be any C∞ differential
form

∑n
1 vjdzj on Ω that satisfies the integrability conditions. We cover Ω by a family of “good”

polydiscs Uλ, λ ∈ Λ, that is, polydiscs Uλ ⊂ Ω on which there exists a C∞ solution fλ of the
equation ∂u = v. Then on the intersections Uλµ:

∂(fλ − fµ) = v − v = 0,

hence
hλµ

def= fλ − fµ ∈ O(Uλµ), ∀λ, µ.

Just as in Section 7.1 the differences hλµ will satisfy the compatibility conditions (7.1.5), hence
{Uλ, hλµ} is a family of holomorphic Cousin-I data for Ω. Since by the hypothesis all Cousin-I
problems on Ω are (holomorphically) solvable, there is a family of functions hλ ∈ O(Uλ) such that

hλµ = hµ − hλ

on each nonempty intersection Uλµ. We now set

u
def= fλ + hλ on Uλ, ∀λ.

This formula will furnish a global C∞ solution of the equation ∂u = v on Ω : fλ + hλ = fµ + hµ
on Uλµ and

∂u = ∂fλ + ∂hλ = v + 0 = v on Uλ, ∀λ.

Conclusion: Ω is a ∂ domain.

7.6 Solution of ∂ on polydiscs

We first prove the important local solvability of the ∂ equation asserted in Proposition 7.5.5. Next
we will show that polydiscs (and in particular Cn itself) are ∂ domains [“Dolbeault’s lemma”].
The latter result is not needed for the sequel, but we derive it to illustrate the approximation
technique that may be used to prove the general solvability of ∂ on domains permitting appropriate
polynomial approximation, cf. [26, 50].

Proof of Proposition 7.5.5. It is convenient to take a = 0. For n = 1 the proof is very simple. Just
let ω be a C∞ cutoff function which is equal to 1 on ∆(0, s) and has support in ∆(0, r). Then ωv
can be considered as a Cp form on C which vanishes outside ∆(0, r). Hence the Cauchy-Green
transform will provide a Cp solution of the equation ∂u = ωv on C and thus of the equation ∂u = v
on ∆(0, s), cf. Theorem 3.1.3.

For n ≥ 2 we try to imitate the procedure used in Section 3.2 for the case where v has compact
support, but now there will be difficulties. These are due to the fact that we can not multiply v by
a nonzero C∞ function of compact support in ∆(0, r) and still preserve the integrability conditions.
To get around that problem one may use induction on the number of differentials dzj that are
actually present in v.

If v contains no differentials dzj at all, the equation is ∂u = 0 and every holomorphic function
on ∆(0, r) is a Cp solution on the whole polydisc. Suppose now that precisely q differentials dzj
are present in v, among them dzn, and that the Proposition has been established already for the
case in which only q − 1 differentials dzj are present. As usual we write z = (z′, zn) and we set

∆(0, r) = ∆n−1(0, r′)×∆1(0, rn) = ∆n−1 ×∆1(0, rn).
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Choosing s as in the Proposition, so that in particular sn < rn, we let ω = ω(zn) be a cutoff
function of class C∞0 on ∆1(0, rn) ⊂ C which is equal to 1 on ∆1(0, sn). Defining ωvj = 0 for
|zn| ≥ rn, the product

ω(zn)v(z′, zn) = ωv1dz1 + . . .+ ωvndzn

represents a Cp form on ∆n−1 × C which for fixed z′ ∈ ∆n−1 vanishes when |zn| ≥ rn. Thus the
Cauchy-Green transform of ωvn relative to zn provides a solution ϕ to the equation ∂u/∂zn = ωvn
on ∆n−1 × C, cf. Theorem 3.1.3:

ϕ(z) = ϕ(z′, zn) = − 1
π

∫
C

ω(ζ)vn(z′, ζ)
ζ − zn

dξdη. (7.6.1)

Observe that the function ϕ is of class Cp on ∆(0, r) and that the same holds for ∂ϕ/∂zn = ωvn.
We will determine the derivatives ∂ϕ/∂zj with j < n by differentiation under the integral sign,

noting that by the integrability conditions,

∂

∂zj
{ω(ζ)vn(z′, ζ)} = ω(ζ) ∂vj

∂zn
(z′, ζ) = ∂

∂ζ
{ω(ζ)vj(z′, ζ)} − vj(z′, ζ)∂ω

∂ζ
.

Thus, referring to the representation for compactly supported functions of Corollary 3.1.2 for the
second step,

∂ϕ

∂zj
= − 1

π

∫
C

∂

∂ζ
{ω(ζ)vj(z′, ζ)} dξdη

ζ − zn
+ 1
π

∫
C

vj(z′, ζ)
ζ − zn

∂ω

∂ζ
(ζ)dξdη

= ω(zn)vj(z′, zn) + I(vj , ω), 1 ≤ j < n,

(7.6.2)

say. By inspection, the derivatives ∂ϕ/∂zj are of class Cp on ∆(0, r).
We now introduce the differential form

w = v − ∂ϕ. (7.6.3)

This new form is also of class Cp on ∆(0, r) and it satisfies the integrability conditions [forms ∂ϕ
always do]. Moreover, if we restrict the form to ∆n−1(0, r′)×∆1(0, sn), then it may be written as

w = w1dz1 + . . .+ wn−1dzn−1,

since ∂ϕ/∂zn = ωvn = vn on that polydisc. Finally, if dzk was absent from v, that is, vk = 0
and k > n, then by (7.6.2) also ∂ϕ/∂zk = 0, so that wk = 0. Thus the new form w restricted to
∆n−1(0, r′)×∆1(0, sn) contains at most q − 1 differentials dzj . Hence by the induction hypothesis,
there is a Cp function ψ on the polydisc ∆n−1(0, s′)×∆1(0, sn) such that w = ∂ψ there. Conclusion:

v = ∂ϕ+ w = ∂(ϕ+ ψ) on ∆(0, s), (7.6.4)
with ϕ+ ψ ∈ Cp.

[Actually, the function ϕ in (7.6.1) will be of class Cp+α, ∀α ∈ (0, 1), cf. Remarks 3.1.4 and
Exercises 3.6, 3.9. Likewise, by induction, ψ ∈ Cp+α.]

Theorem 7.6.1. Let v =
∑n

1 vjdzj be a differential form of class Cp (1 ≤ p ≤ ∞) on the
polydisc ∆(a, r) ⊂ Cn that satisfies the integrability conditions. Then the equation ∂u = v has a Cp
solution on ∆(a, r).

Proof. We take a = 0 and introduce a strictly increasing sequence of polydiscs ∆k [more precisely,
∆k ⊂ ∆k+1, k = 0, 1, 2, . . .] with center 0 and union ∆ = ∆(0, r). By Proposition 7.55 there are
Cp functions fk on ∆k+1, k = 1, 2, . . . such that ∂fk = v on ∆k. Starting with such functions fk,
we will inductively determine Cp functions uk, k = 1, 2, . . . on ∆ such that
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(i) supp uk ⊂ ∆k+1,

(ii) ∂uk = v on ∆k,

(iii) |uk − uk−1| < 2−k on ∆k−2, k ≥ 2.

Let {ωk} be a sequence of Cp cutoff functions on Cn such that ωk = 1 on ∆k and supp ωk ⊂ ∆k+1.
We define u1 = ω1f1 on ∆2, u1 = 0 on ∆−∆2 so that (i) and (ii) hold for k = 1. Now suppose that
u1, . . . , uk have been determined in accordance with conditions (i)-(iii). Since ∂(fk+1 − uk) = 0 on
∆k, the difference fk+1 − uk is holomorphic on that polydisc, hence equal to the sum of a power
series around 0 which is uniformly convergent on ∆k−1. Thus one can find a polynomial pk such
that

|fk+1 − uk − pk| < 2−k−1 on ∆k−1.

We may now define

uk+1 =


(fk+1 − pk)ωk+1 on ∆k+2,

0 on ∆−∆k+2

(7.6.5)

to obtain (i)-(iii) with k + 1 instead of k.
By (iii) we may define a function u on ∆ by

u = u1 +
∞∑
2

(uk − uk−1);

the series will be uniformly convergent on every compact subset of ∆. Condition (ii) shows that the
terms uk − uk−1 with k > j are holomorphic on ∆j , hence ϕj =

∑
k>j(uk − uk−1) is holomorphic

on ∆j . It follows that u = uj + ϕj is of class Cp on ∆j . Moreover, on ∆j

∂u = ∂uj + ∂ϕj = v + 0 = v.

Since these results hold for each j = 1, 2, . . . we are done.

The method of the previous theorem may be extended to show that products of planar domains
are Cousin-I domains, cf. exercise 7.21. It seems difficult to determine if a given domain is Cousin-I.
The following theorem is sometimes useful.

Theorem 7.6.2. Let {Uλ} be some open cover of the domain Ω consisting of Cousin-I domains.
Ω is a Cousin-I domain if and only if for all Cousin-I data of the form {Uλ, hλµ} the Cousin-I
problem is solvable.

Proof. The only if part is clear. For the if part, suppose that we are given Cousin-I data {Vi, hij}.
Then {Vi ∩ Uλ, hij} are Cousin-I data on Uλ (here and in the sequel we denote the restriction of
a function to a smaller domain and the function itself with the same symbol), hence there exist
hλi ∈ O(Vi ∩ Uλ) with

hλi − hλj = hij on Uλ ∩ Vij .

On Uλµ ∩ Vij we find hλi − hλj = hij = hµi − h
µ
j , therefore

hλi − hλj = hµi − h
µ
j .

Thus hλi − h
µ
i = hλj − h

µ
j for all i, j on Uλµ and we may define hλµ ∈ O(Uλµ) by

hλµ = hλi − h
µ
i on Vi ∩ Uλµ.
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Are these consistent Cousin-I data? Yes: on Vi ∩ Uλµν we have

hλµ + hµν + hνλ = hλi − h
µ
i + hµi − h

ν
i + hνi − hλi = 0.

We can solve this Cousin-I problem with functions hλ ∈ O(Uλ). Now for all i we find on Vi ∩ Uλµ

hλi − h
µ
i = hλµ = hλ − hµ.

Hence hλi − hλ = hµi − hµ on Vi ∩ Uλµ and we may conclude that hλi − hλ extends analytically to a
function hi ∈ O(Vi). We claim that the hi provide a solution. Indeed, for all λ we have on Uλ ∩ Vij

hi − hj = hλi − hλ − hλj + hλ = hij .

7.7 The Levi problem

It will be shown in Chapter 11 that every domain with a plurisubharmonic exhaustion function, or
pseudoconvex domain, is a ∂ domain. Once that fundamental result has been established, we can
use Theorem 7.5.4 to conclude:

Theorem 7.7.1. Every pseudoconvex domain, and hence every domain of holomorphy, is a Cousin-I
domain.

More important, the result of Chapter 11 will enable us to complete the solution of the Levi
problem begun in Section 7.2:

Theorem 7.7.2. Every domain Ω in Cn with a plurisubharmonic exhaustion function, or pseudo-
convex domain, is a domain of holomorphy.

Proof. We use induction on the dimension. Suppose then that the result has been established for
dimension n− 1; dimension 1 is no problem since every domain in C is a domain of holomorphy.
Now let Ω be a psh exhaustible domain in Cn, n ≥ 2. By the fundamental result to be proved in
Chapter 11, Ω is a ∂ domain and hence a Cousin-I domain [Theorem 7.5.4]. On the other hand,
the intersections Ω′ of Ω with (affine) complex hyperplanes are also psh exhaustible [Proposition
6.5.6]. Hence by the induction hypothesis, they are domains of holomorphy when considered as
open subsets of Cn−1. Thus by Theorem 7.2.2, Ω is a domain of holomorphy.

Remarks 7.7.3. For n = 2 the Levi problem was settled by Oka in 1942, while solutions for n ≥ 3
were obtained almost simultaneously by Bremermann, Norguet and Oka in the years 1953-1954.
After Dolbeault’s work on cohomology (1953-1956, cf. Chapter 12), it became clear that a solution
of the Levi problem could also be based on an analytic solution of ∂, but such a solution did not
exist at the time!

7.8 Exercises

Exercise 7.1. Prove the Mittag-Leffler theorem for Ω = C (Section 7.1) along the following classical
lines:

(i) Write down a rational function gk with the prescribed poles and principal parts on the disc
∆(0, k), k = 1, 2, . . . ;
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(ii) Does the series g1 +
∑∞

2 (gk − gk−1) converge on Ω? If not, how can it be modified to ensure
convergence, taking into account that gk − gk−1 is holomorphic on ∆(0, k − 1)?

Exercise 7.2. (Related treatment of ∂ on C) Let v be a Cp function on Ω = C, 1 ≤ p ≤ ∞.

(i) Use a suitable Cauchy-Green transform (Section 3.1- (7.1.6)) to obtain a Cp function uk on
C such that ∂uk/∂z = v on ∆(0, k);

(ii) Determine a Cp solution u of the equation ∂u/∂z = v on Ω by using a suitable modification
of the series u1 +

∑∞
2 (uk − uk−1).

Exercise 7.3. Describe how one can solve the meromorphic first Cousin problem for C (Section
7.1) directly with the aid of a ∂ problem. [Using nonoverlapping discs ∆(aλ, rλ), let ωλ be a C∞
function on C with support in ∆(aλ, rλ) and equal to 1 on ∆(aλ, 1

2rλ). Then u = f −
∑
ωλfλ must

be a C∞ function on C. What conditions does ∂u/∂z have to satisfy?]

Exercise 7.4. Extend the constructions in Exercises 7.1, 7.2 to the case where Ω is:

(i) the unit disc ∆(0, 1);

(ii) the annulus A(0; 1, 2).

Exercise 7.5. Let U be a connected domain in Cn, g, h, g̃, h̃ ∈ O(U), h 6≡ 0, h̃ 6≡ 0. Suppose
that g/h = g̃/h̃ outside Z(h)∪Z(h̃). Prove that gh̃ = hg̃ on U , so that [g/h] = [g̃/h̃] in the quotient
field for O(U).

Exercise 7.6. Prove directly [without Laurent series] that the following meromorphic first Cousin
problem on Ω = C2 − {0} must be unsolvable:

f1 = 1
z1z2

on U1 = {z1 6= 0}, f2 = 0 on U2 = {z2 6= 0}.

[Cf. formula (7.2.3).]

Exercise 7.7. Let Ω1 be a Cousin-I domain in Cn and let Ω2 be analytically isomorphic to Ω1.
Prove that Ω2 is also a Cousin-I domain.

Exercise 7.8. Which holomorphic Cousin-I problems for Ω = C2 − {0} and Uj = {z ∈ C2 : zj 6=
0}, j = 1, 2 are solvable and which are not?

Exercise 7.9. Let Ω be the multicircular domain in Cn (n ≥ 2) given by

{|z′| < 1, |zn| < 3} ∪ {|z′| < 3, 1 < |zn| < 3}, z′ = (z1, . . . , zn−1).

Prove that Ω is not a Cousin-I domain by indicating a holomorphic function on Ω ∩ {z1 = 2} that
has no analytic extension to Ω.

Exercise 7.10. Prove by computation that all Cousin-I problems for Ω = C3 − {0}, Uj = {z ∈
C3 : zj 6= 0}, j = 1, 2, 3 are solvable:

(i) Show that it is sufficient to consider the case where

h23 = a zp1z
q
2z
r
3 , h31 = b zp1z

q
2z
r
3 , h12 = c zp1z

q
2z
r
3 .

(ii) Suppose p < 0. Show that then a = 0, c = −b and (assuming b 6= 0)q ≥ 0, r ≥ 0. Solve.
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(iii) Finally deal with the case p ≥ 0, q ≥ 0, r ≥ 0.

(iv) Can you extend this to Cn \ Cm, n−m ≥ 3?

Exercise 7.11. Suppose that the polydisc ∆(a, r) in Cn meets the hyperplane {zn = 0}. What
does this mean for an and rn? Prove that the intersection is precisely the projection of ∆(a, r) onto
the hyperplane.

Exercise 7.12. Prove more directly than in the text that a Cousin-I domain Ω in C2 is a domain
of holomorphy, using the following idea. Starting out as in the proof of Theorem 7.22, take c = 0
and let the complex line z2 = 0 pass through [a, b]. Cover Ω by polydiscs Up (not containing points
with z2 = 0) and Vq (containing points with z2 = 0). Now solve the associated meromorphic Cousin
problem with fp = 0 on each Up, fq = 1/z1z2 on each Vq, etc.

Exercise 7.13. C∞ partitions of unity subordinate to a given open covering {Uλ} are relatively
easy to construct for the case of open sets Ω in R. Verify the following steps:

(i) It may be assumed that Ω is an open interval I and that {Uλ} is a locally finite covering by
open intervals Iλ;

(ii) There are subintervals Jλ ⊂ Iλ which are relatively closed in I and jointly cover I, and for
Jλ ⊂ Iλ there is a C∞ function αλ ≥ 0 on I such that αλ > 0 on Jλ and αλ = 0 on a
neighbourhood of I − Iλ in I;

(iii) The functions βλ = αλ/
∑
αν form a C∞ partition of unity on I, subordinate to the covering

{Iλ}.

Exercise 7.14. Let f be holomorphic on D = D1 ∩D2 in C. Which ∂ problem do you have to
solve in order to represent f in the form f1 + f2 with fj ∈ O(Dj)?

Exercise 7.15. Let Ω ⊂ Rn be open and let {Uλ}, λ ∈ Λ be an arbitrary covering of Ω by open
subsets. Construct a C∞ partition of unity {βλ}, λ ∈ Λ on Ω subordinate to the covering {Uλ}.
[Start out with a special refinement {Vj} as in 7.33 and an associated partition of unity {αj}. Try
to define βλ in terms of functions αj .]

Exercise 7.16. Determine a smooth solution of the Cousin-I problem in Example 7.17 with the
aid of the pseudo-partition of unity

βj = zjzj/|z|2, j = 1, 2

associated with the covering {Uj}.

Exercise 7.17. Determine a smooth form v = v1dz1 + v2dz2 on Ω = C2 − {0}, with ∂v2/∂z1 =
∂v1/∂z2, for which the equation ∂u = v can not be solvable on Ω.

Exercise 7.18. Let {Uλ, hλµ} be an arbitrary family of Cousin-I data on Ω of class Cp (1 ≤ p ≤ ∞),
that is, the functions hλµ are of class Cp and they satisfy the compatibility conditions (7.1.5).
Prove that the corresponding Cousin problem is Cp solvable.

Exercise 7.19. Prove that Ω ⊂ Cn is a Cousin-I domain if and only if for some p (1 ≤ p ≤ ∞), the
equation ∂u = v is Cp solvable on Ω for every (0, 1)-form v of class Cp that satisfies the integrability
conditions.
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Exercise 7.20. Let {Uλ, hλµ} be an arbitrary family of holomorphic Cousin-I data on Ω. Use a
special refinement {Vj} of the covering {Uλ} with associated C∞ partition of unity {βj} and with
refinement map σ to prove the following. Every C∞ solution of the Cousin-I problem with the
original data can be represented in the form

hλ = u+ gλ = u+
∑
j

βjhσ(j)λ on Uλ, u ∈ C∞(Ω),

and every family of functions {hλ} of this form is a C∞ solution.

Exercise 7.21. Formulate and prove a generalization of Proposition (7.55) to products of arbitrary
planar domains.

Exercise 7.22. Formulate and prove a generalization of Proposition (7.55) to products of arbitrary
planar domains. [You may have to use Runge’s theorem on rational approximation, which states
that a holomorphic function defined in a neighborhood of a compact set K can be uniformly
approximated with rational functions with poles atmost in one point of each component of the
complement of K in the extended complex plane.]

Exercise 7.23. Using exercise 7.10, show that Cn \ Cm is a Cousin-I domain if n−m ≥ 3.

Exercise 7.24. (Hefer’s lemma) Let Ω ⊂ Cn be a domain of holomorphy, so that Ω and the
intersections of Ω with affine complex subspaces are ∂ domains (Chapter 11) and hence Cousin-I
domains. Suppose that Ω meets the subspace Wk = {z1 = z2 = . . . = zk = 0} of Cn and that
f ∈ O(Ω) vanishes on Ω ∩Wk. Prove that there are holomorphic functions gj on Ω such that

f(z) =
k∑
1
zjgj(z).

[Use induction on k.]

Exercise 7.25. (Hefer’s theorem) Let Ω ⊂ Cn be a domain of holomorphy and let F be holomorphic
on Ω. Prove that there are holomorphic functions Pj(z, w) on Ω× Ω such that

F (z)− F (w) =
n∑
1

(zj − wj)Pj(z, w), ∀z, w ∈ Ω.

[Use zj − wj = ζj and zj = ζn+j , j = 1, . . . , n as new coordinates on Ω× Ω.]

Exercise 7.26. Let Ω be a domain in C2 for which every meromorphic first Cousin problem
is solvable. Prove that in this case, also every holomorphic Cousin-I problem on Ω is solvable.
[If a more direct approach does not work, one can always use the general solvability of ∂ on a
pseudoconvex domain which is established in Chapter 11. In Hörmanders book [26] one can find
a proof that every meromorphic Cousin-I domain Ω ⊂ Cn, n ≥ 3 is a (holomorphic) Cousin-I
domain.]

Exercise 7.27. (Another characterization of domains of holomorphy) Anticipating the general
solvability of (first order) ∂ on plurisubharmonically exhaustible domains (Chapter 11), one is
asked to prove the following result:

“Ω ⊂ Cn is a domain of holomorphy if and only if for every complex line L that
meets Ω and for every holomorphic function h1 on Ω1 = Ω∩L, there is a holomorphic
extension of h1 to Ω”.
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Chapter 8

Subharmonic functions, plurisubharmonic
functions and related aspects of potential
theory

Subharmonic functions on a domain Ω in C or Rn are characterized by the local sub mean value
property. Their name comes from the fact that they are majorized by harmonic functions with the
same boundary values on subdomains of Ω.

Subharmonic functions in C play an important role in estimating the growth of holomorphic
functions. The reason is that for holomorphic f , the functions v = log |f | is subharmonic. In the
case of holomorphic f in Cn, log |f | is even more special, namely, plurisubharmonic. In this chapter
we will study subharmonic and plurisubharmonic (psh) functions in some detail. Because it serves
as a model, the special case of C will receive a good deal of attention. Readers who are familiar
with this case may wish to skip part of Sections 8.1–8.3.

Many properties of subharmonic and plurisubharmonic functions can be derived by means
of approximation by smooth functions of the same class. Smooth subharmonic functions are
characterized by nonnegative Laplacian and this property makes them easier to investigate. There
is a related characterization of smooth psh functions. For arbitrary subharmonic and psh functions
the desired C∞ approximants are obtained by convolution with suitable approximate identities.
The results on psh functions are used in Chapter 9 to construct smooth psh exhaustion functions
of rapid growth on pseudoconvex domains. Such functions are essential for the solution of the ∂̄
problem in Chapter 11.

Classical potential theory in Rn involves subharmonic functions [as well as their negatives, the
superharmonic functions]. For applications to holomorphic functions in Cn one needs special Cn
potential theory which involves plurisubharmonic functions. We will study aspects of that recent
theory and discuss some applications, among them the useful lemma on the estimation of partial
derivatives in terms of directional derivatives of the same order.

8.1 Harmonic and subharmonic functions

For these functions the theory is much the same in all spaces Rn (n ≥ 2). However, we will play
special attention to the case n = 2. The theory is simpler there, due to the close relation between
harmonic functions in R2 and holomorphic functions in C. Moreover, the theory of plurisubharmonic
functions in Cn (n ≥ 2) is in many ways closer to the theory of subharmonic functions in C than
to the theory of such functions in R2n.
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Accordingly, let Ω be an open set in R2 or C. A function u on Ω is called harmonic if it is real
valued of class C2 and its Laplacian is identically zero:

∆u def= ∂2u

∂x2 + ∂2u

∂y2 = 1
r

∂

∂r

(
r
∂u

∂r

)
+ 1
r2

∂2u

∂θ2

= 4 ∂2u

∂z∂z̄
= 0 on Ω [x+ iy = z = reiθ].

(8.1.1)

[In the case of Rn one will use the n-dimensional Laplacian.] A function is called harmonic on an
arbitrary set E if it has a harmonic extension to some open set containing E. Unless the contrary
is explicitly stated, our harmonic functions will be real-valued.

For holomorphic f on Ω ⊂ C both u = Re f and v = Im f are harmonic: the Cauchy-Riemann
condition ∂f/∂z = 0 implies that ∆u+ i∆v = ∆f = 0.

Conversely, let u be any harmonic function on Ω. Then u is locally the real part of a holomorphic
function f . Indeed, by Laplace’s equation, the derivative ∂u/∂z will be holomorphic. [It is of
class C1 and has ∂/∂z equal to zero.] Suppose for a moment that u = Re f = 1

2 (f + f) for some
holomorphic f . Then ∂u/∂z must equal 1

2∂f/∂z+ 1
2∂f/∂z = 1

2f
′ [since ∂f/∂z = 0], hence 1

2f must
be a primitive of ∂u/∂z. Starting then with our harmonic u, let 1

2g be any holomorphic primitive of
∂u/∂z on some disc B in Ω and set u− 1

2 (g + g) = v. Then ∂v/∂z = ∂u/∂z − 1
2∂g/∂z = 0, hence

since v is real, ∂v/∂x = ∂v/∂y = 0. Thus v is equal to a real constant c and u = Re (g + c) on B.
As a corollary, the composition u ◦ h of a harmonic function u and a holomorphic function h is

harmonic on any domain where it is well-defined.
Holomorphic functions f on Ω have the circular mean value property: by Cauchy’s formula,

f(a) = 1
2πi

∫
C(a,r)

f(ζ)
ζ − a

dζ = 1
2π

∫ π

−π
f(a+ reit)dt

whenever the closed disc B(a, r) belongs to Ω. It follows that harmonic functions u on Ω have the
same mean value property: representing u as Re f on discs, with f holomorphic, we find

u(a) = u(a; r) def= 1
2π

∫ π

−π
u(a+ reit)dt, 0 ≤ r < d(a) = d(a, ∂Ω). (8.1.2)

One may use the analytic automorphisms of the unit disc and the mean value property at 0 to
derive the Poisson integral representation for harmonic functions u on B(0, 1):

u(z) = P [u|C ](z) = 1
2π

∫
C(0,1)

1− |z|2

|ζ − z|2
u(ζ)ds(ζ)

= 1
2π

∫ π

−π

1− r2

1− 2r cos(θ − t) + r2 u(eit)dt, z = reiθ, 0 ≤ r < 1,
(8.1.3)

cf. exercise 8.2. There is a corresponding Poisson integral formula for harmonic functions u on the
unit ball B = B(0, 1) ⊂ Rn (n ≥ 3):

u(x) = P [u|S ](x) def= 1
σn

∫
S(0,1)

1− |x|2

|ξ − x|n
u(ξ)ds(ξ), S = ∂B, (8.1.4)

σn = area S(0, 1) = 2π 1
2n/Γ( 1

2n), cf. exercises 8.3 and 8.51.
For any continuous function g on ∂B, the Poisson integral u = P [g] provides a harmonic function

on B with boundary function g: it solves the Dirichlet problem for the Laplace operator on B,
cf. exercise 8.3. In general a Dirichlet problem for a partial differential operator L of order 2 on
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a domain D is to find for given functions u on D and g on the boundary of D a function F that
satisfies

LF (x) = u(x), x ∈ D, F |∂D = g.

Subharmonic functions v on Ω ⊂ C are always real-valued; in addition, the value −∞ is allowed
(not +∞). The essential requirement is that v have the sub mean value property [cf. Definition
6.5.2]: for every point a ∈ Ω there must exist some number δ(a) > 0 such that

v(a) ≤ v(a; r) = 1
2π

∫ π

−π
v(a+ reit)dt, 0 ≤ r < δ(a). (8.1.5)

The local inequality (8.1.5) on Ω will imply that v(a; r) is a nondecreasing function of r, see
Corollaries 8.2.3. Thus in the final analysis, inequality (8.1.5) will hold for all r such that B(a, r) ⊂ Ω.
However, it is advantageous not to demand δ(a) = d(a) from the beginning.

To ensure the existence of the mean values v(a; r) one requires that subharmonic functions
satisfy an appropriate continuity condition. In many applications we will have ordinary continuity,
but in some situations one can not expect more than upper semi-continuity, cf. exercise 8.5. A
function v on E in C [or Rn] to R ∪ {−∞} is called upper semi-continuous (usc) if, for every point
a ∈ E,

lim sup
z∈E, z→a

v(z) ≤ v(a). (8.1.6)

In other words, whenever A > v(a), then A > v(z) on some neighborhood of a in E. There is an
equivalent condition which is very useful in applications and perhaps easier to remember: A function
v on E is upper semi-continuous if and only if, on every compact subset, it can be represented as
the limit of a decreasing sequence of finite continuous functions {vk}, cf. exercises 8.6, 8.7.

Similarly, a function v on E to R ∩ {∞} is called lower semi-continuous (lsc) if −v is usc, or
equivalently

lim inf
z∈E, z→a

v(z) ≥ v(a). (8.1.7)

One also has a description in terms of limit of an increasing sequence of finite continuous functions.
We will most often meet usc functions. Let v be usc. In terms of a sequence of continuous {vk ↓ v}

on the circle C(a, r) in Ω, the mean value v(a; r) may be defined unambiguously as lim vk(a; r)
[monotone convergence theorem]. It may happen that v(a; r) = −∞, but for a subharmonic function
v on a connected domain Ω containing B(a, r), this will occur only if v ≡ −∞, cf. Corollaries 8.2.3.

Definition 8.1.1. Subharmonic functions on Ω in C or R2 are upper semi-continuous functions
v : Ω→ R∪ {−∞} which have the sub mean value property: inequality (8.1.5) must hold at every
point a ∈ Ω for some δ(a) > 0. There is a corresponding definition for the case of Rn, with v(a; r)
denoting the mean value of v over the sphere S(a, r). We say that v is subharmonic on an arbitrary
set E in Rn if v has a subharmonic extension to some open set containing E.

One easily deduces the following simple

Properties 8.1.2. For subharmonic functions v1 and v2 on Ω, the sum v1 + v2 and the supremum
or least common majorant,

v(z) def= sup{v1(z), v2(z)}, z ∈ Ω

are also subharmonic; in the latter case,

vj(a) ≤ vj(a; r) ≤ v(a; r), j = 1, 2⇒ v(a) ≤ v(a; r).
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In order to obtain extensions to infinite families of subharmonic functions on Ω, one has to know
already that δ(a) in (8.1.5) can be taken the same for all members of the family, cf. Corollaries
8.2.3. Assuming that much, it follows that the supremum or upper envelope of an infinite family
of subharmonic functions on Ω [when < +∞] also has the sub mean value property, hence it is
subharmonic provided it is upper semi-continuous.

The limit function v of a decreasing family (vj) of subharmonic functions on Ω is always
subharmonic, this is Corollary 8.2.4. [But the infimum of an arbitrary family of subharmonic
functions need not be subharmonic, cf. exercise 8.10 !]

We finally observe the following. If v is subharmonic on Ω then by upper semi-continuity (8.1.6)
and the sub mean value property (8.1.5),

v(a) = lim
r↓o

v(a; r) = lim sup
z→a

v(z), ∀a ∈ Ω. (8.1.8)

Examples 8.1.3. For holomorphic f on Ω ⊂ C the functions |f | and log |f | are subharmonic. For
|f | this follows immediately from the mean value property of f :

|f(a)| = 1
2π
∣∣ ∫ π

−π
f(a+ reit)dt

∣∣ ≤ 1
2π

∫ π

−π
|f(a+ reit)|dt.

For log |f | one distinguishes the cases f(a) = 0 [nothing to prove] and f(a) 6= 0 [then there is a
holomorphic branch of log f around a, so that log |f | is harmonic around a]. In problems where one
has to estimate the growth of |f |, it is usually best to work with log |f |. An important subharmonic
function on C is

v(z) = log |z − a|.

Harmonic functions u on a connected domain D ⊂ C which depend only on x = Re z are linear
in x, that is, of the form u = c1x+ c2. Subharmonic functions v which depend only on x will be
sublinear on line segments or convex, cf. Example 8.3.6. Convex functions v are always subharmonic:
the linear mean value inequality (6.5.1) for all small complex ξ or ζ implies the circular mean value
inequality (6.5.2).

The negative of a subharmonic function is called superharmonic. Example: the logarithmic
potential log 1/|z− a| on C of a unit mass at a. More generally, it can be shown that all logarithmic
potentials

Uµ(z) def=
∫
K

log 1
|z − ζ|

dµ(ζ), z ∈ C (8.1.9)

with K compact, µ a finite positive measure, are superharmonic, cf. exercises 8.12, 8.22. Such
potentials are harmonic on the complement of K. On K itself they need not be continuous (cf.
exercise 8.5), even if µ is absolutely continuous so that dµ(ζ) = ϕ(ζ)dξdη with integrable density ϕ.
[But for smooth ϕ, cf. Examples 8.3.4.]

8.2 Maximum principle and consequences

Although we restrict ourselves to C here, the main results and the proofs readily extend to Rn.
The following maximum principle is characteristic for subharmonic functions, cf. also exercise 8.13.

Theorem 8.2.1. Let D ⊂ C be a bounded or unbounded connected domain, let v be subharmonic
on D and u harmonic. Suppose that v is “majorized by u on the extended boundary of D”. The
precise meaning of this hypothesis is that

lim sup
z→ζ,z∈D

{v(z)− u(z)} ≤ 0, ∀ζ in ∂eD,
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where ∂eD is the boundary of D in Ce = C ∪ {∞}. [Thus ∂eD includes the point at ∞ if D is
unbounded.] Then v is majorized by u throughout D:

v(z) ≤ u(z), ∀z ∈ D.

Proof. Since v− u will be subharmonic we may as well replace v− u by v or equivalently, set u ≡ 0.
Put M = supD v (≤ +∞); we have to prove that M ≤ 0.

Suppose on the contrary that M > 0. There will be a sequence of points {zk} ⊂ D such that
v(zk) → M ; taking a subsequence, we may assume that zk → a in close D, the closure of D in
Ce. Because of the boundary condition lim sup v(z) ≤ 0 for z → ζ ∈ ∂eD and by the assumption
M > 0, our point a must be inside D. Hence by upper semi-continuity (8.1.6),

M = lim v(zk) ≤ lim sup
z→a

v(z) ≤ v(a) < +∞;

since M ≥ v(a) we must have M = v(a). Thus by the sub mean value property (8.1.5),∫ π

−π
{v(a+ reit)−M}dt ≥ 0 whenever 0 ≤ r < δ(a). (8.2.1)

Here the integrand is non-positive; being upper semi-continuous, it must vanish everywhere on
[−π, π]. Indeed, if it would be negative at some point t = c, it would be negative on an interval
around c (8.1.6), contradicting (8.2.1). Hence v(z) = M on C(a, r) and thus, varying r, v(z) = M
throughout the disc B(a, δ(a)).

Let E be the subset of D where v(z) = M . Under the assumption M > 0 the set E is nonempty
and open. By upper semi-continuity it will also be closed in D, hence E = D so that v ≡M . The
boundary condition now shows that M > 0 is impossible, so that v ≤ 0 everywhere on D.

In the general case we conclude that v ≤ u throughout D. If v(a) = u(a) at some point a ∈ D,
the proof shows that v ≡ u.

Application 8.2.2 (Comparison with a Poisson integral). Let v be subharmonic on ( a neighbor-
hood of) the closed unit disc B(0, 1) in C. Then v is majorized on B = B(0, 1) by the Poisson
integral u = P [v] def= P [v|C ] of its boundary values on C(0, 1):

v(reiθ) ≤ u(reiθ) def= 1
2π

∫ π

−π

1− r2

1− 2r cos(θ − t) + r2 v(eit)dt, 0 ≤ r < 1.

For the verification one represents v as the limit of a decreasing sequence of finite continuous
functions vk on B. The associated Poisson integrals uk = P [vk] are harmonic functions on B
with boundary functions vk | ∂B: as z ∈ B tends to ζ ∈ ∂B, uk(z) → vk(ζ). Thus by upper
semi-continuity (8.1.6),

lim sup
z→ζ

{v(z)− uk(z)} ≤ v(ζ)− vk(ζ) ≤ 0, ∀ζ ∈ ∂B.

Hence by the maximum principle, v(z) ≤ uk(z) throughout B. Now for fixed z ∈ B, the Poisson
integrals uk(z) = P [vk](z) tend to the Poisson integral u(z) = P [v](z) as k → ∞ [monotone
convergence theorem]. Conclusion: v(z) ≤ u(z) throughout B.

We will explore various consequences of Application 8.2.2. First of all, if v is integrable over
C(0, 1), then u = P [v] is harmonic and by the mean value property of u:

v(0; r) ≤ u(0; r) = u(0) = v(0; 1) 0 ≤ r < 1. (8.2.2)
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What if v is not integrable over C(0, 1) ? Our subharmonic v is certainly bounded from above by
some real constant M on C(0, 1), so that v(eit)−M ≤ 0 and consequently

1− r2

1− 2r cos(θ − t) + r2 {v(eit)−M} ≤ 1− r
1 + r

{v(eit)−M}.

Applying 8.2.2 to v −M instead of v, we thus obtain

v(reiθ)−M ≤ 1− r
1 + r

1
2π

∫ π

−π
{v(eit)−M}dt = 1− r

1 + r
{v(0; 1)−M}.

Hence if v(0; 1) happens to be −∞, then v ≡ −∞ on B(0, 1).
Simple transformations give corresponding results for other discs. In particular, if v is subhar-

monic on B(a,R) then
v(a; r) ≤ v(a;R), 0 ≤ r < R (8.2.3)

and v(a;R) = −∞ implies that v ≡ −∞ on B(a,R). If a subharmonic function v on a connected
domain D equals −∞ on a subdomain D0 then v ≡ −∞. Indeed, let D1 be the maximal subdomain
of D containing D0 on which v = −∞. If D1 would have a boundary point a in D, then v(a; r)
would be −∞ for some small r > 0 and hence v = −∞ on a neighborhood of a. This contradiction
shows that D1 = D.

Corollaries 8.2.3. Let v be subharmonic on Ω. Then for a ∈ Ω, the mean value v(a; r) is a non-
decreasing function of r for 0 ≤ r < d(a) = d(a, ∂Ω), see (8.2.3). The mean value inequality (8.1.5)
thus holds for all such r. If D is a connected component of Ω, one either has

v(a; r) > −∞ for all a ∈ D and 0 < r < d(a),

or
v ≡ −∞ on D.

Hence if v 6≡ −∞ on D, one has v > −∞ on a dense subset and then it follows from the sub mean
value property that v is locally integrable on D. [Choose any point a ∈ D such that v(a) > −∞ and
then take any compact disc B(a,R) ⊂ D. On that disc v is bounded above. On the other hand the
integral of v over B(a,R) must be > −∞ by (8.1.5) for 0 ≤ r ≤ R and Fubini’s theorem.]

Corollary 8.2.4. The limit function v of a decreasing family (vj) of subharmonic functions on Ω
is always subharmonic.

Proof. Such a function is automatically usc, cf. Exercise 8.6, and the mean value inequality is seen
as follows. Assume B(x, d)) ⊂ Ω and 0 < r < d. We can assume all vj are negative on B(x, r).

v(x) = lim
j→∞

vj(x) ≤ lim
j→∞

v(x, r) ≤ 1
2π

∫ π

−π
lim
j→∞

v(x+ reit) dt,

by Fatou’s Lemma, applied to (−vj).

We indicate some more applications.

Application 8.2.5 (A characterization of harmonic functions). Any continuous (finite real) function
v on Ω with the mean value property (8.1.2) is harmonic [and hence of class C∞], cf. Application
8.2.2 and exercise 8.14.
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Application 8.2.6 (Uniqueness in the Dirichlet problem). For a bounded domain D and a
continuous real function g on ∂D, there is at most one harmonic function u on D with boundary
function g: one for which lim u(z) = g(ζ) whenever z(∈ D) tends to a point ζ ∈ ∂D. [Apply the
maximum principle to ± the difference of two solutions.]

In the case of unbounded domains one needs a condition at ∞ for uniqueness. For example, the
Dirichlet problem for D = C−B(0, 1) and boundary function 0 on ∂D has the solutions c log |z|.
However, there is only one bounded solution [u = 0], and hence also just one solution which has
the form log |z|+O(1) as |z| → ∞, [u = log |z|]. Indeed, if v is subharmonic on D and

lim sup
z→ζ

v(z) ≤ 0, ∀ζ ∈ ∂D, v(z) ≤M on D,

then the modified subharmonic function

vε(z) = v(z)− ε log |z|, ε > 0

is majorized by 0 on all of ∂eD. Thus by the maximum principle vε(z) ≤ 0 at every point z ∈ D
and hence, letting ε ↓ 0, v(z) ≤ 0 throughout D.

There are various problems for which one needs special harmonic functions that behave like
log |z| at ∞:

Application 8.2.7 (A bound for polynomials that are bounded by 1 on (−1, 1)). Let p(z) run
over all polynomials such that |p(x)| ≤ 1 on [−1, 1]. Taking deg p = m ≥ 1, does there exist a good
upper bound for |p(z)|1/m at the points z in D = C− [−1, 1] ?

Observe that
v(z) def= 1

m
log |p(z)| (8.2.4)

is a subharmonic function on C which is majorized by 0 on [−1, 1] and by log |z| + O(1) at ∞.
Thus if we can find a harmonic function g(z) on D with boundary values 0 on ∂D and such that
g(z) = log |z|+O(1) at ∞, comparison of v(z) and (1 + ε)g(z) will result in the estimate

v(z) ≤ g(z), ∀z ∈ D. (8.2.5)

An appropriate “Green function” g can be obtained from log |w| by 1-1 holomorphic or conformal
mapping of D′ : {|w| > 1} onto D in such a way that “∞ corresponds to ∞”. A suitable map
is z = 1

2 (w + 1/w) [what happens to circles |w| = r > 1 ?]. The inverse map is given by
w = ϕ(z) = z + (z2 − 1) 1

2 , where we need the holomorphic branch of the square root that behaves
like z at ∞; it will give ϕ(z) absolute value > 1 throughout D. [The other branch would give ϕ(z)
absolute value < 1 on D.] We may now set

g(z) = log |w| = log |z + (z2 − 1) 1
2 |, [so that g(z) > 0 on D]. (8.2.6)

The example of the Chebyshev polynomials Tm(z) = cosmw where cosw = z will show that
the upper bound provided by (8.2.4–8.2.6) is quite sharp: |Tm(x)| ≤ 1 and

Tm(z) = 1
2(eimw + e−imw) = 1

2(cosw + i sinw)m + 1
2(cosw − i sinw)m

= 1
2{z + (z2 − 1) 1

2 }m + 1
2{z − (z2 − 1) 1

2 }m.
(8.2.7)
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Application 8.2.8 (Sets on which a subharmonic function can be −∞). Let D ⊂ C be a connected
domain. A subset E ⊂ D throughout which a locally integrable subharmonic function on D can be
equal to −∞ is called a polar subset. Polar sets must have planar Lebesgue measure zero, but not
every set of measure 0 is polar. For example, line segments I in D are non polar.

Indeed, let v be subharmonic on D and equal to −∞ on I. By coordinate transformation
z′ = az + b we may assume that I = [−1, 1] and by shrinking D if necessary, we may assume that
D is bounded and v ≤ 0 throughout D. Let g be the function (8.2.6) and set min∂D g = c so that
c > 0. For any λ > 0 the subharmonic function v − λg on D − [−1, 1] has all its boundary values
≤ −λc, hence

v(z) ≤ λ{g(z)− c}, ∀z ∈ D, ∀λ > 0.

There will be a disc B(0, δ) ⊂ D throughout which g(z) < c. Letting λ→∞ it follows that v = −∞
throughout B(0, δ), hence v is not integrable over that disc. [In fact, v ≡ −∞, cf. Corollaries 8.2.3.]

In planar potential theory one introduces the notion of logarithmic capacity (cap) to measure
appropriate kinds of sets [Section 8.5]. A compact set K ⊂ C will be polar relative to D ⊃ K
precisely when capK = 0, cf. exercise 8.45. For a closed disc and a circle the capacity is equal to
the radius.

8.3 Smooth subharmonic functions and regularization

A real C2 function g on R is convex if and only if g′′ ≥ 0. There is a similar characterization for
smooth subharmonic functions:

Proposition 8.3.1. A (finite) real C2) function v on Ω in R2 [or Rn] is subharmonic if and only
if its Laplacian ∆v is nonnegative throughout Ω.

Proof. The simplest way to estimate the deviation of the circular mean v(a; r) from v(a) is by
integration of the Taylor expansion for v around a. Taking a = 0 one has for (x, y)→ 0:

v(x, y) = v(0) + vx(0)x+ vy(0)y + 1
2vxx(0)x2 + vxy(0)xy + 1

2vyy(0)y2 + o(x2 + y2).

Setting x = r cos θ, y = r sin θ (r > 0) and integrating with respect to θ from −π to π, one obtains
the formula

v(0; r)− v(0) = 1
4 ∆v(0)r2 + o(r2) for r ↓ 0. (8.3.1)

Hence if v is subharmonic on a neighborhood of 0, so that v(0; r) ≥ v(0) for all small r, it follows
that ∆v(0) ≥ 0. As to the other direction, if ∆v(0) > 0 one finds that v(0; r) > v(0) for all
sufficiently small r. If one only knows that ∆v ≥ 0 on a neighborhood U of 0, one may first consider
vε = v + ε(x2 + y2) with ε > 0. Then ∆vε ≥ 4ε, hence the functions vε are subharmonic on U .
The same will hold for the limit function v of the decreasing family {vε} as ε ↓ 0, cf. Properties
8.1.2.

Remarks 8.3.2. An alternative proof may be based on the exact formula

v(0) = v(0; r)− 1
2π

∫
B(0,r)

∆v(ξ, η) log r
ρ
dξdη, ρ = (ξ2 + η2) 1

2 , (8.3.2)

cf. exercise 8.20. There are similar proofs for Rn.
In Section 3.1 we have derived a representation formula for smooth functions in terms of

boundary values and a (special) first order derivative. Formula (8.3.2) is a particular case of a
general representation formula for smooth functions in terms of boundary values and the Laplacian,
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cf. exercise 8.49. Such representations may be obtained with the aid of Green’s formula involving
Laplacians: ∫

D

(u∆v − v∆u)dm =
∫
∂D

(u ∂v

∂N
− v ∂u

∂N
)ds. (8.3.3)

Here D is a bounded domain in R2 or Rn with piecewise smooth boundary, while u and v are
functions of class C2(D). The symbol dm denotes the “volume” element of D, ds the “area” element
of ∂D and ∂/∂N stands for the derivative in the direction of the outward normal to ∂D [or minus
the derivative in the direction of the inward normal]. Formula (8.3.3) may be derived from the
Gauss-Green formula for integration by parts, cf. Section 3.1 and exercises 8.46, 8.47 and also
Chapter 10.

Arbitrary subharmonic functions v may be characterized by the condition that ∆v must be ≥ 0
in the sense of distributions, cf. exercise 8.27.

Definition 8.3.3. Real C2 functions v such that ∆v > 0 on Ω (or vzz > 0 in the case of C) are
called strictly subharmonic.

Examples 8.3.4. Let α be a C∞ subharmonic function on Ω ⊂ C and let g be a nondecreasing
convex C∞ function on R, or at least on the range of α. Then the composition β = g ◦ α is also
C∞ subharmonic on Ω. Indeed, βz = g′(α)αz, hence since αz = αz [α is real !],

βzz = g′′(α)|αz|2 + g′(α)αzz ≥ g′(α)αzz. (8.3.4)

The function v(z) = |z|2 is strictly subharmonic on C.
Finally, let µ be an absolutely continuous measure on C with a C1 density ϕ on C of compact

support K. Then the potential Uµ in (8.1.9) is of class C2 and it satisfies Poisson’s equation
∆U = −2πϕ, cf. exercise 8.21. If ϕ ≥ 0, Uµ will be a smooth superharmonic function on C.

Certain properties are easy to obtain for smooth subharmonic functions. For arbitrary subhar-
monic functions v one may then form so-called regularizations vε and try passage to the limit. The
regularizations are smooth subharmonic majorants which tend to v as ε ↓ 0:

Theorem 8.3.5. Let v be subharmonic on Ω ⊂ C and not identically −∞ on any component,
so that v is locally integrable [ Corollaries 8.2.3.] We let Ωε denote the “ε-contraction” of Ω :
Ωε = {z ∈ Ω : d(z) > ε}, ε > 0. Finally, let ρε(z) = ε−2ρ(|z|/ε) be the standard nonnegative C∞
approximate identity on C with circular symmetry; in particular supp ρε = B(0, ε) and

∫
C ρε = 1

[Section 3.3]. Then on Ωε, the regularization

vε(z)
def=
∫

Ω
v(ζ)ρε(z − ζ)dm(ζ) =

∫
B(0,ε)

v(z − ζ)ρε(ζ)dm(ζ)

of v is well-defined, of class C∞, subharmonic and ≥ v. At each point z ∈ Ω, the values vε(z)
converge monotonically to v(z) as ε ↓ 0. If v is a finite continuous function, the convergence is
uniform on every compact subset of Ω.

Proof. Since v is locally integrable on Ω, it is clear that the regularization vε is well-defined and of
class C∞, cf. Sections 3.3 and 3.1. We may derive mean value inequalities for vε from those for v
by inverting the order of integration in an appropriate repeated integral. Indeed, for a ∈ Ωε and
0 < r < d(a)− ε,∫ π

−π
vε(a+ reit)dt =

∫
B(0,ε)

ρε(ζ)dm(ζ)
∫ π

−π
v(a− ζ + reit)dt

≥
∫
B(0,ε)

ρε(ζ) · 2πv(a− ζ)dm(ζ) = 2πvε(a),
(8.3.5)
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hence vε is subharmonic on Ωε.
How does vε(z) behave as ε ↓ 0 ? This time we will use r and t as polar coordinates, ζ = reit.

From the special form of ρε and noting that ρ(ζ) = ρ(r), we obtain for ε < d(z):

vε(z) =
∫
B(0,ε)

v(z − εζ)ρ(ζ)dξdη

=
∫ 1

0
ρ(r)r dr

∫ π

−π
v(z − ε reit)dt = 2π

∫ 1

0
ρ(r)r v(z; εr)dr.

(8.3.6)

Now the mean value v(z; εr) is monotonically decreasing as ε ↓ 0 by Corollaries 8.2.3, hence the
same will hold for vε(z). Finally, since v(z; εr) → v(z) as ε ↓ 0 (8.1.8), formula (8.3.6) and the
monotone convergence theorem show that

vε(z) ↓ 2π
∫ 1

0
ρ(r)rv(z) dr = v(z).

For finite continuous v the convergence above will be uniform on compact sets in Ω because in
this case, v(z − ζ)→ v(z) uniformly on compact subsets of Ω as ζ → 0.

Example 8.3.6. As an application one may show that subharmonic function v(x, y) = f(x) on Ω
in R2 which depends only on x is convex or sublinear on line segments. For smooth v the result
is immediate from ∆v = f ′′ ≥ 0. In the general case one finds that the regularization vε [on Ωε]
depends only on x and hence is convex; passage to the limit as ε ↓ 0 gives the convexity of v.
Similarly, if a function v(z) = ϕ(|z|) on an annulus A(0; ρ,R) depends only on |z| = r, then ϕ(r) is
a convex function of log r. For this and other applications, see exercises 8.23–8.28.

8.4 Plurisubharmonic functions

We have seen already when a continuous function is plurisubharmonic [Section 6.5]. As in the case
of subharmonic functions, the requirement of continuity may be relaxed:

Definition 8.4.1. A plurisubharmonic (psh) function on an open set Ω ⊂ Cn is an upper semi-
continuous function v : Ω→ R ∪ {−∞}, whose restrictions to the intersections of Ω with complex
lines are subharmonic. In other words, for every complex line z = a+wζ (a ∈ Ω, ζ ∈ Cn−{0}, w ∈ C
variable), the restriction v(a+ wζ) must have the sub mean value property at the point w = 0.

There is a corresponding notion of pluriharmonic functions on Ω: they are the real C2 functions
whose restrictions to the intersections with complex lines are harmonic.

Examples 8.4.2. For holomorphic f on Ω ⊂ Cn both u = Re f and v = Im f are pluriharmonic,
while |f | and log |f | are plurisubharmonic. Indeed, for a ∈ Ω, f(a+ wζ) will be holomorphic in w
around w = 0. Every convex function v on Ω ⊂ Cn is psh, cf. Examples 8.1.3.

All of the properties 8.1.2 remain valid in the plurisubharmonic setting.

Properties 8.4.3. For psh functions v1 and v2 on Ω, the sum v1 + v2 and the supremum or least
common majorant sup(v1, v2) are also psh. The supremum or upper envelope of an infinite family
of psh functions is psh provided it is upper semi-continuous. If the latter is not the case, then its
usc regularization will be psh, cf. the section after the proof of Theorem 8.6.5, exercise 8.8 and
8.29. The limit function of a decreasing family of psh functions is always psh.
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Psh functions v on Ω ⊂ Cn are in particular subharmonic in the sense of R2n. Indeed, for a ∈ Ω
one will have the inequality

v(a) ≤
∫ π

−π
v(a+ eitζ)dt/2π, ∀ζ ∈ Cn with |ζ| = r < d(a).

Now observe that the transformation ζ → eitζ (with t fixed) represents a rotation about 0 in
Cn = R2n. Letting ζ run over the sphere Sr = S(0, r) and averaging, Fubini’s theorem thus gives
the mean value inequality

v(a) ≤
∫ π

−π
{
∫
Sr

v(a+ eitζ)ds(ζ)/m(Sr)}dt/2π = v(a; r),

where v(a; r) denotes the average of v over the sphere S(a, r) [we may write ds(ζ) = ds(eitζ)].
It follows that psh functions satisfy a maximum principle [Theorem 8.2.1 for Rn instead of C],
that they are majorized on balls by the Poisson integrals u = P [v] of their boundary values
[cf. Applications 8.2.2 and (8.1.4)] and that the spherical means v(a; r) have the same properties as
the circular means in Corollaries 8.2.3. In particular, if v is psh on B(a,R) ⊂ Cn then v(a; r) is
nondecreasing for 0 ≤ r ≤ R and its limit for r ↓ 0 equals v(a) as in (8.1.8). Furthermore, if v is
psh on a connected domain D ⊂ Cn and 6≡ −∞, then v(a; r) is finite for all a ∈ D, 0 < r < d(a)
and v is locally integrable.

Smooth plurisubharmonic functions.
For a C2 convex function v on Ω ⊂ Rn, the restriction to the intersection with any real line
x = a+ tξ through a ∈ Ω is C2 convex. Setting v(a+ tξ) = g(t), the characterization g′′ ≥ 0 leads
to the necessary and sufficient condition

n∑
j,k=1

∂2v

∂xj∂xk
(a)ξjξk ≥ 0, ∀a ∈ Ω, ∀ξ ∈ Rn. (8.4.1)

In words: the (real) Hessian matrix or form of v must be positive semidefinite everywhere on Ω.
The characterization 8.3.1 of smooth subharmonic functions leads to a similar characterization

for smooth psh functions v on Ω ⊂ Cn. The important quantities now are the complex Hessians,
that is, the Hermitian matrices

[ ∂2v

∂zj∂zk
(a)]j,k=1,...,n, a ∈ Ω

and the corresponding Hermitian forms, the complex Hessian or Levi form
n∑

j,k=1

∂2v

∂zj∂zk
(a)ζjζk, ζ ∈ Cn, a ∈ Ω. (8.4.2)

Proposition 8.4.4. A real C2 function v on Ω ⊂ Cn is plurisubharmonic if and only if its complex
Hessian form (8.4.2) is positive semidefinite at every point a ∈ Ω, or equivalently, if the smallest
eigenvalue of the form,

λv(a) = min
|ζ|=1

n∑
j,k=1

DjDkv(a) · ζjζk is ≥ 0, ∀a ∈ Ω. (8.4.3)
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Proof. Consider the restriction of v to the intersection of Ω with the complex line z = a+wζ. This
C2 functions is subharmonic precisely when ∆wv(a+ wζ) ≥ 0 for all w such that z = a+ wζ ∈ Ω.
The proof is completed by direct calculation: for zj = aj + wζj , j = 1, . . . , n,

∂v(z)
∂w

=
∑
j

Djv(z) · ζj , 1
4 ∆wv(z) = ∂2v(z)

∂w∂w
=
∑
j,k

DjDkv(z) · ζjζk.

Definition 8.4.5. A real function v on Ω is called strictly plurisubharmonic if it is of class C2 and
its complex Hessian form is positive definite everywhere on Ω; equivalently, the smallest eigenvalue
λv must be strictly positive throughout Ω.

Examples 8.4.6. Let α be a C∞ psh function on Ω ⊂ Cn and let g be a nondecreasing convex
C∞ function on R, or at least on the range of α. Then the composition β = g ◦ α is also C∞ psh
on Ω:

Djβ = g′(α)Djα, DjDkβ = g′′(α) ·Dkα+ g′(α)DjDkα,∑
j,k

DjDkβ · ζjζk = g′′(α)
∑
j

ζjDjα
∑
k

ζkDkα

+ g′(α)
∑
j,k

DjDkα · ζjζk ≥ 0.

(8.4.4)

We record for later use that for the smallest eigenvalues of α and β,

λβ ≥ g′(α)λα. (8.4.5)

The functions
|z|2 − 1, 1

1− |z|2 , log 1
1− |z|2

are strictly psh on the ball B(0, 1) ⊂ Cn. Useful psh functions on Cn are

|z|2, log |z| = 1
2 log |z|2, log+ |z − a| = sup(log |z − a|, 0).

As subharmonic functions in R2n, psh functions in Cn may be regularized as in Theorem 8.3.5.
The regularizations will also be psh functions:

Theorem 8.4.7. Let v be a locally integrable plurisubharmonic function on Ω ⊂ Cn and let ρε(z) =
ε−2nρ(|z|/ε) be the standard nonnegative C∞ approximate identity on Cn with spherical symmetry
[Section 3.3]. Then the regularization vε = v ∗ ρε is well-defined on Ωε = {z ∈ Ω : d(z) > ε}, of
class C∞, psh and ≥ v. At each point z ∈ Ω, the values vε(z) converge monotonically to v(z) as
ε ↓ 0; if v is continuous, the convergence is uniform on compact sets in Ω.

Sketch of proof [cf. the proof of Theorem 8.3.5. ] We verify that vε is psh: for a ∈ Ωε and τ ∈
Cn, 0 < |τ | < d(a)− ε,∫ π

−π
vε(a+ eitτ)dt =

∫
B(0,ε)

ρε(ζ)dm(ζ)
∫ π

−π
v(a− ζ + eitτ)dt

≥
∫
B(0,ε)

ρε(ζ) · 2πv(a− ζ)dm(ζ) = 2πvε(a).
(8.4.6)
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Furthermore, forε < d(z) and Sr = ∂B(0, r),

vε(z) =
∫
B(0,ε)

v(z − εζ)ρ(ζ)dm(ζ) =
∫ 1

0
ρ(r)dr

∫
Sr

v(z − εζ)ds(ζ)

=
∫ 1

0
ρ(r)m(Sr)v(z; εr)dr ↓ v(z)

∫
B

ρ = v(z) as ε ↓ 0.

Application 8.4.8 (Plurisubharmonic functions and holomorphic maps). Let f be a holomorphic
map from a domain D1 ⊂ Cn to a (connected) domain D2 ⊂ Cp and let v be a psh function on D2.
Then the pull back V of v to D1,

V = f∗v
def= v ◦ f

is also psh. Indeed, for a C2 psh function v the statement may be verified by direct computation
of the complex Hessian, cf. Proposition 8.4.4. An arbitrary psh function v 6≡ −∞ on D2 is locally
integrable and hence the pointwise limit of a decreasing family of smooth psh functions vε as ε ↓ 0.
The pull back f∗v will be the limit of the decreasing family of psh functions f∗vε as ε ↓ 0, hence
also psh.

Application 8.4.9 (Sets on which a plurisubharmonic function can be −∞). Let D be a connected
domain in Cn, n ≥ 2. A subset E throughout which a locally integrable psh function on D can
be equal to −∞ is called a pluripolar subset. In Newtonian potential theory for Rn or R2n one
works with ordinary subharmonic [or superharmonic] functions and the corresponding small sets
are called polar. Whether a set in Cn is pluripolar or not depends very much on its orientation
relative to the complex structure. Any subset of a zero set Z(f), with f ∈ O(D) not identically
zero, is pluripolar. Thus in C2 ≈ R4, the square −1 ≤ x1, y1 ≤ 1 in the complex line z2 = 0 is
pluripolar, but the square −1 ≤ x1, x2 ≤ 1 in the “real” plane y1 = y2 = 0 is not, cf. exercises 1.17
and 8.39. The two sets are equivalent from the viewpoint of R4, hence both polar.

For compact sets K ⊂ Cn we will introduce a logarithmic capacity. It can be shown that such
sets are pluripolar in Cn precisely when they have capacity zero (cf. [65]).

8.5 Capacities and Green functions: introduction

The mathematical notion of the capacity of a compact setK in R3 goes back to classical electrostatics
and the Newtonian potential, cf. [72]. One would think of K as a conductor [preferably with smooth
boundary] which carries a distribution of positive charge, represented by a positive measure µ on
K. We suppose that there exists some nonzero distribution µ for which the associated electrostatic
potential

∫
K
dµ(ξ)/|x − ξ| remains bounded on K [otherwise we say that K has capacity zero].

Question: How much charge can one put on K if the potential is not allowed to exceed a given
constant V ? The maximal charge Q = µ(K) is obtained in the case of an equilibrium charge
distribution, for which the potential is equal to V (essentially) everywhere on K. The ratio Q/V
turns out to be independent of V and gives the capacity. For a closed ball B(a,R) is a sphere
S(a,R) and in appropriate units, the capacity is equal to the radius.

In the case of arbitrary compact sets K in C or R2 one proceeds by analogy. The planar Laplace
operator suggests that we now use the logarithmic potential Uµ of a positive measure µ on K (8.1.9).
For convenience one normalizes the total charge µ(K) to 1. One says that K has positive capacity
if Uµ is bounded above on K for some µ. Varying µ, the smallest possible upper bound γ = γK is
called the Robin constant for K. It is attained for the so-called equilibrium distribution µ0 on K.
This measure is concentrated on the outer boundary ∂0K and its potential is equal to γ essentially
everywhere on K. [The exceptional set will be polar cf. 8.2.8; it is empty if ∂0K is well-behaved;
in C, a continuum K is all right.] The constant γ may be negative; for the disc B(a,R) or the
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circle C(a,R) one finds γ = − log R, cf. Examples 8.5.1. It is customary to define the so-called
logarithmic capacity, cap K, as e−γ , so the closed discs and circles in the plane have capacity equal
to their radius.

There is another way to obtain the Robin constant and thus the capacity for compact sets K in
C. Suppose for simplicity that K has well-behaved outer boundary. Then there exists a classical
Green function on the unbounded component D of C−K with “pole” at infinity. It is the unique
harmonic function g(z) on D with boundary values 0 on ∂D and which is of the form log |z|+O(1)
as |z| → ∞. In terms of the potential of the equilibrium distribution µ0 on K one will have

g(z) = γ − Uµ0(z), ∀z ∈ D. (8.5.1)

Observe that
Uµ0(z) = − log |z| −

∫
K

log
∣∣1− ζ

z

∣∣dµ0(ζ) = − log |z|+ o(1)

as |z| → ∞, hence
γ = min

|z|→∞
{g(z)− log |z|}. (8.5.2)

Examples 8.5.1. For K = B(a,R) and K = C(a,R) in C,

g(z) = log |z − a|
R

, |z − a| > R; γ = − log R, cap K = R.

For the line segment [−1, 1] in C, cf. Application 8.2.7,

g(z) = log |z + (z2 − 1) 1
2 |, γ = log 2, cap[−1, 1] = 1

2 .

Here one has to use the holomorphic branch of (z2 − 1) 1
2 on C \ [−1, 1] that behaves like z at ∞.

The Green function g(z) on D may be extended to a subharmonic function on C by setting it
equal to 0 on K and throughout bounded components of C \K [formula (8.5.1) will then hold
everywhere]. The extended Green function may also be defined in terms of polynomials. The
advantage of such an approach is that it provides a Green function for every compact set in C.
Using polynomials in z = (z1, . . . , zn), the same definition will work in Cn. Its polynomial origin
will make the new Green function directly useful in the study of holomorphic functions in Cn (cf.
[64, 65]).

8.6 Green functions on Cn with logarithmic singularity at infinity

Definition 8.6.1. For K ⊂ Cn compact, the (pre-) Green function gK(z) with “pole” (logarithmic
singularity) at infinity is given by

gK(z) = sup
m≥1

sup
deg pm≤m

1
m

log |pm(z)|
‖pm‖K

, ∀z ∈ Cn.

Here pm runs over all polynomials in z of degree ≤ m for which ‖pm‖K = supK |pm(ζ)| > 0. One
defines the logarithmic capacity of K in terms of a generalized Robin constant:

γ = γK = lim sup
|z|→∞

{gK(z)− log |z|}, cap K = e−γ .
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Properties 8.6.2. There is monotonicity: if K ⊂ K ′ one has ‖pm‖K ≤ ‖pm‖K′ , hence

gK(z) ≥ gK′(z), cap K ≤ cap K ′.

Also cap is invariant under translations and there is homogeneity: cap(tK) = t capK, t ≥ 0. Observe
that for any m ≥ 1 and deg pm ≤ m, the function

v(z) = 1
m

log |pm(z)|/‖pm‖K (‖pm‖K > 0) (8.6.1)

is plurisubharmonic and satisfies the following conditions:

v(z) ≤ 0 on K, v(z) ≤ log |z|+O(1) as |z| → ∞. (8.6.2)

[For |α| ≤ m and |z| ≥ 1, |zα| ≤ |z|m.] Clearly gK(z) ≤ 0 on K; the special choice pm(z) ≡ 1 (and
m = 1) shows that

gK(z) ≥ 0 on Cn, gK(z) = 0 on K. (8.6.3)

Before we discuss examples it is convenient to prove a simple lemma:

Lemma 8.6.3.

(i) Let v be any psh function on Cn which is majorized by 0 on the closed ball B(a,R) and by
log |z|+O(1) at ∞. Then

v(z) ≤ log+ |z − a|
R

, ∀z ∈ Cn.

(ii) Let K ⊂ Cn be such that gK(z) ≤M on the ball B(a,R). Then

gK(z) ≤M + log+ |z − a|
R

, ∀z ∈ Cn,

hence K has finite Robin constant and positive logarithmic capacity.

Proof. (i) Setting z = a+ wb with w ∈ C, b ∈ Cn, |b| = R we find

v(a+ wb) ≤ 0 for |w| ≤ 1, v(a+ wb) ≤ log |w|+O(1) as |w| → ∞.

Comparing the subharmonic function v(a + wb) with the harmonic function (1 + ε) log |w| for
|w| > 1, the maximum principle will show that

v(z) = v(a+ wb) ≤ log |w| = log |z − a|/R for |z − a| > R.

(ii) By the definition of gK , the psh functions v of (8.6.1) will be majorized by M on B(a,R). Now
apply part (i) to v −M instead of v and then use the definition of gK once again.

Examples 8.6.4. (i) Let K be the closed ball B(a,R) ⊂ Cn. Setting z = a + wb with w ∈
C, |b| = R the Lemma shows that gK(a+wb) ≤ log+ |w|, cf. (8.6.3). On the other hand the special
choice p1(z) = b · (z − a)/R2 shows that gK(a + wb) ≥ log |p1(a + wb)| = log |w|. Conclusion:
gK(a+ wb) ≡ log+ |w| for every b ∈ Cn of norm R, hence

gK(z) = log+ |z − a|
R

, γ = − log R, cap K = R,
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in agreement with Example 8.5.1 when n = 1. (ii) For the line segment K = [−1, 1] in C one will
have

gK(z) = g(z) = log |z + (z2 − 1) 1
2 |, cap K = 1

2 ,

in conformity with 8.5.1. Indeed, any subharmonic function v on C which is majorized by 0 on K
and by log |z|+O(1) at ∞ will be majorized by g on C−K, cf. Application 8.2.7, hence gK ≤ g.
On the other hand, if we use the Chebyshev polynomials Tm(z) we find

gK(z) ≥ lim
m→∞

1
m

log |Tm(z)| = log |z + (z2 − 1) 1
2 |, z ∈ C− [−1, 1],

see 8.2.7. Simple transformations will give the Green functions for other compact line segments in
C.

(iii) Every non-degenerate rectangular block K in Rn = Rn + i0 ⊂ Cn:

K = {x ∈ Rn : aν ≤ xν ≤ bν , ν = 1, . . . , n} (bν > aν)

has positive capacity in Cn. This will follow from Lemma 8.6.3 and the simple inequality

gK(z) ≤ g1(z1) + · · ·+ gn(zn),

where gν stands for the one-variable Green function for the real interval [aν , bν ] in C with pole
at ∞. We verify the inequality in the case n = 2. For v(z1, z2) as in (8.6.1) we have v(x1, x2) ≤ 0
whenever aν ≤ xν ≤ bν . Taking x2 ∈ [a2, b2] fixed, the subharmonic function v(z1, x2) will be
majorized by 0 on [a1, b1] and by log |z1|+O(1) at ∞, hence it is majorized by g1(z1) throughout
Cz1 , cf. (ii). Thus for fixed z1, the subharmonic function v(z1, z2)− g1(z1) will be majorized by 0
on [a2, b2] and by log |z2|+O(1) at ∞, hence it is majorized by g2(z2) throughout Cz2 . Conclusion:
all admissible functions v(z1, z2) are majorized by g1(z1) + g2(z2) on C2 and the same will hold for
their upper envelope, the Green function gK(z1, z2).

[One actually has gK(z) = sup{g1(z1), . . . , gn(zn)}, cf. exercise 8.44.]

The following theorem will be used in Section 8.7:

Theorem 8.6.5 (MAIN THEOREM Siciak, cf. [65]). For compact K in Cn the following assertions
are equivalent:

(i) gK(z) < +∞ throughout Cn;

(ii) There are a ball B(a, r) and a constant M such that gK(z) ≤M on B(a, r);

(iii) There exist a ∈ Cn, r > 0 and M such that

gK(z) ≤M + log+ |z − a|
r

, ∀z ∈ Cn;

(iv) γ = γK < +∞ or cap K = e−γ > 0;

(v) For every bounded set H ⊂ Cn there is a constant CH = C(H,K) such that for every m ≤ 0
and all polynomials p(z) of degree ≤ m,

‖p‖H ≤ ‖p‖K C(H,K)m

[In terms of gK , one may take C(H,K) = exp(supH gK).]
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Proof. (i)⇒ (ii). We will use Baire’s theorem: If a complete metric space is the union of a countable
family of closed sets, at least one of the sets must contain a ball. Assuming (i), define

Es = {z ∈ Cn : gK(z) ≤ s}, s = 1, 2, . . . .

Every Es is a closed set: it is the intersection of the closed sets {z ∈ Cn : v(z) ≤ s} corresponding
to the continuous functions v of (8.6.1). Now Cn =

⋃∞
s=1 Es, hence by Baire’s theorem, some set

Eq contains a ball B(a, r). We then have (ii) with M = q.
(ii) ⇒ (iii): apply Lemma 8.6.3 with R = r.
(iii) ⇒ (iv) ⇒ (ii): use the definition of γ in Definition 8.6.1.
(iii) ⇒ (v) ⇒ (ii) or (i): use the definition of gK in Definition 8.6.1.

The (pre-) Green function gK need not be plurisubharmonic even if it is finite, because it need
not be upper semi-continuous. For example, if K = B(0, 1) ∪ {2} in C then gK(z) = log+ |z| for
z 6= 2 but gK(2) = 0. To repair this small defect one may define the “real” Green function g∗K as
the “upper regularization” of gK :

g∗K(a) = lim sup
z→a

gK(z), ∀a ∈ Cn,

cf. exercise 8.8. It follows from Theorem 8.6.5 that g∗K is either identically +∞ (if cap K = 0) or
finite everywhere (if cap K > 0). In the latter case one may show that g∗K is plurisubharmonic.
[The regularized upper envelope of a locally bounded family of psh functions is psh, cf. exercise
8.29.]

In the case of C [but not in Cn !] it may be shown that gK is harmonic outside K when it is
finite. Furthermore

g∗K(z) = γ − Uµ0(z) = γ +
∫
K

log |z − ζ|dµ0(ζ),

where the positive measure µ0 of total mass 1 represents the equilibrium distribution on K,
cf. (8.5.1). One may deduce from this that the Green function g∗K on C satisfies Poisson’s equation,
∆g∗K = 2πµ0 [at least in the sense of distributions]. There is a corresponding partial differential
equation for g∗K in Cn (n ≥ 2), the so-called complex Monge-Ampère equation, which will be
studied in Section 8.8.

The function cap K has most of the properties usually required of a capacity. It is monotonic
and cap Kν → cap K if Kν ↘ K or Kν ↗ K; for bounded sets L that are limits of increasing
sequences {Kν} of compact sets, it makes sense to define cap L = lim cap K. See Kołodziej [32].

8.7 Some applications of Cn capacities

Our main application will be the partial derivatives lemma [34, 35]) which was used already in
Sections 3.5, 3.6; for other uses see exercises 8.52, 8.58. Let E be a family of directions ξ in Rn; we
think of E as a subset of the unit sphere Sn−1. If E is large enough, the partial derivatives of C∞
functions f in Rn can be estimated in terms of the directional derivatives of the same order that
correspond to the set E. It is remarkable that the best constant β(E) in this real variables result is
equal to a Cn capacity for a set closely related to E. The set in question is the closure Ec of the
circular set Ec ⊂ Cn generated by E:

Ec
def= {z = eitξ ∈ Cn : ξ ∈ E, t ∈ R}. (8.7.1)

Theorem 8.7.1 (Partial derivatives lemma).
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(i) For every nonempty open subset E of the real unit sphere Sn−1 there is a constant βE > 0
such that, for any point a ∈ Rn and any C∞ function f in a neighborhood of a,

max
|α|=m

1
α!
∣∣Dαf(a)

∣∣ ≤ sup
ξ∈E

1
m!
∣∣ ( d

dt

)m
f(a+ tξ)

∣∣
t=0

∣∣/βmE , m = 1, 2, . . . . (8.7.2)

(ii) For an arbitrary set E ⊂ Sn−1 ⊂ Rn there is such a constant βE > 0 if and only if the closed
circular set K = Ec has positive logarithmic capacity in Cn.

(iii) The best (largest possible) constant βE in (8.7.2) is equal to what may be called a Siciak
capacity:

βE = σ(Ec), σ(K) def= exp(− sup
∆
gK), (8.7.3)

where gK is the (pre-) Green function for K in Cn with logarithmic singularity at∞ (Definition
8.6.1) and ∆ = ∆n(0, 1) is the unit polydisc.

Remarks 8.7.2. If βE > 0 and f is a continuous function on a domain D in Rn such that the mth

order directional derivatives on the right-hand side of (8.7.2) exist at every point a ∈ D and are
uniformly bounded on D for each m, then f is of class C∞ and (8.7.2) is applicable, cf. exercises
3.22, 8.53.

The proof below will show that the Theorem reduces to a result on polynomials. For the class
of all polynomials f(z) in z = (z1, . . . , zn), there exist inequalities (8.7.2) for any bounded set E in
Cn with the property that Ec has positive capacity, cf. exercise 8.54.

Proof of the Theorem. Let E ⊂ Sn−1 be given. Taking a = 0 as we may, let f be any C∞ function
on a neighborhood of 0 in Rn. We introduce its Taylor expansion

f(x) ∼
∞∑
0
qm(x). (8.7.4)

where
qm(x) =

∑
|α|=m

cαx
α, cα = Dαf(0)/α!. (8.7.5)

The homogeneous polynomials qm(x) may be characterized by the condition that for every integer
N ≥ 0,

f(x)−
N∑
0
qm(x) = o(|x|N ) as x→ 0.

For x = tξ with ξ ∈ E fixed, t ∈ R variable we also have the expansion

f(tξ) ∼
∞∑
0
qm(tξ) =

∞∑
0
qm(ξ)tm,

where for every N, f(tξ)−
∑N

0 qm(ξ)tm = o(|t|N ) as t→ 0. It follows that

qm(ξ) = 1
m!
( d
dt

)m
f(tξ)

∣∣
t=0. (8.7.6)

Thus our problem in (8.7.2) [with a = 0] is to estimate the coefficients cα of homogeneous
polynomials qm in terms of the supremum norm ‖qm‖E .
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The coefficients cα are estimated rather well by the Cauchy inequalities for the closed unit
polydisc ∆ = ∆(0, 1) ⊂ Cn:

|cα| ≤ ‖qm‖T ≤ ‖qm‖∆ = ‖qm‖∆,

where T is the torus T (0, 1) = C(0, 1) × · · · × C(0, 1). [Cf. Corollary 1.6.5. Alternatively, this
coefficient inequality may be derived from Parseval’s formula for orthogonal representations on T .]
On the other hand, since qm is a homogeneous polynomial,

‖qm‖E = ‖qm‖Ec = ‖qm‖K , K = Ec.

Question: Can we estimate ‖qm‖∆ in terms of ‖qm‖K?
(a) [Proof of half of parts (ii) and (iii).] Suppose first that cap K > 0. Then by Theorem 8.6.5

part (v),
‖qm‖∆ ≤ ‖qm‖KC(∆,K)m, C(∆,K) = exp(sup

∆
gK).

It follows that
max
|α|=m

|cα| ≤ ‖qm‖∆ ≤ ‖qm‖E C(∆, Ec)m, m = 1, 2, . . . .

In view of (8.7.5) and (8.7.6) we have thus proved (8.7.2) with

1/βE = C(∆, Ec) = exp(sup
∆

gK).

The smallest constant 1/βE that can be used in (8.7.2) will be ≤ exp(sup∆ gK).
(b) [Proof of part (i).] Next suppose that E is any nonempty open subset of Sn−1. Then the

compact truncated cone E∗ = [0, 1] ·E in Rn contains a nondegenerated rectangular block, hence it
has positive capacity [see Example 8.6.4–iii]. Thus by Theorem 8.64 there is a positive constant
C(∆, E∗) such that for all homogeneous polynomials qm and their coefficients cα,

max
|α|=m

|cα| ≤ ‖qm‖∆ ≤ ‖qm‖E∗ C(∆, E∗)m = ‖qm‖E C(∆, E∗)m,

for m = 1, 2, . . ..
(c) [Completion of parts (ii) and (iii).] Finally, suppose that for E there is a positive constant

β = βE such that (8.7.2) holds [with a = 0] for all C∞ functions f(x). Then for all homogeneous
polynomials q(x) =

∑
cαx

α,

|cα| ≤ β−m‖q‖E , ∀α, where m = deg q. (8.7.7)

We will deduce that K = Ec has positive capacity.
From (8.7.7) we obtain the preliminary estimate

‖q‖∆ = sup
∆

∣∣ ∑
|α|=m

cαz
α
∣∣ ≤ ∑

|α|=m

|cα|

≤ β−m‖q‖E
∑
|α|=m

1 ≤ (m+ 1)nβ−m‖q‖E .
(8.7.8)

[Since α1 + · · ·+ αn = m there are at most m+ 1 possibilities for each αj .] By (8.7.8), β must be
≤ 1. Indeed, E belongs to ∆ and hence (m+ 1)nβ−m ≥ 1 or β ≤ (m+ 1)n/m; now let m→∞. We
will use (8.7.8) to derive a better estimate, valid for all polynomials p of degree ≤ m, namely,

‖p‖∆ ≤ ‖p‖K/βm, where K = Ec. (8.7.9)
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For the proof we form powers ps with s ∈ N which we decompose into homogeneous polynomials:
p(z)s =

∑ms
0 qj(z), qj homogeneous of degree j. Then p(wξ)s =

∑ms
0 qj(ξ)wj , hence by the

one-variable Cauchy inequalities, taking ξ ∈ E and letting w run over the circle C(0, 1) so that
wξ ∈ Ec,

|qj(ξ)| ≤
∥∥p(wξ)s∥∥

C(0,1) ≤ ‖p‖
s
K .

Thus ‖qj‖E ≤ ‖p‖sK and by (8.7.8)

‖ps‖∆ =
∥∥ ms∑

0
qj
∥∥

∆ ≤
ms∑
0

(j + 1)nβ−j‖qj‖E ≤ (ms+ 1)n+1β−ms‖p‖sK .

Finally, taking the sth root and letting s→∞ we obtain (8.7.9).
It follows from (8.7.9) and Definition 8.6.1 that the Green function gK is bounded by log 1/β at

each point z ∈ ∆, hence by Theorem 8.64 part (ii), K = Ec has positive capacity. This conclusion
completes the proof of part (ii).

By the preceding exp gK ≤ 1/β throughout ∆, hence the smallest possible constant 1/β(E)
that works in (8.7.2) must be ≥ exp(sup∆ gK). In view of part (a), the smallest possible 1/βE is
thus equal to exp(sup∆ gK). In other words, the largest possible constant βE is equal to the Siciak
capacity σ(K) in part (iii) of the Theorem.

Remarks 8.7.3. The definition of σ(K) in (8.7.3) may be applied to any compact set K in Cn. Just
like cap K) the function σ(K) has most of the properties usually associated with a capacity. In
particular, σ(K) ≤ σ(K ′) if K ⊂ K ′ and σ(Kν) → σ(K) if Kν ↘ K or Kν ↗ K. The function
σ is also a Cn capacity in the sense that σ(K) = 0 if and only if K is pluripolar or equivalently,
cap K = 0. Cf. [65].

In other applications of Cn potential theory, the precise constant is given by a Siciak capacity
involving the unit ball:

ρ(K) def= exp(− sup
B

gK), B = B(0, 1). (8.7.10)

For compact circular subsets K = Kc of the closed unit ball, the constant ρ(K) may be characterized
geometrically as the radius of the largest ball B(0, r) which is contained in the polynomially convex
hull K̃ of K, cf. exercises 6.16 and 8.55, 8.56. This property makes ρ(K) the sharp constant in the
Sibony-Wong theorem on the growth of entire functions in Cn:

Theorem 8.7.4. Let K = Kc be a compact circular subset of the unit sphere ∂B ⊂ Cn of positive
capacity. Then for every polynomial and [hence] for every entire function F (z) in Cn,

sup
|z|≤ρr

|F (z)| ≤ sup
z∈rK

|F (z)|, where ρ = ρ(K).

Cf. exercise 8.57 and [65].

8.8 Maximal functions and the Dirichlet Problem

Let us return to C for a moment. Suppose we know that we can solve the Dirichlet problem for ∆:
given a domain D ⊂ C and f ∈ C(∂D), there exists a smooth function u ∈ C(D) such that

∆u = 0 onD
u|∂D = f.

(8.8.1)
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Now we can describe u. We introduce the Perron family:

Pf = {v ∈ C(D) : v is subharmonic on D, v|∂D ≤ f}. (8.8.2)

Clearly u ∈ Pf and in view of Theorem 8.21 it is the largest one:

u(z) = sup
v∈Pf

v(z). (8.8.3)

One can write down (8.8.3) even without knowing that Dirichlet’s problem is solvable and it is
reasonable to expect that this will give some sort of solution. This indeed turns out to be the case
as was shown by Perron and as we shall see below.

Working again with several variables we introduce the Perron-Bremermann family

Ff = {u ∈ C(D) : u is plurisubharmonic on D, u|∂D ≤ f} (8.8.4)

and form the Perron-Bremermann maximal function:

Ff (z) = sup
u∈Ff

u(z). (8.8.5)

One may expect that this gives rise to the solution of the Dirichlet problem for an analogue of
the Laplace operator in some sense. What would this operator look like? The following simple
proposition will give an idea.

Proposition 8.8.1. Let D be a domain in Cn, Ff the Perron-Bremermann family for f ∈ C(∂D).
If u ∈ Ff and u is smooth and strictly plurisubharmonic at some point a ∈ D, then u 6= Ff .

Proof. Let u be smooth and strictly plurisubharmonic on B(a, r) ⊂ D. Choose a smooth real
valued cutoff function χ ≥ 0 supported in B(a, r/2) with χ(a) > 0. Then for sufficiently small ε > 0
the function uε = u+ εχ will be plurisubharmonic, uε ∈ Ff and uε(a) > u(a), which shows that
u 6= Ff .

Therefore, if Ff would exist and be smooth, it would be a plurisubharmonic function [by 8.42]
but nowhere could it be strictly plurisubharmonic. In other words, the least eigenvalue of the
complex Hessian of Ff would equal 0. Thus it would be a solution of the Complex Monge-Ampère
equation

M(u) = det ∂2u

∂zj∂z̄k
= 0. (8.8.6)

We are led to the Dirichlet problem for M : Given a domain D in Cn and a function f ∈ C(∂D),
find a continuous plurisubharmonic function u on D such that

M(u) = 0, u|∂D = f.

Note that in the one dimensional case M reduces to a multiple of ∆ and we don’t need to require
that u be subharmonic —it will follow from the equation. In the higher dimensional case there
are lots of problems. One can show that the maximal function (8.8.5) need not be C2, cf. exercise
8.60. Apparently we have the problem of defining M(u) for non smooth u. This can be done, but is
much harder than in the one dimensional case where one can use distributions theory to define
∆u, because ∆ is a linear differential operator. However, M is highly nonlinear in the higher
dimensional case.

In what follows we will discuss some aspects of solving the Dirichlet problem forM . The solution
will be complete in the one dimensional case only. We refer to the literature for complete proofs
and many related interesting results, see [2, 3, 5, 12, 29].
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Let D be a bounded domain in Cn given by a smooth defining function ρ which is strictly
plurisubharmonic on a neighborhood of D. That is,

D = {z ∈ Dom(ρ) : ρ(z) < 0},

while ∇ρ 6= 0 on {ρ = 0}, cf. Chapter 9. In C one may modify any smooth defining function to be
strictly subharmonic, in Cn this is not true: The condition on D means that the domain is strictly
pseudoconvex, cf. Chapter 9. In particular D is pseudoconvex. Although strict pseudoconvexity
is not a necessary condition to solve the Dirichlet problem for M , pseudoconvexity alone is not
enough, cf. exercise 8.62.

Proposition 8.8.2. Suppose that D ⊂ Cn has a smooth strictly plurisubharmonic defining function
ρ and that f is continuous on ∂D and use the notation (8.8.4) and (8.8.5). Then Ff is continuous
on D, plurisubharmonic on D and satisfies Ff |∂D = f .

Proof. First we discuss boundary behavior. Let ε > 0, and let ϕ be smooth on a neighborhood of
D̄ such that on ∂D f − ε < ϕ < f (One may start with a continuous function with this property
defined on a neighborhood of D̄ and approximate it uniformly on a compact neighborhood of
D̄ with smooth functions) For sufficiently large C1 the function g0 = ϕ + C1ρ will be strictly
plurisubharmonic, thus g0 ∈ Ff and

lim inf
z→w∈∂D

Ff (z) ≥ lim
z→w∈∂D

g0(z) ≥ f(w)− ε. (8.8.7)

Similarly take ψ ∈ C∞(D̄), f < ψ < f + ε on ∂D. Again for sufficiently large C2 > 0 C2ρ− ψ will
be strictly plurisubharmonic. For g ∈ Ff we have C2ρ− ψ + g < 0 on ∂D, thus by the maximum
principal also on D. Therefore g < ψ − C2ρ independently of g ∈ Ff , hence Ff ≤ ψ − C2ρ and

lim sup
z→w∈∂D

Ff (z) ≤ lim
z→w∈∂D

(ψ − C2ρ)(w) ≤ f(w) + ε. (8.8.8)

Since ε was arbitrary, it follows from (8.8.7, 8.8.8) that Ff is continuous at ∂D and has boundary
values f .

Next we investigate continuity in the interior. As a supremum of continuous functions, Ff is
lsc. We form the usc regularization F ∗f , which is a plurisubharmonic function, and wish to prove
continuity, that is

H = F ∗f − Ff ≡ 0.

The function H is ≥ 0, usc on D̄ and continuous on ∂D with boundary values 0. Let M =
supz∈DH(z). If M > 0 then M is attained at a compact subset K in the interior of D. Let

L = Lδ = {z ∈ D, d(z, ∂D) ≥ δ}.

Given ε > 0 we may take δ small enough such that K ⊂ L and H < ε as well as Ff − g0 < ε on
∂L. The function F ∗f can on compact subsets of D be approximated from above by a decreasing
sequence of plurisubharmonic functions {hj}. We claim that this convergence is almost uniform on
∂L, i.e.

∃m > 0 : hm − F ∗f < 2ε on ∂L.

This is just an elaborate version of Dini’s theorem on decreasing sequences of continuous functions,
cf. exercise 8.59. Define

h(z) =
{

max(g0, hm − 4ε) on L;
g0 on D \ L.

(8.8.9)
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Then h ∈ Ff , because at ∂L and hence on a tiny neighborhood of ∂L,

g0 > Ff − ε > F ∗f − 2ε > hm − 4ε.

We conclude that F ∗f − Ff < F ∗f − h < 4ε on L. Hence M < 4ε, which implies M = 0.

Proposition 8.8.3. Suppose that Ff is maximal for Ff on D. Let B be a ball in D and let
g = Ff |∂B, then Ff |B is maximal for Fg.

Proof. Proposition 8.8.2 shows that G is continuous. It is clear that Ff |B ∈ Fg, therefore Ff |B ≤ Fg.
Now form the Poisson modification:

F̃ =
{
Ff outside B
Fg on B̄.

(8.8.10)

This F̃ is indeed an element of Ff ; we only have to check plurisubharmonicity on ∂B. Restricting to
a complex line l through a ∈ ∂B, we see that the mean value inequality holds: F̃ (a) = F (a), while
on a circle about a in l we have F̃ ≥ Ff . As F̃ ≤ Ff by definition of Ff , we obtain Ff |B = Fg.

Corollary 8.8.4. The Dirichlet problem for ∆ has a (unique) solution on smooth domains in C.

Proof. The Poisson integral solves the Dirichlet problem on discs cf. Section 8.1. Proposition 8.8.3
shows then that the maximal function coincides with a harmonic function on discs. It is therefore
harmonic. Uniqueness was shown in Section 8.2.

In the same fashion one concludes from Proposition 8.83.

Corollary 8.8.5. Suppose that the Dirichlet problem for M is solvable on the unit ball, then it is
solvable on every domain D which admits a strictly psh defining function.

Proposition 8.8.6. Let u ∈ C2(D̄), f = u|∂D. If Mu ≡ 0, then u = Ff .

Suppose that ∃v ∈ Ff , C > 0, such that supD v(z) − u(z) = C and (hence) ∃K ⊂⊂ D with
v − u = C on K. Adapting C if necessary, we may even assume v < f − ε on ∂D. Hence there
exists a compact K2 ⊂ D with v < u− ε outside K2. Then for sufficiently small η, the function

vη(z) = v(z) + η|z|2

will have the properties vη − u < 0 outside K2 and vη − u will assume its maximum C ′ close to C
on a compact neighborhood K1 of K. We have

K ⊂⊂ K1 ⊂⊂ K2 ⊂⊂ D.

Approximating vη uniformly from above on K2 with psh functions vj , we find one v′, such that
v′ − u < 0 close to the boundary of K2. Now put

h(z) =
{
u(z) on D \K2,
max{u(z), v′(z)} on K2.

(8.8.11)

It is clear that h ∈ Ff and that h−u is smooth in a neighborhood of a point z0 where it assumes its
maximum. Let ζ0 be an eigenvector of

(
∂2u

∂zi∂z̄j
;
)
|z0 with eigenvalue 0. Then restricted to the complex

line {z0 +wζ0}, (h− u)(z0 +wζ0) assumes a maximum at w = 0. But ∆(h− u)(z0 +wζ0)|w=0 > 0,
a contradiction.
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CONCLUSION A function u ∈ C2(D̄) is maximal in Ff for f = u|∂D if and only if MA(u) ≡ 0.
We make some further, extremely sketchy, remarks on the Dirichlet problem for M
Existence. Corollary 8.85 shows that it would be sufficient to show that Ff provides a solution

for the Dirichlet problem for f ∈ ∂B, B a (the unit) ball in Cn. Now if one assumes that f ∈ C2(∂B)
it can be shown that Ff is almost C2: second derivatives exist and are locally in L∞, [this is best
possible, cf. exercise 8.60]. The proof exploits the automorphisms of B to perturb f and Ff .

To show that M(Ff ) = 0, one tries to execute the idea of Proposition 8.8.1: If M(Ff ) 6≡ 0,
construct a function v on a small ball B(z0, δ) such that v is psh, v(z0) > u(z0) and v < u on
∂B(z0, δ). Simple as it may sound, it is a difficult and involved step.

One passes to continuous boundary values like this. A key result is the Chern-Levine-Nirenberg
inequality, a special case of which reads as follows:

For every K ⊂⊂ D there exists a constant CK such that for u ∈ C2 ∩ PSH(D)∫
K

M(u) dV ≤ CK ||u||n∞.

It follows that if uj ∈ C2 ∩ PSH(D) is a bounded set in L∞, then M(uj) dV has a subsequence
converging to some measure. It can be shown that as long as uj ∈ C2∩PSH(D) ↓ u ∈ L∞∩PSH(D),
this limit measure is independent of the sequence. Thus M(u) or perhaps better M(u) dV is defined
as a positive measure. Now if f ∈ C(∂D) take a sequence of smooth fj ↓ f . It is clear that Ffj ↓ Ff
and then M(Ff ) = limM(Ffj ) = 0.

Finally uniqueness is derived from so called comparison principles. An example, of which we
don’t give a proof, [but see exercise 11.x], is the following

Lemma 8.8.7. Let u, v ∈ C(D̄) ∩ PSH(D) and u ≥ v on ∂D. Then∫
u<v

M(v) dV ≤
∫
u<v

M(u) dV.

Assuming this Lemma, we put v = Ff and let u be an other solution. Then u ∈ F and
u(z0) < v(z0) for some z0 ∈ D. For suitable ε, δ > 0 the function ṽ(z) = v(z)− ε+ δ|z|2 will satisfy

u > ṽ on ∂D while u(z0) < ṽ(z0).

Also, M(ṽ) > δn [it suffices to check this for smooth v ∈ PSH]. Thus Lemma 8.8.7 leads to

δnm({u < ṽ}) ≤
∫
u<ṽ

M(ṽ) dV ≤
∫
u<ṽ

M(u) dV = 0.

This is a contradiction.
Remarks 8.8.8. Lets look back at the definition of the Green function gK in Definition 8.6.1. It was
defined as the sup of a subset of all psh functions that satisfy (8.6.2). One can show that taking
the sup over all psh functions that satisfy (8.6.2) gives the same Green function. Thus the Green
function is a kind of Perron Bremermann function, but now with a growth condition at infinity.
Now it should not come as a surprise that M(g∗K) = 0 on the complement of K. This is indeed the
case, cf. [4, 32]

We finally remark that one needs to have a good theory of “generalized differential forms”, the
so called currents at one’s disposal to complete the proofs, cf. Chapter 10.
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8.9 Exercises

Exercise 8.1. Show that the harmonic functions u(x) = f(r) on Rn − {a} which depend only on
|x− a| = r have the form

u(x) =
{
c1 log 1

|x−a| + c2 if n = 2,
c1
∣∣x− a∣∣2−n + c2 if n 6= 2.

(8.9.1)

[f ′′ + n−1
r f ′ = 0.]

Exercise 8.2. (Poisson integral). Let u be harmonic on B(0, 1) ⊂ C. For a = reiθ ∈ B, set

w = z − a
1− az and u(z) = U(w).

Verify that U is harmonic on B and that the mean value property of U furnishes the Poisson
integral representation for u:

u(reiθ) = u(a) = U(0) = 1
2π

∫
C(0,1)

U(w)dw
iw

= 1
2π

∫
C(0,1)

u(z) 1− |a|2

|z − a|2
dz

iz
= 1

2π

∫ π

−π

1− r2

1− 2r cos(θ − t) + r2 u(eit)dt.
(8.9.2)

Exercise 8.3. (Dirichlet problem for disc and ball). (i) Writing z = reiθ in C, verify that the
Poisson kernel can be written as follows:

1− r2

1− 2r cos(θ − t) + r2 = Re eit + z

eit − z
.

Deduce that the Poisson integral u = P [g] of an integrable function g on C(0, 1) is harmonic on
the unit disc B in C. Show that for continuous g, u(z)→ g(ζ) as z ∈ B tends to ζ ∈ C(0, 1). [A
constant function is equal to its Poisson integral. Now take ζ = 1 and g(1) = 0. Split the interval of
integration into [−δ, δ] and the rest. The kernel is nonnegative.] (ii) Verify that the Poisson
kernel for the unit ball in Rn,

|ξ|2 − |x|2

|ξ − x|n
= ξ · ξ − x · x

(ξ · ξ − ξ · x− x · ξ + x · x)n/2
,

satisfies Laplace’s equation relative to x on Rn − {ξ}. Then show that for continuous g on
S(0, 1) ⊂ Rn, the Poisson integral u = P [g] solves the Dirichlet problem for the unit ball B and
boundary function g, cf. (8.1.4). [How to show that P [1] ≡ 1? P [1](x) is harmonic on B and depends
only on |x| (why?), hence . . . .]

Exercise 8.4. Write down a Poisson integral for harmonic functions on the closed disc [or ball]
B(a,R). Deduce that harmonic functions are of class C∞ and show that a uniform limit of harmonic
functions on a domain Ω in C [or Rn] is harmonic.

Exercise 8.5. Prove that v(z) =
∑∞

2 k−2 log |z − 1/k| is subharmonic on B(0, 1
2 ) ⊂ C, but not

continuous at 0. [v is, in fact, subharmonic on C.]

Exercise 8.6. Let v on E ⊂ Rn be the limit of a decreasing sequence of upper semi-continuous
(usc) functions {vk}. Prove that v is usc.
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Exercise 8.7. Let E ⊂ Rn be compact and let v : E → R∪{−∞} be such that lim supx→a v(x) ≤
v(a), ∀a ∈ E. Prove that v assumes a maximum on E and that there is a decreasing sequence
of finite continuous functions {vk} which converges to v on E. [First assuming v > −∞, define
vk(x) = maxy∈E{v(y)− k|x− y|}. Use a value yk = yk(x) where the maximum is attained to show
that vk(x′)− vk(x) ≥ −k|x′ − x|, etc. For the proof that vk(x) ↓ v(x) it is useful to observe that
yk(x)→ x as k →∞. Finally, allow also the value −∞ for v.]

Exercise 8.8. (Usc regularization). Let V be a function Ω → R ∪ {−∞} and let V ∗ be its
“regularization”:

V ∗(a) = lim sup
x→a

V (x), ∀a ∈ Ω.

Supposing V ∗ < +∞ on Ω, prove that it is upper semi-continuous.

Exercise 8.9. Prove that for any bounded domain Ω ⊂ C, the exhaustion function

− log d(z) = sup{− log |z − b|, b ∈ ∂Ω}

is subharmonic on Ω. Can you find a subharmonic exhaustion function for arbitrary bounded
domains Ω in Rn (n ≥ 3) ?

Exercise 8.10. Show that the infimum of the subharmonic functions v1(x, y) = x and v2(x, y) = −x
on R2 is not subharmonic.

Exercise 8.11. Prove the relations (8.1.8) for subharmonic functions.

Exercise 8.12. Compute the logarithmic potential of (normalized) arc measure on C(0, 1) : U(z) =
−
∫ π
−π log |z − eit|dt/2π. Verify that U is superharmonic on C and harmonic except on C(0, 1).

Exercise 8.13. (Maximum principle characterization of subharmonic functions). Let Ω
in R2 [or Rn] be open and let v : Ω → R ∪ {−∞} be upper semi-continuous. Prove that v is
subharmonic if and only if it satisfies the following maximum principle:

(i) “For every subdomain D ⊂ Ω (or for every disc [or ball]] D with D ⊂ Ω) and every harmonic
function u on D which majorizes v on ∂eD, one has u ≥ v throughout D”.

Exercise 8.14. Suppose that v on Ω is both subharmonic and superharmonic, or equivalently,
that v is finite, real, continuous and has the mean value property on Ω. Prove that v is harmonic.

Exercise 8.15. (Hopf’s lemma). Let v be C1 subharmonic on the closed unit disc B(0, 1) and
< 0 except that v(1) = 0. Prove that the outward normal derivative ∂v/∂N is strictly positive at
the point 1. [Let u be the Poisson integral of v

∣∣
C

(0, 1). Since v(r) ≤ u(r) it is enough to prove that
lim{v(1)− u(r)}/(1− r) > 0.] Extend to other smoothly bounded domains.

Exercise 8.16. Let v be a subharmonic function on the annulus A(0; ρ,R) ⊂ C. Prove that
m(r) = maxθ v(reiθ) is a convex function of log r:

m(r) ≤ log r2 − log r
log r2 − log r1

m(r1) + log r − log r1

log r2 − log r1
m(r2), ρ < r1 ≤ r ≤ r2 < R.

Apply the result to v(z) = log |f(z)| where f is holomorphic on the annulus A(0; ρ,R). The resulting
inequality for the “maximum modulus” M(r) = maxθ |f(reiθ)| is known as Hadamard’s three
circles theorem.

Exercise 8.17. Let v be a subharmonic function on C. What can you say if v is bounded above?
What if only lim sup v(z)/ log |z| ≤ 0 for |z| → ∞?
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Exercise 8.18. Let v be subharmonic on the infinite strip S: a < x = Re z < b, −∞ < y =
Im z < ∞ in C and bounded above on every interior strip a + δ < x < b − δ, δ > 0. Prove that
m(x) = supy v(x+ iy) is convex.

Exercise 8.19. Prove directly and simply that a strictly subharmonic function v on a connected
domain D ⊂ R2 can not have a maximum at a ∈ D. What about an arbitrary smooth subharmonic
function?

Exercise 8.20. Let v be a C2 function on the closed disc B(0, r). Show that ∀θ,

v(r cos θ, r sin θ) = v(0) +
∫ r

0

∂

∂ρ
. . . dρ

= v(0)−
∫ r

0

∂v

∂ρ
{ρ ∂v

∂ρ
(ρ cos θ, ρ sin θ)} log ρ

r
dρ.

(8.9.3)

Exercise 8.21. Let ϕ be a C1 function on C of compact support, U(z) =
∫
C log |z − ζ| · ϕ(ζ)dξdη.

Prove that ∂U/∂z and ∂U/∂z are of class C1 and that ∆U = 2πϕ. [Think of Theorem 3.1.3. Show
that

∂U

∂x
=
∫
C

log |ζ| · ∂
∂ξ

ϕ(z + ζ)dξdη = −
∫
C

Re 1
ζ
· (z + ζ)dξdη, ∂U

∂z
= . . . .]

Exercise 8.22. Let K ⊂ C be compact and let µ be a positive measure on K with µ(K) = 1.
Prove:

(i) Uε(z) = 1
2

∫
K

log(|z − ζ|2 + ε2)dµ(ζ), ε > 0 is C∞ subharmonic on C:

(ii) U(z) =
∫
K

log |z − ζ|dµ(ζ) is subharmonic on C and harmonic outside K.

Exercise 8.23. Let v(z) = ϕ(|z|) be a usc function on the annulus A(0; ρ,R) ⊂ C that depends
only on |z| = r. Prove that v(z) is subharmonic if and only if ϕ(r) is a convex function of log r.
[For smooth ϕ, this is equivalent to saying that dϕ(r)/d log r is nondecreasing.] Can you use the
result to show that for arbitrary subharmonic v on A(0; ρ,R), both

m(r) = m(z) = sup
θ

v(eiθz) and v(0; r) = v(0; z) = 1
2π

∫ π

−π
v(zeiθ)dθ

are convex functions of log r?

Exercise 8.24. Let f : D1(⊂ C) → D2 ⊂ C be holomorphic and let v be subharmonic on D2.
Prove that v ◦ f is subharmonic on D1.

Exercise 8.25. Extend Theorem 8.3.5 to Rn, paying special attention to the case n = 1 (regular-
ization of convex functions on I ⊂ R).

Exercise 8.26. Let v be subharmonic on Ω ⊂ Rn and let g be a nondecreasing convex function
on R. Prove that g ◦ v is subharmonic on Ω.

Exercise 8.27. Let v be locally integrable on Ω. In the theory of distributions the Laplacian ∆v is
defined by its action on test functions ϕ on Ω [ C∞ functions of compact support in Ω, cf. Chapter
11]:

〈∆v, ϕ〉 def= 〈v,∆ϕ〉 def=
∫

Ω
v∆ϕ.

One says that ∆v ≥ 0 on Ω in the sense of distributions if 〈∆v, ϕ〉 ≥ 0 for all test functions ϕ ≥ 0
on Ω. Prove that a continuous function v on Ω is subharmonic if and only if ∆v ≥ 0 in this sense.
[∆vε(z) =

∫
Ω v(ζ)∆ρε(z − ζ)dm(ζ).]
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Exercise 8.28. Use the regularization of Theorem 8.3.5 to show that a continuous function with
the mean value property is of class C∞.

Exercise 8.29. (Upper envelopes of families of subharmonic functions). Let {vλ}, λ ∈ Λ
be a family of subharmonic functions on Ω in Rn of Cn whose upper envelope V is locally bounded
above. Prove:

(i) V is subharmonic if it is upper semi-continuous;

(ii) The usc regularization V ∗ of V is subharmonic [cf. exercise 8.8];

(iii) The regularizations Vε are subharmonic and ≥ V [cf. the proof of Theorem 8.3.5];

(iv) Vε ≥ Vδ for 0 < δ < ε [compare ρη ∗ Vε and ρη ∗ Vδ];

(v) limε↓0 Vε = V ∗;

(vi) If the functions vλ are psh, so is V ∗.

Exercise 8.30. Use Fubini’s theorem to prove that a subharmonic function v also has the sub
mean value property for balls (or discs if n = 2); if v is subharmonic on B = B(a,R) ⊂ Rn, then
v(a) ≤ vB(a;R), the average of v over the ball B(a,R).

Exercise 8.31. (Hartog’s lemma). Let {vk} be a sequence of subharmonic functions on Ω ⊂ Rn
which is locally bounded above and such that lim sup vk(z) ≤ A at every point z ∈ Ω. Prove that
for every compact subset E ⊂ Ω and ε > 0, there is an index k0 such that vk < A+ ε throughout
E for all k > k0. [Choose a “large” ball B = B(a,R) in Ω. Use Fatou’s lemma to show that
lim sup

∫
B
vk ≤

∫
B

lim sup vk. Thus
∫
B
vk < (A + 1

2ε) vol B, ∀k > k1. Deduce an inequality for
vk(z) at each point of a small ball B(a, δ).]

Exercise 8.32. Let v be C2 psh on a (connected) domain D2 ⊂ Cp and let f be a holomorphic
map from D1 ⊂ Cn to D2. Prove that v ◦ f is psh on D1.

Exercise 8.33. Prove that the following functions are strictly psh on Cn;

(i) |z|2;

(ii) log(|z|2 + c2), c > 0;

(iii) g(|z|2) where g is a real C2 function on [0,∞) such that g′ > 0 and g′ + tg” > 0.

Exercise 8.34. Let D be the spherical shell B(0, R − B(0, ρ) in Cn, n ≥ 2. Prove that a usc
function v(z) = ϕ(|z|) that depends only on |z| = r is psh on D if and only if ϕ(r) is nondecreasing
and convex as a function of log r. [Set ϕ(r) = g(r2) and start with g ∈ C2.]

Exercise 8.35. Prove a Hadamard type “three spheres theorem” for holomorphic functions on a
spherical shell in Cn, n ≥ 2. Do you notice a difference with the case n = 1 ? [Cf. exercise 8.16.]

Exercise 8.36. Prove that a real C2 function u on Ω ⊂ Cn is pluriharmonic if and only if

∂2u

∂zj∂zk
= 0 on Ω, ∀j, k = 1, . . . , n.
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Exercise 8.37. Prove that a pluriharmonic function u on the unit bidisc ∆2(0, 1) ⊂ C2 is equal to
the real part of a holomorphic function f on ∆2. [Show first that one has power series representations

∂u

∂z1
=

∑
p≥1, q≥0

papqz
p−1
1 zq2 ,

∂u

∂z2
=

∑
p≥0, q≥1

qbpqz
p
1z
q−1
2 ,

then compare apq and bpq. Can you now find f ?]

Exercise 8.38. Prove that the circle C(0, r) in C is non polar. Also show that the torus T (0, r) in
Cn is non pluripolar.

Exercise 8.39. Prove that the square −1 ≤ x1, x2 ≤ 1 in R2 ⊂ C2 is non pluripolar. [Cf. 8.2.8
and exercise 1.17.] Extend to nonempty open subsets of Rn ⊂ Cn.

Exercise 8.40. Let K ⊂ Cn be compact. Prove that gK(z) ≥ log |z|/R for some constant R, so
that the Robin constant γK is always > −∞ and cap K < +∞.

Exercise 8.41. Let K ⊂ C be compact and such that there is a positive measure µ on K
(with µ(K) = 1) whose logarithmic potential Uµ is bounded above on C, by M say. Prove that
gK(z) ≤M − Uµ(z) on C and that cap K ≥ e−M .

Exercise 8.42. Show that a compact line segment in C of length L has capacity 1
4L.

Exercise 8.43. Prove that the Green function gK(z) with pole at ∞ for the closed unit bidisc
{|z1| ≤ 1, |z2| ≤ 1} in C2 is equal to sup(log+ |z1|, log+ |z2|). Also treat the case of the torus
C(0, 1)× C(0, 1) in C2 ! [Fix z 6= 0 with |z1| ≥ |z2| and consider the complex line ζ = wz.]

Exercise 8.44. (i) Prove that a psh function V (w) on E = {w ∈ C2 : |w1| ≥ 1, |w2| ≥ 1}
which is majorized by 0 on the torus T (0, 1) and by log |w| + O(1) at ∞ is majorized by
sup{log |w1|, log |w2|} throughout E. [First consider v(w1, e

it) for |w1| > 1, then v(w1, λw1)
for |w1| > 1/|λ| where |λ| ≤ 1, etc.

(ii) Prove that the Green function gK(z) for the closed square −1 ≤ x1, x2 ≤ 1, y1 = y2 = 0
in C2 is equal to sup{g(z1), g(z2)}, where g is the Green function with pole at ∞ for the
interval [−1, 1] in C. [Taking both z1 and z2 outside [−1, 1], one can use (i) and a suitable
holomorphic map. The cases where z1 = x1 ∈ [−1, 1] or z2 = x2 ∈ [−1, 1] may be treated
separately.]

Exercise 8.45. Let K be a compact polar subset of C. Prove that cap K = 0. [Use the fact that
gK is harmonic on C−K when cap K > 0.] The converse is also true but more difficult. It may be
derived with the aid of Hartogs’ lemma, exercise 8.31.

Exercise 8.46. Let D be a bounded domain in Rn with (piecewise) C1 boundary and let f be a
function of class C1 on D. Discuss the classical Gauss-Green formula for integration by parts:∫

D

∂f

∂xj
dm =

∫
∂D

fNxjds.

Here dm stands for volume element, ds for “area” element and N is the outward unit normal, Nxj
its component in the xj direction.

Exercise 8.47. Derive Green’s formula involving Laplacians: for functions u and v of class
C2 on D, ∫

D

(u∆v − v∆u)dm =
∫
∂D

(u ∂v

∂N
− v ∂u

∂N
)ds.

[Apply exercise 8.46 to f = u∂v/∂xj and f = v∂u/∂xj , subtract, etc.]
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Exercise 8.48. (Representation of smooth functions by potentials). Let D be a bounded
domain in Rn with (piecewise) C1 boundary and let u be of class C2 on D. Prove that for n > 2:

(n− 2)σnU(a) = −
∫
D

|x− a|2−n∆u(x)dm(x)

+
∫
∂D

{|x− a|2−n ∂u
∂N

(x)− u(x) ∂

∂N
|x− a|2−n}ds(x), ∀a ∈ D.

(8.9.4)

Here σn = 2π 1
2n/Γ( 1

2n) is the area of the unit sphere S(0, 1) in Rn. For n = 2, |x− a|2−n has to
be replaced by log 1/|x − a| and the constant (n − 2)σn by σ2 = 2π. [Apply Green’s formula to
D −B(a, ε) and let ε ↓ 0.]

Exercise 8.49 (Representation of smooth functions using the classical Green function with finite
pole). Let D be a smoothly bounded domain in Rn. For n > 2, the Green function g(x, a) with
pole at a ∈ D is defined by the following properties:

(i) g(x, a) is continuous on D − {a} and harmonic on D − {a};

(ii) g(x, a)− |x− a|2−n has a harmonic extension to a neighborhood of a;

(iii) g(x, a) = 0 for x ∈ ∂D. [For n = 2, |x− a|2−n in (ii) must be replaced by log 1/|x− a|.]

Assuming that the Green function exists and is of class C2 on D − {a}, prove that for every C2

function u on D:

(n− 2)σnu(a) =−
∫
D

∆u(x)g(x, a)dm(x)

−
∫
∂D

u(x) ∂g
∂N

(x, a)ds(x), ∀a ∈ D.
(8.9.5)

Exercise 8.50. Prove that the ball B(0, 1) ⊂ Rn has Green function

g(x, a) =
{
− log |x− a|+ log(|a| |x− a′|) for n = 2;
|x− a|2−n − (|a| |x− a′|)2−n for n ≥ 3.

(8.9.6)

Here a′ is the reflection |a|−2a of a in the unit sphere S(0, 1) and |a| |x− a′| is to be read as 1 for
a = 0.

Exercise 8.51. (Poisson integral for the ball). Derive the following integral representation for
harmonic functions u on the closed unit ball B(0, 1) in Rn:

u(a) = 1σn
∫
S(0,1)

u(x) 1− |a|2

|x− a|n
ds(x),∀a ∈ N(0, 1);

σn = 2π 1
2n/Γ( 1

2n).
(8.9.7)

[For the calculation of ∂g/∂N one may initially set x = rx̃ with x̃ ∈ S, so that ∂/∂N = ∂/∂r. Note
for the differentiation that |x− a|2 = (x− a, x− a).]

Exercise 8.52. Let D be a convex domain in Rn and let E be a nonempty open subset of the
unit sphere Sn−1. For constant C > 0, we let F = F(E,C) denote the family of all C∞ functions
f on D whose directional derivatives in the directions corresponding to E satisfy the inequalities

sup
ξ∈E

1
m!
∣∣ ( d

dt

)m
f(a+ tξ)

∣∣
t=0

∣∣ ≤ Cm, m = 0, 1, 2, . . .
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at each point a ∈ D. Prove that there is a neighborhood Ω of D in Cn to which all functions f ∈ F
can be extended analytically. [Begin by showing that the power series for f with center a converges
throughout the polydisc ∆ = ∆n(a, β/C), with β = β(E) as in Theorem 8.71. Does the series
converge to f on ∆ ∩D ?]

Exercise 8.53. Extend the preceding result to the case where F consists of the continuous
functions f on D which have directional derivatives in the directions corresponding to E that
satisfy the conditions imposed in exercise 8.52. [Regularize f ∈ F and prove a convergence result
for analytic extensions of the regularizations fε to a neighborhood of a in Cn.]

Exercise 8.54. Let E be any subset of the closed unit ball B = B(0, 1) in Cn. Prove that there is a
constant β(E) > 0 such that the inequalities (8.7.2) hold for all polynomials f(z) in z = (z1, . . . , zn)
if and only if the set K = Ec has positive logarithmic capacity. Determine the optimal constant
β(E).

Exercise 8.55. Let E be any subset of the closed unit ball B = B(0, 1) in Cn and let K = Ec be
the closure of the circular subset Ec generated by E. We define α(E) as the largest nonnegative
constant such that

‖qm‖B ≤ ‖qm‖E/α(E)m

for all m ≥ 1 and all homogeneous polynomials qm in z = (z1, . . . , zn)n of degree m. Prove that

‖pm‖B ≤ ‖pm‖K/α(E)m

for all polynomials pm of degree ≤ m. Deduce that α(E) is equal to ρ(Ec), where ρ is the Siciak
capacity defined in (8.7.10). [Cf. the proof of Theorem 8.7.1.]

Exercise 8.56. (Continuation). Let K be any compact circular subset of B(0, 1) ⊂ Cn. Prove that
ρ(K) = α(K) is equal to the radius of the largest ball B(0, r) that is contained in the polynomially
convex hull K̃ of K.

Exercise 8.57. Give a proof of the Sibony-Wong theorem, Theorem 8.7.4. [First consider G(z) =
F (rz) where F is a polynomial.]

Exercise 8.58. (Helgason’s support theorem for Radon transforms). Let g(x) be a con-
tinuous function on Rn such that |xαg(x)| is bounded for every multi-index α ≥ 0 and let ĝ(ξ, λ)
be its Radon transform, obtained by integration over the hyperplanes x · ξ = λ:

ĝ(ξ, λ) =
∫
x·ξ=λ

g(x)ds(x), (ξ, λ) ∈ Sn−1 × R.

Prove that g has bounded support whenever ĝ does. [Introduce the Fourier transform f of g; clearly
f ∈ L2(Rn). Supposing ĝ(ξ, λ) = 0 for |λ| > R and all ξ,

f(tξ) =
∫
Rn
g(x)e−itξ·xdm(x) =

∫ R

−R
ĝ(ξ, λ)e−itλdλ.

Now use the partial derivatives lemma to deduce that f can be extended to an entire function of
exponential type on Cn. By the so-called Paley-Wiener theorem (or Plancherel-Pólya theorem),
such an f ∈ L2 is the Fourier transform of a function of bounded support, hence supp g is bounded.
For the present proof and an extension of Helgason’s theorem, cf. [71, Theorem 1]

Exercise 8.59. Let K be compact in Rn, f usc and g lsc on K, 0 < f − g < ε on K. Suppose that
{hn} is a monotonically decreasing sequence of continuous functions, which converges pointwise to
f on K. Prove that ∃n0 with hn0 − f < 2ε on K. Deduce Dini’s theorem: if f is continuous on K
and hn ∈ C(K) ↓ f , then {hn} converges uniformly.
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Exercise 8.60. (Sibony) Let

f(z) = (|z1|2 − 1/2)2 = (|z2|2 − 1/2)2 on ∂B(0, 1).

Show that Ff (z) = max{(|z1|2 − 1/2)2, (|z2|2 − 1/2)2} on B(0, 1) − ∆(0, 1
2

√
2) and 0 elsewhere.

How smooth is Ff?

Exercise 8.61. Let D be the polydisc ∆2(0, 1). Show that there is in general no solution for the
Dirichlet problem for M on D:

M(u) = 0 on D, u = f on ∂D.

[Take f = 0 on |z2| = 1, but not identically 0.]

Exercise 8.62. (Continuation) Find a smoothly bounded pseudoconvex domain with the above
property.
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Chapter 9

Pseudoconvex domains and smooth
plurisubharmonic exhaustion functions

Pseudoconvexity was introduced in Chapter 6 where it was shown that domains of holomorphy
are pseudoconvex. Here we will further study pseudoconvexity, in particular we will construct
smooth strictly plurisubharmonic exhaustion functions of arbitrarily rapid growth. This will be an
important ingredient in the solution of the Levi problem in Chapter 11.

Next we will give other characterizations of pseudoconvexity, also in terms of behavior of
the boundary of the domain. The latter is done only after a review of the boundary behavior
of convex domains in terms of the Hessian of the defining function. For smooth pseudoconvex
domains the complex Hessian of the defining function has to be positive semidefinite on the complex
tangent space at any point of the boundary of the domain. Strict pseudoconvexity is introduced
[ now the complex Hessian has to be positive definite]. We shall see that this notion is locally
biholomorphically equivalent to strict convexity.

9.1 Pseudoconvex domains

According to Definition 6.5.4, a domain or open set Ω ⊂ Cn is pseudoconvex if the function

log 1/d(z), z ∈ Ω, d(z) = d(z, ∂Ω)

is plurisubharmonic. In C, every domain is pseudoconvex, cf. exercise 8.9. In Cn every convex
domain is pseudoconvex. More generally, every domain of holomorphy is pseudoconvex cp. Section
6.5. A full proof of the converse has to wait until Chapter 11, but for some classes of domains the
converse may be proved directly:

Example 9.1.1 (Tube Domains). Let D be a connected tube domain

D = H + iRn = {z = x+ iy ∈ Cn : x ∈ H, y ∈ Rn}

Here the base H is an arbitrary (connected) domain in Rn. For which domains H will D be a
domain of holomorphy?

It may be assumed that the connected domain D is pseudoconvex. Let [x′, x′′] be any line
segment in H; we may suppose without loss of generality that

x′ = (0, 0, . . . , 0), x′′ = (1, 0, . . . , 0).
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Now consider the complex line z2 = · · · = zn = 0 through x′ and x′′. On the closed strip
S : 0 ≤ Re z1 ≤ 1 in that complex line, the function

− log d(z) = − log d(z1, 0, . . . , 0) = v(z1) = v(x1 + iy1)

will be subharmonic. Since the tube D and the strip S are invariant under translation in the y1
direction, the function v(z1) must be independent of y1. Hence v is a sublinear function of x1 on S,
cf. Example 8.3.6. Varying [x′, x′′], it follows that − log d(x) is convex on H. We finally observe
that for x ∈ H, d(x) is equal to the boundary distance to ∂H: for x ∈ H, the nearest point of
∂D = ∂H + iRn must belong to ∂H by Pythagoras’s theorem. The convexity of − log d(x) now
implies that H is convex, cf. exercises 6.7, 6.8. It follows that D is convex, hence D is a domain of
holomorphy [Section 6.1].

A convex tube has a convex base. As final conclusion we have:

Theorem 9.1.2 (Bochner). A connected tube domain is a domain of holomorphy if and only if its
base is convex.

Bochner proved more generally that the hull of holomorphy of an arbitrary connected tube
domain D = H + iRn is given by its convex hull, CH(D) = CH(H) + iRn, cf. [11, 26]. An elegant
proof may be based on the so-called prism lemma, cf. exercises 6.28 and 9.1.

Every pseudoconvex domain Ω ⊂ Cn is psh exhaustible: it carries a (continuous) psh exhaustion
function α, see Proposition 6.5.6. As before we will use the notation

Ωt = {z ∈ Ω : α(z) < t}, t ∈ R (9.1.1)

for the associated relatively compact subsets which jointly exhaust Ω. We use the notation

Ω1 ⊂⊂ Ω2

to express that the closure of Ω1 is a compact subset of the interior of Ω2. Thus Ωt ⊂⊂ Ωt+s if
t, s > 0.

For some purposes, notably for the solution of the ∂ equation [Chapter 11], we need C∞ strictly
psh exhaustion functions β on Ω which increase rapidly towards the boundary. If one has just
one C∞ strictly psh exhaustion function α for Ω, one can construct others of as rapid growth as
desired by forming compositions β = g ◦ α, where g is a suitable increasing convex C∞ function on
R, cf. Example 8.4.6 and Exercise 8.26. Thus the problem is to obtain a first C∞ psh exhaustion
function!

Using regularization by convolution with an approximate identity ρε as in Theorem 8.4.7, one
may construct C∞ psh majorants αε to a give psh function on Cn. Unfortunately, for given α on a
domain Ω 6= Cn, the function αε is defined and psh only on the ε-contraction Ωε of Ω. To overcome
this difficulty we proceed roughly as follows. For a given psh exhaustion function α on Ω consider
the function v = |z|2 + α on Ω and the exhausting domains Ωt = {v < t} associated to it. Given
any τ = (t1, t2, t3, t4), tj > 0, sufficiently large and strictly increasing we can construct a basic
building block βτ which has the following properties: βτ ∈ C∞(Ω), suppβτ ⊂ Ωt4 \ Ωt1 , βτ is psh
on Ωt3 and strictly psh on Ωt3 \ Ωt2 . For suitable choice of quadruples τk, and Mk >> 0 the sum

β =
∑
k

Mkβτk

will be locally finite (hence smooth) and strictly plurisubharmonic.
The above ideas will be worked out in Section 9.2 to construct the special C∞ psh exhaustion

functions that are required for the solution of the ∂̄ problem and (thus) the Levi problem, cf
Chapter 11.
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It is always good to keep in mind that in the final analysis, domains of holomorphy are the same
as pseudoconvex domains: certain properties are much easier to prove for pseudoconvex domains
than for domains of holomorphy. In particular the results of Section 9.3 will carry over to domains
of holomorphy. As another useful example of this we have the following

Theorem 9.1.3.

(i) The interior Ω of the intersection of a family of pseudoconvex domains {Ωj}j∈J is pseudo-
convex.

(ii) The union Ω of an increasing sequence of pseudoconvex domains {Ωj}j∈N is pseudoconvex.

[(ii) may be stated for families that are indexed by linearly ordered sets too.]

Proof. (i): Let dj denote the boundary distance for Ωj and d the boundary distance for Ω. Then
clearly on Ω we have d(z) = inf dj(z). Hence − log d(z) = sup− log dj(z), and, as − log d(z) is
continuous, it follows from Properties 8.4.3. that it is plurisubharmonic.

(ii): Observing that dj(z) ≤ dj+1(z) and dj(z) ↑ d(z). It follows that − log d(z) is the limit of
the decreasing sequence of psh functions − log dj(z) and by the Properties 8.4.3 is a psh function.
[The fact that dj is not defined on all of Ω poses no problem: Every z ∈ Ω has a neighborhood
U ⊂ Ωj for large enough j and on U we may let the sequence start at j.]

9.2 Special C∞ functions of rapid growth

We will prove the following important result:

Theorem 9.2.1. Let Ω ⊂ Cn be psh exhaustible and let α be a (continuous) psh exhaustion function
for Ω. Furthermore, let m and µ be locally bounded real functions on Ω and let K ⊂ Ω be compact.
Then

(i) Ω possesses a C∞ strictly psh exhaustion function β ≥ α.

(ii) More generally there is a C∞ function β ≥ m on Ω whose complex Hessian has smallest
eigenvalue λβ ≥ µ throughout Ω.

(iii) Finally, if α is nonnegative on Ω and zero on a neighborhood of K and if m and µ vanish on
a neighborhood N of the zero set Z(α) of α, there is a function β as in (ii) which vanishes on
a neighborhood of K.

Proof. The first statement follows from the second by taking m = α and µ > 0: any continuous
function β ≥ α will be an exhaustion function. The second statement follows from the third by
taking K and N empty. We thus turn to the third statement and proceed by constructing the
building blocks announced in the previous Section.

Consider the function v = c|z|2 + α on Ω, c > 0 and the exhausting domains Ωt = {v < t}. If
t1 < t2

Ωt1 ⊂⊂ Ωt2 ,

if these sets are non-empty. Let τ = (t1, t2, t3, t4), tj > 0, sufficiently large and strictly increasing.
Choose auxiliary numbers t5, t6, with t1 < t5 < t2, t3 < t6 < t4. We assume that the corresponding
Ωtj are non empty. Consider the function

vτ = χ(z) ·max{v(z)− t5, 0},
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where χ is the characteristic function of Ωt6 . The function vτ is plurisubharmonic on suppχ and
its support is contained in suppχ intersected with the complement of Ωt5 . Let

η <
1
2 min{d(∂Ωtj , ∂Ωtk) : 1 ≤ j < k ≤ 6}.

We then form the regularization βτ = vτ ∗ ρη, ρη belonging to a radial approximate identity and
supported on B(0, η). This function will be a nonnegative C∞ function with support in Ωt4 \ Ωt1 .
Next βτ will be psh on Ωt3 , because here it is a smoothened out psh function and it will be strictly
psh and strictly positive on Ωt3 \ Ωt2 , because here it can be written as

ρη ∗ |z|2 + ρη ∗ (α− t5)

and the first term will have a strictly positive complex Hessian.
Now we choose a sequence tj ↑ ∞, j = 1, 2, . . ., and form the quadrupels τ j = (tj , tj+1, tj+2, tj+4)

and corresponding functions βj . We choose the constant c in the definition of v so small that for a
(small) positive t1 we have K ⊂ Ωt1 ⊂ N . We shall choose a sufficiently rapidly increasing sequence
of positive numbers {Mj} and form

β(z) =
∑
k

Mkβk(z). (9.2.1)

For each z ∈ Ω there exists a k such that a neigborhood B(z, r) is contained in Ωtk+1 \Ωtk−1 . Hence
B(z, r) is contained in the support of at most 5 βk’s. It follows that (9.2.1) is a locally finite sum,
hence β is well defined and smooth for every choice of Mk.

How to chooseMk? We can chooseM1 such that on Ωt2 the inequalitiesM1β1 > m and λM1β1 >
µ hold [and on Ωt1 “everything” vanishes]. Suppose now that we have chosenM1, . . . ,Mk−1 such that∑k−1
j=1 Mjβj(z) satisfies the requirements of the theorem on Ωk. As βk is nonnegative, psh on Ωk+1

and positive, strictly psh on Ωk+1 \Ωk, we can chooseMk >> 0 such that
∑k−1
j=1 Mjβj(z)+Mkβk(z)

will have values and Hessian on Ωk+1 \ Ωk as required. On the rest of Ωk+1 the new sum will still
meet the requirements. With the Mk as constructed, β will be the function we are looking for: it
solves our problem on all Ωk, hence also on Ω.

9.3 Characterizations of pseudoconvex domains

The following exposition parallels the one for domains of holomorphy in section 6.3-6.5.

Definition 9.3.1. Let Ω be a domain in Cn, K ⊂ Ω nonempty and compact. The plurisubharmon-
ically or psh convex hull of K relative to Ω is the set

K̂psh = K̂psh
Ω = {z ∈ Ω : v(z) ≤ sup

K
v(ζ), for all psh functions v on Ω}.

Ω is called psh convex if for every compact subset K, the psh convex hull K̂psh has positive
boundary distance (or compact closure) in Ω.

K̂psh will be bounded: think of v(z) = |z|2. However, since psh functions need not be continuous,
K̂psh might fail to be closed in Ω.

Properties 9.3.2.
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(i) The psh convex hull K̂psh is contained in the holomorphically convex hull K̂ = K̂Ω: if
v(z) ≤ supK v for some point z ∈ Ω and all psh functions v on Ω, then in particular

log |f(z)| ≤ sup
K

log |f |, ∀f ∈ O(Ω),

hence z ∈ K̂. [If Ω is psh convex then K̂psh = K̂, cf. [26, 50]

(ii) Every analytic disc ∆̄ in Ω is contained in the psh convex hull of the edge Γ = ∂∆̄ Example
6.3.3. Indeed, let ∆̄ = ϕ(∆̄1) with ϕ continuous on ∆̄1 ⊂ Ω and holomorphic on ∆1, and let
v be psh on Ω. Then v ◦ ϕ is subharmonic on ∆1 and usc on ∆̄1, hence by the maximum
principle v ◦ ϕ is bounded above by its supremum on C(0, 1).

We will need the following continuity property for analytic discs relative to psh convex domains:

Proposition 9.3.3. Let Ω ⊂ Cn be psh convex and let {∆̄λ}, 0 ≤ λ ≤ 1 be a family of analytic
discs in Cn which vary continuously with λ, that is, the defining map

ϕλ(w) = ϕ(w, λ) : ∆̄1(0, 1)× [0, 1]→ Cn

is continuous, while of course ϕλ(w) is holomorphic on {|w| < 1} for each λ. Suppose now that ∆̄0
belongs to Ω and that Γλ = ∂∆̄λ belongs to Ω for each λ. Then ∆̄λ belongs to Ω for each λ.

Remark 9.3.4. It follows from exercise 6.26 that there is a corresponding continuity property for
analysic discs relative to domains of holomorphy.

Proof of the proposition. The set E = {λ ∈ [0, 1] : ∆̄λ ⊂ Ω} is nonempty and open. The subset
S = ∪0≤λ≤1Γλ of Ω is compact: S is the image of a compact set under a continuous map. Hence by
the hypothesis, the psh convex hull Ŝpsh has compact closure in Ω. By property 9.3.2-ii,

∆̄λ ⊂ Γ̂pshλ ⊂ clos Ŝpsh

whenever ∆̄λ ⊂ Ω, that is whenever λ ∈ E. Suppose now that λk → µ, where {λk} ⊂ E. Then
since ∆̄λ depends continuously on λ, also ∆̄µ belongs to clos Ŝpsh ⊂ Ω, that is µ ∈ E. Thus E is
closed. Conclusion: E = [0, 1].

Theorem 9.3.5. The following conditions on a domain Ω ⊂ Cn are equivalent:

(i) Ω is pseudoconvex, that is the function − log d(z) = − log d(z, ∂Ω) is plurisubharmonic on Ω;

(ii) Ω is locally pseudoconvex: every point b ∈ Ω̄ has a neighborhood U in Cn such that the open
set Ω′ = Ω ∩ U is pseudoconvex;

(iii) Ω is psh exhaustible, that is Ω has a psh exhaustion function α [Definition 6.2.3]

(iv) Ω carries C∞ strictly psh functions β of arbitrarily rapid growth towards the boundary [cf.
Definition 8.4.5]

(v) Ω is psh convex [Definition 9.3.1]

Proof. (i)⇒(ii); a ball is pseudoconvex and the intersection Ω′ of two pseudoconvex domains Ω1
and Ω2 is pseudoconvex by Theorem 9.1.3.

(ii)⇒(iii). Take b ∈ ∂Ω and U and Ω′ as in (ii). Then d(z) = d′(z) for all z ∈ Ω close to b. Thus
the function− log d on Ω is psh on some neighborhood of every point of ∂Ω. Hence there is a closed
subset F ⊂ Ω such that − log d is psh on Ω \ F .
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Suppose first that Ω is bounded. Then − log d is bounded above on F , by M say. One may now
define a psh exhaustion function for Ω by setting

α = max(− log d,M + 1).
Indeed, α = M + 1 on a neighborhood of F , hence α is a maximum of continuous psh functions on
some neighborhood of each point of Ω. That α is an exhaustion function is clear.

If Ω is unbounded, one may first determine a psh exhaustion function v for Cn that is larger
than − log d on F . Take v(z) = g(|z|2) where G is a suitable increasing convex C2 function on R,
or use Theorem 9.2.1 (iii). A psh exhaustion function for Ω is then obtained by setting

α = sup(− log d, v).
(iii)⇒(iv): see Theorem 9.2.1.
(iii) or (iv)⇒(v). Let α be a psh exhaustion function for Ω and define subsets Ωt as in Theorem

9.2.1. Now take any nonempty compact subset K ⊂ Ω and fix s > M = supK α. Then α(z) ≤M < s
for any z ∈ K̂psh, hence K̂psh ⊂ Ωs. Thus K̂psh has positive boundary distance in Ω, that is Ω is
psh convex.

(v)⇒(i). Let Ω be psh convex. Starting out as in the proof of Theorem 6.5.5 we choose a ∈ Ω,
B(a,R) ⊂ Ω and ζ ∈ Cn with 0 < |ζ| < R, so that the flat analytic disc ∆̄ = {z ∈ Cn : z =
a+wζ, |w| ≤ 1} belongs to Ω. Setting v(z) = − log d(z) we have to prove the mean value inequality
v(a) ≤ v̄(a; ζ). To that end we get ready to apply Lemma 6.5.3 to the continuous real function

f(w) def= v(a+ wζ) = − log d(a+ wζ), w ∈ ∆̄1(0, 1).
Accordingly, let p(w) be any polynomial in w such that

Re p(w) ≥ f(w) = − log d(a+ wζ)
or d(a+ wζ) ≥ |e−p(w)| on C(0, 1).

(9.3.1)

We now choose an arbitrary vector τ ∈ Cn with |τ | < 1 and introduce the family of analytic discs
∆̄λ = {z = a+ wζ + λe−p(w)τ : |w| ≤ 1}, 0 ≤ λ ≤ 1.

It is clear that ∆̄λ varies continuously with λ and that ∆̄0 = ∆̄ ⊂ Ω. Furthermore the boundary
Γλ of ∆̄λ will belong to Ω for each λ ∈ [0, 1]. Indeed it follows from (9.3.1) that

d(a+ wζ + λe−p(w)τ) ≥ d(a+ wζ)− |λe−p(w)τ |
≥ d(a+ wζ)− |e−p(w)||τ | > 0,

(9.3.2)

for all (w, λ) ∈ C(0, 1)× [0, 1].
The continuity property for analytic discs [Proposition 9.3.3] now shows that ∆̄λ ⊂ Ω, ∀λ ∈ [0, 1].

Taking λ = 1 and w = 0, we find in particular that
a+ ep(0)τ ∈ Ω.

This result holds for every vector τ ∈ Cn of length |τ | < 1, hence Ω must contain the whole ball
B(a, |ep(0)|). In other words, d(a) ≥ |ep(0)| or

Re p(0) ≥ − log d(a) = f(0). (9.3.3)
Summing up: (9.3.1) always implies (9.3.3) so that f has property (Π) of Lemma 6.5.3. Conclu-

sion:
f(0) ≤ f̄(0; 1) or v(a) ≤ v̄(a; ζ).

Thus v = − log d is psh: we have (i).

Corollary 9.3.6. The intersection of a pseudoconvex domain with (affine) complex hyperplanes
are also pseudoconvex (as domain in the hyperplanes). [Cf. Proposition 6.5.6.]
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9.4 The boundary of a pseudoconvex domain

By Theorem 9.3.5, pseudoconvexity of a domain is a local property of the boundary. But how can
one tell from the local behavior of ∂Ω if Ω ⊂ Cn is pseudoconvex? One may first ask more simply
how one can tell from local boundary behavior if a domain is convex.

We assume here that Ω is smoothly bounded and discuss boundary smoothness in real coordinates,
say for Ω ⊂ Rn.

Definition 9.4.1. We say that the boundary ∂Ω is of class Cp, (1 ≤ p ≤ ∞) at b ∈ ∂Ω if Ω has a
local defining function around b of class Cp. This is a real function ρ defined on a neighborhood U
of b such that

Ω ∩ U = {x ∈ U : ρ(x) < 0} and dρ(x) 6= 0 or ρ(x) 6= 0,∀x ∈ U.

One calls ∂Ω of class Cp if it is of class Cp at each of its (finite) points.

Examples 9.4.2. The function ρ(x) = |x|2−1 is a global C∞ defining function for the ball B(0, 1).
For the unit polydisc ∆n(0, 1) ⊂ Cn, the function ρ(z) = |zn|2 − 1 is a C∞ defining function for
the part ∆n−1(0, 1)× C(0, 1) of the boundary.

On a small neighborhood U of a point b where ∂Ω is of class Cp (p ≥ 2), the following signed
boundary distance function provides a defining function ρ ∈ Cp:

ρ(x) =
{
−d(x, ∂Ω), for x ∈ Ω̄ ∩ U ;
d(x, ∂Ω), for x ∈ U \ Ω̄.

(9.4.1)

For the verification one may use the local boundary representation xn = h(x′) indicated below, cf.
exercise 9.2 and [37].

By translation and rotation one may assume in Definition 9.4.1 that b = 0 and that grad
ρ|0 = (0, . . . , 0, λ) where λ > 0. Thus with x = (x′, xn),

ρ(x′, xn) = λxn + g(x′, xn), where g ∈ Cp and g(0) = dg|0 = 0. (9.4.2)

By the implicit function theorem there is then a local boundary representation xn = h(x′) with
h ∈ Cp and h(0) = dh|0 = 0. One may finally take x̃n = xn − h(x′) as a new nth coordinate so
that locally ∂Ω = {x̃n = 0} and ρ(x̃) = x̃n is a local defining function.

Lemma 9.4.3. Any two local defining functions ρ and σ of class Cp around b ∈ ∂Ω are related as
follows:

σ = ωρ with ω > 0 of class Cp−1, dσ = ωdρ on ∂Ω. (9.4.3)

Proof. Changing coordinates so that ρ(x) = xn, one has by (9.4.2) applied to σ:

σ(x) = λxn + g(x′, xn), with g(x′, 0) = 0,

λ > 0, g ∈ Cp and dg|0 = 0. One may write g in the form

g(x′, xn) =
∫ xn

0

∂g

∂xn
(x′, s) ds = xn

∫ 1

0

∂g

∂xn
(x′, txn) dt;

the final integral defines a function of class Cp−1 around 0. On ∂Ω this function equals ∂g/∂xn(x′, 0)
and there also dg = ∂g/∂xn(x′, 0) dxn.
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Definition 9.4.4. Let ρ be a Cp defining function for ∂Ω around b. Departing somewhat from the
language of elementary geometry, the (real) linear space

Tb(∂Ω) = {ξ ∈ Rn :
n∑
1

∂ρ

∂xj
(b)ξj = 0} (9.4.4)

of real tangent vectors at b is called the (real) tangent space to ∂Ω at b. [By (9.4.3) it is independent
of the choice of defining function.]

Suppose for the moment that Ω ⊂ Rn is convex with C2 boundary. Then the function v = − log d
is convex on Ω and smooth near ∂Ω, say on Ω ∩ U . It follows that the Hessian form v is positive
semidefinite there cf. (8.4.1). A short calculation thus gives the inequality

−1
d

n∑
i,j=1

∂2d(x)
∂xi∂xj

ξiξj + 1
d2

∑
j

∂d(x)
∂xj

ξj
∑
k

∂d(x)
∂xk

ξk ≥ 0, x ∈ Ω ∩ U, ξ ∈ Rn.

We now do three things: we introduce the defining function ρ of (9.4.1) [which equals −d on Ω ∩ U
for suitable U ], we limit ourselves to what are called tangent vectors ξ at x, that is

∑ ∂ρ
∂xj

(x)ξj = 0
[which removes the second term above] and we finally pass to the boundary point b of Ω by
continuity. The result is

n∑
i,j=1

∂2ρ

∂xi∂xj
(b)ξiξj ≥ 0, ∀ξ ∈ Tb(∂Ω), ∀b ∈ ∂Ω. (9.4.5)

One can show that this condition is independent of the C2 defining function that is used. [This
follows immediately from (9.4.3) in the case of a C3 boundary and defining functions, but requires
some care in general, cf. [37, pag. 102.]

A domain Ω ⊂ Rn with C2 boundary is called strictly convex at b if the quadratic form in (9.4.5)
is strictly positive for ξ 6= 0 in Tb(∂Ω). There will then be a small ball B around around b such that
Ω∩B is convex, moreover there exists a large ball B′ such that Ω∩B ⊂ B′ and b = ∂(Ω∩B)∩∂B′,
cf. [37].

One can do something similar to the preceding in the case of a pseudoconvex domain Ω ⊂ Cn
with C2 boundary. Now the function v = − log d is psh on Ω and smooth on Ω ∩ U . The complex
Hessian form of v will be positive semidefinite there [Proposition 8.4.4]:

−1
d

n∑
i,j=1

∂2d(z)
∂zi∂z̄j

; ζiζ̄j + 1
d2

∑
j

∂d(z)
∂zj

ζj
∑
k

∂d(z)
∂z̄k

ζ̄k ≥ 0, z ∈ Ω ∩ U, ζ ∈ Cn.

Again introducing the defining function ρ of (9.4.1), it is natural to limit oneself to what will be
called complex tangent vectors ζ to ∂Ω at z, which are given by

n∑
j=1

∂ρ

∂zj
(z)ζj = 0. (9.4.6)

Passing to the boundary, we find this time that
n∑

i,j=1

∂2ρ

∂zi∂z̄j
; (b)ζiζ̄j ≥ 0, ∀ζ as in (9.4.6) with z = b, ∀b ∈ ∂Ω. (9.4.7)

One can show as before that the condition is independent of the defining function that is used.
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One will of course ask what condition (9.4.6) means in terms of the underlying space R2n. Let
us write zj = xj + iyj , ζj = ξj + iηj and carry out the standard identification z = (x1, y1, . . .),
ζ = (ξ1, η1, . . .). Then (9.4.6) becomes

n∑
1

(
∂ρ

∂xj
ξj + ∂ρ

∂yj
ηj

)
= 0,

n∑
1

(
∂ρ

∂xj
ηj −

∂ρ

∂yj
ξj

)
= 0, (9.4.8)

where we evaluate the derivatives at b ∈ ∂Ω. The first condition (9.4.8) expresses that ζ [or rather,
its real representative] is perpendicular to the gradient gradρ|b in R2n, cf. (9.4.4), hence ζ belongs
to the real tangent space Tb(∂Ω). The second condition says that −iζ = (η1,−ξ1, . . .) also belongs
to Tb(∂Ω). Interpreting Tb(∂Ω) as a subset of Cn, this means that ζ belongs to iTb(∂Ω).

Definition 9.4.5. The complex linear subspace

TC
b (∂Ω) def= Tb(∂Ω) ∩ iTb(∂Ω) = {ζ ∈ Cn :

∑ ∂ρ

∂zj
(b)ζj = 0}

of Cn is called the complex tangent space to ∂Ω at b. Its elements are complex tangent vectors.

As a subset of R2n, TC
b (∂Ω) is a (2n− 2)-dimensional linear subspace which is closed under [the

operation corresponding to] multiplication by i on Cn. Cf. exercise 2.7.
Remark 9.4.6. Instead of the submanifold ∂Ω we can consider any (real) submanifold S of Cn = R2n

and form its tangent space Tb(S). Indeed, if S is defined locally by ρ1 = ρ2 = · · · = ρm = 0, one
may define

Tb(S) = {ξ ∈ R2n :
n∑
j=1

∂ρk
∂xj

(b)ξj = 0, k = 1, . . . ,m}.

Subsequently, we may define the complex tangent space to S at b:

TC
b (S) = Tb(S) ∩ iTb(S).

Again this is a complex linear subspace of Cn. One may check that S is a complex submanifold of
Cn if and only if

TC
b (S) = Tb(S) = iTb(S).

On the other hand TC
b (S) may equal {0} for all b ∈ S. Such manifolds are called totally real, the

typical example being Rn + i{0} ⊂ Cn.

Definition 9.4.7. A domain Ω ⊂ Cn with C2 boundary is said to be Levi pseudoconvex if
condition (9.4.7) holds for a certain (or for all) C2 defining function(s) ρ. Ω is called strictly (Levi)
pseudoconvex at b ∈ ∂Ω if for some local defining function ρ ∈ C2,

n∑
i,j=1

∂2ρ

∂zi∂z̄j
; (b)ζiζ̄j > 0 for all ζ 6= 0 in TC

b (∂Ω).

By our earlier computation, every pseudoconvex domain Ω ⊂ Cn with C2 boundary is Levi
pseudoconvex. For bounded Ω the converse is also true, see below for the strictly pseudoconvex
case and compare [37, 50].

The ball is strictly pseudoconvex, the polydisc ∆n(0, 1) is not (unless n = 1). Indeed, at the
points of the distinguished boundary the polydisc is not C2, at the other boundary points the
complex Hessian vanishes. More generally, it is easy to see that if there is an at least strictly
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one dimensional analytic variety passing through b and contained in ∂Ω then Ω is not strictly
pseudoconvex at b.

How are pseudoconvexity and convexity related? Let Ω be strictly convex at b ∈ ∂Ω and let
ρ be a defining function at ρ. We may perform an affine change of coordinates and assume that
b = 0, ∂ρ

∂zn
= 1, ∂ρ

∂zj
= 0, 1 ≤ j < n. Thus Tb(∂Ω) = {Re zn = 0} and with zj = xj + iyj we may

expand ρ in a Taylor series around 0:

ρ(x, y) = xn + 1
2

( n∑
i,j=1

∂2ρ

∂xi∂xj
(0)xixj +

n∑
i,j=1

∂2ρ

∂xi∂yj
(0)xiyj

+
n∑

i,j=1

∂2ρ

∂yi∂xj
(0)yixj +

n∑
i,j=1

∂2ρ

∂yi∂yj
(0)yiyj

)
+ o(|(x, y)|2).

(9.4.9)

We rewrite this in terms of z and z̄. Thus after an elementary computation we find:

ρ(z, z̄) = 1
2(zn + z̄n) + 1

2

( n∑
i,j=1

∂2ρ

∂zi∂zj
(0)zizj +

n∑
i,j=1

∂2ρ

∂z̄i∂z̄j
(0)z̄iz̄j

)

+
n∑

i,j=1

∂2ρ

∂zi∂z̄j
(0)ziz̄j + o(|z|2)

= Re zn + Re
n∑

i,j=1

∂2ρ

∂zi∂zj
(0)zizj +

n∑
i,j=1

∂2ρ

∂zi∂z̄j
(0)ziz̄j + o(|z|2).

(9.4.10)

Strict convexity of Ω at 0 is equivalent to positive definiteness of the quadratic part Q(z)
of (9.4.9), (9.4.10), that is, Q(z) ≥ c|z|2, c > 0. Substituting iz for z in the quadratic part
of (9.4.10) and adding we find that

Q(z) +Q(iz) = 2
n∑

i,j=1

∂2ρ

∂zi∂z̄j
(0)ziz̄j ≥ 2c|z|2.

Thus strict convexity implies strict pseudoconvexity. In the other direction one can not expect an
implication, but the next best thing is true:

Lemma 9.4.8 (Narasimhan). Let Ω be strictly pseudoconvex at b ∈ ∂Ω. Then there is a (local)
coordinate transformation at b such that in the new coordinates Ω is strictly convex at b.

Proof. We may assume that b = 0 and that the defining function ρ of ω has the form (9.4.10). We
introduce new coordinates:

z′j = zj , j = 1, . . . , n− 1,

z′n = zn +
n∑

i,j=1

∂2ρ

∂zi∂zj
(0)zizj ,

(9.4.11)

and thus zn = z′n +O(|z′|2). In the new coordinates Ω is given by the defining function ρ′ which
has the following Taylor expansion at 0

ρ′(z′) = ρ(z(z′)) = Re z′n +
n∑

i,j=1

∂2ρ

∂zi∂z̄j
; (0)z′iz̄′j + o(|z|2).

We have obtained that in ’ coordinates Ω is strictly convex at 0.
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Remark 9.4.9. Note that the proof show that at a strictly pseudoconvex boundary point b ∈ ∂Ω
there exists an at most quadratic polynomial, the so called Levi polynomial, P (z) with the property
that P (b) = 0 and for a small neigborhood U of b, ReP (z) < 0 on U ∩ Ω̄ \ {b}. In the notation of
the proof the previous lemma P (z) = ∂ρ

∂zn
(0)zn +

∑n
i,j=1

∂2ρ
∂zi∂zj

(0)zizj .

Of course one can perform a similar process if ∂Ω is only pseudoconvex at b. The result will
be that one can make the quadratic part of the defining function positve semidefinite. This, of
course doesn’t guarantee local convexity. Nevertheless it came as a big surprise when Kohn and
Nirenberg [31] discovered that there exist smoothly bounded pseudoconvex domains that are not
locally biholomorphically equivalent to convex domains. See also [37] for a more detailed account
and [19] for what may be achieved with elaborate changes of coordinates.

Next one may ask how one can relate the defining function to a psh exhaustion function.

Theorem 9.4.10. Suppose that Ω is a bounded, strictly pseudoconvex domain in Cn with defining
function ρ. Then for sufficiently large M the function

ρ̃(z) = eMρ(z) − 1
M

is a defining function which is strictly psh in a neighborhood of ∂Ω. Moreover there exists a strictly
psh function on Ω which is equal to ρ̃ in a neighborhood of ∂Ω.

Proof. We know that for b ∈ ∂Ω∑
i,j=1

∂2ρ

∂zi∂z̄j
(b)ziz̄j ≥ c(b)|z|2, z ∈ TC

b (∂Ω),

where c(b) is positive and smoothly depending on b. We have

ρ̃(z) = eMρ(z) − 1
M

= ρ(z)(1 +O(ρ(z))

at ∂Ω. Thus it is clear that ρ̃ is a defining function for Ω. The complex Hessian of ρ̃ is given by

∂2ρ̃

∂zi∂z̄j
; = eMρ

(
∂2ρ

∂zi∂z̄j
; +M ∂ρ

∂zi

∂ρ

∂z̄j

)
.

We write z ∈ Cn as z = zt + zν , zt ∈ TC
b (∂Ω), zν ∈ TC

b (∂Ω)⊥, so that |z|2 = |zt|2 + |zν |2. Then at
b, with eMρ(b) = 1 and using matrix notation we obtain:

z̄t
(

∂2ρ̃

∂zi∂z̄j
(b)
)
z = (z̄tt + z̄tν)

(
∂2ρ

∂zi∂z̄j
(b) +M

∂ρ

∂zi
(b) ∂ρ

∂zj
(b)
)

(zt + zν)

= (z̄tt + z̄tν)
(

∂2ρ

∂zi∂z̄j
(b)
)

(zt + zν) +Mz̄tν
∂ρ

∂zi
(b) ∂ρ

∂zj
(b)zν

≥ z̄tt
(

∂2ρ

∂zi∂z̄j
(b)
)
zt − d(b)|zt||zν | − e(b)|zν |2 +M |∂ρ

∂z
|2|zν |2

≥ c(b)|zt|2 − d(b)|zt||zν | − e(b)|zν |2 +M |∂ρ
∂z
|2|zν |2,

(9.4.12)

with d, e, f positive continuous functions of b. Now for any fixed b we can find an M = M(b) such
that the last expression ≥ c′(b)(|zt|2 + |zν |2) = c′(b)|z|2. Thus for every b ∈ ∂Ω we have found
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M(b) such that the corresponding ρ̃ is strictly psh at b, hence also in a neighborhood of b, and by
compactness of ∂Ω there exists an M such that ρ̃ is strictly psh at a neighborhood U of ∂Ω.

To construct a global function σ, first note that for δ > 0 sufficiently small, U contains a
neighborhood of ∂Ω of the form Vδ = {z : −δ < ρ̃(z) < δ} with ∂Vδ ∩ Ω = {ρ̃(z) = −δ}. Now let

σ1(z) =
{

max{ρ̃(z),−δ/2} for z ∈ Ω ∩ Vδ,
−δ/2 elsewhere on Ω.

(9.4.13)

The function σ1 is clearly psh and continuous. Next we modify it to be C2. Let h(t) be C2, convex,
non decreasing on R and equal to −δ/4 for t < −δ/3, equal to T on a neighborhood of 0. Then
σ2 = h ◦ σ1 is psh, C2 and strictly psh close to ∂Ω. Now let χ(z) ∈ C∞(Ω) have compact support
and be strictly psh on a neighborhood of the set where σ is not strictly psh. We put

σ(z) = σ2(z) + εχ(z).

If ε is sufficiently small σ will be strictly psh where σ2 is, and it will always be strictly psh where χ
is. We are done.

Corollary 9.4.11. A strictly Levi pseudoconvex domain is pseudoconvex.

Proof. Let ρ be a strictly psh defining function for the domain. Then −1/ρ is, as a composition of
a convex function with a psh one, a plurisubharmonic exhaustion function.

Definition 9.4.12. If Ω is a domain and ρ is a continuous plurisubharmonic function on Ω such
that ρ < 0 on Ω and limz→∂Ω ρ(z) = 0, then ρ is called a bounded plurisubharmonic exhaustion
function

It is clear that if Ω admits a bounded psh exhaustion function rho, the sets Ωt = {z ∈ Ω :
ρ(z) < t}, (t < 0), are pseudoconvex and exhaust Ω. Clearly, by the previous proof, if Ω has a
bounded psh exhaustion function, then Ω is pseudoconvex.

9.5 Exercises

Exercise 9.1. Using exercise 6.28, prove Bochners Theorem 9.1.2.

Exercise 9.2. Prove that the signed boundary distance (9.4.1) provides a defining function for
Cp domains Ω (p ≥ 2).

(i) Prove that there exists a neighborhood of ∂Ω such that for every x ∈ U there is exactly one
y ∈ ∂Ω with d(x, y) = d(x, ∂Ω).

(ii) Using a local representation yn = h(y′) for ∂Ω, show that

d(x, ∂Ω) = d(x, y∗) = |xn − y∗n|(1 + |∇h|2)1/2

where y∗ is the unique element of (a).

(iii) How smooth is d? (One can show Cp cf. [37])

Exercise 9.3. Show that for p < 2 the domain Ω = {y > |x|p} ⊂ R2 has not the uniqueness
property of exercise 9.2a.

Exercise 9.4. Let M be a submanifold of dimension k ≤ 2n of Cn. If a ∈ M , what are the
possibilities for dim TC

a (M)?
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Exercise 9.5. Verify the statement made in Remark 9.4.6: A submanifold is an analytic submanifold
if and only if TC = TR everywhere on the manifold.

Exercise 9.6. (Hartogs) Let Ω be a pseudoconvex domain and let h be continuous and psh on Ω.
Show that

D = {z = (z′, zn) ∈ Cn : |zn| < e−h(z′)}

is pseudoconvex. [Note that log |zn|+ h(z′) is a bounded psh exhaustion function for D as a subset
of Ω× C. D is called a Hartogs domain.]

Exercise 9.7. (Continuation) Suppose that D is a domain of holomorphy. Show that there exist
holomorphic functions ak(z′) on Ω such that

h(z′) =
(

lim sup
k→∞

log |ak(z′)|
k

)∗
.

[Expand a function f ∈ O(D) which is nowhere analytically extendable at ∂D in a power series in
zn with coefficients in O(Ω).]

Exercise 9.8. (Continuation) Assuming that the Levi problem can be solved, show that the hull
of holomorphy and the psh convex hull of a compact subset of a domain of holomorphy are the
same.

Exercise 9.9. (Range) Show that if Ω is a bounded Levi pseudoconvex domain with C3 boundary
has a strictly psh exhaustion function ρ. [One may take

ρ(z) = −(−d)ηe−N |z|
2
,

with η sufficiently small and N sufficiently large.] Kerzman and Rosay show that pseudoconvex
domains with C1 boundary admit a bounded psh exhaustion function.

Exercise 9.10. (Continuation) Show that a Levi pseudoconvex domain with C3 boundary can be
exhausted by strictly pseudoconvex domains, i.e.

Ω = Ωj , Ωj ⊂⊂ Ωj+1.

[Readers who are familiar with Sards Lemma may derive this for every pseudoconvex domain using
the smooth strictly psh exhaustion function of Theorem 9.2.1.]

Exercise 9.11. Let Ω be a pseudoconvex domain in C2 with smooth boundary. Suppose that
0 ∈ ∂Ω and T0(∂Ω) = {Rew = 0}. Show that close to 0 Ω has a defining function with expansion

ρ(z, w) = Rew + Pk(z, z̄) +O(|w|2 + |w||z|+ |z|k+1),

where Pk is a real valued homogeneous polynomial of degree k ≥ 2 in z and z̄. Show that, close to
0, the complex tangent vectors have the form(

ζ1
ζ2

)
, ζ2 = ζ1 ·O(|w|+ |z|k−1).

Estimate the Hessian and show that Pk is subharmonic. Conclude that k is even.
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Exercise 9.12. (Continuation) Let Ω be a pseudoconvex domain given by

Rew − Pk(z) ≤ 0,

where Pk is a real valued homogeneous polynomial of degree k on C. Assume that Pk is not
harmonic (Pk is subharmonic by the previous exercise). Show that if k = 2 or 4, then Ω admits a
supporting complex hyperplane at the origin, that is, after a holomorphic change of coordinates
the complex tangent plane at 0 meets Ω̄ only at 0 [everything taking place in a sufficiently small
C2-neighborhood of 0].

Exercise 9.13. (Continuation) Give an example of a polynomial P6 such that Ω is pseudoconvex,
but every disc of the form w = f(z), f(0) = 0 meets Ω. Conclusion?
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Chapter 10

Differential forms and integral
representations

Differential forms play an important role in calculus involving surfaces and manifolds. If one only
needs the theorems of Gauss, Green and Stokes in R2 or R3, an elementary treatment may suffice.
However, in higher dimensions it is hazardous to rely on geometric insight and intuition alone. Here
the nice formalism of differential forms comes to the rescue. We will derive the so-called general
Stokes theorem which makes many calculations almost automatic.

The purpose of this chapter is to obtain general integral representations for holomorphic and
more general smooth functions. We will start in Rn, where things are a little easier than in Cn.
A representation for test functions will lead to a good kernel α, resulting in formulas with and
without differential forms. Proceeding to Cn, we are led to the related Martinelli-Bochner kernel β
and the corresponding integral representation. Final applications include the Szegö integral for the
ball and explicit continuation of analytic functions across compact singularity sets.

In Cn with n ≥ 2 there are now many kernels for the representation of holomorphic functions.
The relatively simple Martinelli-Bochner kernel β(ζ − z) has the advantage of being independent of
the domain, but it is not holomorphic in z and in general does not solve the ∂ problem. Fundamental
work of Henkin and Ramirez (1969–70), cf. [23, 49], for strictly pseudoconvex domains has led to
many new integral representations which do not have the above drawbacks and give sharp results for
the ∂ problem. However, the subject has become extremely technical and we refer to the literature
for details, cf. the books [1, 24, 28, 50, 58], where further references may be found. Rudin’s book
provides a very readable introduction.

10.1 Differential forms in Rn

A domain Ω ⊂ Rn will carry differential forms of any order p ≥ 0. The class of p-forms will be
denoted by Λp; throughout this chapter it is assumed that the coefficients of the forms are at least
continuous on Ω. A p-form may be considered as a complex-valued function whose domain consists
of all (oriented) smooth surfaces of dimension p in Ω. The functions is given by an integral and the
notation (10.1.1) for p-forms serves to show how the function is evaluated for different p-surface
and in different coordinate systems. We start with p = 1.

Λ1 consists of the 1-forms, symbol

f =
n∑
j=1

fj(x)dxj .
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A 1-form f assigns a number to every C1 arc γ:

x = γ(t) = (γ1(t), . . . , γn(t)), 0 ≤ t ≤ 1

in Ω, called the integral of f over γ:∫
γ

f
def=
∫

[0,1]

n∑
1
fj ◦ γ(t) dγj

dt
dt.

Such an integral is independent of the parametrization of γ.
Λ2 consists of the 2-forms, symbol

f =
n∑

j,k=1
fjk(x)dxj ∧ dxk.

The symbols dxj ∧ dxk are so-called wedge products. A smooth surface X in Ω is given by a
parametric representation of class C1,

x = X(t) = (X1(t), . . . , Xn(t)), t = (t1, t2) ∈ D,

where D is a compact parameter region in R2, such as the closed unit square [0, 1]× [0, 1]. A form
f in Λ2 assigns a number to every C1 surface X in Ω, the integral of f over X:∫

X

f
def=
∫
D

n∑
j1,j2=1

fj1j2 ◦X(t) ∂(Xj1 , Xj2)
∂(t1, t2) dm(t).

Here dm(t) denotes Lebesgue measure on D and ∂(Xj1 ,Xj2 )
∂(t1,t2) the determinant of the Jacobi matrix

with entries ∂Xjk
∂tl

, k, l = 1, 2. In general we have for any p ≥ 0:
Λp, the p-forms, symbol

f =
n∑

j1,...,jp=1
fj1...jp(x)dxj1 ∧ · · · ∧ dxjp . (10.1.1)

For p ≥ 1 a smooth p-surface X in Ω is given by a C1 map

x = X(t) = (X1(t), . . . , Xn(t)), t = (t1, . . . , tp) ∈ D,

where D is a compact parameter region in Rn such as the closed unit cube, D = [0, 1]p. A form f
in Λp assigns a number to every smooth p-surface X in Ω, the integral of f over X:∫

X

f
def=
∫
D

∑
fj1...jp ◦X(t)

∂(Xj1 , . . . , Xjp)
∂(t1, . . . , tp)

dm(t). (10.1.2)

Again dm(t) denotes Lebesgue measure on D and ∂(Xj1 ,...,Xjp
∂(t1,...,tp) the determinant of the Jacobi matrix

with entries ∂Xjk
∂tl

, k, l = 1, . . . , p. Note that the integral of a differential form is always taken over
a map. The integral is invariant under orientation preserving coordinate transformations in Rn.

For p = n we have the important special case where X is the identity map, id, on the closure of
a (bounded) domain Ω, while f = ϕ(x)dx1 ∧ · · · ∧ dxn, with ϕ continuous on (a neighborhood of)
Ω. Taking D = Ω and X = id, so that Xj(t) = tj , one obtains∫

id|Ω
f =

∫
id|Ω

ϕ(x)dx1 ∧ · · · ∧ dxn =
∫

Ω
ϕ(t)dm(t) =

∫
Ω
ϕdm. (10.1.3)
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Taking ϕ = 1, it will be clear why the form

ω(x) def= dx1 ∧ · · · ∧ dxn (10.1.4)

is called the volume form in Rn. [Incidentally, in the case of the identity map id | Ω, one often
simply writes Ω under the integral sign.]

Observe that the (continuous) 0-forms are just the continuous functions on Ω.
Anticommutative relation and standard representation. Two p-forms f and g on Ω are called

equal: f = g if ∫
X

f =
∫
X

g

for all smooth p-surfaces X in Ω. Formula (10.1.2) involves the determinant of a Jacobi matrix, not
the absolute value of the determinant! If one interchanges two rows, the sign is reversed. Considering
special p-forms dxj1 ∧ · · · ∧ dxjp and a permutation (k1, . . . , kp) of (j1, . . . , jp), one will have∫

X

dxk1 ∧ · · · ∧ dxkp =
∫
X

εdxj1 ∧ · · · ∧ dxjp

for all X, where ε equals 1 for an even, −1 for an odd permutation. Thus by the definition of
equality,

dxk1 ∧ · · · ∧ dxkp = εdxj1 ∧ · · · ∧ dxjp . (10.1.5)
As a special case one obtains the anticommutative relation for wedge products:

dxk ∧ dxj = −dxj ∧ dxk. (10.1.6)

This holds also for k = j, hence dxj ∧ dxj = 0. Whenever some index in a wedge product occurs
more than once, that product is equal to 0. In particular all p-forms in Rn with p > n are zero.

With the aid of (10.1.6) we can arrange the indices in every nonzero product dxk1 ∧ · · · ∧ dxkp
in increasing order. Combining terms with the same subscripts, we thus obtain the standard
representation for p-forms,

f =
∑
J

fJ(x)dxJ . (10.1.7)

One sometimes writes
∑′

J
to emphasize that the summation is over (all) increasing p-indices

J = (j1, . . . , jp), 1 ≤ j1 < · · · < jp ≤ n. dxJ is a so-called basic p-form,

dxJ = dxj1 ∧ · · · ∧ dxjp . (10.1.8)

For p-forms in standard representation one has f = g if and only if fJ = gJ for each J , cf. exercise
10.2.

Exterior or wedge product. The sum of two p-forms is defined in the obvious way. The wedge
product of two basic forms dxJ and dxK of orders p and q is defined by

dxJ ∧ dxK = dxj1 ∧ · · · ∧ dxjp ∧ dxk1 ∧ · · · ∧ dxkq .

This product is of course equal to 0 if J and K have a common index. For general p- and q-forms f
and g one sets, using their standard representations,

f ∧ g =
∑

fJdxJ ∧
∑

gKdxK
def=
∑

fJgKdxJ ∧ dxK . (10.1.9)

The product of a function ϕ and a form f is written without wedge:

ϕf = fϕ =
∑

ϕfJdxJ .
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The multiplication of differential forms is associative and distributive, but not commutative.
Upper bound for integrals. Using the standard representation of f one defines, cf. (10.1.2),∫

X

|f | =
∫
D

∣∣∣∣∑′

J

fJ ◦X(t)
∂(Xj1 , . . . , Xjp)
∂(t1, . . . , tp)

∣∣∣∣dm(t). (10.1.10)

One the has the useful inequality

|
∫
X

ϕf | ≤
∫
X

|ϕf | ≤ sup
X
|ϕ| ·

∫
X

|f |. (10.1.11)

Differentiation. There is a differential operator d from p-forms of class C1 [that is, with C1

coefficients] to (p+ 1)-forms. By definition it is linear and{
for 0-forms ϕ one has dϕ def=

∑n
1
∂ϕ
∂xj

dxj ,
for special p-forms f = ϕdxJ one has df def= dϕ ∧ dxJ .

(10.1.12)

Thus if f =
∑
fLdxL, then

df =
∑

dfL ∧ dxL =
∑
j,L

∂fL
∂xj

dxj ∧ dxL. (10.1.13)

Applying the definition to 1-forms f =
∑
fkdxk, it is easy to obtain the standard representation

for df :

df =
∑
k

dfk ∧ dxk =
∑
j,k

∂fk
∂xj

dxj ∧ dxk =
∑′

j<k

(
∂fk
∂xj
− ∂fj
∂xk

)
dxj ∧ dxk.

For C2 functions one thus finds

d2ϕ = d(dϕ) =
∑′

(
∂

∂xj

∂ϕ

∂xk
− ∂

∂xk

∂ϕ

∂xj

)
dxj ∧ dxk = 0.

Going to p-forms f =
∑
fLdxL and using associativity, there results

d2f = d(df) = d(
∑

dfL ∧ dxL) =
∑

d2fL ∧ dxL = 0.

Proposition 10.1.1. For all p-forms f of class C2 one has d2f = 0, hence

d2 = 0.

For the derivative of a product f ∧ g (10.1.9) of C1 forms there is the “Leibniz formula”

d(f ∧ g) =
∑

d(fJgK) ∧ dxJ ∧ dxK

=
∑
{(dfJ)gK + fJdgK} ∧ dxJ ∧ dxK

= df ∧ g + (−1)pf ∧ dg if f ∈ Λp.

(10.1.14)
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10.2 Stokes’ theorem

Green’s theorem for integration by parts in the plane may be interpreted as a result on differential
forms. We recall that for appropriate closed regions D ⊂ R2 and functions f1, f2 in C1(D),∫

∂D

f1dx1 + f2dx2 =
∫
D

(
∂f2

∂x1
− ∂f1

∂x2

)
dm(x) (10.2.1)

[Section 3.1]. Setting f1dx1 + f2dx2 = f , the formula may be rewritten as∫
∂(id)

f =
∫

id

(
∂f2

∂x1
− ∂f1

∂x2

)
dx1 ∧ dx2 =

∫
id
df [id = id | D]. (10.2.2)

This is a special case of the general Stokes theorem below.
Something similar may be done with Gauss’s theorem for integration by parts in R3 [easily

extended to Rp] or the related divergence theorem:∫
D

∂ϕ

∂xj
dm =

∫
∂D

ϕNxjdσ,

∫
D

div~vdm =
∫
∂D

~v · ~Ndσ. (10.2.3)

Here ϕ is a function in C1(D) and ~N is the exterior unit normal to ∂D; Nxj or Nj is the component
of ~N in the xj-direction, while dσ is the “area element” of ∂D. Finally, ~v is a vector field,

div~v =
3∑
1

∂vj
∂xj

[or
p∑
1

∂vj
∂xj

].

The special case of the closed unit cube D = [0, 1]p in Rp is basic for the proof of the general
Stokes theorem. Just as in formula (10.2.2) we consider the identity map id on D, thus obtaining a
special p-surface. To obtain a formula like (10.2.2), we have to give a suitable definition for the
oriented boundary ∂(id). It will be defined by a formal sum or chain of “oriented faces”. The faces
are the following maps on the closed unit cube [0, 1]p−1 to Rp:

V 1,0(t) = (0, t1, . . . , tp−1), V 1,1(t) = (1, t1, . . . , tp−1),
V 2,0(t) = (t1, 0, t2, . . . , tp−1), V 2,1(t) = (t1, 1, t2, . . . , tp−1),
V p,0(t) = (t1, . . . , tp−1, 0), V p,1(t) = (t1, . . . , tp−1, 1),

0 ≤ t1, . . . , tp−1 ≤ 1.

(10.2.4)

q-forms assign numbers to q-surfaces; conversely, q-surfaces assign numbers to q-forms. Since
one can add C valued functions, one can formally add q-surfaces Vj as functions defined on q-forms.
Saying that X is a chain V1 + · · ·+ Vm means that for all q-forms f,

∫
X
f is defined by∫

X

f =
∫
V1

f + · · ·+
∫
Vm

f ; similarly
∫
−V

f = −
∫
V

f. (10.2.5)

Lemma 10.2.1. Let f be any (p−1)-form of class C1 on the closed unit cube D in Rp, id = id | D.
Then the chain

∂(id) def=
p∑
j=1

(−1)j(V j,0 − V j,1) [cf. (10.2.4)] (10.2.6)

provides the correct (oriented) boundary to yield the desired formula∫
id
df =

∫
∂(id)

f

[
=

p∑
j=1

(−1)j
(∫

V j,0
f −

∫
V j,1

f

)]
. (10.2.7)
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Proof. To verify (10.2.7) it will be enough to consider the representative special case f = ϕ(x)dx2∧
· · · ∧ dxp:∫

∂(id)
f =

∫
∂(id)

ϕ(x)dx2 ∧ · · · ∧ dxp =
(∫

V 1,1
−
∫
V 1,0

)
−
(∫

V 2,1
−
∫
V 2,0

)
+ . . . .

Observe that x = V (t) = V 1,1(t),

∂(V2, . . . , Vp)
∂(t1, . . . , tp−1) = ∂(t1, . . . , tp−1)

∂(t1, . . . , tp−1) = 1

and for x = V (t) = V 2,1(t),

∂(V2, . . . , Vp)
∂(t1, . . . , tp−1) = ∂(1, t2, . . . , tp−1)

∂(t1, t2, . . . , tp−1) = 0,

etc. Thus∫
∂(id)

f =
∫

[0,1]p−1
{ϕ(1, t1, . . . , tp−1)− ϕ(0, t1, . . . , tp−1)}dt1, . . . dtp−1 + 0

=
∫

[0,1]p

∂ϕ

∂x1
(t0, t1, . . . , tp−1)dt0dt1 . . . dtp−1 =

∫
id

∂ϕ

∂x1
dx1 ∧ dx2 ∧ · · · ∧ dxp

=
∫

id

(
∂ϕ

∂x1
dx1 + · · ·+ ∂ϕ

∂xp
dxp

)
∧ dx2 ∧ · · · ∧ dxp =

∫
id
df.

(10.2.8)

The general Stokes theorem may be obtained from the special case in the lemma by the
machinery of pull backs.

Definition 10.2.2. Let y = T (x) : yj = Tj(x), j = 1, . . . , n be a C1 map from Ω1 in Rm to Ω2 in
Rn. Given a p-form [in standard representation]

f =
∑

fJ(y)dyJ on Ω2,

its pull back T ∗f is the p-form on Ω1 given by

T ∗f =
∑
{fJ ◦ T (x)}dTJ , J = (j1, . . . , jp),

dTJ =dTj1 ∧ · · · ∧ dTjp , dTj =
∑ ∂Tj

∂xk
dxk.

(10.2.9)

Proposition 10.2.3. Let T be as above and let S, xk = Sk(u) be a C1 map from Ω0 in R` to Ω1.
Let f be a p-form, g a q-form on Ω2, X a p-surface in Ω1. Then one has the following properties
of pull backs:

(i) T ∗(f + g) = T ∗f + T ∗g if q = p;

(ii) T ∗(f ∧ g) = T ∗f ∧ T ∗g;

(iii) S∗(T ∗f) = (TS)∗f ;

(iv)
∫
T◦X f =

∫
X
T ∗f ;
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(v) dT ∗f = T ∗(df) when f ∈ C1, T ∈ C2. In particular:

(vi) if df = 0, then d(T ∗f) = 0.

Proof. (i), (ii): these follow directly from the definition. (iii) This is obvious for 0-forms, hence by
(i) and (ii) it is enough to consider the case of 1-forms f = dyj . Here, using the chain rule in the
second line,

T ∗f = dTj =
∑
k

∂Tj
∂xk

dxk,

S∗(T ∗f) =
∑
k

∂Tj
∂xk

◦ S(u)
∑
p

∂Sk
∂up

dup =
∑
p

∂

∂up
(Tj ◦ S)dup = (TS)∗f.

(10.2.10)

(iv) Let be the parameter domain for X, hence also for Y = T ◦X and let id be the identity
map on D. It will be enough to prove∫

Y

f =
∫
Y ◦ id

f =
∫

id
Y ∗f. (10.2.11)

Indeed, from this step and (iii) it will follow that∫
T◦X

f =
∫

id
Y ∗f =

∫
id
X∗(T ∗f) =

∫
X◦ id

T ∗f =
∫
X

T ∗f.

For the proof of (iv’) we may take f = ϕdYJ . Now in self-explanatory notation, using the expansion
formula for a determinant on the way,

dYj1 ∧ · · · ∧ dYjp =
∑

k1,...,kp

∂Yj1

∂tk1

. . .
∂Yjp
∂tkp

dtk1 ∧ · · · ∧ dtkp

=
∑

k1,...,kp

∂Yj1

∂tk1

. . .
∂Yjp
∂tkp

ε(k1, . . . , kp)dt1 ∧ · · · ∧ dtp

=
∂(Yj1 , . . . , Yjp)
∂(t1, . . . , tp)

′′dm(t)′′,

(10.2.12)

cf. (10.1.5), (10.1.4). Hence∫
id
Y ∗f =

∫
id

(ϕ ◦ Y )dYj1 ∧ · · · ∧ dYjp =
∫
D

ϕ ◦ Y (t)
∂(Yj1 , . . . , Yjp)
∂(t1, . . . , tp)

dm(t)

=
∫
Y

ϕdYJ =
∫
Y

f.

(10.2.13)

(v) For C1 functions ϕ on ω2, using the chain rule

d(T ∗ϕ) = d{ϕ(T ◦ x)} =
∑
k

∂

∂xk
ϕ(T ◦ x)dxk

=
∑
k

∑
j

∂ϕ

∂Yj
(T ◦ x) ∂Tj

∂xk
dxk =

∑
j

∂ϕ

∂Yj
(T ◦ x)dTj = T ∗(dϕ).

(10.2.14)
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For dYJ = dYj1 ∧ · · · ∧ dYjp one has T ∗(dYJ) = dTj1 ∧ · · · ∧ dTjp and hence by (10.1.14) and
Proposition 10.1.1

d{T ∗(dYJ)} = d2Tj1 ∧ dTj2 ∧ · · · ∧ dTjp − dTj1 ∧ d2Tj2 ∧ · · · ∧ dTjp + · · · = 0.

Finally, for f = ϕdYJ one has T ∗f = ϕ(T ◦ x)T ∗(dYJ) and thus by the preceding,

d(T ∗f) = d{ϕ(T ◦ x)} ∧ T ∗(dYJ) + ϕ(T ◦ x)d{T ∗(dYJ)}
= T ∗(dϕ) ∧ T ∗(dYJ) = T ∗(dϕ ∧ dYJ) = T ∗(df).

We can now prove the general Stokes theorem. Let X : D → Ω ⊂ Rn be a p-surface of class C2,
where D is the closed unit cube in Rp. The (oriented) boundary of X is defined by the chain

∂X = X ◦ ∂(id) =
p∑
j=1

(−1)j(X ◦ V j,0 −X ◦ V j,1), (10.2.15)

where id is the identity map on D and ∂(id) is as in Lemma 10.2.1.

Theorem 10.2.4 (Stokes). Let X be as above and let f be a (p− 1)-form of class C1(Ω). Then
with ∂X defined by (10.2.15) and (10.2.4),∫

∂X

f =
∫
X

df. (10.2.16)

Proof. One has X = X ◦ id, hence by the properties of pull-backs in Proposition 10.2.3 and by
Lemma 10.2.1, ∫

∂X

f =
∫
X◦∂(id)

f =
∫
∂(id)

X∗f =
∫

id)
d(X∗f)

=
∫

id
X∗(df) =

∫
X◦id

df =
∫
X

df.

(10.2.17)

Formula (10.2.16) readily extends to chains X = V1 + · · ·+ Vm of smooth p-surfaces, for which one
defines ∂X = ∂V1 + · · ·+ ∂Vm [cf. (10.2.5)].

Remarks 10.2.5. The important special case p = n may be called the general Gauss-Green or
divergence theorem. Taking D = Ω, where Ω is bounded domain in Rn with oriented C2 boundary
∂Ω and assuming that f is an (n − 1)-form of class C1 on (a neighborhood of) Ω, the formula
becomes ∫

∂Ω
f =

∫
Ω
df (10.2.18)

where we have carelessly written Ω instead of id | Ω.
The name “Stokes’ theorem” for the general case stems from the fact that Kelvin and Stokes

considered the important case p = 2, n = 3.

10.3 Integral representations in Rn

We first derive an integral formula for test functions ϕ on Rn, that is, C∞ functions of compact
support. By calculus,

ϕ(0) = −{ϕ(∞)− ϕ(0)} = −
∫ ∞

0

∂ϕ

∂x1
(r, 0, . . . , 0)dr.
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Instead of ∂ϕ
∂x1

(r, 0, . . . , 0) may write (∂/∂r)ϕ(re1), where e1 is the unit vector in the x1-direction.
Of course, we can go to infinity in any direction ξ, where ξ denotes a unit vector. Thus

ϕ(0) = −
∫ ∞

0

∂

∂r
ϕ(rξ)dr, ∀ξ ∈ S1 = S(0, 1) ⊂ Rn.

We now take the average over S1:

ϕ(0) = − 1
σ(S1)

∫
S1

dσ(ξ)
∫ ∞

0

∂

∂r
ϕ(rξ)dr, (10.3.1)

where
σ(S1) = σn(S1) = “area of unit sphere” = 2πn/2/Γ(n/2). (10.3.2)

The integral (10.3.1) may be transformed into an integral over Rn by appropriate use of Fubini’s
theorem. One first inverts the order of integration, then substitutes rξ = x. Next observe that area
elements of spheres Sr = S(0, r) transform according to the rule of similarity: dσ(x) = rn−1dσ(x/r).
However, in polar coordinates the product of dr and dσ(x) gives the n-dimensional volume element:

dr dσ(x) = dm(x), |x| = r.

Writing out some of the steps, there results

−σ(S1)ϕ(0) =
∫ ∞

0
dr

∫
x/r∈S1

∂

∂r
ϕ(x)dσ(x

r
) =

∫ ∞
0

dr

∫
x∈Sr

∂

∂r
ϕ(x) dσ(x)

rn−1

=
∫
Rn

∂

∂r
ϕ(x) · 1

rn−1 dm(x).
(10.3.3)

One finally rewrites the radial derivative ∂ϕ/∂r as

∂

∂r
ϕ(x) = ∂ϕ

∂x1

x1

r
+ · · ·+ ∂ϕ

∂xn

xn
r
.

Thus we obtain the following

Proposition 10.3.1. For test functions ϕ on Rn [and in fact, for all functions ϕ in C1
0 (Rn)],

ϕ(0) = − 1
σ(S1)

∫
Rn

( ∂ϕ
∂x1

x1 + · · ·+ ∂ϕ

∂xn
xn
) 1
|x|n

dm(x). (10.3.4)

[Note that the final integral is (absolutely) convergent: r1−n is integrable over a neighborhood
of 0 in Rn.]

We wish to obtain representations for smooth functions on bounded domains and for that we
will use Stokes’ theorem. As a first step we rewrite (10.3.4) in terms of differential forms. Besides
dϕ and the volume form,

dϕ =
n∑
1

∂ϕ

∂xj
dxj and ω(x) = dx1 ∧ · · · ∧ dxn,

we need the auxialiary forms

ωk(x) def= (−1)k−1dx1 ∧ . . . [k] · · · ∧ dxn, k = 1, . . . , n (10.3.5)
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where [k] means that the differential dxk is absent. Observe that

dxj ∧ ωk(x) =


0 if k 6= j [dxj will occur twice],

ω(x) if k = j [thanks to (−1)k−1].
(10.3.6)

Thus the following product gives the differential form corresponding to the integrand in (10.3.4):∑
j

∂ϕ

∂xj
dxj ∧

∑
k

(−1)k−1xk
1
|x|n

dx1 ∧ . . . [k] · · · ∧ dxn =

∑
j

∂ϕ

∂xj
xj

1
|x|n

ω(x).
(10.3.7)

Apparently the “good kernel” to use in conjunction with dϕ is

α(x) = αn(x) def= 1
σ(S1)

n∑
k=1

xk
1
|x|n

ωk(x), (10.3.8)

where σ(S1) = σn(S1) = 2πn/2/Γ(n/2).

Proposition 10.3.2. The values of a function ϕ in C1
0 (Rn) may be obtained from dϕ with the aid

of the (n− 1)-form α of (10.3.8), (10.3.5):

ϕ(0) = −
∫

id|D
dϕ ∧ α, ϕ(a) = −

∫
id|D

dϕ ∧ α(x− a).

Here D may be any closed cube about 0 or a that contains supp ϕ.

The first formula follows from (10.3.4) in view of (10.3.8), (10.3.7) and (10.1.3). For the last
formula, one need only apply the first to ϕ(x+ a).

Having identified a candidate kernel α we will derive a more general representation theorem.
For this we need some

Proposition 10.3.3 (Properties of α).

(i) dα(x) = 0 for x 6= 0;

(ii)
∫
Sr
α =

∫
S1
α = 1, ∀r > 0, where Sr or S(0, r) stands for id | S(0, r);

(iii) |
∫
Sr
uα| ≤ supSr |u|

∫
Sr
|α| = c supSr |u|, where u is any continuous function and c =

∫
S1
|α|.

Proof. (i) This may be verified by computation: by (10.3.8) and (10.3.6),

σ(S1)dα =
∑
k

d(xk|x|−n) ∧ ωk =
∑
k

∑
j

∂

∂xj
(xk|x|−n)dxj ∧ ωk

=
∑
k

∂

∂xk
(xk|x|−n)ω =

∑
k

(|x|−n − n|x|−n−2x2
k)ω = 0, x 6= 0.

(10.3.9)

[The result will be less surprising if one observes that, for n ≥ 3, xk|x|−1 = const ·(∂/∂xk)|x|2−n;
the relation dα = 0 is equivalent to ∆|x|2−n = 0.]
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(ii) We can now apply Stokes’ theorem or the divergence theorem to the spherical shell Ω
bounded by Sr and S1. Taking 0 < r < 1,∫

S1

α−
∫
Sr

α =
∫

Ω
dα = 0.

An alternative is to remark that α is invariant under change of scale: α(λx) = α(x), cf. (iii) below.
The constant value of the integral may also be derived from Stokes’ theorem. On S1, α = |x|nα

and by (10.3.8), (10.3.5),

σ(S1)d(|x|nα) =
∑
k

∑
j

∂

∂xj
(xk)dxj ∧ ωk =

∑
k

dxk ∧ ωk = nω.

Thus ∫
S1

α =
∫
S1

|x|nα =
∫
B1

d(|x|nα) = n

σ(S1)

∫
B1

ω = n

σ(S1) m(B1) = 1

[cf. exercise 10.10].
(iii) The first part follows from (10.1.11). The constancy of

∫
Sr
|α| is due to the fact that

α(λx) = α(x), ∀λ > 0. Indeed, using the parameter region S1 for Sλ, the sum in definition (10.1.10)
will be independent of λ.

We can now prove the following general representation of smooth functions:

Theorem 10.3.4. Let Ω ⊂ Rn be a bounded domain with C2 boundary, u a function of class C1

on Ω. Then
u(a) =

∫
∂Ω
u(x)α(x− a)−

∫
Ω
du(x) ∧ α(x− a), ∀a ∈ Ω

where we have written Ω under the integrals instead of id | Ω.

For a formulation free of differential forms, cf. exercises 10.7, 10.8. The result may be extended
to domains Ω with piecewise C1 boundary by approximation from inside.

Proof. It may be assumed by translation that a = 0; the general formula readily follows. Taking
ε > 0 so small that Bε = B(0, ε) belongs to Ω, we will apply Stokes’ theorem to du ∧ α on
Ωε = Ω−Bε.

On Ωε, cf. Proposition 10.3.3,

du ∧ α = d(uα)− udα = d(uα).

Thus ∫
Ωε
du ∧ α =

∫
Ωε
d(uα) =

∫
∂Ωε

uα =
∫
∂Ω
uα−

∫
∂Bε

uα. (10.3.10)

Again using Proposition 10.3.3,∫
∂Bε

uα = u(0) +
∫
∂Bε

{u(x)− u(0)}α,

|
∫
∂Bε

{u(x)− u(0)}α| ≤ sup
∂Bε

|u(x)− u(0)|
∫
S1

|α| → 0 as ε ↓ 0.
(10.3.11)

On the other hand ∫
Ωε
du ∧ α→

∫
Ω
du ∧ α as ε ↓ 0, (10.3.12)
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since every coefficient in the form du ∧ α is bounded by const .|x|1−n on Bε, cf. (3b′′). Thus letting
ε ↓ 0 in (10.3.10), there results ∫

Ω
du ∧ α =

∫
∂Ω
uα − u(0).

10.4 Differential forms in Cn

One may consider Cn as R2n with coordinates xj = Re zj and yj = Im zj , but for the application of
differential forms in Cn, it is advantageous to use not dxj and dyj , but their complex counterparts

dzj = dxj + idyj , dzj = dxj − idyj . (10.4.1)

with the aid of the inverse formulas

dxj = 1
2 (dzj + dzj), dyj = 1

2i (dzj − dzj), (10.4.2)

every s-form f in Cn = R2n can be written in exactly one way as

f =
∑
J,K

fJK(z)dzJ ∧ dzK , (10.4.3)

where J = (j1, . . . , jp) and K = (k1, . . . , kq) run over all increasing p− and q-indices, 1 ≤ j1 <
· · · < jp ≤ n, 1 ≤ k1 < · · · < kq ≤ n, with variable p and q such that p+ q = s. Naturally,

dzJ = dzj1 ∧ · · · ∧ dzjp , dzk1 ∧ · · · ∧ dzkq .

The class Λp,q. A sum (10.4.3) in which every J is a p-index [with p fixed] and every K a q-index
[with q fixed] defines a (p, q)-form, or a form of type or bidegree (p, q). The class of (p, q)-forms
[with continuous coefficients] is denoted by Λp,q.

For a C1 function ϕ on Ω ⊂ Cn we saw in Section 1.3 that

dϕ = ∂ϕ+ ∂ϕ, where ∂ϕ =
n∑
1

∂ϕ

∂zj
dzj , ∂ϕ =

n∑
1

∂ϕ

∂z j
dzj . (10.4.4)

Similarly, for a C1 form f in Λp,q,

df =
∑
J,K

dfJK ∧ dzJ ∧ dzK = ∂f + ∂f, (10.4.5)

where
∂f =

∑
J,K

∂fJ,K ∧ dzJ ∧ dzK , ∂f =
∑
J,K

∂fJ,K ∧ dzJ ∧ dzK . (10.4.6)
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Notice that ∂f is a (p+ 1, q)-form and ∂f is a (p, q + 1) form.
Since d = ∂ + ∂ on ∧p,q, the equation d2 = 0 becomes

∂2 + (∂∂ + ∂∂) + ∂
2 = 0. (10.4.7)

If f is a C2 form in ∧p,q, the forms ∂2f, (∂∂ + ∂∂)f and ∂
2
f are of the respective types (p +

2, q), (p+ 1, q + 1) and (p, q + 2). Thus the vanishing of their sum implies that each of these forms
must be 0:

∂2 = 0, ∂∂ = −∂∂, ∂
2 = 0 (10.4.8)

on ∧p,q [and hence generally on ∧s]. The last relation confirms the local integrability condition
∂v = 0 for the equation ∂u = v.

We finally remark that for (n, q)-forms f in Cn of class C1, always

∂f = 0, df = ∂f.

Such forms f are said to be saturated with differentials dzj . A similar remark applies to (p, n)-forms
in Cn.

The volume form in Cn. For n = 1, writing z = x+ iy,

dz ∧ dz = d(x− iy) ∧ d(x+ iy) = 2idx ∧ dy,

hence in Cn = R2n

∧nj=1(dzj ∧ dzj) = (2i)n ∧nj=1 (dxj ∧ dyj).

Thus, using an equal number of transpositions on each side,

dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ . . . dzn = (2i)ndx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn.

Using the customary notation ω(z) = dz1 ∧ · · · ∧ dzn, cf. (10.1.4), the volume form for Cn becomes

(2i)−nω(z) ∧ ω(z) = dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn = “dm2n”, (10.4.9)

provided we orient our R2n as Rn × Rn. [The more natural choice “dm2n” = dx1 ∧ dy1 ∧ dx2 ∧ . . . ,
made by many authors, has the drawback that it introduces an unpleasant factor (−1)n(n−1)/2 into
formula (10.4.9).]

10.5 Integrals in Cn involving the Martinelli-Bochner kernel

We begin once more with test functions ϕ, but now in Cn = R2n. By Proposition 10.3.1,

ϕ(0) = − 1
σ(S1)

∫
Cn

(
∂ϕ

∂x1
x1 + ∂ϕ

∂y1
y1 + · · ·+ ∂ϕ

∂xn
xn + ∂ϕ

∂yn
yn

)
|z|−2ndm(z). (10.5.1)

Using the definition of the derivatives ∂ϕ/∂zj and ∂ϕ/∂zj ,

∂ϕ

∂xj
xj + ∂ϕ

∂yj
yj = ∂ϕ

∂zj
zj + ∂ϕ

∂zj
zj = Djϕ · zj +Djϕ · zj . (10.5.2)

Now there is a little miracle:∫
Cn
Djϕ · zj |z|−2ndm =

∫
Cn
Djϕ · zj |z|−2ndm! (10.5.3)
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Indeed, for n ≥ 2,

zj |z|−2n = cnDj(|z|2)1−n, zj |z|−2n = cnDj(|z|2)1−n.

[For n = 1 one has to use log |z|2.] Thus, using distributional bracket notation for convenience,∫
fψ = 〈f, ψ〉, 〈Djf, ψ〉 = −〈f,Djψ〉 etc.,∫

zj |z|−2nDjϕdm = cn〈Dj |z|2−2n, Djϕ〉

= −cn〈|z|2−2n, DjDjϕ〉 − cn〈|z|2−2n, DjDjϕ〉

= cn〈Dj |z|2−2n, Djϕ〉 =
∫
zj |z|−2nDjϕdm.

(10.5.4)

[This is basically ordinary integration by parts, cf. exercise 10.17.]
By the preceding, the integral in (10.5.1) splits as a sum of two equal integrals, one involving∑
Djϕ · zj and the other involving

∑
Djϕ · zj . Choosing the latter, one obtains

Proposition 10.5.1. For test functions ϕ on Cn [and in fact, by approximation, for all functions
ϕ in C1

0 (Cn)],

ϕ(0) = − 2
σ(S1)

∫
Cn

(
∂ϕ

∂z1
z1 + · · ·+ ∂ϕ

∂zn
zn

)
|z|−2ndm(z) [σ2n(S1) = 2πn/Γ(n)]. (10.5.5)

As before, we wish to formulate the result with the aid of differential forms.

∂ϕ =
∑
j

∂ϕ

∂zj
dzj and ω(z) = dz1 ∧ · · · ∧ dzn

we need
ωk(z) def= (−1)k−1dz1 ∧ . . . [k] · · · ∧ dzn.

Observe that

dzj ∧ ωk(z) ∧ ω(z) =


0 if k 6= j [dzj will occur twice],

ω(z) ∧ ω(z) if k = j [thanks to (−1)k−1],
(10.5.6)

so that by (10.4.9),∑
j

∂ϕ

∂zj
dzj ∧

∑
k

zk|z|−2nωk(z) ∧ ω(z) =
∑
k

∂ϕ

∂zk
zk|z|−2nω(z) ∧ ω(z)

= (2i)n
∑
k

∂ϕ

∂zk
zk|z|−2ndm2n.

(10.5.7)

Thus by (10.5.5) a “good kernel” for use in conjunction with ∂ϕ is

β(z) = βn(z) def= bn

n∑
k=1

zk|z|−2nωk(z) ∧ ω(z), (10.5.8)

where
bn = 2(2i)−n/σ2n(S1) = (n− 1)!/(2πi)n. (10.5.9)

The (n, n− 1)-forms β is called the Martinelli-Bochner kernel [40, 10].
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Proposition 10.5.2. The values of a function ϕ in C1
0 (Cn)b may be obtained from ∂ϕ with the

aid of the kernel β:

ϕ(0) = −
∫

id|D
∂ϕ ∧ β, ϕ(a) = −

∫
id|D

∂ϕ(z) ∧ β(z − a).

Here D may be any closed cube about 0 or a that contains suppϕ.

The properties of β are very similar to those of α, as are their proofs.

Proposition 10.5.3 (properties of β).

(i) dβ(z) = 0 for z 6= 0 (also ∂β = 0);

(ii)
∫
Sr
β =

∫
S1
β = 1, ∀r > 0;

(iii) |
∫
Sr
uβ| ≤ supSr |u|

∫
S1
|β| for all continuous functions u.

Theorem 10.5.4 (Martinelli-Bochner). Let Ω ⊂ Cn be a bounded domain with C2 boundary, u a
function of class C1 on Ω. Then

u(a) =
∫
∂Ω
u(z)β(z − a)−

∫
Ω
∂u(z) ∧ β(z − a), ∀a ∈ Ω. (10.5.10)

In particular, for holomorphic functions f on Ω ,

f(z) =
∫
∂Ω
f(ζ)β(ζ − z), ∀z ∈ Ω. (10.5.11)

Cf. the papers of Martinelli and Bochner, [40, 10]. Strictly speaking, we should have written
id | Ω under the integrals instead of just Ω. For the proof observe that

∂u ∧ β = du ∧ β = d(uβ)

since β is saturated with dzj ’s; now proceed as in the case of Theorem 10.3.4. As in that result a
piecewise C1 boundary ∂Ω will suffice.
Remarks 10.5.5. The integral (10.5.11) expresses a holomorphic function f on Ω in terms of its
boundary values. What sort of formula do we obtain for n = 1? In that case the product ωk is
empty, hence ≡ 1 and ω(z) = dz. Thus

β(z) = 1
2πi

z

|z|2
dz = 1

2πi
dz

z
, β(ζ − z) = 1

2πi
dζ

ζ − z
,

so that (10.5.11) reduces to the familiar Cauchy integral formula when n = 1.
The kernel β(ζ − z) is the same for every domain Ω ⊂ Cn, but for n ≥ 2 it is not holomorphic in

z. Hence, except in the case n = 1, the integral (10.5.11) does not generate holomorphic functions
on Ω. Neither does formula (10.5.10) solve the ∂ equation when n ≥ 2. On strictly pseudoconvex
domains the kernel may be modified to remedy the situation, but the resulting kernels depend on
the domain, cf. Section 10.8. In Section 10.6 we will obtain a holomorphic kernel for the case of the
unit ball.
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10.6 Szegö’s integral for the ball

We begin with a lemma that can be used to write the Martinelli-Bochner theorem (10.54) in
classical notation. Let Nxk(z) and Nyk(z) denote the xk- and yk -component of the outward unit
normal

⇀

N to ∂Ω at z and set

νk(z) = Nzk = Nxk + iNyk , k = 1, . . . , n.

Ignoring constant factors, ω(z) ∧ ω(z) represents the volume element dm of Ω; similarly, the
(n, n− 1)-form

n∑
k=1

νk(z)ωk(z) ∧ ω(z) (10.6.1)

will represent the “area element” dσ of ∂Ω. The precise result is as follows:

Lemma 10.6.1. Let Ω ⊂ Cn be a bounded domain with C2 boundary and let ϕ be any C1 function
on ∂Ω. Then ∫

∂(id)|Ω
ϕ(z)ωk(z̄) ∧ ω(z) = 1

2(2i)n
∫
∂Ω
ϕνkdσ∫

∂(id)|Ω
ϕ

n∑
1
νkωk ∧ ω = 1

2(2i)n
∫
∂Ω
ϕdσ.

(10.6.2)

Proof. Since ∂Ω is smooth one can extend ϕ to a C1 function on Ω. [One may use local parametriza-
tion to “straighten” ∂Ω, cf. Section 9.4 and to make ϕ equal to zero except in a neighborhood of
∂Ω.] Applying Stokes’ theorem one obtains, writing id for id | Ω,∫

∂(id)
ϕωk ∧ ω =

∫
id
d(ϕωk ∧ ω) =

∫
id

(Dkϕ)ω ∧ ω = (2i)n
∫

Ω
Dkϕdm,

cf. (10.4.9). Now by Gauss’s formula (10.2.3),∫
Ω
Dkϕdm =

∫
Ω

1
2

(
∂

∂xk
− 1
i

∂

∂yk

)
ϕdm

= 1
2

∫
∂Ω
ϕ(Nxk + iNyk)dσ = 1

2

∫
∂Ω
ϕνkdσ.

(10.6.3)

The second formula in the lemma follows by applying the first to ϕνk, k = 1, . . . , n and by adding:∫
∂(id)

∑
ϕνkωk ∧ ω = 1

2(2i)n
∫
∂Ω

∑
ϕνkνkdσ

= 1
2(2i)n

∫
∂Ω
ϕdσ. [

∑
|νk|2 = |

⇀

N |2]

Observe that for the case of the unit ball B = B(0, 1) and S = ∂B, one has

νk(z) = xk + iyk = zk.

Let f be in O(B); we will obtain an integral formula for f with holomorphic kernel. To this end we
set

β(z, w) def= bn
1

(z · w)n
n∑
1
wkωk(w) ∧ ω(z), [bn as in (10.5.9)] (10.6.4)
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so that β(z, z) is equal to the Martinelli-Bochner kernel β(z). Recall that z · w was defined as
z1w1 + · · ·+ znwn. Define

g(z, w) =
∫
S

f(ζ)β(ζ − z, ζ − w). (10.6.5)

For ζ ∈ S and small |z|, |w|, the denominator of β(ζ − z, ζ − w) can not vanish, hence g(z, w) is
holomorphic on Br ×Br if r is small [for example, r = 1/3].

By the Martinelli-Bochner theorem 10.5.4,

g(z, z) = f(z), z ∈ B. (10.6.6)

We will deduce that the power series∑
aλµz

λwµ for g(z, w)

on Br ×Br can not contain terms involving w. Indeed, replacing z by tz (t ∈ R) and differentiating
with respect to t, one finds that the following equality for power series:

g(z, z) =
∑

aλµz
λzµ = f(z) =

∑
cνz

ν

implies equality of the homogeneous polynomials of the same degree:∑
|λ|+|µ|=k

aλµz
λzµ =

∑
|ν|=k

bνz
ν .

From this it readily follows by special choices of the variables that aλµ = 0 for all µ 6= 0.
In conclusion, the function g(z, w) is independent of w on Br×Br, so that for |z| < r, cf. (10.6.4)

and (10.6.6),

f(z) = g(z, z) = g(z, 0) =
∫
S

f(ζ)β(ζ − z, ζ)

= bn

∫
S

f(ζ)
((ζ − z) · ζ)n

n∑
1
ζkωk(ζ) ∧ ω(ζ).

(10.6.7)

By the uniqueness theorem for holomorphic functions, the representation will hold for all z ∈ B.
Applying the second formula of Lemma 10.61 to ϕ(ζ) = f(ζ)/(1 − z · ζ)n on S = ∂B where
νk(ζ) = ζk, (10.6.7) gives

Theorem 10.6.2 (Szegö). Let f be holomorphic on B(0, 1) ⊂ Cn. Then

f(z) = (n− 1)!
2πn

∫
∂B

f(ζ)
(1− z · ζ)n

dσ(ζ), ∀z ∈ B. (10.6.8)

The constant in front of the integral comes from bn · 1
2 (2i)n. As a check one may take f ≡ 1

and z = 0 which shows that the constant must equal 1/σ2n(S1). The representation (10.6.8) will
actually hold for all continuous functions f on B that are holomorphic on B. [Applying the formula
to f(λz) and let λ ↑ 1.]

There is a related result for any convex domain with smooth boundary, cf. [58].
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10.7 The Martinelli-Bochner transform and analytic continuation

For n = 1 and a smooth arc γ in C, we know that the Cauchy transform

f̂(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ

is holomorphic on the complement of γ for every continuous function f on γ. For n ≥ 2 and a
smooth (2n− 1)-surface X in Cn, one may ask for which functions f on X the Martinelli-Bochner
transform

f̂(z) =
∫
X

f(ζ)β(ζ − z) (10.7.1)

is holomorphic on the complement of X. This question will not be very interesting when Cn −X is
connected. [Why not? Cf. exercise 10.30.] Thus let X be a “closed” surface.

Proposition 10.7.1. Let X be a compact (2n− 1)-surface of class C2 in Cn without boundary.
Let f be a C1 function on X that satisfies the tangential Cauchy-Riemann equations, that is,

dXf(z) ∧ ω(z) = 0, (10.7.2)

where dXf is df computed tangentially. Then the Martinelli-Bochner transform f̂ is holomorphic
on the complement of X. Furthermore, if n ≥ 2 then f̂ = 0 on the unbounded component of Cn−X.

Note that the tangential Cauchy-Riemann equations are certainly satisfied if f is holomorphic
on a neighborhood of X. If the coordinate system is chosen such that the real tangent space at
a ∈ X is given by Im zn = 0, the tangential C −R equations will reduce to

∂f

∂z1
= · · · = ∂f

∂zn−1
= 0. (10.7.3)

For the proof of the proposition we need some additional facts about β.

Lemma 10.7.2. (i) For ζ1 6= z1 one has

β(ζ − z) = dζβ
(1)(ζ − z) = ∂ζβ

(1)(ζ − z),

where

(n− 1)β(1)(ζ − z) = bn

n∑
k=2

ζk − zk
ζ1 − z1

|ζ − z|2−2nω1k(ζ) ∧ ω(ζ),

ω1k(ζ) = (−1)k[1]dζ2 ∧ . . . [k] · · · ∧ dζn

(10.7.4)

(the differentials dζ1 and dζk are absent).

(ii) For fixed z, the derivative (∂/∂z1)β(1)(ζ − z) has a smooth extension {. . . } to Cn − {z}:{
∂

∂z1
β(1)(ζ − z)

}
= bn

n∑
k=2

(ζk − zk)|ζ − z|−2nω1k(ζ) ∧ ω(ζ).

In terms of that extension,

∂

∂z1
β(ζ − z) = dζ

{
∂

∂z1
β(1)(ζ − z)

}
.
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For part (i) it is all right to take z = 0. The verification is similar to the computation that
shows dβ = 0 or dα = 0. Part (ii) is simple. There are of course corresponding results with ζ1
replaced by one of the other variables ζj .

Proof of Proposition 10.7.1. Take z ∈ Cn −X. By the definition of f̂ , the lemma, Stokes’ theorem
and the tangential C −R equations (10.7.2),

∂

∂z1
f̂(z) =

∫
X

f(ζ) ∂

∂z1
β(ζ − z) =

∫
X

f(ζ)dζ
{

∂

∂z1
β(1)(ζ − z)

}
=
∫
X

dζ

[
f(ζ)

{
∂

∂z1
β(1)(ζ − z)

}]
−
∫
X

dζf(ζ) ∧
{

∂

∂z1
β(1)(ζ − z)

}
=
∫
∂X

f(ζ)
{

∂

∂z1
β(1)(ζ − z)

}
− 0 = 0. [∂X = ∅]

(10.7.5)

Similarly for the other derivatives ∂/∂zj .
The final statement of the proposition follows from the fact that f̂ is holomorphic on a connected

domain Cn − E, E compact and that f̂(z)→ 0 as |z| → ∞, cf. exercise 1.23.

We can now give an integral formula for analytic continuation across a compact singularity set,
resulting in another proof of the Hartogs-Osgood-Brown theorem 3.4.1.

Theorem 10.7.3. Let D be a connected domain in Cn, n ≥ 2 and let K be a compact subset of
D such that D −K is connected. Let f be holomorphic on D −K. Taking Ω to be any bounded
subdomain of D containing K and with connected C2 boundary X = ∂Ω in D, the Martinelli-
Bochner transform f̂ of f corresponding to X = ∂Ω provides an analytic continuation of f across
K.

Proof. Besides Ω we consider a similar subdomain Ω1 containing K, with Ω1 ⊂ Ω. By Proposition
10.7.1, the Martinelli-Bochner transforms f̂ and f̂1 of f corresponding to ∂Ω and ∂Ω1 will be
holomorphic on the complements of ∂Ω and ∂Ω1, respectively.

On the other hand, by the Martinelli-Bochner theorem 10.5.4,

f = f̂ − f̂1 on Ω− Ω1.

However, f̂1 = 0 outside Ω1 10.7.1, hence f̂ = f on Ω − Ω1. This f̂ provides an analytic
continuation of f to Ω.
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With a little more work one can obtain a stronger result: For Ω as above and f ∈ C1(∂Ω)
satisfying the tangential Cauchy-Riemann equations, the transform f̂ provides a holomorphic
extension of f to Ω which is C1 on Ω. For this and other results on Martinelli-Bochner transforms,
see [50].

10.8 Good integral representations

In this section we will see how integral representations which are good in the sense that the
boundary integral has a holomorphic kernel are obtained. Among other things, analogues of the
Szegö formula will be found for general convex domains.

To obtain such integral representations we analyze the Martinelli-Bochner form (10.6.4)

β(z, w) = bn
1

(z · w)n
n∑
k=1

wkωk(w) ∧ ω(z).

The properties in Proposition 10.5.3 are all that is needed to get a Martinelli-Bochner type integral
formula. The most important (and hardest to achieve) is clearly property (i), which comes down to:

dβ(z, z̄) = ∂β(z, z̄) + ∂̄β(z, z̄) = 0. (10.8.1)

One sees that ∂β = 0 because ω is saturated with dzj ; computation shows that ∂̄ falls essentially
on the second component of the argument of β i.e. the “z part” and does not “see” the first one.
Also, from Section 10.6 we get the impression that the integral formula remains valid under some
changes of the second component. Inroducing F = {(ζ, η) ∈ Cn × Cn such that (ζ · η) = 0}, this
suggests

Lemma 10.8.1. The Martinelli-Bochner form β has the property that

dβ(ζ, η) = 0 (ζ, η) /∈ F.

[Here d = dζ + dη = ∂ζ + ∂̄ζ + ∂η + ∂̄η.]

Proof. Observe that β(ζ, η) is saturated with dζ, hence ∂ζβ = 0; the coefficients of β are holomorphic
in ζ and η, hence ∂̄ζβ = ∂̄ηβ = 0. Finally we compute, using dηk ∧ ωj(η) = 0 if j 6= k,

∂ηβ(ζ, η) = bn
∑
j

(
−nζj

(ζ · η)n+1 ηjdηj + 1
(ζ · η)n dηj

)
∧ ωj(η) ∧ ω(ζ) = 0.

A Leray map will be a (smooth) map η = η(z, ζ) to Cn defined on a subset of Cn × Cn such
that

(ζ − z) · η 6= 0 (z 6= ζ). (10.8.2)

To a Leray map η we associate the kernel [(n, n− 1) form]

Kη(z, ζ) = β(ζ − z, η(z, ζ)), (10.8.3)

here z is a (fixed) parameter.

Corollary 10.8.2. Let z be fixed. Suppose that η(ζ, z) satisfies (10.8.2) as a function of ζ on a
domain D. Then

dζK
η(z, ζ) = 0 on D.
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Proof. For fixed z, the form Kη(z, ζ) is the pull back of β under the map ζ 7→ (ζ − z, η(z, ζ)). Since
the image of this map doesn’t meet F , combination of Proposition 10.2.3 (v’) and previous Lemma
gives dζKη(z, ζ) = 0 as the pull back of a closed form.

Proposition 10.8.3. Let Ω be a domain in Cn, z ∈ Ω fixed and d(z) = d(z, ∂Ω) > ε. Suppose that
there exists a Leray map η(z, ζ) on {z} × Ω̄, such that η(z, ζ) = ζ − z for |ζ − z| < ε. Then for all
f ∈ C1(Ω̄)

f(z) =
∫

Ω
Kη(z, ζ) ∧ ∂̄f +

∫
∂Ω
Kη(z, ζ)f

Proof. For |ζ − z| < ε we have Kη(z, ζ) = β(ζ − z, ζ − z) the Martinelli-Bochner form. Hence

f(z) =
∫
B(z,ε)

Kη(z, ζ) ∧ ∂̄f +
∫
{|ζ|=ε}

Kη(z, ζ)f. (10.8.4)

We apply Stokes’ theorem to the last integral on the domain Ω \B(z, ε) and obtain∫
{|ζ|=ε}

Kη(z, ζ)f =
∫
∂Ω
Kη(z, ζ)f −

∫
Ω\B(z,ε)

d(Kη(z, ζ)f)

=
∫
∂Ω
Kη(z, ζ)f +

∫
Ω\B(z,ε)

(Kη(z, ζ) ∧ ∂̄f),
(10.8.5)

because dK = 0 on Ω \ B(z, ε), K is saturated with dζ and anticommutativity. Substitution
of (10.8.5) in (10.8.4) completes the proof.

We also need a homogeneity property of the form

ω′(w) =
∑
k

wkωk(w). (10.8.6)

Lemma 10.8.4. For every smooth function f(w)

ω′(f(w)w) = fn(w)ω′(w).

Proof.

ω′(f(w)w) =
∑
k

(−1)k−1f(w)wk d(f(w)w1) ∧ . . . [k] . . . ∧ d(f(w)wn)

=
∑
k

(−1)k−1f(w)wk (w1df(w) + f(w)dw1) ∧ . . .

. . . [k] . . . ∧ (wndf(w) + f(w)dwn) .

(10.8.7)

As df(w) ∧ df(w) = 0, this amounts to∑
k

(−1)k−1f(w)nwkdw1 ∧ . . . [k] . . . ∧ dwn

+
∑
k

(−1)k−1f(w)wk

∑
j<k

wj(−1)j−1df(w) ∧ dw1 ∧ . . . [j] . . . [k] . . . ∧ dwn

+
∑
j>k

wj(−1)j−2df(w) ∧ dw1 ∧ . . . [k] . . . [j] . . . ∧ dwn

 .
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The second part equals 0 ! The forms in this sum with coefficient

(−1)k−1+j−1f(w)wkwj and (−1)k−1+j−2f(w)wkwj

cancel. This proves the Lemma.

For a “clever" proof based on properties of determinants in non commutative rings, see [24].
Again, let Ω be a domain in Cn and U a neighborhood of ∂Ω; let η(z, ζ) : Ω × U → Cn be

a Leray map and let χ(z, ζ) ∈ C∞(Ω × Ω) be a nonnegative function such that χ(z, ζ) = 1 on
a neighborhood of the diagonal {ζ = z} ⊂ Ω × Ω, while for fixed z, χ(z, ζ) = 1 if ζ /∈ U and
χ(z, ζ) ∈ C∞0 (Ω). Then we may form a Leray map η̃ on Ω× Ω̄:

η̃(z, ζ) = ‖ζ − z‖2
(

1− χ(z, ζ)
(ζ − z) · η(z, ζ)η(z, ζ) + χ(z, ζ)

‖ζ − z‖2
(ζ − z)

)
.

Clearly (ζ − z) · η̃ = ‖ζ − z‖2 and η̃ = ζ − z as a function of ζ close to ζ = z. Thus we may apply
Proposition 10.8.3 and we obtain that for any C1 function f on Ω̄

f(z) =
∫
∂Ω
f(ζ)K η̃(z, ζ) +

∫
Ω
K η̃(z, ζ) ∧ ∂̄f.

We write ϕ(z, ζ) = ‖ζ − z‖2/(ζ − z) · η(z, ζ) and observe that on ∂Ω

K η̃ = bn
ω′(ϕη)

((ζ − z) · ϕη)n ∧ ω(ζ) = bn
ω′(η)

((ζ − z) · η)n ∧ ω(ζ) = Kη,

by Lemma 10.8.4. We have proved

Proposition 10.8.5. Using notation as above, we have for every C1 function f on Ω

f(z) =
∫
∂Ω
f(ζ)Kη(z, ζ) +

∫
Ω
K η̃(z, ζ) ∧ ∂̄f.

If we can choose the Leray map to depend holomorphically on z, we have achieved with
Proposition 10.8.5 a good analogue of the Cauchy Pompeiu formula. Indeed as with the usual
Cauchy kernel we have a Cauchy type transform which yields holomorphic functions:

g(z) =
∫
∂Ω
f(ζ)Kη(z, ζ) (10.8.8)

is holomorphic for every continuous function f . Also we have

Corollary 10.8.6. Suppose that Ω admits a holomorphic Leray map. If the equation ∂̄u = v, (∂̄v =
0) admits a solution u ∈ C1(Ω̄) then the function

ũ(z) =
∫

Ω
K η̃(z, ζ) ∧ v

also satisfies ∂̄ũ = v.

Proof. Express u by means of Proposition 10.8.5 and observe that the boundary integral represents
a holomorphic function, hence u− ũ is holomorphic.
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Holomorphic Leray maps exist if Ω is C1 and convex: Let Ω = {ρ < 0} for some C1-defining
function ρ. Take ηj(ζ) = ∂ρ

∂ζ̄j
independent of z. Then (z − ζ) · η =

∑
j
∂ρ
∂ζj

(ζ)(zj − ζj) 6= 0 on Ω. In
case of the unit ball this reduces the Cauchy type transform (10.8.8) to the Szegö Kernel. It will be
clear from Narasimhan’s Lemma 9.4.8 that one can find such Leray maps at least locally on strictly
pseudoconvex domains. The integral representation of Proposition 10.8.5 may be used to solve the
Cauchy Riemann equations on strictly pseudoconvex domains, (without assuming solvability as
we do in Corollary 10.8.6. This gives a solution of the Levi problem, cf. [45]. However, to obtain
estimates for solutions of the ∂̄ equation, say in Hölder norms Proposition 10.8.5 admits much
freedom and there is an other approach, which we will now discuss. Notice that the kernel K η̃

is obtained by continuously deforming the Martinelli-Bochner kernel into our neat holomorphic
kernel at the boundary. We can do a similar trick but now the deformation will take place on the
boundary itself. Thus we consider the domain Z = ∂Ω× [0, 1], with coordinates (ζ, λ). Its boundary
equals ∂Z = ∂Ω× {1} − ∂Ω× {0}.

Again assume that we have a Leray map η for Ω. We introduce the following Leray map on
Ω× ∂Ω× [0, 1]:

η̃(z, ζ, λ) = λ
η(z, ζ)

(ζ − z) · η(z, ζ) + (1− λ) ζ − z
‖ζ − z‖2

, (z fixed in Ω)

and the kernel
K η̃(z, ζ, λ) = bnω

′(η̃) ∧ ω(ζ − z).
As before, (ζ − z) · η̃(z, ζ, λ) 6= 0 and K η̃ is a pull back of β, so that

dK = (∂̄ζ + ∂ζ + dλ)K = 0.

Theorem 10.8.7. Suppose that the domain Ω has C2-boundary and admits a Leray map η(z, ζ) :
Ω× ∂Ω→ Cn. With the kernel K η̃ as defined above, the following integral representation is valid
for f ∈ C1.

f(z) =
∫

Ω
β(ζ − z, ζ − z) ∧ ∂̄f +

∫
∂Ω×[0,1]

K η̃(z, ζ, λ) ∧ ∂̄ζf +
∫
∂Ω
fKη(z, ζ).

Proof. Starting with the Martinelli-Bochner representation for f , we only have to show that∫
∂Ω
fβ(ζ − z, ζ − z) =

∫
∂Ω×[0,1]

K η̃(z, ζ, λ) ∧ ∂̄ζf +
∫
∂Ω
fKη(z, ζ). (10.8.9)

We apply Stokes’ theorem to obtain∫
∂Ω×[0,1]

dζ,λ(f ∧K η̃(z, ζ, λ)) =
∫
∂Ω×{1}

fK η̃(z, ζ, 1)−
∫
∂Ω×{0}

fK η̃(z, ζ, 0). (10.8.10)

The lefthand side is equal to
∫
∂Ω×[0,1] ∂̄ζf ∧K

η̃(z, ζ, λ), because dζ,λK = 0, f does not depend on λ
andK is saturated with dζ. For the righthand side, observe thatK η̃(z, ζ, 0) = bnω

′( ζ−z
‖ζ−z‖2 )∧ω(ζ−z)

and K η̃(z, ζ, 1) = bnω
′( η(z,ζ)

(ζ−z)·η(z,ζ) )∧ω(z−ζ). Lemma 10.8.4 gives that K η̃(z, ζ, 0) = β(ζ−z, ζ − z)
and K η̃(z, ζ, 1) = Kη(z, ζ). Substitution of all this in (10.8.10) gives (10.8.9). We are done.

How is Theorem 10.8.7 used to solve the Cauchy Riemann equations?. Assume that we have
a C1 ∂̄ closed form v and that we know that a solution u with ∂̄u = v exists. Theorem 10.8.7
represents u and as before we see that

ũ =
∫

Ω
v ∧ β(ζ − z, ζ − z) +

∫
∂Ω×[0,1]

v ∧K η̃(z, ζ, λ)
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is another solution. One easily checks that the integrand in
∫
∂Ω×[0,1] is a polynomial in λ, hence we

can integrate with respect to λ and this integral is reduced to an integral of v over ∂Ω. It turns out
that a situation has been reached in which one can make good estimates of ũ in terms of v. The
details are rather technical and we refer the reader to the literature cited in the beginning of this
chapter.

10.9 Exercises

Exercise 10.1. Equivalent parametrizations of a smooth arc are obtained by smooth maps of one
parameter interval onto another with strictly positive derivative. How would one define equivalent
parametrizations of a smooth 2-surface? A p-surface? The integral of a p-form over a smooth
p-surface must have the same value for equivalent parametrizations.

Exercise 10.2. Let f be a continuous p-form in Ω ⊂ Rn in standard representation
∑′

J
fJdxJ .

Suppose that
∫
X
f = 0 for all smooth p-surfaces X in Ω. Prove that fJ = 0 for every multi-index

J = (j1, . . . , jp). [Choose a ∈ Ω and ε > 0 so small that a+ εD ⊂ Ω, where D is the closed unit
cube in Rn. Now define X as follows:

Xj1(t) = aj1 + εt1, . . . , Xjp(t) = ajp + εtp,

Xk(t) ≡ ak for k 6= j1, . . . , jp; 0 ≤ tj ≤ 1.]
(10.9.1)

Exercise 10.3. Let f =
∑′

fJ(x)dxj be a continuous (k − 1)-form on Rp − {0} such that
f(λx) = f(x) for all λ > 0. Let Sr be the sphere S(0, r) in Rp, r > 0. Prove that the integrals∫
Sr
f and

∫
Sr
|f | are independent of r.

Exercise 10.4. Let f be a p-form in Ω ⊂ Rn, g a q-form. Prove that (i) g∧ f = (−1)pqg∧ g; (ii)
d(f ∧ g) = df ∧ g + (−1)pf ∧ dg.

Exercise 10.5. Suppose one wants to apply Stokes’ theorem to a disc and its boundary. Can one
represent the disc as a smooth 2-surface with [0, 1]× [0, 1] as parameter domain? How would you
deal with the annulus A(0; ρ,R)? If f is a smooth 1-form on A, how would you justify wrting∫

A

df =
∫
C(0,R)

f −
∫
C(0,ρ)

f ?

Exercise 10.6. Go over the proofs of properties (iii)-(v) of pull backs. Could you explain the
proofs to somebody else?

Exercise 10.7. Use Theorem 10.3.4 to obtain the following R2 formula which is free of differential
forms: for a ∈ Ω,

u(a) = 1
2π

∫
∂Ω
u(x) ∂

∂N
log |x− a|ds− 1

2π

∫
Ω

gradu(x) · grad log |x− a|dm.

Exercise 10.8. Apply the Gauss-Green theorem (10.2.3) to ⇀v = u gradE to obtain the Rn formula∫
Ω

(gradu · gradE + udiv gradE)dm =
∫
∂Ω
u
∂E

∂N
dσ.

Then use a fundamental solution E of Laplace’s equation in Rn to obtain in a form of Theorem
10.3.4 that is free of differential forms. [Start with a = 0.]
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Exercise 10.9. Let Ω be a bounded domain Rn with C2 boundary, Nk(x) the component of the
outward unit normal

⇀

N to ∂Ω at x. Show that the (n− 1)-form
∑n

1 Nk(x)ωk(x) represents the area
element of ∂Ω in the sense that for all smooth functions ϕ on ∂Ω,∫

∂(id)|Ω
ϕ

n∑
1
Nkωk =

∫
∂Ω
ϕdσ.

[Extend ϕ
∑
Nkωk smoothly to Ω.]

Exercise 10.10. Use differentiation to relate m(Br) in Rn to σ(Sr) and deduce that σ(S1) =
n ·m(B1)

Exercise 10.11. Prove that the different forms dzJ ∧ dzK in ∧p,q, where J and K run over the
increasing p-indices and q-indices, are linearly independent over C. [Start with the real situation.]

Exercise 10.12. Prove that ∧s decomposes uniquely in Cn as

∧s = ∧s,0 + ∧s−1,0 + · · ·+ ∧0,s.

Exercise 10.13. Calculate ∂f, ∂f and df when f = z1dz2 + z2dz1.

Exercise 10.14. Prove that for a C1 form f in ∧p,q, one has df = 0 only if ∂f = ∂f = 0. Does
this also hold in ∧s ?

Exercise 10.15. Prove that for f ∈ ∧p,q, one has ∂̄f̄ = ∂f .

Exercise 10.16. Determine g such that E = g(z · z) satisfies Laplace’s equation on Cn − {0}:

∆E = 4
n∑
1

∂2E

∂zj∂zj
= 0.

Exercise 10.17. Prove that for test functions ϕ on Cn = R2n,∫
Cn

(
∂ϕ

∂x1
x1 + ∂ϕ

∂y1
y1

)
|z|−2ndm = 2

∫
Cn

∂ϕ

∂z1
z1|z|−2ndm

by showing first that for all z′ = (z2, . . . , zn) 6= 0,∫
R2

(
∂ϕ

∂x1
y1 −

∂ϕ

∂y1
x1

)
|z|−2ndx1 dy1 = 0.

Exercise 10.18. Let ϕ be a test function on Cn. Show that

ϕ(0) = − 1
n

∫
C

∂ϕ

∂z1
(z1, 0, . . . , 0) 1

z1
dm(z1)

=
(
− 1
n

)n ∫
Cn

∂nϕ

∂
∑

1 . . . ∂zn

1
z1 . . . zn

dm(z).
(10.9.2)

Exercise 10.19. Show that the above formula can be extended to include the case ϕ(z) = (1−|z|2)n
for |z| ≤ 1, ϕ(z) = 0 for |z| > 1. Deduce that in Cn = R2n, m(B1) = πn/n!.

Exercise 10.20. (A Sobolev-type lemma). Let u be an L2 function on Cn of bounded support
and such that the distributional derivative ∂nu/∂z1 . . . ∂zn is equal to an Lp function where p > 2.
Prove that u is a.e. equal to a continuous function. [From exercise 10.18 and Hölder’s inequality it
may be derived that |ϕ(0)| ≤ C‖∂nϕ/∂z1 . . . ∂zn‖p and similarly sup |ϕ| ≤ . . . . Deduce that u ? ρε
tends to a limit function uniformly as ε ↓ 0.]
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Exercise 10.21. Verify the properties of the Martinelli-Bochner kernel β in Proposition 10.5.3.

Exercise 10.22. Supply the details in the proof of the Martinelli-Bochner theorem 10.5.4, starting
with the case a = 0 and then passing on to the case of general a ∈ Ω.

Exercise 10.23. Let f be holomorphic on Ω where Ω is as in Theorem 10.5.4. Prove directly
[without using Section 10.7 that∫

∂Ω
f(ζ)β(ζ − z) = 0 for z ∈ Cn − Ω.

Exercise 10.24. What representation for C1 functions does Theorem 10.5.4 give in the case n = 1?

Exercise 10.25. Show that for holomorphic functions f on B = B(0, 1) ⊂ Cn,

f(z) = (n− 1)!
2πn

∫
∂B

f(ζ) 1− z · ζ
|ζ − z|2n

dσ(ζ).

Exercise 10.26. Derive a form of Theorem 10.5.4 that is free of differential forms.

Exercise 10.27. Show that the following forms can serve as area element dσ on the unit sphere
S = {z ∈ C2 : z1z1 + z2z2 = 1}:

− 1
2 (z1dz2 − z2dz1) ∧ dz1 ∧ dz2,

1
2z2

dz1 ∧ dz1 ∧ dz2,
1

2z2
dz1 ∧ dz2 ∧ dz1.

Exercise 10.28. In C2 the following automorphism of B = B(0, 1) takes the point c = (c1, 0) ∈ B
to the origin:

ζ1
1 = ζ1 − c1

1− c1ζ1
, ζ1

2 = (1− |c1|2) 1
2

1− c1ζ1
ζ2.

Use the mean value theorem for holomorphic functions f on B to derive that

f(c1, 0) = 1
2π2

∫
S

(1− |c1|2)2

|1− c1ζ1|4
f(ζ)dσ(ζ).

Deduce the so-called invariant Poisson integral for f(z):

f(z) = 1
2π2

∫
S

(1− |z|2)2

|1− z · ζ|4
f(ζ)dσ(ζ), z ∈ B.

Exercise 10.29. Express the “invariant Poisson Kernel” P (z, ζ) of exercise 10.28 in terms of the
Szegö kernel S(z, ζ) = (1− z · ζ)−2. Now use the Szegö integral to derive the preceding formula.
Extend the latter to Cn.

Exercise 10.30. Let X be a smooth (2n − 1)-surface in Cn, n ≥ 2 such that Xc = Cn −X is
connected. Let f ∈ C(X) be such that the Martinelli-Bochner transform f̂ is holomorphic on Xc.
Prove that f̂ ≡ 0.

Exercise 10.31. Prove that statements about the tangential Cauchy-Riemann equations made
after Proposition 10.7.1.

Exercise 10.32. Let X be a smooth (2n− 1)-surface in Cn with real defining function ρ. [ρ ∈ Cp
on a neighborhood of X for some p ≥ 1, ρ = 0 on X, dρ 6= 0 on X.] Prove that f ∈ C1(X) satisfies
the tangential C −R equations if and only if

∂f ∧ ∂ρ = 0 or ∂f

∂zj

∂ρ

∂zk
− ∂f

∂zk

∂ρ

∂zj
= 0, ∀j, k.
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Chapter 11

Solution of the ∂̄ equation on
pseudoconvex domains

In this chapter we discuss Hörmander’s ingenious L2 method with weights for the global solution
of the inhomogeneous Cauchy-Riemann equations

∂̄u = v or ∂u

∂z̄j
= vj , j = 1, . . . , n

on domains in Cn.
The method applies to all domains Ω which possess a plurisubharmonic exhaustion function.

It proves the existence of weak or distributional solutions u on Ω that are locally equal to L2

functions when the vj ’s are. If the functions vj are of class Cp (1 ≤ p ≤ ∞), it readily follows
that the solutions are also of class Cp. Taking p =∞, one concludes that every psh exhaustible
domain is a ∂̄ domain [as defined in Chapter 7] and hence is a Cousin -I domain [the holomorphic
Cousin-I problem is generally solvable on Ω]. Applying the results also to the intersections of Ω
with affine subspaces of Cn, one obtains the solution of the Levi problem: Every pseudoconvex
domain is a domain of holomorphy [cf. Section 7.7]. Some remarks are in order here. One began to
search for analytic approaches to the ∂̄ problem around 1950. There where important contributions
contributions by many authors, notably Morrey and Kohn, before Hörmander obtained his weighted
L2 results in 1964. Estimating solutions of ∂̄ equations has remained in active area of research up
till the present time. Hörmander’s introduction of weights in the problem gives a fast and clean
solution by sweeping all unpleasant boundary behavior under the rug. The approach of Kohn and
his students, notably Catlin addresses these problems. It is very involved and fundamental, and
gives very precise results, with wide applications.

In a sense, postulating pseudoconvexity of Ω for the solution of the “first order” ∂̄ problem
is too much: for n ≥ 3, ∂̄ domains or Cousin-I domains need not be pseudoconvex [cf. Section
7.2]. However, Hörmander’s method also gives solutions to the “higher order” ∂̄ equations on
pseudoconvex domains, cf. Section 11.8 and [26]. The general solvability of the ∂̄ equations of every
order on Ω is equivalent to the property of pseudoconvexity; we will return to this matter in Chapter
12. A more important benefit of Hörmander’s method is that it provides useful growth estimates
for the solution of the ∂̄-equation [see Section 11.7]. Such estimates are finding applications even in
the case n = 1; further applications in Cn may be expected.

For n = 1 the principal existence theorem may be derived in a more or less straightforward
manner [Section 11.3], but for n ≥ 2 the proof remains rather involved. The ideas in our exposition
are of course Hörmander’s, with some small modifications. We do not explicitly use any results on
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unbounded operators. The principal tool is F. Riesz’s theorem to the effect that every continuous
linear functional on a Hilbert space is represented by an inner product function.

11.1 Distributions and weak solutions

Let Ω be a domain or open set in Rn or Cn. Test functions ϕ on Ω are complex-valued functions of
class C∞0 (Ω), that is, C∞ functions whose supports are compact subsets of Ω. Examples of test
functions have been encountered in Section 3.3, namely:

(i) the standard C∞ approximation of the identity ρε on Rn whose support is the ball B̄(0, ε):
ρε(x) = ε−nρ1(|x|/ε),

∫
ρε = 1, ρε ≥ 0;

(ii) for compact F , a C∞ cutoff function ω on Rn which equals 1 on F and 0 at distance ≥ ε
from F , cf. Proposition 3.3.2.

Definition 11.1.1. A distribution

T : ϕ 7→ T (ϕ) = 〈T, ϕ〉

on Ω is a continuous linear functional on the space of test functions C∞0 (Ω):

〈T, λϕ+ µψ〉 = λ〈T, ϕ〉+ µ〈T, ψ〉.

We say that distributions Tν are (weakly or distributionally) convergent to the distribution T as
ν → ν0 or ν →∞ if

〈Tν , ϕ〉 → 〈T, ϕ〉, ∀ϕ ∈ C∞0 (Ω).

The symbol 〈T, ϕ〉 denotes a (bi)linear functional; the symbol ( , ) is reserved for an inner product
which is conjugate linear in the second factor. It is customary to impose a weak continuity condition
on the functionals 〈T, ϕ〉 as functions of ϕ: starting with a strong notion of convergence ϕν → ϕ in
the vector space of test functions, one requires that 〈T, ϕν〉 → 〈T, ϕ〉 whenever ϕν → ϕ. Since such
continuity of the functional T is not important in the present context, we do not go into detail. Cf.,
[61, 27].

Examples 11.1.2. Every continuous or locally integrable function f on Ω defines a distribution
by the formula

〈f, ϕ〉 =
∫

Ω
fϕ dm =

∫
suppϕ

fϕ dm.

In the sequel we often omit the Lebesgue measure or “volume element” dm on Ω. Locally uniform
(or locally L1) convergence of functions fν to f on Ω implies distributional convergence:

|〈f, ϕ〉 − 〈fν , ϕ〉| ≤
∫

suppϕ
|f − fν | · sup |ϕ| → 0 as ν → ν0.

Derivatives of test functions are again test functions. Repeated integration by parts will show that

fν(x) = ν100eiνx → 0 weakly on R as ν →∞.

The famous Dirac distribution (or delta distribution) on Rn is given by the formula

〈δ, ϕ〉 = ϕ(0).
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A distribution T is said to vanish on an open subset Ω0 ⊂ Ω if 〈T, ϕ〉 = 0 for all test functions
with support in Ω0. Taking Ω0 equal to the maximal open subset of Ω on which T vanishes, the
complement Ω \ Ω0 is called the support of T . Two distributions are said to be equal on an open
subset if their difference vanishes there. For continuous functions these definitions agree with the
usual ones. This will follow from

Proposition 11.1.3. Let f be a continuous or locally integrable function on Ω ⊂ Rn such that
〈f, ϕ〉 = 0 for all test functions ϕ on Ω. Then f(x) = 0 almost everywhere on Ω, and in particular
at all points x where f happens to be continuous.

Proof. Let {ρε} be the standard nonnegative approximate identity on Rn with supp ρε = B̄(0, ε)
[Section 3.3]. Then for any compact subset K ⊂ Ω and 0 < r < d(K, ∂Ω), the function ρε(x−y) with
x ∈ K fixed and y variable will be a test function on Ω whenever ε ≤ r. Hence since 〈f, ρε(x−·)〉 = 0

0 = 〈f, ρε(x− ·)〉 =
∫

Ω
f(y)ρε(x− y) dy = f ∗ ρε(x) =

∫
B(0,ε)

f(x− z)ρε(z) dz

=
∫
B(0,1)

f(x− εy)ρ1(y) dy, ∀x ∈ K.
(11.1.1)

Now for continuous f , using uniform continuity on the [closure of the] r-neighborhood Kr of K,∫
K

|f(x)− f(x− εy)| dx→ 0 as ε ↓ 0,

uniformly for y ∈ B = B(0, 1). This holds more generally for all locally integrable f : such functions
may be approximated in L1 norm on K̄r by continuous functions.

By the preceding we have∫
K

|f(x)| dx =
∫
K

dx|
∫
B

{f(x)− f(x− εy)}ρ1(y) dy| ≤
∫
K

dx

∫
B

| . . . | dy

=
∫
B

{
∫
K

|f(x)− f(x− εy)| dx}ρ1(y) dy,
(11.1.2)

where the final member tends to 0 as ε ↓ 0. [Since we deal with positive functions the inversion of
the order of integration is justified by Fubini’s theorem.] Hence one has

∫
K
|f(x)| dx = 0, and since

K may be any compact subset of Ω, the proposition follows.

Proposition 11.1.4. The test functions ϕ on Ω are dense in L1(Ω) and L2(Ω).

Proof. Let Ω ⊂ Rn. The continuous functions with compact support are dense in L1(Ω) and also
in L2(Ω). Any continuous function f with compact support is a uniform limit of functions ϕν in
C∞0 with support in a fixed compact set K, e.g., through convolution with an approximate identity.
Finally,

‖f − ϕν‖pp ≤ vol(K) · (sup
K
|f − ϕν |)p, p = 1, 2,

Hence uniform convergence leads to Lp convergence.
The most important notion in distribution theory is that of distributional derivatives:

Definition 11.1.5. The partial derivatives of the distribution T on Ω ⊂ Rn are defined by formal
integration by parts:

〈 ∂T
∂xj

, ϕ〉 = −〈T, ∂ϕ
∂xj
〉.
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In Cn this leads to formulas for

DjT = ∂T

∂zj
= 1

2

(
∂T

∂xj
+ 1
i

∂T

∂yj

)
, D̄jT = ∂T

∂z̄j
= 1

2

(
∂T

∂xj
− 1
i

∂T

∂yj

)
:

〈DjT, ϕ〉 = −〈T,Djϕ〉, 〈D̄jT, ϕ〉 = −〈T, D̄jϕ〉.

Observe that the distributional derivatives are again distributions. For functions f of class C1,
integration by parts gives precisely the result of the definition:

〈 ∂f
∂xj

, ϕ〉 =
∫

Ω

∂f

∂xj
ϕdx1 . . . dxn = −

∫
Ω
f
∂ϕ

∂xj
dx1 . . . dxn = −〈f, ∂ϕ

∂xj
〉.

The boundary integrals vanish because ϕ has compact support. It follows that for such functions
the (first order ) distributional derivatives agree with the ordinary derivatives in their action
on test functions. Defining the product of a C∞ function ω and a distribution T by 〈ωT, ϕ〉 =
〈Tω, ϕ〉 = 〈T, ωϕ〉, one has the usual rule for differentiation of ωT . In higher order distributional
derivatives, the order of differentiation is immaterial since this is so for test functions. Distributional
differentiation is a continuous operation: if Tν → T in the distributional sense then ∂Tν

∂xj
→ ∂T

∂xj
:

〈∂Tν
∂xj

, ϕ〉 = −〈Tnu,
∂ϕ

∂xj
〉 → −〈T, ∂ϕ

∂xj
〉 = 〈 ∂T

∂xj
, ϕ〉.

We can now define a weak (locally integrable) solution of the ∂̄ problem

∂̄u = v =
n∑
1
vj dz̄j or D̄j = vj , j = 1, . . . , n

on Ω ⊂ Cn. Here it is assumed that the coefficients vj of the (0,1) form v are locally integrable
functions.

Definition 11.1.6. A locally integrable function u on Ω is called a weak solution of the equation
∂̄u = v if the distributional derivatives D̄ju are equal to the functions vj , considered as distributions
on Ω. That is, for each j = 1, . . . n and for all test functions ϕ ∈ C∞0 (Ω),

〈D̄ju, ϕ〉 = −
∫

Ω
uD̄jϕdm =

∫
Ω
vjϕdm = 〈vj , ϕ〉.

Observe that the equation ∂̄u = v can have a weak solution u only if

D̄jvk = D̄jD̄ku = D̄kD̄j = u = D̄kvj , ∀j, k

in the sense of distributions. In terms of the (0,2) form or “tensor”

∂̄1v
def=

∑
1≤j<k≤n

(D̄jvk − D̄kvj) dz̄j ∧ dz̄k, (11.1.3)

the resulting (local) integrability conditions may be summarized by

∂̄1v = 0 (often written ∂̄v = 0).. (11.1.4)
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11.2 When weak solutions are ordinary solutions

The L2 method will provide weak (global) solutions of the equation ∂̄u = v. Here we will show
that for smooth forms v such weak solutions are (almost everywhere) equal to ordinary smooth
solutions. We begin with an auxiliary result for the homogeneous equation ∂̄u = 0.

Proposition 11.2.1. Let u be an integrable function on the polydisc ∆(a, s) ⊂ Cn such that ∂̄u = 0
in the weak sense. Then there is a holomorphic function h such that u = h almost everywhere on
∆(a, s).

Proof. It is sufficient to prove the result for the unit polydisc ∆ = ∆(0, 1) and as the result is local,
it will be convenient to assume u is extended to a neighborhood U of ∆̄ and satisfies there ∂̄u = 0
weakly. Now form the C∞ functions

uε(z)
def= u ∗ ρε(z) =

∫
Cn
u(ζ)ρ(z − ζ) dm(ζ), ε > 0 (11.2.1)

where {ρε} is the standard C∞ approximate identity on Cn = R2n, in particular supp ρε ⊂ B̄(0, ε)
and ρε is radial, cf. Section 3.3. We will take r < d(∆, ∂U)/2 and ε always less than r. Note that if
u is a genuine holomorphic function, the mean value property over spheres gives that uε = u. [By
introducing polar coordinates in (11.2.1).] Since for a ∈ ∆ ρε(a− ζ) ∈ C∞0 (U) we have

∂uε
∂z̄j

(a) =
∫
u(ζ)∂ρε

∂z̄j
(a− ζ) dm(ζ) = 〈u, D̄jρε(a− ·)〉 = 〈D̄ju, ρε(a− ·)〉 = 0.

Hence uε is holomorphic on ∆. On the other hand one easily shows that

uε −→ u in L1(∆) as ε ↓ 0, (11.2.2)

cf. the proof of Proposition 11.1.3. If u is continuous the convergence in (11.2.2) is uniform, hence
u is continuous. For the general case there is a clever trick: Form

(u ∗ ρδ) ∗ ρε = (u ∗ ρε) ∗ ρδ = uε,

the first equality by general properties of convolution and the second by the remark after (11.2.1).
Now let ε→ 0. We find u ∗ ρδ = u almost everywhere, and the proof is complete.

Theorem 11.2.2. Suppose that the equation ∂̄u = v on Ω ⊂ Cn, with v =
∑n

1 vj dz̄j of class
Cp (1 ≤ p ≤ ∞), has a weak (locally integrable) solution u0 on Ω. Then the equation has Cp
solutions f on Ω and u0 is almost everywhere equal to one of them.

Proof. By Section 11.1, ∂̄1v = ∂̄1∂̄u0 = 0 in distributional and hence ordinary sense. It follows that
our equation has local solutions of class Cp [Proposition 7.5.5]. Hence every point a ∈ Ω belongs
to a polydisc Uλ ⊂⊂ Ω on whose closure the equation ∂̄u = v has a Cp solution fλ. Every other
integrable solution on Uλ is almost everywhere equal to fλ plus some holomorphic function hλ.
[Apply Proposition 11.2.1 to the difference with fλ.] This will in particular be the case for our
global weak solution u0:

u0 = fλ + hλ a.e. on Uλ, hλ ∈ O(Uλ). (11.2.3)

Ω is covered by polydiscs Uλ. On an intersection Uλµ,

fλ + hλ
a.e.= u0

a.e.= fµ + hµ,
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hence the smooth functions on the left and right must be equal throughout Uλµ. Thus we may
define a global Cp function f on Ω by setting

f
def= fλ + hλ on Uλ, ∀λ.

This f will be an ordinary solution of our ∂̄ equation on Ω: on each Uλ, ∂̄f = ∂̄fλ = v. Finally
u0 = f a.e. on Ω.

11.3 General solvability of ∂̄ for n = 1

Hörmander’s L2 method is best explained in the simple case of a planar domain Ω. There is no
restriction on the open set Ω ⊂ C and we will think of v as a locally square integrable function
[rather than a form]. The ∂̄ equation then becomes

∂u

∂z̄
= 1

2

(
∂u

∂x
− 1
i

∂u

∂y

)
= v or D̄u = v on Ω ⊂ C. (11.3.1)

Since there is only one complex variable, there is no integrability condition.
A weak L2 solution of (11.3.1) is a locally square integrable function u on Ω such that 〈D̄u, ϕ〉 =

〈v, ϕ〉 for all test functions ϕ on Ω. we may express this condition in terms of the inner product
( , )0 of L2(Ω), replacing ϕ by ϕ̄:

(v, ϕ)0 =
∫

Ω
vϕ̄ dm = 〈v, ϕ〉 = 〈D̄u, ϕ̄〉

= −〈u, D̄ϕ̄〉 = −(u,Dϕ)0, D = ∂

∂z
= 1

2

(
∂u

∂x
+ 1
i

∂u

∂y

)
.

(11.3.2)

The essential idea is to look for a solution u in an appropriate weighted space L2
β = L2(Ω, e−β),

where β is a real C∞ function. Here the inner product is

(f, g)β =
∫

Ω
fḡe−β dm =

∫
fḡe−β . (11.3.3)

We use the same notation (v, ϕ)β if v is locally in L2 and ϕ ∈ C∞0 (Ω). The domain Ω and the
Lebesgue measure dm on Ω will usually be omitted from our integrals.

Condition (11.3.2) must also hold for test functions e−βϕ instead of ϕ:

(v, ϕ)β = (v, ϕe−β)0 = (D̄, ϕe−β)0 = −(u,D{ϕe−β})0

= −(u, {Dϕ−Dβ · ϕ}e−β)0 = (u,−Dϕ+Dβ · ϕ)β = (u, δϕ)β , ∀ϕ.
(11.3.4)

Here we have written δ for the formal adjoint to D̄ relative to the weight e−β , which as usual is
defined by:

δ = δβ = −D +Dβ · id, (D̄u, ϕ)β = (D̄, ϕe−β)0 = (u, δϕ)β ∀ϕ. (11.3.5)

Observe that (11.3.4) is completely equivalent with (11.3.2): the product ϕe−β runs over all
test functions on Ω precisely when ϕ does. We will use (11.3.4) to derive a necessary and sufficient
condition for the existence of a weak solution in L2

β :

Proposition 11.3.1. The equation D̄u = v with v locally in L2, has a weak solution u in
L2
β = L2(Ω, e−β) if and only if there is a constant A = Av independent of ϕ such that

|(ϕ, v)β | = |(v, ϕ)β | ≤ A‖δϕ‖β , ∀ϕ ∈ C∞0 (Ω). (11.3.6)

Under condition (11.3.6) there is a solution u0 of minimal norm ‖u0‖β ≤ A; it is orthogonal to all
holomorphic functions in L2

β.
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Proof. (i) If u is a weak solution in L2
β , then by (11.3.4)

|(v, ϕ)β | = |(u, δϕ)β | ≤ ‖u‖β‖δϕ‖β , ∀ϕ.

(ii) Suppose we have (11.3.6). Then the pairing

l : δϕ 7→ (ϕ, v)β , ∀ϕ (11.3.7)

will define a continuous linear functional on the linear subspace W of L2
β , consisting of all test

functions of the form δϕ. Indeed, l is well defined on W because δϕ1 = δϕ2 implies (ϕ1, v)β =
(ϕ2, v)β , see (11.3.6) with ϕ = ϕ1 −ϕ2. By the same inequality the linear functional has norm ≤ A.
We extend l by continuity to the closure W̄ of W in L2

β : if ψk in W tends to ψ in L2
β , l(ψk) tends

to a limit [Cauchy criterion] which we call l(ψ). The extended linear functional will still be called l
and there is no change in norm.

Applying the Riesz representation theorem to l on the Hilbert space H = W̄ , we conclude that
there is a unique element u0 ∈ W̄ ⊂ L2

β such that

l(w) = (w, u0)β , ∀w ∈ W̄ (11.3.8)

and
‖u0‖β = ‖l‖ ≤ A. (11.3.9)

Specializing to w = δϕ we obtain the relation

(ϕ, v)β = l(δϕ) = (δϕ, u0)β or (v, ϕ)β = (u0, δϕ)β , ∀ϕ.

By (11.3.4), u0 is a weak solution of the equation D̄u = v on Ω; by (11.3.9), it satisfies the growth
condition ‖u0‖β ≤ A.

(iii) The solution of equation (11.3.1) in L2
β is unique up to a solution of the homogeneous

equation D̄u = 0, that is, up to a holomorphic function h in L2
β . Thus the general solution has the

form u = u0 + h with u0 as above. The solution u0 in W̄ will be orthogonal to every holomorphic h
in L2

β . Indeed,
0 = (D̄h, ϕ)β = (h, δϕ)β , ∀ϕ,

hence h ⊥ W and therefore h ⊥ u0 ∈ W̄ . Thus our special solution u0 has minimal norm in L2
β :

‖u0 + h‖2β = ‖u0‖2β + ‖h‖2β .

Derivation of a suitable basic inequality (11.3.6). The starting point is provided by an important
a priori inequality for test functions ϕ. When we compute the commutator of D̄ and its adjoint
δ = δβ , the Laplacian of β will appear:

(D̄δ − δD̄)ϕ = D̄(−Dϕ+Dβ · ϕ)− (−D +Dβ · id)D̄ϕ = D̄Dβ · ϕ.

We will set
D̄Dβ = βzz̄ = 1

4∆β = b.

The commutator formula shows that

(bϕ, ϕ)β = (D̄Dβ · ϕ,ϕ) = (D̄δϕ, ϕ)− (δD̄ϕ, ϕ) = (δϕ, δϕ)β − (D̄ϕ, D̄ϕ)β .

Thus we arrive at the following
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Proposition 11.3.2 (A PRIORI INEQUALITY).∫
Ω
|ϕ|2e−βb ≤

∫
Ω
|δϕ|2e−β , ∀ϕ ∈ C∞0 (Ω). (11.3.10)

In order to exploit (11.3.10) we have to impose the condition

b = 1
4∆β > 0,

that is β must be strictly subharmonic on Ω, cf. Section 8.3. We now apply the Schwarz inequality
to (ϕ, v)β . Since we have (11.3.10) it is natural to estimate in the following way:

|(ϕ, v)β |2 = |
∫
ϕ(e−βb)1/2 · v̄(e−βb−1)1/2|2

≤
∫
|ϕ|2e−βb

∫
|v|2e−βb−1 ≤

∫
|v|2e−βb−1‖δϕ‖2β .

(11.3.11)

In words
BASIC INEQUALITY (n = 1) For every strictly subharmonic function β ∈ C∞(Ω) and every

function v ∈ L2
β+log b = L2(Ω, e−βb−1), there is an inequality (11.3.6) with

A = Av = ‖v‖β+log b.. (11.3.12)

Combining 11.3.12 and Proposition 11.3.1 and referring to Theorem 11.2.2 on the existence of
smooth solutions, we obtain

First Main Theorem 1 (case n = 1). Let β ∈ C∞(Ω) be strictly subharmonic, so that b = βzz̄ > 0.
Let v be any function in L2(Ω, e−βb−1). Then there exists a function u in L2(Ω, e−β) which solves
the equation D̄u = v in the weak sense on Ω and which satisfies the growth condition∫

Ω
|u|2e−β dm ≤

∫
Ω
|v|2e−βb−1 dm.

If v is of class Cp on Ω, 1 ≤ p ≤ ∞, the solution u can be modified on a set of measure zero so as
to become a classical Cp solution.

It is easy to show that for every Cp function v on Ω, there is a strictly subharmonic function β
such that v is in L2(Ω, e−βb−1), cf. Lemma 11.6.3 below. Thus the ∂̄ equation is generally solvable
on every planar domain. For other applications it is convenient to derive a second main theorem
which does not involve derivatives of β (Section 11.7). In the next sections we will extend the first
main theorem to pseudoconvex domains in Cn.

11.4 The L2 method for ∂̄ when n ≥ 2

We will describe how to obtain weak L2 solutions of the equation ∂̄u = v on domains Ω ⊂ Cn. Here
v is a (0,1) form

∑n
1 vj dz̄j that is locally in L2 [ that is vj ∈ L2

loc(Ω), ∀j and which satisfy the
integrability condition ∂̄1v = 0 (11.1.3). More precisely, our forms v as well as the solutions u will
belong to certain weighted spaces L2

β = L2(Ω, e−β), where β is a real C∞ function. For (0,1) forms
the defining inner product is

(f, g)β =
∫

Ω

( n∑
1
fj ḡj

)
e−β dm =

n∑
1

(fj , gj)β . (11.4.1)
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We also write f · ḡ for
∑n

1 fj ḡj and |g|2 for
∑n

1 |gj |2. The same notations are used if f is only
locally in L2 while G is a (0,1) test form ϕ on Ω, that is a form

∑n
1 ϕj dz̄j whose coefficients are

test functions. Analogous definitions will apply to (0,2) forms such as ∂̄1v in formula (11.1.3). If
the context permits, Ω, dm and the weight index β will be omitted from the formulas.

A weak solution of the equation ∂̄u = v on Ω is a locally integrable function U such that

(D̄j , ϕj)0 = −(u,Djϕj)0 = (vj , ϕj)0, j = 1, . . . , n

for all test functions ϕj on Ω, cf. Definition 11.17 with ϕ̄j instead of ϕ. Introducing the weight
functions e−β , this requirement may be written in the equivalent form

(vj , ϕj)β = (u,−Djϕj +Djβ · ϕj)β = (u, δjϕj)β , ∀j, ϕj ,

cf. (11.3.4) We can summarize those equations by a single condition:

(v, ϕ)β = (∂̄u, ϕ)β =
∑
j

(D̄ju, ϕj)β =
∑
j

(u, δjϕj)β

= (u, δϕ)β , for all test forms ϕ =
n∑
1
ϕj dz̄j on Ω.

(11.4.2)

Here we have used the inner product notation (11.4.1) for forms and the corresponding nota-
tion (11.3.3) for functions, while

δϕ = δβϕ =
n∑
1
δjϕj , δj = −Dj + (Djβ) id . (11.4.3)

By (11.4.2) δ = δβ is the formal adjoint to ∂̄ relative to the weight e−β . [Observe that δ sends (0,1)
forms to functions.]

It readily follows from (11.4.2) that the equation ∂̄u = v has a weak solution u in L2
β(Ω) if and

only if there is a basic inequality

|(ϕ, v)β | = |(v, ϕ)β | ≤ A‖δϕ‖β , for all test forms ϕ on Ω, (11.4.4)

where A = Av is a constant independent of ϕ. Indeed, Proposition 11.3.1 immediately extends to
the n-dimensional situation; the proof remains virtually unchanged. The next step is to derive a
suitable a priori inequality for test forms.

For test functions ψ on Ω and the operators D̄j and their adjoints δj in L2
β , we have the

commutator relations

(D̄kδj − δjD̄k)ψ = D̄k(−Djψ +Djβ · ψ)− (−Dj + (Dj)β · id)D̄kψ = DjD̄kβ · ψ.

Thus for all test forms ϕ on Ω, taking ψ = ϕj and using the inner product of the function space
L2
β ,

n∑
j,k=1

(
DjD̄kβ · ϕj , ϕk

)
=
∑
j,k

(
D̄kδjϕj , ϕk

)
−
∑
j,k

(
δjD̄kϕj , ϕk

)
=
∑
j,k

(δjϕj , δkϕk) + {−
∑
j,k

(
D̄kϕj , D̄jϕk

)
}.

(11.4.5)

The first term on the right is equal to(∑
j

δjϕj ,
∑
k

δkϕk

)
= ‖δϕ‖2. (11.4.6)
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The last term in (11.4.5) may be rewritten as

−
∑
j,k

= 1
2
∑
j,k

(
D̄kϕj − D̄jϕk, D̄kϕj − D̄jϕk

)
−
∑
j,k

(
D̄kϕj , D̄kϕj

)
,

hence by the definition of ∂̄1 in (11.1.3),

−
∑
j,k

(
D̄kϕj , D̄jϕk

)
=

∑
1≤j<k≤n

∥∥D̄kϕj − D̄jϕk
∥∥2 −

∑
j,k

∥∥D̄kϕj
∥∥2 ≤ ‖∂̄1ϕ‖2. (11.4.7)

As to the left-hand side of (11.4.5), writing b = b(z) for the smallest eigenvalue λβ(z) of the complex
Hessian of β(z), one has

∑
(DjD̄kβ)ϕjϕ̄k ≥ b|ϕ|2, hence∑

j,k

(
DjD̄kβ · ϕj , ϕk

)
≥
∫

Ω
b|ϕ|2e−β . (11.4.8)

Combining all the relations (11.4.5), we obtain the following

Proposition 11.4.1 (A PRIORI INEQUALITY (for test forms)).∫
Ω
|ϕ|2e−βb ≤ ‖δϕ‖2β + ‖∂̄1ϕ‖2β , b = λβ , δ = δβ . (11.4.9)

For the application of (11.4.9), we will require that b(z) be > 0 on Ω, in other words that β be
strictly plurisubharmonic.

Because of the final term ‖∂̄1ϕ‖2 in (11.4.9), it is not possible to obtain a basic inequality (11.4.4)
for (v, ϕ)β by straightforward application of Schwarz’s inequality as in the case n = 1 (11.3.11). In
order to keep the norm ‖∂̄ϕ‖ small, one has to use the fact that ∂̄1v = 0. Let us assume for the
moment that v is in L2

β . [If necessary, one can initially replace Ω by a suitable subdomain or adjust
β outside suppϕ.] The idea is to split the test form ϕ into two parts, one in the null space N of ∂̄1
in L2

β and one orthogonal to it:

ϕ = f + g, f ∈ N, g ⊥ N. (11.4.10)

We will verify that N is closed, so that the decomposition is possible, and that as a result

(v, ϕ)β = (v, f)β , ∂̄1f = 0, δβf = δβϕ ∈ C∞0 (Ω). (11.4.11)

Indeed suppose fν → f̃ in L2
β and ∂̄1fν = 0 for all ν in the sense of distributions, in other words,

〈D̄jfνk − D̄kfνj , ϕjk〉 = −〈fνk, D̄jϕjk〉+ 〈fνj , D̄kϕjk〉 = 0

for all test functions ϕjk and all j, k. Passing to the limit in the second member, one concludes
that ∂̄1f̃ = 0, hence f̃ ∈ N . Thus the orthogonal decomposition (11.4.10) exists and since v ∈ N ,
one has (v, g)β = 0 and the first part of (11.4.11) follows. Finally, note that ∂̄ψ is in N for every
test function ψ on Ω: ∂̄1∂̄ψ = 0. Thus

0 = (g, ∂̄ψ)β = (δβg, ψ)β , ∀ψ ∈ C∞0 (Ω) (11.4.12)

so that δg = 0 and δf = δϕ.
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With (11.4.11) in hand and aiming for a basic inequality (11.4.4), we would like to proceed as
follows, cf. (11.3.11), (11.3.12):

‖(v, ϕ)β‖2 = ‖(v, f)β‖2 ≤
∫
|f |2e−βb

≤ ‖v‖2β+log b(‖δf‖2β + ‖∂̄1f‖2β) = A2
v‖δϕ‖2β .

(11.4.13)

Observe that the central step would require an extension of the a priori inequality (11.4.9) to more
general forms f in L2

β for which δf and ∂̄1f are also in L2
β . If Ω is all of Cn, such an extension may

be proved by straightforward approximation of f by test forms, cf. the approximation theorem 11.5.1
below. However, on general pseudoconvex Ω, the approximation of 11.5.1 requires modification of
the weight function near the boundary of Ω. It is difficult to see then how one could prove the
precise analog to (11.4.9) for our form f , In Section 11.5 we will carefully select a different weight
function e−γ , where γ ≥ β grows very rapidly towards the boundary of Ω. We then decompose our
test form ϕ in L2

γ to prove the desired

Proposition 11.4.2 (BASIC INEQUALITY ). For psh exhaustible Ω ⊂ Cn, strictly psh β on Ω
[so that b = λβ > 0] and every (0,1) form v in L2(Ω, e−βb−1) with ∂̄1v = 0, one has [just as for
n=1!]

|(ϕ, v)β | ≤ ‖v‖β+log b‖δβϕ‖β for all test forms ϕ on Ω. (11.4.14)

As in Section 11.3, the existence of L2 solutions to the ∂̄ equation will now follow from the
Riesz representation theorem. For the precise result, see Section 11.6.

11.5 Proof of the basic inequality

Let Ω, β and v be as in the statement of the inequality (11.4.14) and let ϕ be a given test form
on Ω. If we decompose ϕ as in (11.4.10), the question arises whether we can extend the a priori
inequality (11.4.9) to more general forms f with δf and ∂̄1f in L2

β . The answer is yes if we know
that f is in L2

β−σ, where the (continuous) function σ becomes sufficiently large near the boundary
of Ω:

σ(z) ≥ 2 log+ c

d(z) for some constant c > 0 and d(z) = d(z, ∂Ω). (11.5.1)

[If Ω = Cn one may simply take σ = 0.] Such a result may be derived from the following

Theorem 11.5.1 (APPROXIMATION THEOREM). To any given (0,1) form f in L2
β−σ with δf

and ∂̄1f in L2
β and any number ε > 0, there is a test form ψ on Ω such that

‖f − ψ‖β + ‖δ(f − ψ)‖β + ‖∂̄1(f − ψ)‖β < ε.

Here the adjoint δ may belong to β (11.4.3) or to any other given C∞ function α on Ω.

Proof. Let f be as in the theorem.
(i) Suppose first that f =

∑n
1 fj dz̄j has compact support K ⊂⊂ Ω. Then one can use

approximating test forms ψ of the type f ∗ ρε, where {ρε} is the usual standard C∞ approximate
identity on Cn with supp ρε = B̄(0, ε), cf. the proofs of Propositions 11.1.3 and (11.1.4).

Indeed, since f , δf and ∂̄1f are in the weighted L2 spaces on Ω, we have fj ∈ L2(K), ∀j and,
coefficientwise,

δf = δαf = −
∑

Djfj +
∑

(Djα)fj ∈ L2(K) ∂̄1f ∈ L2(K)
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Figure 11.1.

as a consequence, also
∑
Djfj ∈ L2(K). Taking ε < r < d(K, ∂Ω)/2, one finds that supp(f ∗ ρε) ⊂

Kr, the r-neighborhood of K. As in the proof of Proposition 11.1.4, we then have the following
convergence relations in L2(Kr) [and hence in L2(Ω, e−β)] when ε ↓ 0:

fj ∗ ρε → fj , ∀j,

δ(f ∗ ρε) = −
(∑

Djfj

)
∗ ρε +

∑
(Djα)(fj ∗ ρε)→ δf,

∂̄1(f ∗ ρε) = (∂̄1f) ∗ ρε → ∂̄1f (coefficientwise).

(11.5.2)

(ii) The general case is reduced the the preceding with the aid of cutoff functions ω, but these
have to be chosen with some care. Making use of the standard exhaustion of Ω by compact sets

Es = {z ∈ Ω : d(z) ≥ 1/s, |z| ≤ s}, s = 1, 2 . . . ,

we take ρε(z) = ε−2nρ1(z/ε) as before and define

ωs = χs ∗ ρr : chis characteristic function of Es, r = 1/2s.

By this definition (cf. Figure 11.1), suppωs ⊂ E2s and ωs = 1 on a neighborhood of Es/2, so that
∂ωs = D1ωs dz1 + · · ·+Dnωs dzn has its support in E2s − Es/2. It follows that

|Djωs(z)| = |D̄jωs(z)| = |χs ∗Djρr(z) =

∣∣∣∣∣
∫
B(0,r)

χs(z − ζ)Djρr(ζ) dm(ζ)

∣∣∣∣∣
≤ 1
r

∫
B(0,1)

|Djρ1(w)| dm(w) = 2sc1 < 4c1/d(z),
(11.5.3)

hence
|δωs| ≤ c2/d(z)

since d(z) < 2/s on supp ∂ωs.
Now let η > 0 be given. We will show that for large s,

‖f − ωs‖ < η, ‖δf − δ(ωsf)‖ < η, ‖∂̄1f − ∂̄1(ωsf)‖ < η. (11.5.4)
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The first inequality requires only that f ∈ L2
β [we know more]:

‖f − ωs‖2 ≤
∫

Ω\Es/2

|f |2e−β < η2 for s > s1.

For the second inequality we observe that

δ(ωsf) = −
∑

Dj(ωsfj) +
∑

(Djα)ωsfj = ωsδf −
∑

(Djωs)fj .

Thus
‖δf − δ(ωsf)‖ ≤ ‖δf − ωsδf‖+ ‖ |∂ωs| · |f | ‖;

The proof is completed by the estimates

‖δf − ωsδf‖2 ≤
∫

Ω\Es/2

|δf |2e−β < η2/4 for s > s2,

∫
|∂ωs|2|f |2e−β ≤

∫
E2s\Es/2

c22|f |2e−β/d2

(
c22/c

2) ∫
Ω\Es/2

|f |2e−β+σ < η2/4 for s > s3.

(11.5.5)

In the final step we have used (11.5.3) and inequality (11.5.1): 2 log c/d ≤ σ; by our hypothesis, f
is in L2

β−σ.
The proof of the third inequality (11.5.4) is similar, cf. exercise 11.14. With (11.5.4) established,

the proof of Theorem 11.5.1 is completed by part (i).

New decomposition of ϕ. Returning to the proof of the basic inequality, the difficulty is that in
general, the form f in the decomposition (11.4.10) will not be in L2

β−σ. We therefore recommence
and do our splitting of ϕ in a space L2

γ , where γ will be determined later. To begin with, we require
that

γ ≥ β on Ω, γ = β on suppϕ, γ ≥ β + log b near ∂Ω ∪∞.

By the last condition, v ∈ L2
β+log b will be in L2

γ . We now split

ϕ = f + g, f ∈ N(∂̄1) ⊂ L2
γ , g ⊥ N. (11.5.6)

Since v ∈ N , so that (v, g)γ = 0 and hence δγg = 0 [cf. (11.4.11)],

(v, ϕ)β = (v, ϕ)γ = (v, f)γ , ∂̄1f = 0, δγf = δγϕ = δβϕ. (11.5.7)

By Schwarz’s inequality,

|(v, ϕ)β |2 = |(v, f)γ |2 ≤
∫
|v|2e−γ+σb−1

∫
|f |2e−γ−σb. (11.5.8)

[The reason for having the factor exp(−γ−σ) in the last integral is that we later want to approximate
f by test forms, taking the β of the approximation theorem equal to γ + σ.]

It will be necessary to impose suitable additional conditions on σ and γ. The definitive require-
ments on σ are:

σ ∈ C∞, λσ ≥ 0, σ = 0 on K def= suppϕ, σ(z) ≥ 2 log+ c/d(z). (11.5.9)
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The function γ will be taken C∞ strictly psh and ≥ β+σ, so that the last integral with v in (11.5.8)
is finite. The complete set of requirements for γ is listed in (11.5.13) below.

Adjusted a priori inequality for test forms. Our aim is to estimate the final integral in (11.5.8).
To that end we first derive an ad hoc inequality for test forms ψ and then we will use approximation.
The a priori inequality (11.41) with ϕ replaced by ψ and β by γ + σ gives∫

Ω
|ψ|2e−γ−σλγ+σ ≤ ‖δγ+σψ‖2γ+σ + ‖∂̄1ψ‖2γ+σ, (11.5.10)

where λγ+σ is the smallest eigenvalue of the complex Hessian of γ + σ. We wish to replace δγ+σψ
by δγψ since we have information about δγf . By (11.4.3),

δγ+σψ = δγψ +
n∑
1

(Djσ)ψj = δγψ + ∂σ · ψ.

Hence by the elementary inequality |c1 + c2|2 ≤ (1 + θ)|c1|2 + (1 + θ−1)|c2|2 with arbitrary θ > 0:

‖δγ+σψ‖2 = ‖δγψ + ∂σ · ψ‖2 ≤ (1 + θ)‖δγψ‖2γ+σ + (1 + θ−1)
∫
|∂σ|2|ψ|2e−γ−σ. (11.5.11)

Combining (5g, g’) and noting that λγ+σ ≥ λγ , we obtain∫
|ψ|2e−γ−σ(λγ − (1 + θ−1)|∂σ|2) ≤ (1 + θ)‖δγψ‖2γ+σ + ‖∂̄1ψ‖2γ+σ. (11.5.12)

We are thus led to impose the following definitive condition on γ ∈ C∞(Ω):{
λγ ≥ b+ (1 + θ−1)|∂σ|2, γ = β on K = suppϕ,
γ ≥ β + σ on Ω, γ ≥ β + log b near ∂Ω ∪∞.

(11.5.13)

The existence of γ = γθ, after σ has been selected, will be verified by means of Proposition 11.5.3
below. Inequality (11.5.12) then gives us the desired

Proposition 11.5.2 (AD HOC A PRIORI INEQUALITY). for test forms ψ on Ω. For b = λβ,
for any constant θ > 0 and with σ and γ = γ(β, σ, θ,K) as in (11.5.9), (11.5.13),∫

|ψ|2e−γ−σb ≤ (1 + θ)‖δγψ‖2γ+σ + ‖∂̄1ψ‖2γ+σ. (11.5.14)

Use of approximation to establish the basic inequality. The above inequality for test forms readily
extends to general forms f ∈ L2

γ with δγf and ∂̄1f in L2
γ+σ. Indeed, let E ⊂ Ω be compact and

η > 0. By the approximation theorem 11.5.1 with γ + σ instead of β, there will be a test form ψ
such that, using (11.5.14) in the middle step,∫

E

|f |2e−γ−σb ≤
∫
E

|ψ|2e−γ−σb+ η ≤ (1 + θ)‖δγψ‖2γ+σ + ‖∂̄1ψ‖2γ+σ + η

≤ (1 + θ)‖δγf‖2γ+σ + ‖∂̄1f‖2γ+σ + 2η.
(11.5.15)

We now may first let η go to 0 and then let E tend to Ω. Specializing to the form f obtained
in (11.5.3), (??), we conclude from (11.5.15) that∫

Ω
|f |2e−γ−σb ≤ (1 + θ)‖δγf‖2γ+σ + ‖∂̄1f‖2γ+σ

= (1 + θ)‖δβϕ‖2β [γ + σ = β on K = suppϕ].
(11.5.16)
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Hence by (11.5.8), noting that γ − σ ≥ β on Ω,

|(v, ϕ)β |2 ≤
∫
|v|2e−βb−1 · (1 + θ)‖δβϕ‖2β .

Since γ = γθ no longer appears here, we can let θ go to 0 and the basic inequality (11.4.14) follows.
It remains to verify the existence of σ and γ with the properties listed in (11.5.9), (11.5.13). To

that end we prove one final

Proposition 11.5.3. Let Ω, β and b = λβ be as in the basic inequality (11.4.14). Then to any
compact subset K ⊂ Ω and any positive constant A, there exist C∞ psh functions σ and τ , with
0 ≤ σ ≤ τ on Ω and σ = τ = 0 on K, such that

σ(z) ≥ 2 log+ c/d(z) for some c > 0,

λτ ≥ A|dσ|2 = A

n∑
1
|Dj |σ|2 on Ω,

τ(z) ≥ log b(z) outside some compact K ′ ⊂ Ω.

(11.5.17)

Taking K = suppϕ and A = 1 + θ−1, the function σ will satisfy the conditions (11.5.9) and the
function γ = β + τ will satisfy the conditions (11.5.13) [λβ+τ ≥ λβ + λτ = b+ λτ ].

Proof of the Proposition. The proof is a fairly straightforward application of Theorem 9.2.1 on the
existence of rapidly growing psh C∞ functions on a psh exhaustible domain Ω. One first observes
that there are continuous psh exhaustion functions α ≥ 0 and α′ ≥ 0 on Ω such that

K ⊂ Z(α)0 = intZ(α), Z(α) ⊂ Z(α′)0,

where Z stands for “zero set”. Starting out with an arbitrary continuous exhaustion function α0,
there will be a constant M with α0 −M < 0 on K and one takes α = sup(α0 −M, 0); similarly for
α′.

If Ω = Cn we choose σ = 0, otherwise we set

2c = d(Z(α′), ∂Ω), m1(z) = 2 log+ c/d(z).

The nonnegative function m1 will vanish for d(z) ≥ c, so that m1 = 0 on a neighborhood of Z(α′).
Hence by Theorem 9.2.1 there is a C∞ function σ on Ω such that

σ ≥ m1 and λσ ≥ 0, while σ = 0 on a neighborhood of Z(α).

Once σ has been chosen, we set

m2 =
{
σ on Z(α′)
sup(σ, log b) on Ω \ Z(α′),

µ = A|∂σ|2 on Ω. (11.5.18)

Since m2 = µ = 0 on a neighborhood of Z(α), Theorem 9.2.1(iii) assures the existence of τ ∈ C∞(Ω)
such that

τ ≥ m2 and λτ ≥ µ, while τ = 0 on K.
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11.6 General solvability of ∂̄ on pseudoconvex domains

The basic inequality (11.4.14) and the Riesz representation theorem will give the following result
for Cn:

Theorem 11.6.1 (FIRST MAIN THEOREM). Let Ω ⊂ Cn be pseudoconvex or plurisubharmoni-
cally exhaustible and let β ∈ C∞(Ω) be strictly plurisubharmonic, so that the smallest eigenvalue
b = b(z) = λβ(z) of the complex Hessian [ ∂2β

∂zi∂z̄j
; ] is strictly positive. Let v =

∑n
1 vj dz̄j be a (0,1)

form in L2(Ω, e−βb−1) which (distributionally) satisfies the integrability condition ∂̄1v = 0. Then
there exists a function u in L2(Ω, e−β) which solves the equation ∂̄u = v in the weak sense on Ω
and which satisfies the growth condition∫

Ω
|u|2e−β dm ≤

∫
Ω
|v|2e−βb−1 dm.

If v is of class Cp(Ω), 1 ≤ p ≤ ∞, such a solution u exists in the classical sense as a Cp function.

For the proof one uses the same method as in Section 11.3: Proposition 11.3.1 readily extends to
Cn, cf. (11.4.4). The basic inequality (??) gives the constant A = Av = ‖v‖β + log b which provides
the upper bound for ‖u‖β . If v ∈ Cp(Ω) then the solution u may be modified on a set of measure 0
to obtain a Cp solution [Theorem 11.2.2].

We will now derive

Corollary 11.6.2. On a pseudoconvex domain Ω the equation ∂̄u = v is globally Cp solvable for
every (0,1) form v of class Cp with ∂̄1v = 0.

In view of Theorem 11.6.1 it is enough to prove:

Lemma 11.6.3. Let Ω ⊂ Cn be pseudoconvex and let v be a locally square integrable (0,1) form
on Ω. Then there exists a strictly psh C∞ function β on Ω such that v ∈ L2(Ω, e−βλ−1

β ).

Proof. Write Ω = ∪jKj , a countable increasing union of compact subsets. Define a locally bounded
function m on Ω:

m(z) = log+
(
j2
∫
Kj+1\Kj

|v|2
)

on Kj+1 \Kj , j = 1, 2, . . . ,

so that ∫
Kj+1\Kj

|v|2e−m ≤ 1/j2.

Next set µ ≡ 1. Then v ∈ L2(Ω, e−mµ−1). Now by Theorem 9.2.1 there exists β ∈ C∞(Ω) with
β ≥ m and λβ ≥ µ, hence v ∈ L2(Ω, e−βλ−1

β ).

The case p =∞ of Corollary 11.6.2 gives the all important final

Corollary 11.6.4. Every pseudoconvex domain is a ∂̄ domain and hence a Cousin-I domain
[cf. Section 7.5]. More significant, every pseudoconvex domain is a domain of holomorphy [cf. Section
7.7].
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11.7 Another growth estimate for the solution of ∂̄ and interpolation

In the first main theorem 11.6.1, the factor b−1 in the integral involving v is somewhat inconvenient.
This factor disappears in the special case β = |z|2 for which b = λβ = 1. [Verify this]. Thus for
v ∈ L2(Ω, e−|z|2) one gets a nice symmetric growth estimate [cf. exercise 11.16].

More important, in the general case v ∈ L2(Ω, e−α) [with C∞ psh α] one can also obtain a
growth estimate that is free of derivatives of the weight function. Substituting β = α+ γ in the
first main theorem, with γ strictly psh so that λγ > 0, one has

e−βb−1 = e−α−γ/λα+γ ≤ e−αe−γ/λγ (11.7.1)

and one would like this to be ≤ ce−α. Thus one requires that

e−γ ≤ cλγ . (11.7.2)

Setting γ = g(|z|2) and first taking n = 1 so that λγ = γzz̄ one is led to the condition

e−g(t) ≤ c{tg′′(t) + g′(t)},

cf. (8.1.2). Some experimentation gives the solution g(t) = 2 log(1 + t), c = 1/2, which will also
work for n ≥ 2. Theorem 11.6.1 will now lead to the case α ∈ C∞ of the following

Theorem 11.7.1 (SECOND MAIN THEOREM). Let Ω ⊂ Cn be pseudoconvex and let v be any
(0,1) form of class Cp(Ω), 1 ≤ p ≤ ∞ such that ∂̄1v = 0. Let α be any plurisubharmonic function
on Ωsuch that v ∈ L2

α. Then the equation ∂̄u = v has a Cp solution u on Ω satisfying the growth
condition ∫

Ω
|u|2e−α(1 + |z|2)−2 dm ≤ 1

2

∫
Ω
|v|2e−α dm. (11.7.3)

Proof. (i) In the case α ∈ C∞ with λα ≥ 0, the result is obtained from Theorem 11.6.1 by setting

β = α+ 2 log(|z|2 + 1).

Indeed a short calculation will show that [cf. exercise 11.20]

b = λβ ≥ 2(1 + |z|2)−2, e−βb−1 ≤ 1
2e
−α.

Thus if v ∈ L2
α, then also v ∈ L2

β+log b and the result follows.
(ii) Since the estimate (11.7.3) with α ∈ C∞ contains no derivatives of α, the result can be

extended to arbitrary psh functions α on Ω by a suitable limit process.
Let {Ωk}, k = 1, 2, . . . be an exhaustion of Ω with open pseudoconvex domains as given by

(9.1.1) or Theorem 9.2.1, which have compact closure in Ω. Regularizing the given psh function
α as in Section 8.4, we can construct C∞ psh functions αk defined on Ωk and such that αk ↓ α
(k ≥ k0) on each compact subset of Ω.

By part (i) there are functions uk ∈ Cp(Ωk) such that ∂̄uk = v on Ωk and∫
Ωk
|uk|2e−αk(1 + |z|2)−2 ≤ 1

2

∫
Ωk
|v|2e−αk ≤ 1

2

∫
Ω
|v|2e−α, k = 1, 2, . . . . (11.7.4)

As αk ≤ αj , it follows that the L2 norms of the functions uk on a fixed set Ωj are uniformly bounded
for k ≥ j. Thus one can choose a subsequence {uν}, ν = νk → ∞ which converges weakly in
L2(Ωj) for each j to a limit u in L2

loc(Ω). This convergence is also in distributional sense [“integrate”
against a test form].
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For such a limit function u, since differentiation is a continuous operation, cf. Section 11.1,

∂̄u = lim ∂̄uν = v in distributional sense on Ω.

Furthermore, for each j and every k ≥ j,∫
Ωj
|u|2e−αk(1 + |z|2)−2 ≤ lim inf

ν

∫
Ωj
|uν |2e−αk(1 + |z|2)−2

≤ lim inf
ν

∫
Ωj
|uν |2e−αν (1 + |z|2)−2 ≤ 1

2

∫
Ω
|v|2e−α.

(11.7.5)

Letting k → ∞, the monotone convergence theorem shows that
∫

Ωj |u|
2e−α(1 + |z|2)−2 has the

upper bound of (11.7.3) for each j and hence (11.7.3) follows.
Because v is of class Cp, u can finally be changed on a set of measure zero to provide a Cp

solution [Theorem 11.2.2].

The main theorems enable one to obtain solutions to various problems on pseudoconvex domains
Ω subject to growth conditions. We mention one:

Application 11.7.2 (Interpolation by analytic functions). . Let {aλ} be a sequence of pairwise
distinct points without limit point in Ω and suppose that α is a psh function on Ω which becomes
−∞ in such a way that e−α is non-integrable on every small ball Br = B(aλ, r):∫

Br

e−αdm = +∞, ∀r ∈ (0, rλ).

Then a continuous function u in L2(Ω, e−α(1 + |z|2)−2) must vanish at each point aλ: for small r,∫
Br

|u(z)|2e−α(1 + |z|2)−2 ≥ 1
2 |u(aλ)|2(1 + |aλ|2)−2

∫
Br

e−α.

This fact can be used to prove the existence of analytic solutions h to interpolation problems

h(aλ) = bλ, ∀λ, h ∈ O(Ω), Ω pseudoconvex (11.7.6)

which satisfy appropriate growth conditions. One first determines a simple C2 solution g to the
interpolation problem, then subtracts a suitable non-analytic part u to obtain h in the form g − u.
The condition on u will be

∂̄u = v
def= ∂̄g on Ω, u(aλ) = 0, ∀λ. Here v ∈ C1. (11.7.7)

One now chooses a psh function α on Ω which is singular on the sequence {aλ} in the way
indicates above, while

∫
|∂̄g|2e−α <∞. [Apparently we had better choose g constant in a suitable

neighborhood of {aλ} so that ∂̄g vanishes at the singular points of α.] Then the C1 solution u of
the ∂̄ equation guaranteed by Theorem 11.7.1 will satisfy the condition (11.7.7) and the difference
h = g − u will solve the interpolation problem (11.7.6). The growth of h will be limited by the
growth of g and that of u; for the latter one has condition (11.7.3). By the solid mean value theorem
for analytic functions on balls cf. [exercise 2.23], an L2 estimate for h can be transformed into a
pointwise estimate.

Example 11.7.3. Determine a holomorphic function h on C of limited growth such that h(k) = bk,
k ∈ Z, where {bk} is any given bounded sequence of complex numbers.
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Thinking of the special case bk = 0, ∀k, it is plausible that an interpolating function h will
not grow more slowly than sin πz. However, it need not grow much faster! Indeed, let ω be a C2

function on C such that ω(z) = 1 for |z| ≤ 1/4, ω(z) = 0 for |z| ≥ 1/2. Then

g(z) =
∞∑
−∞

bkω(z − k)

will be a C2 solution of the interpolation problem. A typical non-integrable function on a neighbor-
hood of 0 in C is 1/|z|2; a function that is non-integrable on every neighborhood of every integer
is 1/| sin2 πz|. Thus a first candidate for α will be 2 log | sin πz|. Since D̄g is bounded on C and
vanishes outside the set of annuli 1

4 ≤ |z − k| ≤ 1
2 , while 1/| sin2 πz| is bounded on that set,∫

C
|D̄g|2 1

| sin2 πz|(1 + |z|2)
dm ≤ const

∫
| Im z|≤ 1

2

1
1 + |z|2 dm <∞.

Thus a good subharmonic function α is furnished by

α(z) = 2 log | sin πz|+ log(1 + |z|2).

The solution of the equation ∂̄u = ∂̄g guaranteed by Theorem 11.7.1 will satisfy the growth
condition ∫

C
|u|2 1
| sin2 πz|(1 + |z|2)3 dm <∞.

Since g is bounded, it will follow that h = g − u is bounded by c|z|3| sin πz| for | Im z| ≥ 1; the
bound c|z|3 will also hold for | Im z| < 1, |z| ≥ 1.

For this particular problem one knows an explicit solution by a classical interpolation series,
cf. [9]. It is interesting that the general method used here gives a nearly optimal growth result.

Some other applications of Theorem 11.7.1 are indicated in the exercises 11.21, 11.22, 11.24;
cf. also [26, 66, 67, 43, 53]. Further applications are certainly possible.

11.8 “Higher order ” ∂̄ equations

Up till now we have only discussed the equation

∂̄u = v on Ω ⊂ Cn (11.8.1)

tor the case of (0,1) forms v with ∂̄v = 0. More generally, one may think of v as a (0, q) form with
locally integrable coefficients and ∂̄v = ∂̄qv = 0. The problem is to determine a (0, q − 1) form u on
Ω satisfying (11.8.1). On the whole, the treatment in the general case parallels the one for q = 1.
We will discuss the case q = 2 here, indicating some small differences with the case q = 1.

For a (0,1) form

u =
n∑
k=1

uk dzk

with locally integrable coefficients we have

∂̄u = ∂̄1u
def=

n∑
j,k=1

D̄juk · dz̄j ∧ dz̄k =
∑′

j,k

(D̄juk − D̄kuj) dz̄j ∧ dz̄k. (11.8.2)
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Here the prime indicates that we only sum over pairs (j, k) with j < k; we have used the
anticommutative relation [cf. Chapter 10]

dz̄j ∧ dz̄k = −dz̄k ∧ dz̄j ;

the wedge products dz̄j ∧ dz̄k with 1 ≤ j < k ≤ n form a basis for the (0,2) forms in Cn. Thus an
arbitrary (0,2) form v has a unique representation

v =
∑′

j,k

vjkdz̄j ∧ dz̄k = 1
2

n∑
j,k=1

vjkdz̄j ∧ dz̄k, (11.8.3)

where [as is customary] we have defined the coefficients vjk with j ≥ k by antisymmetry: vjk = −vkj .
For computational purposes it is often convenient to work with the normalized full sums.

A form v on Ω is said to be of class L2
β = L2(Ω, e−β) if the coefficients are; the inner product of

(0,2) forms is given by

(f, g)β =
∫

Ω
f · ḡ e−β , f · ḡ =

∑′

j,k

fjkḡjk = 1
2

∑
j,k

fjkḡjk. (11.8.4)

As before, we will need the formal adjoint δ = δβ to ∂̄ in L2
β . Let ϕ be a (normalized) (0,2) test form,

that is, the coefficients are test functions. For our (0,1) form u, using (11.8.2) and the definition of
distributional derivatives,

(∂̄u, ϕ)0 = 〈∂̄u, ϕ̄〉 =
∑′

j<k

〈D̄juk − D̄kuj , ϕjk〉 =
∑
j,k

〈D̄juk, ϕ̄jk〉

= −
∑
j,k

〈uk, D̄jϕ̄jk〉 = −
∑
j,k

(uk, Djϕjk)0.
(11.8.5)

Applying this result to e−βϕ instead of ϕ with β ∈ C∞, we obtain

(∂̄u, ϕ)β =
∑
j,k

(uk, δjϕjk) def= (u, δϕ)β , δj = −Dj +Djβ · id .

Thus the adjoint δ = δβ applied to a (0,2) test form ϕ gives a (0,1) form:

δϕ =
∑
k

(∑
j

δjϕjk

)
dz̄k =

∑
s

(∑
j

δjϕjs

)
dz̄s. (11.8.6)

Using the fact that δj and D̄j are adjoints in L2
β and by the commutator relations in Section

8.4. cf. (11.4.5),

(δϕ, δϕ)β =
∑
s

(∑
j

δjϕjs,
∑
k

δkϕks

)
=
∑
s

∑
j,k

(
D̄kδjϕjs, ϕks

)
=
∑
s

∑
j,k

(
DjD̄kβ · ϕjs, ϕks

)
+
∑
s

∑
j,k

(
D̄kϕjs, D̄jϕks

)
.

(11.8.7)

We also need (∂̄ϕ, ∂̄ϕ)β . The usual definition of ∂̄ = ∂̄2 gives, cf. (11.8.2),

∂̄ϕ =
∑
s

∑′

j,k

D̄sϕjk · dz̄s ∧ dz̄j ∧ dz̄k = 1
2
∑
s,j,k

. . .

=
∑′

i<j<k

(
D̄iϕjk − D̄jϕik + D̄kϕij

)
dz̄i ∧ dz̄j ∧ dz̄k.

(11.8.8)

234



For the computation of the inner product it is safest to start with the standard representation in
the last line, in terms of a basis. Changing over to full sums one then obtains

∂̄ϕ · ∂ϕ̄ = 1
4
∑
s,j,k

∑
t,l,m

D̄sϕjk ·Dtϕ̄lm · εsjktlm,

where the ε-factor equals 0 unless (t, l,m) is a permutation of (s, j, k); for an even permutation the
value of ε is 1, for an odd permutation -1. It follows that

(∂̄ϕ, ∂̄ϕ)β = 1
2

∑
s,j,k

(
D̄sϕjk, D̄sϕjk

)
−
∑
s,j,k

(
D̄sϕjk, D̄jϕsk

)
. (11.8.9)

The last sum also occurs at the end of (11.8.7), although with slightly permuted indices. Adding (11.8.9)
to (11.8.7), we obtain∑

s

∑
j,k

(
DjD̄kβ · ϕjs, ϕks

)
+ 1

2

∑
s,j,k

‖D̄sϕjk‖2 = (δϕ, δϕ) + (∂̄ϕ, ∂̄ϕ). (11.8.10)

Finally introducing the smallest eigenvalue b = λβ of
[
DjD̄kβ

]
, we have in view of (11.8.4):∑

s

∑
j,k

DjD̄kβ · ϕjsϕ̄ks ≥
∑
s

b
∑
j

|ϕjs|2 = 2bϕ · ϕ̄.

Combination gives the following a priori inequality for (0,2) test forms:∫
Ω
|ϕ|2e−βb ≤ 1

2 (δϕ, δϕ)β + 1
2 (∂̄ϕ, ∂̄ϕ)β . (11.8.11)

A weak [locally integrable] solution u of the equation (11.8.1) is characterized by the condition

(δϕ, u)β = (ϕ, ∂̄u)β = (ϕ, v)β , ∀ test forms ϕ.

Taking Ω pseudoconvex and β strictly psh, the a priori inequality and suitable approximation
arguments may be used to prove the following basic inequality, cf. Sections 11.4, 11.5:

|(ϕ, v)β |2 ≤
∫
|v|2e−βb−1 · 1

2‖δβϕ‖2β . (11.8.12)

As before the Riesz representation theorem then gives

Theorem 11.8.1. Let Ω ⊂ Cn be pseudoconvex, let β be a strictly psh C∞ function on Ω and
b = λβ. Let v be a (0,2) form in L2

β+log b(Ω) with ∂̄v = 0. Then there is a (0,1) form u in L2
β(Ω)

such that ∂̄u = v and ∫
Ω
|u|2e−β ≤ 1

2

∫
Ω
|v|2e−βb−1.

In the case q ≥ 2 it is not true that all the solutions of the equation ∂̄u = v must be
smooth whenever v is, just think of the case n = q = 2 and v = 0, where the equation becomes
D̄1u2 − D̄2u1 = 0. However, on pseudoconvex Ω, equation (11.8.1) always has a solution which
is orthogonal to the nullspace of ∂̄q−1 in L2

β , cf. Proposition 11.3.1. Such a solution does have
smoothness properties related to those of v, cf. [Hormander1]. In particular, for v in C∞ there
always exists a solution u in C∞.
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11.9 Exercises

Exercise 11.1. Show that fν(x) = ν100eiνx → f = 0 distributionally on R as ν →∞.

Exercise 11.2. Let fν , f in L2
loc(Ω) be such that for every compact subset K ⊂ Ω, fν → f weakly

in L2(K), that is
∫
K
fν ḡ →

∫
K
fḡ, ∀g ∈ L2(K). Prove that fν → f distributionally on Ω.

Exercise 11.3. Let {ρε} be the standard approximate identity on Rn [Section3.3]. Prove that
ρε → δ distributionally on every domain Ω ⊂ Rn.

Exercise 11.4. Show that the delta distribution on Rn is equal to 0 on Rn\{0}, so that supp δ = {0}.
Deduce that δ can not be equal to a locally integrable function on Rn.

Exercise 11.5. For a distribution T on Rn and a test function ϕ, the convolution T ∗ ϕ is defined
by the formula T ∗ ϕ(x) = 〈T, ϕ(· − y)〉. Prove that δ ∗ ϕ = ϕ and that this convolution reduces to
the ordinary one if T is a locally integrable function.

Exercise 11.6. Let T be a distribution on Ω ⊂ Rn which is equal to a C1 function f on Ω0 ⊂ Ω.
Prove that ∂T

∂xj
is distributionally equal to the function ∂f

∂xj
on Ω0.

Exercise 11.7. Let T be a distribution on Ω, ω ∈ C∞(Ω). Prove that

∂

∂xj
(ωT ) = ∂ω

∂xj
T + ω

∂T

∂xj
.

Exercise 11.8. Let u be a function on Ω ⊂ Cn that depends only on r = |z| : u(z) = f(r).
Calculate ∂̄u, assuming that f is piecewise smooth.

Exercise 11.9. Given that uν → u distributionally on Ω ⊂ Cn, prove that ∂̄uν → ∂̄u distribution-
ally on Ω. [That is the coefficients converge distributionally.]

Exercise 11.10. Verify that ∂̄1∂̄ = 0 on Ω ⊂ Cn when applied to:

(i) C∞functions, (ii) distributions.

Exercise 11.11. Investigate the case of equality in the a priori inequality for test functions
(11.3.10).

Exercise 11.12. Let u be a locally integrable function on Ω ⊂ Cn such that [each coefficient of] ∂̄u
is also locally in L1. Let Ω0 ⊂⊂ Ω, ε < d(Ω0, ∂Ω). Prove that for our standard C∞ approximation
to the identity ρε, ∂̄(u ∗ ρε) = (∂̄u) ∗ ρε on Ω0.

Exercise 11.13. Let v be a (0,1) form in L1
loc(Ω) such that ∂̄1v is also in L1

loc(Ω) and let ω be a
C∞ function on Ω. Calculate the coefficients of ∂̄1(ωv). Show that in differential form notation,

∂̄1(ωv) = ω∂̄1v + ∂̄ω ∧ v.

Exercise 11.14. Let u be an L2 function on Cn of bounded support whose distributional derivatives
∂u
∂z̄j

are in L2 for j = 1, . . . , n. Prove that all first order partial derivatives of u are in L2. [ Show
first that for test functions ϕ, ‖ ∂ϕ∂zj ‖ = ‖ ∂ϕ∂z̄j ‖, then use regularization.]

Exercise 11.15. Let Ω ⊂ Cn be pseudoconvex and let v be a (0,1) form of class Cp on Ω with
∂̄1v = 0. Prove that the equation ∂̄u = v has a Cp solution on Ω such that∫

|u|2e−|z|
2
≤
∫
|v|2e−|z|

2
.
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Exercise 11.16. Describe the steps in the proof of the first main theorem 11.61 for the special
case Ω = Cn.

Exercise 11.17. Prove that the ∂̄ problem considered in the first main theorem 11.61 has a
solution orthogonal to all holomorphic functions h in that space. Determine the general solution in
L2
β . Which solution has minimal norm? [ Such a minimal solution is sometimes called the Kohn

solution.]

Exercise 11.18. (Behnke Stein theorem) Prove that the limit of an increasing sequence of domains
of holomorphy in Cn is also a domain of holomorphy.

Exercise 11.19. Show that for γ(z) = 2 log(1+ |z|2) one has λγ = 2(1+ |z|2)−2, so that e−γ = 1
2λγ

Exercise 11.20. Let {aλ} be a sequence of distinct points without limit point in Ω ⊂ Cn. Suppose
that there is a continuous psh function α on Ω such that |α(z)− log |z − αλ|| ≤ Cλ on some small
ball B(aλ, rλ) around each point aλ. Deduce that there is a holomorphic function h 6≡ 0 in Ω which
vanishes at the points aλ and does not grow much faster than enα towards the boundary of Ω.
[Force h = 1 at some point a ∈ Ω such that α(z) ≥ −C on some ball B(a, r).]

Exercise 11.21. Let u be a psh function on a domain Ω ⊂ Cn and let c > 0. Show that the
collection of points z ∈ Ω such that exp−cu is not integrable over any neighborhood of z is
contained in an analytic variety of dimension < n. [Use an idea from the previous exercise].

Exercise 11.22. (Holomorphic extension from a hyperplane with bounds). Let α be a psh function
on Cn such that for some constant A,

|α(z)− α(w)| ≤ A whenever |z − w| < 1.

Suppose h is a holomorphic function on a complex hyperplane V such that

I(h) =
∫
V

|h|2e−αdσ <∞,

where σ denotes Lebesgue measure on V . Prove that there is a holomorphic function g on Cn such
that g = h on V and ∫

Cn
|g|2e−α(1 + |z|2)−3dm ≤ 6πeAI(h).

[Let ω(t) be continuous on C, 1 for |t| ≤ 1
2 , 0 for |t| ≥ 1 and linear in |t| for 1

2 ≤ |t| ≤ 1. Taking for
V the hyperplane zn = 0, set

g(z′, zn) = ω(zn)h(z′)− znu(z′, zn)

and require ∂̄g = 0. Show that ‖ωh‖2α ≤ πeAI(h) and ‖∂̄u‖α ≤ 4πeAI(h).]

Exercise 11.23. Develop a theory of L2 solutions with growth estimates for the real equation

du =
n∑
j=1

∂u

∂xj
dxj = v

on appropriate domains Ω in Rn. [Which are the “right” domains?]

Exercise 11.24. (Research problem) Prove (or disprove) the following: The a priori inequality
(11.3.10) can be extended to all functions f in L2

β for which δf is also in L2
β . Cf. Theorem 11.51.

If this works, try to extend the a priori inequality 11.41. to all forms f in L2
β with δf ∈ L2

β and
∂̄1f = 0.
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Chapter 12

Divisor problem, Cousin problems and
cohomology

Cousin Problems and their history were described in Section 1.10 as well as in Chapter 7 They can
be fruitfully described in terms of cohomology of sheaves. From the appropriate cohomology groups
the solvability of the Cousin problem can in principle be read off. In this chapter we will formulate
the Cousin II problem, introduce sheaves and study cohomology groups.

12.1 The problems

We begin with the “hypersurface problem” for arbitrary open sets Ω ⊂ Cn. A subset V ⊂ Ω is
called a (complex) analytic hypersurface (or an analytic set of complex codimension 1, cf. 4.64), if
it is locally a zero set. This means that every point a ∈ Ω has a neighborhood U ⊂ Ω on which
there is a holomorphic function fU , not identically zero [on any component of U ], such that

V ∩ U = {z ∈ U : fU (z) = 0}.

[We don’t require that V consist of regular points as in the case of a complex submanifold of
codimension 1, cf. Section 5.5.]. The obvious first question is, whether a given analytic hypersurface
V in Ω is also globally a zero set. In other words, is there a holomorphic function f on Ω such that
V , considered as a set, is the same as Z(f)?

For closer analysis, we introduce a suitable open covering {Uλ} of Ω, namely one for which
there are functions fλ ∈ O(Uλ) such that V ∩ Uλ = Z(fλ), ∀λ. As long as we ignore multiplicities,
we may require that no fλ be divisible by a square (of a non-unit) on Uλ. This condition will be
satisfied if fλ and, for example, ∂fλ∂zn

are relatively prime on Uλ, cf. the proof of Theorem 4.62 on
the local form of a zero set. Thus for suitable Uλ and fλ, all holomorphic functions defining V on
Uλ will be multiples of fλ, see the Nullstellensatz in exercise 4.18. The desired global f also must
be a multiple of fλ on Uλ. On the other hand we don’t want f to vanish outside Z(fλ) on Uλ or
more strongly than fλ on Z(fλ), hence we seek f such that

f = fλhλ on Uλ, hλ ∈ O∗(Uλ), ∀λ. (12.1.1)

Here O∗(U) = {h ∈ O(U) : h 6= 0 on U}, the set of units in O(U). Note that by our arguments,
the given functions fλ and fµ will be compatible on every intersection Uλµ = Uλ ∩ Uµ in the sense
that

fλ = fµhλµ on Uλµ with hλµ ∈ O∗(Uλµ), ∀λ, µ. (12.1.2)
The following more general problem will lead to precisely the same conditions (12.1.1), (12.1.2).

Suppose one start with compatibly given meromorphic functions fλ on the sets Uλ. Question: Is
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there a global meromorphic function f on Ω which on each set Uλ has the same zeros and infinities
as fλ, including multiplicities? For a precise formulation we introduce the class M∗(U) of invertible
meromorphic functions on U [those that don’t vanish on any component of U ].

Definition 12.1.1. Let {Uλ}, λ ∈ Λ be a covering of Ω ⊂ Cn by open subsets. A divisor on Ω
associated with {Uλ} is a system of data

D = {Uλ, fλ}, λ ∈ Λ,

involving functions fλ ∈ M∗(Uλ) that satisfy the compatibility condition (12.1.2). If in addition
fλ ∈ O(Uλ), ∀λ, one speaks of a holomorphic divisor.

If a holomorphic or meromorphic function f on Ω satisfies the conditions (12.1.1) we say that it
has D as a divisor. A divisor for which there exists an f as in (12.1.1) is called principal.

Meromorphic Second Cousin problem or Divisor Problem
Let D be a divisor on Ω. Is it principal? Or also: Determine a meromorphic function f on Ω which
has D as a divisor.

Much the same as in the first Cousin problem, one may take the functions hλ of (12.1.1) as
unknown. By (12.1.1), (12.1.2) they must satisfy the compatibility conditions hµ = hλhλµ with
hλµ ∈ O∗(Uλµ), hence

hλµ = 1/hµλ, hλµ = hλνhνµ

on the relevant intersection of the sets Uα. We thus arrive at the so-called

Problem 12.1.2 ((Holomorphic) Cousin-II Problem or Multiplicative Cousin Problem). Let {Uλ},
λ ∈ Λ be an open covering of Ω ⊂ Cn and let {hλµ}, λ, µ ∈ Λ be a family of zero free holomorphic
functions on the (nonempty) intersections Uλ ∩ Uµ that satisfy the compatibility conditions{

hλµhµλ = 1 on Uλµ = Uλ ∩ Uµ, ∀λ, µ,
hλµhµνhνλ = 1 on Uλµν = Uλ ∩ Uµ ∩ Uν , ∀λ, µ, ν.

(12.1.3)

Determine zero free holomorphic functions, hλ ∈ O∗(Uλ), such that

hµ/hλ = hλµ on Uλµ , ∀λ, µ. (12.1.4)

A family of functions hλµ ∈ O∗(Uλµ) satisfying (12.1.3) is called a set of Cousin-II data on Ω.

Proposition 12.1.3. A divisor D = {Uλ, fλ} on Ω belongs to a meromorphic function F on Ω (in
the sense of (12.1.1)) if and only if there is a solution {hλ} of the holomorphic Cousin-II problem
on Ω with the data {Uλ, hλµ} derived from (12.1.2).

The proof is similar to that of Proposition 7.14 for the first Cousin problem. The Cousin-II
problem is the multiplicative analog of Cousin-I. At first glance it might seem that there is a
straightforward reduction of Cousin-II to Cousin-I with the aid of suitable branches of the functions
log hλµ. However, the problem is not that easy: even for simply connected intersections Uλµ, it is
not clear if one can choose branches log hλµ in such a way that, in conformity with (12.1.3),

log hλµ + log hµλ = 0, log hλµ + log hµν + log hνλ = 0 (12.1.5)

on all relevant intersections of sets Uα.
Indeed, as was first shown by Gronwall in 1917, the multiplicative Cousin problem may fail to

be solvable even on domains of holomorphy. The following nice counterexample is due to Oka.
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Figure 12.1.

12.2 Unsolvable and solvable Cousin-II problems

Let Ω be the domain of holomorphy

Ω = A1 ×A2, Aj = {zj ∈ C : 1− δ < |zj | < 1 + δ}, δ > 0 small.

We consider the holomorphic function

g(z) def= z1 − z2 − 1 on Ω.

For points (z1, z2) of the zero set Z(g) one must have (cf. Figure 12.1):

|z1| ≈ 1, |z1 − 1| = |z2| ≈ 1,

hence
z1 ≈ eπi/3, z2 = z1 − 1 ≈ e2πi/3, or z1 ≈ e−πi/3, z2 ≈ e−2πi/3.

For small δ, the zero set will consist of two components which are a positive distance apart. Setting

A+
j = Aj ∩ {Im zj ≥ 0}, A−j = Aj ∩ {Im zj ≤ 0},

the set Z(g) will have an “upper” part in A+
1 × A2 [in fact, in A+

1 × A
+
2 ] and a “lower” part in

A−1 ×A2 [in fact, in A−1 ×A
−
2 ].

We now define an analytic surface V in Ω as the “upper part” of Z(g):

V = {z ∈ A+
1 ×A2 : z2 = z1 − 1}. (12.2.1)

12.21 CLAIM. There is no holomorphic function f on Ω which has V as its exact zero set. In
other words, there is no function f ∈ O(Ω) with divisor D = {Uj , fj}, j = 1, 2 as defined below:

U1 : a “small” ε-neighborhood of A+
1 ×A2 in Ω,

f1(z) = z1 − z2 − 1 so that Z(f1) = V ,
U2 : a “small” ε-neighborhood of A−1 ×A2 in Ω,
f2(z) = 1 so that Z(f2) = ∅.

(12.2.2)

The corresponding function h12 = f1/f2 on U12 is in O∗. It is claimed that the Cousin-II problem
for U1, U2 and h12 is unsolvable: h12 can not be written as h2/h1 with hj ∈ O∗(Uj).
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Proof. Suppose on the contrary that there exists f ∈ O(Ω) with divisor D as above, or equivalently,
that the corresponding Cousin-II problem has a solution {hj}, j = 1, 2. In both cases we can write

f = fjhj on Uj , with hj ∈ O∗(Uj), j = 1, 2. (12.2.3)

We will obtain a contradiction by comparing the increase of arg f(1, w) along the unit circle with
that of arg f(−1, w). In fact, computation of the difference in the increases by remaining inside U1
will differ from what we get by remaining inside U2. We start with the latter.

Our f would be in O∗(U2), hence for fixed z1 ∈ A−1 , the function f(z1, w) is holomorphic and
zero free on A2. There is then a continuous (even holomorphic ) branch of log f(z1, w) on the open
arc C1 = C(0, 1) \ {1}. With ∆C1g denoting the increment of g along C1, we have

νf (z1) def= 1
2π∆C1 arg f(z1, w)

= 1
2πi∆C1 log f(z1, w)

= 1
2πi

∫
C(0,1)

∂f(z1, w)/∂w
f(z1, w) dw.

This integer valued function of z1 is continuous on A−1 , hence constant. In particular

νf (1)− νf (−1) = 0.

We will now compute the same difference via the domain U1. On U1,

f = f1h1 = (z1 − z2 − 1)h1 = gh,

say, where h = h1 ∈ O∗(U1). Thus for h, just as for f before but now remaining inside U1,

νh(1)− νh(−1) = 0.

However, for g(z1, w) = z1 − w − 1 direct calculation gives

νg(z1) = 1
2πi

∫
C(0,1)

−1
z1 − w − 1dw =

{
1 if z1 = 1,
0 if z1 = −1.

(12.2.4)

Hence, going via U1, we obtain the answer

νf (1)− νf (−1) = νg(1) + νh(1) + νg(−1)− νh(−1) = 1!

This contradiction shows that our divisor problem or Cousin-II problem has no solution: there is
no f ∈ O(Ω) with Z(f) = V .

Remark 12.2.1. The method may be adapted to show that the above Cousin-II problem does not
even have a continuous solution. That is, there exist no functions gj ∈ C∗(Uj) (zero free continuous
functions) such that h12 = g1/g2 on U12. [For merely continuous f one can of course not express
νf (z1) by the integral used above.] The non-existence of a continuous solution suggests a topological
obstruction. In fact, Oka proved a result on the holomorphic divisor problem akin to the following

Theorem 12.2.2. Let Ω ⊂ Cn be a Cousin-I domain. The Cousin-II problem on Ω with compatible
data {Uλ, hλµ} has a holomorphic solution if and only if it has a continuous solution.

Proof. We only give an outline since we will prove a more refined result later on.
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(i) Just as in the case of Cousin-I the given Cousin-II problem will be solvable if and only if its
refinements are solvable (cf. Proposition 7.32).

(ii) Refining our problem, if necessary, we assume that the sets Uλ, and hence the intersections
Uλµ, are convex. On a convex set a zero free holomorphic (or continuous) function has a
holomorphic (or continuous) logarithm, cf. Proposition 12.72 below.

(iii) Supposing now that our original Cousin-II problem has a solution, the same is true for the
refined problem. That is, if we denote the (possibly) refined data also by {Uλ, hλµ}, there
exist functions gλ ∈ C∗(Uλ) such that hλµ = gµ/gλ on Uλµ, for all λ, µ. Choosing continuous
logarithms log gλ on the sets Uλ, we then define

log hλµ = log gµ − log gλ on Uλµ, ∀λ, µ.

Since hλµ is holomorphic and log hλµ continuous, log hλµ will be holomorphic on Uλµ. Indeed,
log hλµ will have local representations similar to (12.7.1) below.

The present functions log hλµ will automatically satisfy the compatibility conditions (12.1.5) for
the additive Cousin problem. Thus since Ω is a Cousin-I domain, there exist functions ϕλ ∈ O(Uλ)
such that

log hλµ = ϕµ − ϕλ on Uλµ, ∀λ, µ.
It follows that

hλµ = eϕµ/eϕλ on Uλµ,
that is, the Cousin-II problem is solved by the functions hλ = eϕλ ∈ O∗(Uλ).

Theorem 12.23 is an example of the heuristic “Oka principle”: If a problem on a domain of
holomorphy is locally holomorphically solvable and if it has a global continuous solution, then it
has a global holomorphic solution.

12.3 Sheaves

Sheaves were introduced and studied by Cartan, Leray and Serre. They were used by Cartan and
Grauert in connection with the solution of the Levi-problem. Sheaves have been a highly successful
tool in several parts of mathematics, particularly in algebraic geometry. Examples of sheaves are
scattered all over this book. It is high time we formally define them.

Definition 12.3.1. A sheaf F over a space X with projection π is a triple (F , π,X) where F and
X are topological spaces and π is a surjective local homeomorphism.

A section of (F , π,X) over an open U ⊂ X is a continuous map σ : U → F such that σ ◦ π is
the identity mapping on U . The sections over U are denoted by F(U) or Γ(U) = Γ(U,F). A stalk
of (F , π,X) is a subset of F of the form π−1(x) where x ∈ X.

A sheaf of rings, (abelian) groups, etc. is a sheaf F with the property that the stalks F(x) have
the structure of a ring, respectively, an (abelian) group, etc. of which the algebraic operations like
addition or multiplication are continuous. The latter means the following: form the product space
F × F with product topology and consider the subset

F · F = {(f1, f2) ∈ F × F : π(f1) = π(f2)}.

Now addition (for example) in the stalks of F gives rise to a map

+ : F · F → F , (f1, f2) 7→ f1 + f2,

which has to be continuous.
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Examples 12.3.2. Let D be a domain in Cn.

(i) The constant sheaves C × D, Z × D, etc. over D. Projection is ordinary projection on D.
Observe that C (and Z etc.) need be equipped with the discrete topology.

(ii) The Riemann domains (R, π,D) of Definition 2.12 equipped with the usual topology, that is,
defined by the basic neighborhoods N (p, V, g).

(iii) The sheaf of germs of holomorphic functions on U , denoted byOU , with projection π : [f ]a 7→ a.
Here [f ]a denotes the germ of an analytic function f at a point a ∈ U . For OU to become a
sheaf we have to give it a topology that makes π a local homeomorphism. This can be done
in a way similar to example (ii): A base for the topology is given by the sets

N (V, f) = {[f ]a : a ∈ V } where f ∈ O(V ). (12.3.1)

Sections over V can be identified with holomorphic functions on V : To a holomorphic function
f on V we associate the section

σf : a 7→ [f ]a.

It is an easy exercise to check that σ is continuous. The fact that O(V ) indicates both sections
over V and holomorphic functions on V reflects this association.

(iv) Let K denote an algebra of functions on U . Thus K could be C∞(U) or ∧p,q(U) the (p, q)-forms
on U (our functions may well be vector valued!) A germ of a function in K was defined in
Section 2.1. As in the previous example these germs together form a sheaf a base for the
topology of which is given similar to (12.3.1). We thus obtain the sheaf C∞U of germs of
smooth functions on U , the sheaf ∧p,qU of germs of smooth p, q forms on U , the sheaf O∗U of
holomorphic zero free functions on U , the sheafMU of germs of meromorphic functions on
U (strictly speaking this one does not consists of germs of functions), etc. Again sections and
functions can be identified.

It is easily seen that the examples (i, iii, iv) have the property that the stalks are abelian groups or
have even more algebraic structure. We leave it to the reader to check that the algebraic operations
are continuous.

We need some more definitions.

Definition 12.3.3. Let F and G be sheaves over X with projections πF , respectively πG . A
continuous map ϕ : F → G is called a sheaf map if

πF = πG ◦ ϕ.

G is called a subsheaf of F if for all x ∈ X we have Gx ⊂ Fx. If F and G are sheaves of abelian
groups then a map of sheaves ϕ : F → G is called a sheaf homomorphism if its restriction to each
stalk is a group homomorphism. Similarly one defines homomorphisms of sheaves of rings, etc.

Observe that a sheaf homomorphism ϕ : F → G induces homomorphisms ϕ∗ : F(U)→ G(U),
ϕ∗(σ) = ϕ ◦ σ for σ ∈ F(U).
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12.4 Cohomological formulation of the Cousin problems

Cousin-I and Cousin-II data {hλµ} associated with an open covering {Uλ} of Ω ⊂ Cn are examples
of so-called cocycles consisting of sections in the sheaves O and O∗ over Ω. These are sheaves of
abelian groups. The group operation will always be denoted by + (it is multiplication of germs in
case of O∗!). In this section we will deal with Cousin problems associated to arbitrary sheaves of
abelian groups over domains in Cn

Problem 12.4.1 (General Cousin Problem). Suppose we have a open covering U = {Uλ}, λ ∈ Λ of
Ω ⊂ Cn. For a sheaf of abelian groups F over Ω, Cousin data associated with U consist of sections
fλµ of F , one over each intersection Uλµ, λ, µ ∈ Λ, such that

fλµ + fµλ = 0, (12.4.1)

fλµ + fµν + fνλ = 0 (12.4.2)
on the relevant intersections of sets Uα. One tries to determine a family of sections fλ ∈ Γ(Uλ,F),
(λ ∈ λ), such that

fλµ = fµ − fλ on Uλµ, ∀λ, µ. (12.4.3)

We introduce some further terminology. With a covering U = {Uλ} of Ω there are associated
various cochains “with values in” F .

Definition 12.4.2. (Cochains for U with values in F). A zero-cochain f0
− is a family of sections

{fλ}, fλ ∈ Γ(Uλ). It is simply a function on Λ assuming specific sections of F as values:

f0
− : λ 7→ f0

λ ∈ Γ(Uλ), λ ∈ Λ.

A 1-cochain f1
− is a family of sections {fλµ}, fλµ ∈ Γ(Uλµ) with the alternating property (12.4.1).

It is an alternating function on Λ2:

f1
− : (λ, µ) 7→ f1

λ,µ ∈ Γ(Uλµ), λ, µ ∈ Λ.

An s-cochain fs− is an alternating function on Λs+1:

fs− : (λ0, λ1, . . . , λs) 7→ fsλ0λ1...λs ∈ Γ(Uλ0λ1...λs), λj ∈ Λ.

Here Uλ0λ1...λs = Uλ0 ∩ . . . ∩ Uλs , while alternating means that for a permutation σ with sign ε(σ)
we have fsσ(λ0λ1...λs) = ε(σ)fsλ0λ1...λs

.

For s-cochains associated to U one defines addition as addition of the values of the cochain.
Thus one obtains the abelian group of s-cochains:

Cs(U) = Cs(U ,F).

Starting with a 0-cochain f0
− for U , formula (12.4.3) defines a 1-cochain f1

− which is denoted by
δf0
−. We need a corresponding operator on s-cochains:

δ = δs : Cs(U)→ Cs+1(U).

Definition 12.4.3 (Coboundary operator). For an s-cochain fs− = {fλ0λ1...λs} one defines δfs− ∈
Cs+1(U) by

(δfs−)λ0λ1...λs+1 =
s+1∑
r=0

(−1)rfλ0...λ̂r...λs
on Uλ0λ1...λs+1 , ∀(λ0, λ1, . . . λs+1),

where λ̂r means that the index λr is omitted.
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Observe that δ is a homeomorphism.
Illustration. The Cousin data in (12.41) consist of a 1-cochain f1

− = {fλµ} for U with values in
F (12.4.1), such that δf1

− = 0 (12.4.2). The Cousin problem is whether there exists a 0-cochain f0
−

for U with values in F such that f1
− = δf0

− (12.4.3).

Definition 12.4.4 (Cocycles and coboundaries for U and F). . An s-cochain fs− is called an
s-cocycle if

δfs− = 0.

An s-cochain fs− is called a s-coboundary if (s ≥ 1 and)

fs− = δfs−1
− ,

for some (s− 1)-cochain fs−1
− .

Because δ is a homomorphism, the s-cocycles form a subgroup

Zs(U) = Zs(U ,F) ⊂ Cs(U ,F);

Similarly the s-coboundaries form a subgroup

Bs(U) = Bs(U ,F) ⊂ Cs(U ,F).

Lemma 12.4.5. Every s-boundary is an s-cocycle:

δ2 = δsδs−1 = 0, s ≥ 1,

hence Bs(U) is a subgroup of Zs(U).

Proof. This is a verification similar to the one for the ∂̄ operator.

(δsδs−1f
s−1
− )λ0λ1...λs+1 =

s+1∑
r=0

(−1)r(δs−1f
s−1
− )λ0...λ̂r...λs+1

=
s+1∑
r=0

(−1)r
r−1∑
k=0

(−1)kfs−1
λ0...λ̂k...λ̂r...λs+1

+

s+1∑
r=0

(−1)r
s+1∑

k=r+1
(−1)k−1fs−1

λ0...λ̂r...λ̂k...λs+1

= 0,

(12.4.4)

because of cancelation.
The case s = 0 is somewhat special: there are no real coboundaries and one defines B0 = {0}.

For a 0-cocycle f0
− = {fλ} one has

fµ − fλ = 0 on Uλµ, ∀λ, µ.

Apparently a 0-cocycle determines a global section of F : one may define f ∈ Γ(Ω,F) in a consistent
manner by setting

f = fλ on Uλ, ∀λ.
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In this setup the groups Cs(U ,F) form what is called a semi-exact sequence or complex:

· · · δ−→ Cs−1(U ,F) δ−→ Cs(U ,F) δ−→ Cs+1(U ,F) δ−→ · · · . (δ ◦ δ = 0) (12.4.5)

This notion makes sense for sequences of abelian groups connected through homomorphisms
with the property that the composition of two consecutive ones is 0. Thus a semi-exact sequence of
abelian groups is a sequence

· · · −→ Aj
fj−→ Aj+1

fj+1−→ Aj+2 −→ · · ·

with fj+1 ◦ fj = 0. If, moreover, the kernel of fj+1 equals the image of fj , the sequence is called
exact. The same terminology applies to sequence of sheaves of abelian groups connected through
sheaf homomorphisms. Finally, a short exact sequence is an exact sequence of the form

0→ A
f−→ B

g−→ C → 0.

It follows that here f is injective, while g is surjective.
The important objects are the quotient groups of (12.4.5):

Definition 12.4.6 (Cech Cohomology groups for U and F). The quotient group

Hs(U ,F) def= Zs(U ,F)
Bs(U ,F) = s-cocycles

s-coboundaries

is called the s-th cohomology group for the covering U of Ω with values in F . The elements are
equivalence classes of s-cocycles, the cosets of the subgroup of s-coboundaries.

For s = 0 one has
H0(U ,F) = Z0(U ,F) = Γ(Ω,F). (12.4.6)

The cohomology groups are zero if and only if (12.4.5) is exact. They measure the “amount of
inexactness” of the complex.

ILLUSTRATION The Cousin problem asks if a given 1-cocycle f1
− for U and F is a 1-coboundary.

Thus this Cousin problem is always solvable when every 1-cocycle is a 1-coboundary, in other words
when

H1(U ,F) = 0.

Example 12.4.7 (cf. Example (7.17)). Take F = O, Ω = C2 − {0}, Uj = {zj 6= 0}, j = 1, 2. The
associated 0-cochains h0

− = {h1, h2} are given by the holomorphic functions

hi(z) =
∑
α∈Z2

aiαz
α on Ui (i = 1, 2),

with aiα = 0 if α1−i < 0. The 1-cochains h1
− = {h11, h12, h21, h22} are given by holomorphic

functions
h11 = h22 = 0, h12(z) = −h21(z) =

∑
α∈Z2

cαz
α on U12. (12.4.7)

The relations in (12.4.7) follow from the alternating property of cocycles. The 1-cochains are at the
same time 1-cocycles since there are only two different indices:

(δh1
−)jkl = hkl − hjl + hjk = 0
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whenever two indices such as k and l are the same.
The 1-coboundaries are those 1-cocycles, for which h12 on U12 equals a difference h2 − h1 of

functions hj ∈ O(Uj). That is, (12.4.7) represents a coboundary if and only if

cα = a1
α − a2

α, ∀α ∈ Z2.

This requirement presents no problem if α1 ≥ 0 or α2 ≥ 0 (or both). However if α1, α2 < 0 there is
no solution unless cα = 0 Thus the coboundaries are those cocycles with cα = 0, (αi < 0). The
cohomology group H1(U ,O) is isomorphic to the group of holomorphic functions

h12(z) =
∑
αi<0

cαz
α on U12.

Example 12.4.8. Taking F and Ω as above, we consider the covering V1 = {0 < |z| < 2},
V2 = {1 < |z| < ∞}. The associated Cousin problem will be generally solvable. Indeed every
holomorphic function h12 on V12 = {1 < |z| < 2} has an analytic continuation to B(0, 2) [by
Hartogs’ spherical shell theorem, Sections 2.8, 3.4]. Thus such a function is written as h12 = 0− h1
with h1 the analytic continuation to V1 of h12. Conclusion: H1({V1, V2},O) = 0.

12.5 Definition of the domain cohomology groups Hs(Ω,F)

The illustration to (12.46) gives the precise condition H1(U ,F) = 0 for the general solvability of
the Cousin problem for F and a fixed covering U of Ω. We would also like to have a condition on Ω
which assures the general solvability of the Cousin problem for every covering of Ω. [For the sheaf
O such a condition was that Ω be a ∂̄ domain, cf. Chapter 7.] Keeping F fixed we write

Hs(U ,F) = Hs(U).

By Proposition 7.32 whose proof is valid for general sheaves F , refinement of Cousin data does not
affect the solvability of the Cousin problem, Thus if V is a refinement of U and H1(V) = 0, so that
all Cousin problems for V are solvable, then in particular all refinements to V of Cousin problems
for U are solvable, hence all Cousin problems for U are solvable so that H1(U) = 0.

What will happen in general to the cohomology groups if we refine the covering U of Ω to
V? We will see that H1(U) is always (isomorphic to a subgroup of H1(V). Refinement may lead
to large and larger groups H1(W) which ultimately become constant. The limit group is called
H1(Ω,F). For s ≥ 2 the situation is more complicated; in the general case one needs the notion of
a direct limit to define Hs(Ω,F), see below. We need two propositions

Proposition 12.5.1. A refinement of the covering U of Ω to V via a refinement map σ induces
a unique homomorphism σ∗ = σ(U ,V) of H(U) to H(V), that is a sequence of homomorphisms
σ∗s (U ,V) : Hs(U)→ Hs(V). Uniqueness means here that the homomorphism is independent of the
choice of the refinement map.

Proof. Let the covering V = {Vj}, j ∈ J , of Ω be a refinement of the covering U = {Uλ}, λ ∈ Λ and
let σ : J → Λ be a refinement map, that is, every set Vj is contained in Uσ(j). To every cochain
fs− ∈ Cs(U) the map assigns a cochain in Cs(V) — denoted by σ(fs−) — by restriction. Specifically,
for s = 0, 1, . . ., we have, with σ = σs,

σ(fs−)j0j1...js = fsσ(j0)σ(j1)...σ(js) | Vj0j1...js .

The maps σ on cochain groups are clearly homomorphisms. Moreover they commute with the
coboundary operator δ:

δs ◦ σs = σs+1 ◦ δs, (Cs(U)→ Cs+1(V)).
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Thus, the image of a cocycle is again a cocycle and the image of a coboundary is a coboundary,
that is, σs maps Zs(U) into Zs(V) and the subgroups Bs(U) into Bs(V). It follows that σ induces
a homomorphisms σ∗s of the quotient groups by σ∗s : [fs−] 7→ [σfs−], in other words, we found a
homomorphism

σ∗ : Hs(U)→ Hs(V).

We will now indicate how to show that σ∗ depends only on the refinement and not on the
refinement map. Here the notion of a chain homotopy is useful. Suppose that σ and τ are two
(chain) homomorphism from the complexes C(U) to C(V) associated to the refinement mappings σ
and τ . A chain homotopy between σ and τ is a (sequence of) map(s)

Θ = {Θs}, Θs : Cs(U)→ Cs−1(V), (s = 1, 2, . . .).

with the property that
Θs+1δs + δs−1Θs = (σs − τs). (12.5.1)

Assuming that Θ has been constructed, suppose that fs is an s-cocycle. Then δfs = 0 and (12.5.1)
gives (σs − τs)fs = δs−1Θsfs, which is a coboundary. Thus σ∗ = τ∗.

Now we have to define Θ:

[Θsf
s
−]j0j1...js−1 =

s−1∑
r=0

(−1)rfτ(j0)τ(j1)...τ(jr)σ(jr)...σ(s−1). (12.5.2)

Verification of (12.5.2) is a tedious calculation. However, if we can prove that (12.5.2) defines a
chain homotopy for those τ and σ which are equal on J − {k} for one k ∈ J , then we are done,
because we can deform two arbitrary refinement maps to each other by a chain of deformations,
changing one j ∈ J at a time. Now if τ(j) = σ(j) on J − k, then there are two possibilities

(i) k is not in j0, . . . js. Then (σs − τs)(fj0...js) = 0 and (12.5.2) equals 0 so we are done.

(ii) k is in j0, . . . js. We may assume k = j0. We find

(σs − τs)(fj0...js) = fσ(j0)...σ(js) − fτ(j0)...τ(js).

To verify (12.5.2) we compute, keeping in mind that fλ0...λs = 0 if two indices are equal,

[δΘsf
s
−]j0j1...js =

s∑
l=0

(−1)l[Θsf
s
−]j0j1...ĵl...js

=
s∑
l=1

(−1)lfs
τ(j0)σ(j0)σ(j1)...ĵl...σ(js−1)

and

[Θs+1δf
s
−]j0j1···js = [δf ]τ(j0)σ(j0)···js

= (σs − τs)(fj0···js) +
s∑
l=1

(−1)l+1fs
τ(j0)σ(j0)σ(j1)···ĵl···σ(js−1).

(12.5.3)

Adding yields (12.5.2).

Proposition 12.5.2. For s = 1 the homomorphism σ∗ = σ(U ,V) in Proposition 12.51 is injective,
hence if V is a refinement of U then H1(U) is isomorphic to a subgroup of H1(V).
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Proof. Let f1
− be an arbitrary cocycle in Z1(U), with cohomology class [f1

−] ∈ H1(U). Supposing
that σ∗[f1

−] = [σf1
−] = 0 in H1(V), we have to show that [f1

−] = 0. But this follows from (the proof
of) Proposition 7.32 on refinements of Cousin problems. Indeed if σf1

− is a coboundary for V, the
refined Cousin problem for V and σf1

− is solvable, but then the original Cousin problem for U and
f1
− is also solvable, so that f1

− is a coboundary for U .

Definition 12.5.3. The (domain) cohomology group Hs(Ω) = Hs(Ω,F) is the “direct limit” of
the (coverings) groups Hs(U) = Hs(U ,F) under the mappings σ(U ,V), associated with all possible
refinements of coverings U of Ω to coverings V.

The direct limit may be defined as the set of equivalence classes of elements in the disjoint union
∪UHs(U) over all coverings U of Ω. Elements u ∈ Hs(U) and v ∈ Hs(V) are equivalent if there is a
common refinement W of U and V such that u and v have the same image in Hs(W), that is,

σ∗(U ,W)u = σ∗(V,W)v.

Every element of [u] of Hs(Ω) has a representative u in some group Hs(U). For any refinement
W of this U the class [u] will contain the element σ(U ,W)u of Hs(W). The sum of two elements
[u] and [v] in Hs(Ω), where u ∈ Hs(U) and v ∈ Hs(V) is formed by adding the representatives
σ(U ,W)u and σ(V,W)v in Hs(W), where W is a common refinement of U and V.

By Propositions 12.51 and 12.52 we have the following important

Corollary 12.5.4. The map u ∈ Hs(U) 7→ [u] ∈ Hs(Ω) defines a homomorphism of Hs(U) into
Hs(Ω) and for s = 1 this homomorphism is injective. In particular H1(U) is isomorphic to a
subgroup of H1(Ω) and H1(Ω,F) = 0 (The Cousin problem for Ω with values in F is solvable) if
and only if H1(U ,F) = 0 for every covering U of Ω.

Remark 12.5.5. One may also think of the elements of Hs(Ω) as equivalence classes of cocycles
in the disjoint union ∪UZs(U) over all coverings U of Ω. To this end one extends the notion of
cohomologous cocycles to cocycles belonging to different coverings: fs− ∈ Zs(U) and ϕs− ∈ Zs(V)
are called equivalent or cohomologous in ∪UZs(U) if they have cohomologous images in Zs(W) for
some common refinement W of U and V. Observe that a common refinement of U and W always
exists: Take

W = {W = U ∩ V : U ∈ U , V ∈ V}.

12.6 Computation of H(Ω,F) and in particular H1(Ω,O)

We first prove a general result on the computation of H1(Ω) = H1(Ω,F).

Theorem 12.6.1. Let U = {Uλ}, λ ∈ Λ be any covering of Ω ⊂ Cn by Cousin domains for F :
H1(Uλ,F) = 0 for all λ. Then

H1(Ω,F) ∼= H1(U ,F).

Proof. We have to show that H1(W) is (isomorphic to) a subgroup of H1(U) for every covering W
of Ω, so that H1(U) is maximal and thus equal to H1(Ω). Now H1(W) is a subgroup of H1(V) for
any common refinement V of U and W [Proposition 12.52], hence it is sufficient to show that

H1(V) ∼= H1(U) for all refinements V of U . (12.6.1)

Choose a refinement V = {Vj}, j ∈ J of U and an associated 1-cocycle ϕ1
− = {ϕjk}. Restriction of

ϕ1
− to Uλ gives a 1-cocycle (also denoted by ϕ1

−) on Uλ for the covering {Vj ∩ Uλ}, j ∈ J . By the
hypotheses this cocycle is a coboundary: we can choose a 0-cochain ϕ0

−λ or ϕλ− on Uλ such that

ϕjk = ϕλk − ϕλj on Vjk ∩ Uλ, ∀j, k.
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We do this for all λ; on Uµ we find

ϕjk = ϕµk − ϕ
µ
j on Vjk ∩ Uµ, ∀j, k.

Thus on Uλµ ∩ Vjk, ϕµk − ϕλk = ϕµj − ϕλj , so that we may define fλµ in a consisted manner on Uλµ
by setting

fλµ = ϕµj − ϕ
λ
j on Uλµ ∩ Vj , ∀j ∈ J. (12.6.2)

One readily verifies that (12.6.2), ∀λ, µ ∈ Λ defines a 1-cocycle f1
− for the covering U . For given

ϕ1
−, this cocycle may depend on the choices of the 0-cocycle ϕλ−. However, if we make different

choices ψλ− then ψλk − ψλj = ϕλk − ϕλj , hence the differences ψλj − ϕλj define a 0-cochain g− for U
via gλ = ψλj − ϕλj on Uλ ∩ Vj , ∀j. The result is that f1

− is replaced by the cohomologous cochain
f̃1
− = f1

− + δg−:

f̃λµ − fλµ = ψµj − ψ
λ
j − (ϕµj − ϕ

λ
j ) = gµ − gλ on Uλµ ∩ Vj , ∀j.

Thus by our process, the cohomology class of f1
− in Z1(U) is uniquely determined by ϕ1

−. Note also
that coboundaries go into coboundaries: for a coboundary ϕ1

− we may take the 0-cochains ϕ0
−λ equal

to ϕ0
− independent of λ and we then obtain f1

− = 0! Thus we have a map of cohomology classes
belonging to Z1(V) into cohomology classes belonging to Z1(U) and this map is a homomorphism.
The map is injective too: if f1

− is a coboundary, fλµ = fµ − fλ, (12.6.2) shows that the definition
χj = ϕλj − fλ, ∀λ gives a 0-cochain χ− for V and ϕ1

− = δχ−.
The conclusion is that our process defines an injective homomorphism of H1(V) into H1(U),

hence H1(V) is a subgroup of H1(U). Since conversely H1(U) is a subgroup of H1(V) [Proposition
12.52], the proof of (12.6.1) is complete.

Example 12.6.2. For Ω = C2 − {0} one may compute H1(Ω,O) with the aid of example (12.47).

Theorem 12.61 is a special case of the following theorem of J. Leray, a proof of which can be
found in [GuRo], or [GrRe]. Call a covering {Uλ} of Ω ⊂ Cn acyclic if Hs(Uλ1...λj ,F) = 0 for all
s ≥ 1 and for all intersections Uλ1...λj .

Theorem 12.6.3 (Leray). For every acyclic covering U of Ω:

Hs(Ω,F) ∼= Hs(U ,F), s = 0, 1, 2, . . . .

In the case of the first Cousin problem, (F = O), we have general solvability for all coverings U
of Ω ⊂ Cn if and only if H1(Ω,O) = 0. By Chapter 7 we also have general solvability if and only if
the equation ∂̄u = v on Ω is generally C∞ solvable for all (0,1)-forms v (of class C∞) for which
∂̄v = 0. Recall that (the sheaf of sections of) (p, q) forms on Ω is denoted by ∧p,q = ∧p,q(Ω).

For p = 0, 1, . . . we have an exact sequence of sheaves

0→ Op,0 i−→ ∧p,1 ∂̄−→ ∧p,2 ∂̄−→ · · · ∂̄−→ ∧p,n → 0. (12.6.3)

Here Op,0 is the subsheaf of ∧p,0 consisting of germs (p, 0) forms with holomorphic coeffients;
O0,0 = O. Exactness follows from the fact that ∂̄∂̄ = 0 and that locally, for example on polydiscs
(Section 7.6, Chapter 11), the equation ∂̄u = v, has a solution if ∂̄v = 0. To (12.6.3) is associated a
semi-exact sequence of the groups of sections, that is, the groups of smooth differential forms on Ω:

0→ Op,0(Ω) i−→ ∧p,1(Ω) ∂̄−→ ∧p,2(Ω) ∂̄−→ · · · ∂̄−→ ∧p,n(Ω)→ 0. (12.6.4)

251



In general (12.6.4) is not exact, globally the equations ∂̄u = v, may not have a solution even if
∂̄v = 0. Again cohomology groups will measure the amount of inexactness. See Definition 12.68
below.

Before pursuing this any further we will compute some trivial cohomology groups. We have seen
in Chapter 7 that it is useful to be able to solve smooth Cousin-I problems, in order to connect
them to the Cauchy-Riemann equations. Now we will do something similar in terms of cohomology.
First we introduce some terminology.

Definition 12.6.4. Let Ω ⊂ Cn and let U be an open covering of Ω and F a sheaf of abelian groups
over Ω. A partition of unity of F subordinate to U is a set of sheaf homomorphisms βλ : F → F
such that

(i)
∑
λ βλ = id on F ;

(ii) βλ([f ]x) = [0]x for all x in some open neighborhood of the complement of Ūλ.

Examples 12.6.5. Let U be a covering of Ω ⊂ Cn and let {β̃λ} be a (usual) partition of unity
subordinate to U . Then the β̃λ give rise to a partition of unity {βλ} of the sheaf C∞ on Ω by

βλ([u]z) = [β̃λu]z.

Similarly ∧p,q(Ω) admits a partition of unity subordinate to U .

Definition 12.6.6. A sheaf of abelian groups F over Ω is called fine if for every (locally finite)
covering U of Ω it admits a partition of unity subordinate to U .

The sheaves in 12.65 are fine sheaves.

Theorem 12.6.7. Suppose that F is a fine sheaf over Ω and that U is any locally finite covering
of Ω. Then Hp(Ω,U) = 0, (p ≥ 1), for every U and therefore Hp(Ω,F) = 0 for p ≥ 1.

Proof. Let U = {Uλ} be a locally finite covering of Ω and let βλ be the associated partition of unity
of F . It suffices to show that for p > 0 every p-cocycle (for U and F) is a p-coboundary. This is
done similarly to the proof of Theorem 7.41. Let σ− ∈ Zp(U ,F). Put

τλ0···λp−1 =
∑
µ

βµ(σµλ0···λp−1).

Notice that βµ(σµλ0···λp−1) is at first only defined on Uµ ∩ Uλ0···λp−1 , but extends to Uλ0···λp−1

because it vanishes in a neighborhood of the boundary of Uµ. Thus τ is a well defined (p − 1)
cocycle. We compute

(δτ)λ0···λp =
p∑
i=0

(−1)iτλ0···λ̂i···λp =
p∑
i=0

(−1)i
∑
µ

βµ(σµλ0···λ̂i···λp)

=
∑
µ

βµ

(
p∑
i=0

(−1)iσµλ0···λ̂i···λp

)
=
∑
µ

βµ(σλ0···λp) = σλ0···λp ,

(12.6.5)

where we have used that σ is a cocycle, i.e.
∑p+1
i=0 (−1)iσλ0···λ̂i···λp+1

= 0, for all indices λi, in
particular with λ0 = µ, and that

∑
µ βµ = id.
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Definition 12.6.8. Forms v with ∂̄v = 0 are called ∂̄ closed, forms v = ∂̄u are called ∂̄ exact. Let
Zp,q
∂̄

(Ω) denote the group of ∂̄ closed forms in ∧p,q(Ω) and let Bp,q
∂̄

(Ω) denote the group of ∂̄ exact
forms in ∧p,q(Ω). The quotient groups are the Dolbeault cohomology groups:

Hp,q

∂̄
(Ω) def=

Zp,q
∂̄

(Ω)
Bp,q
∂̄

(Ω) .

Thus general solvability of the first Cousin problem may also be expressed by the condition
H0,1(Ω) = 0. As a consequence H1(Ω,O) = 0 if and only if H0,1

∂̄
(Ω) = 0. Much more is true:

Theorem 12.6.9 (Dolbeault). Let Ω ⊂ Cn be open and let U be a locally finite covering of Ω that
consists of domains of holomorphy. Then for p = 0, 1, . . . , n

Hq(Ω,O) = H0,q
∂̄

(Ω) = Hq(U ,O).

For the proof we need some results from homological algebra. Let

0→ E i−→ F s−→ G → 0

be an exact sequence of sheaves over Ω. For U open in Ω there is an associated exact sequence of
groups of sections

0→ E(U) i∗−→ F(U) s∗−→ G0(U)→ 0. (12.6.6)
Here G0(U) denotes the image of F(U) under s∗ in G(U), which need not be all of G(U). Similarly,
if U is an open covering of Ω, then there is an induced exact sequence of chain groups with Cs0(U ,G)
the image of s∗ in Cs(U ,G):

0→ Cs(U , E) i∗−→ Cs(U ,F) s∗−→ Cs0(U ,G)→ 0. (12.6.7)

See exercise 12.11.
The coboundary operator δ commutes with the maps i∗ and s∗. One thus obtains the following

commutative diagram with exact columns.

0 0 0y y y
· · · δ−→ Cs−1(U , E) δ−→ Cs(U , E) δ−→ Cs+1(U , E) δ−→ · · ·yϕ yϕ yϕ
· · · δ−→ Cs−1(U ,F) δ−→ Cs(U ,F) δ−→ Cs+1(U ,F) δ−→ · · ·yψ yψ yψ
· · · δ−→ Cs−1

0 (U ,G) δ−→ Cs0(U ,G) δ−→ Cs+1
0 (U ,G) δ−→ · · ·y y y

0 0 0 .

(12.6.8)

Commutative means, of course, that every two possible compositions of maps originating at the
same group and ending in the same group yield the same map. The maps ϕ and ψ commute with δ
and therefore (compare the proof of Proposition 12.51) take cocycles to cocycles, coboundaries to
coboundaries. Thus ϕ and ψ induce homomorphisms ϕ∗, ψ∗:

Hs(U , E) ϕ∗−→ Hs(U ,F) ψ∗−→ Hs
0(U ,G), s = 0, 1, 2 . . . (12.6.9)

The various sequences (12.6.9) are connected through a homomorphism induced by δ:
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Proposition 12.6.10 (Snake Lemma). Associated to the commutative diagram (12.6.8) there exist
connecting homomorphisms δ∗ : Hs

0(U ,G)→ Hs+1
0 (U , E) for the sequences (12.6.9) such that the

following sequence is exact:

0 −→ H0(U , E) ϕ∗−→ H0(U ,F) ψ∗−→ H0
0 (U ,G)

δ∗−→ H1(U , E) ϕ∗−→ H1(U ,F) ψ∗−→ H1
0 (U ,G)

δ∗−→ H2(U , E) ϕ∗−→ H2(U ,F) ψ∗−→ H2
0 (U ,G) δ∗−→ · · · .

(12.6.10)

Proof. We define δ∗ by chasing through the diagram. Take a cocycle g ∈ Zs(U ,G). The map ψ is
surjective, hence there exists f ∈ Cs(U ,F) with ψf = g. Observe that ψδf = δψf = δg = 0, thus
δf ∈ Cs+1(U ,F) belongs to the kernel of ψ and as ϕ is injective, ∃! e = e(f) ∈ Cs+1(U , E) such
that δf = ϕe. We compute ϕδe(f) = δδf = 0, hence, because ϕ is injective, e(f) ∈ Zs+1(U , E).
Now we wish to define δ∗[g] = [e(f)].

We have to check that this is well defined, that is, independent of the choice of f in the class
[f ] and, moreover, that if g is a coboundary, e is a coboundary too.

Suppose ψ(f̃−f) = 0. Then f̃−f = ϕes so that δ(f̃−f) = ϕδes. In other words e(f̃)−e(f) = δes,
that is [e(f̃)] = [e(f)].

Next suppose that g = δgs−1 is a coboundary. Then gs−1 = ψfs−1 for some fs−1 ∈ Cs−1(U ,F).
Also gs = ψfs. Now observe that ψ(fs − δfs−1) = 0, so that fs − δfs−1 = ϕes. We obtain that
δfs = δ(fs − δfs−1) = δϕes = ϕδes. We conclude that e(f) = δes a coboundary.

Finally we show exactness of the sequence. This is again done by chasing the diagram (12.6.8).
At Hp(U, E). [ep] ∈ im δ∗ ⇔ ∃fp−1 : δψfp−1 = 0 and ϕep = δfp−1 ⇔ [ϕep] = 0.
At Hp(U,F). [fp] ∈ kerψ∗ ⇔ ∃gp−1 : ψfp = δgp−1 ⇔ ∃fp−1 : δψfp−1 = ψδfp−1 = ψfp ⇔

∃fp−1 : ψ(fp − δfp−1) = 0⇔ ∃fp−1 : fp + δfp−1 ∈ imϕ⇔ [fp] ∈ imϕ∗

At Hp
0 (U,G). δ∗[gp] = 0 ⇔ ∃fp : ψfp = gp and [ϕ−1δfp] = 0 ⇔ ∃ep : ϕ−1δfp = δep ⇔

δ(fp − ϕe) = 0⇔ f − ϕe ∈ Zp(U ,F) and ψ∗[f − ϕe] = [ψf ] = [g].

Now we wish to pass to the direct limit and also replace C0 by C in the exact sequence. We
need

Lemma 12.6.11. Keeping the notation as before, suppose that g− ∈ Cp(U ,G). Then there exists a
refinement V of U with refinement map σ such that the refined cochain gσ is in Cp0 (V,G).

Proof. After refinement if necessary, we may assume that U is a special open covering in the sense of
7.33 and that there is an open coveringW = {Wλ} with the property that W̄λ ⊂ Uλ. Let gλ0···λp be a
p cochain in Cp(U ,G). Because the sequence (12.6.6) is exact, there exists for every z ∈ Ω and every
λ0 · · ·λp with z ∈ Uλ0···λp a neighborhood Vz ⊂ Uλ0···λp such that gλ0···λp | Vz = s ◦ fλ0···λp | Vz for
some fλ0···λp defined on Vz. For a fixed z there are only finitely many intersections Uλ0···λp that
contain z, because the covering is locally finite. Thus we may choose Vz independent of λ0 · · ·λp.
Shrinking Vz if necessary, we may also assume that Vz ∩Wλ 6= ∅ implies that Vz ∈ Uλ and z ∈Wλ

implies that Vz ∈Wλ. From {Vz}z∈Ω we select a countable, locally finite subcovering {Vi = Vzi}
and we define the refinement function σ by choosing σ(i) ∈ {λ : z ∈ Wλ}. Suppose that Vi0···ip
is nonempty. Then for 0 ≤ j ≤ p Vi0 ∩Wσ(ij) 6= ∅, hence Vi0 ⊂ Uσ(ij). Now the refined cochain
σ(g)i0··· ip is the restriction of the function gσ(i0)···σ(ip) defined on Uσ(i0)···σ(ip) ⊃ Vi0 , and therefore
there exists f = fσ(i0)···σ(ip) on Vi0 with s ◦ f = g on Vi0···ip .
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Corollary 12.6.12 (Snake Lemma). The following sequence is exact

0 −→ H0(Ω, E) ϕ∗−→ H0(Ω,F) ψ∗−→ H0(Ω,G)
δ∗−→ H1(Ω, E) ϕ∗−→ H1(Ω,F) ψ∗−→ H1(Ω,G)
δ∗−→

H2(Ω, E) ϕ∗−→ H2(Ω,F) ψ∗−→ H2(Ω,G) δ∗−→ · · · .

(12.6.11)

Proof. Lemma 12.611 and the fact that δ commutes with refinement maps imply that every cocycle
in Zp(V,G) may be refined to a cocycle in Zp0 (U ,G). Also a coboundary δg may be refined to
a coboundary in Bp0(V,G) by refining g. We infer that H2

0 (Ω,G) = H2(Ω,G). Exactness of the
sequence in 12.612 is obtained by passing to the direct limit in 12.610.

Proof of Theorem 12.69. Consider the exact sequence

0 −→ Lp,q i−→ ∧p,q ∂̄−→ Lp,q+1 −→ 0.

Here Lp,q stands for the sheaf of germs of ∂̄ closed (p, q) forms (which is of course the same as the
sheaf of germs of ∂̄ exact (p, q) forms). The Snake Lemma gives the following exact cohomology
sequence

· · · i∗−→ Hj(Ω,∧p,q) ∂̄∗−→ Hj(Ω,Lp,q+1) d∗−→ Hj+1(Ω,Lp,q)
i∗−→ Hj+1(Ω,∧p,q) ∂̄∗−→ · · · .

(12.6.12)

In view of Theorem 12.67 we obtain

0 ∂̄∗−→ Hj(Ω,Lp,q+1) d∗−→ Hj+1(Ω,Lp,q) i∗−→ 0.

Thus Hj(Ω,Lp,q+1) is isomorphic to Hj+1(Ω,Lp,q) and repeating this we find

H1(Ω,Lp,q) ∼= Hq+1(Ω,Op). (12.6.13)

Also, from (12.6.12) with j = 0 we see

Γ(Ω,∧p,q) ∂̄∗−→ Γ(Ω,Lp,q+1) d∗−→ H1(Ω,Lp,q) −→ 0

is exact, therefore H1(Ω,Lp,q) ∼= Γ(Ω,Lp,q+1)/∂̄∗Γ(Ω,∧p,q). Combining this with (6i) yields

Hq+1(Ω,Op) ∼= Γ(Ω,Lp,q+1)/∂̄∗Γ(Ω,∧p,q),

which proves Hq(Ω,O) = H0,q
∂̄

(Ω), by taking p = 0.
If the covering U consists of domains of holomorphy, then all ∂̄ equations may be solved on

u ∈ U , hence in (6e, 6e’) we have G0(U) = G(U) and Cs0(U ,G) = Cs(U ,G). Thus in the exact
sequence of Proposition 12.610 we have Hp

0 (U ,G) = Hp(U ,G). We conclude that we may repeat
the previous proof with Ω replaced by U and obtain

Hq+1(U ,Op) ∼= Γ(Ω,Lp,q+1)/∂̄∗Γ(Ω,∧p,q),

which proves Hq(U ,O) = H0,q
∂̄

(Ω).

255



12.7 The multiplicative Cousin problem revisited

Cousin-II data consist of a covering U of Ω and an associated 1-cocycle h1
− ∈ Z1(U ,O∗), cf. (1c, 1d).

The group operation in O∗ is multiplication. The question is to determine if h1
− is a coboundary.

The illustration to 12.46 and Corollary 12.54 lead to the following observation.
OBSERVATION 12.71. Let Ω ⊂ Cn be open. The multiplicative Cousin problem is generally

solvable for a fixed covering U of Ω if and only if

H1(U ,O∗) = 0.

It can generally be solved for every covering U of Ω if and only if

H1(Ω,O∗) = 0.

One obvious way to try and solve Cousin-II problems is to reduce them to Cousin-I problems by
passing to the logarithms of the data. Therefore it is necessary that the functions hλµ ∈ O∗(Uλµ)
should admit holomorphic logarithms, hence we have to work with appropriate coverings.

Proposition 12.7.1. For a domain V ⊂ Cn, each of the following conditions suffices for the
existence of continuous (or holomorphic) logarithms of zero free continuous (or holomorphic)
functions g on V :

(i) V is simply connected: all closed curves in V can be contracted to a point inside V ;

(ii) H1(V,Z) = 0.

Proof. (i) On a sufficiently small ball B(c, δ) in V , a continuous (or holomorphic) branch of log g
may be defined by setting

log g(z) = log g(c) + p.v. log
{

1 + g(z)− g(c)
g(c)

}
= log g(c) +

∞∑
1

(−1)k−1

k

{
g(z)− g(c)

g(c)

}k
.

(12.7.1)

Here log g(c) is an arbitrary value of the logarithm; one takes δ > 0 so small that |g(z)−g(c)| < |g(c)|
throughout B(c, δ).

On every Jordan arc from a fixed point a to a point b in V , a continuous branch of log g may
be obtained with the aid of a suitable covering of the arc by small balls. If all arcs from a to b in V
are homotopically equivalent (that is, obtainable from each other by continuous deformation within
V ), then log g(b) may be defined unambiguously in terms of log g(a) with the aid of connecting
Jordan arcs in V . Thus on simply connected V , a zero free continuous function g has a continuous
logarithm. If g is holomorphic, so is the logarithm, as can be seen from (12.7.1) locally.

(ii) Consider the exact sequence of sheaves

0 −→ Z i−→ O exp−→ O∗ −→ 0,

where exp denotes the map f 7→ e2πif . This gives rise to a long exact cohomology sequence

0 −→ H0(V,Z) i∗−→ H0(V,O) exp∗−→ H0(V,O∗)
δ∗−→ H1(V,Z) i∗−→ H1(V,O) exp∗−→ H1(V,O∗) δ∗−→ H2(V,Z) −→ · · ·

(12.7.2)

Recalling that H0(V,F) equals the global sections of F , we see that H1(V,Z) = 0 implies that
exp∗ is surjective to H0(V,O∗), hence every zero free holomorphic function is of the form exp g
with g holomorphic on V .
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There is a similar exact sequence of sheaves for continuous functions

0 −→ Z i−→ C exp−→ C∗ −→ 0,

and the preceding argument gives the result for continuous logarithms.
The exact sequence (12.7.2) gives further insight into the Cousin-II problem:

Theorem 12.7.2 (Serre). Let Ω ⊂ Cn be a Cousin-I domain. Then the Cousin-II problem (and by
Proposition 12.13, also the divisor problem) is generally solvable on Ω whenever

H2(Ω,Z) = 0.

Proof. We have to prove that H1(Ω,O∗) = 0. Looking at the exact sequence (12.7.2) and using
that H1(Ω,O) = H2(Ω,Z) = 0 we derive from exactness of

0 = H1(Ω,O) exp∗−→ H1(Ω,O∗) δ∗−→ H2(Ω,Z) = 0,

that H1(Ω,O∗) = 0.

As an application we obtain an answer to the so-called Poincaré problem: When do meromorphic
functions have global representations as quotients of holomorphic functions?

Theorem 12.7.3. . Let Ω be a Cousin-I domain in Cn such that H2(Ω,Z) = 0. Then every
meromorphic function f on Ω has a global representation

f = g

h
, g, h ∈ O(Ω)

with g and f relatively prime everywhere on Ω.

Proof. Let f be meromorphic on Ω, that is, every point a ∈ Ω has a neighborhood Ua on which f
can be represented as a quotient ga/ha of holomorphic functions (Section 7.1). It may be assumed
that ga and h− a are relatively prime at a. They are then relatively prime on some neighborhood
of a, cf. Section 4.6 and exercise 4.19. Hence there is a covering U of Ω such that

f = ϕλ
ψλ

on Uλ, ∀λ ∈ Λ

with ϕλ and ψλ relatively prime everywhere on Uλ.
On Uλµ one has ϕλψµ = ϕµψλ. It follows that ϕλ and ϕµ have the same prime factors at every

point of Uλµ:
ϕλ
ϕµ

= hλµ ∈ O∗(Uλµ);

similarly ψλ/ψµ = 1/hλµ. The pairs {Uλ, ϕλ} will form a holomorphic divisor D1 on Ω. By Theorem
12.72 the divisor problem for D1 is solvable: there are holomorphic functions hλ ∈ O∗(Uλ) such
that hλµ = hµ/hλ on Uλµ and the formula

g
def= ϕλhλ on Uλ, ∀λ

defines a holomorphic function g on Ω with divisor D1. Similarly the formula h = ψλ/hλ on Uλ, ∀λ
defines a holomorphic function h on Ω with divisor {Uλ, ψλ}. Finally, f = g/h on every Uλ and
hence on Ω, and the functions g and h are relatively prime everywhere on Ω.
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12.8 Cousin-II and Chern classes

It is very reasonable to ask which individual Cousin-II problems {U , h1
−} on Ω ⊂ Cn are solvable.

For that question we will take a closer look at the map

c : H1(U ,O∗) δ∗−→ H2(U ,Z) j−→ H2(Ω,Z). (12.8.1)

Definition 12.8.1. Let U be an open covering of Ω ⊂ Cn. The Chern class of a 1-cocycle
h1
− ∈ Z1(U ,Ω) is the element c(h1

−) in H2(Ω,Z) assigned to it by (12.8.1). The Chern class of a
divisor D = {Uλ, fλ} is defined as the Chern class of the Chern class!of a divisor corresponding
cocycle h1

− = {hλµ = fλ/fm} on Uλµ, see 12.12

c(D) = c(h1
−).

Remark 12.8.2. From (12.8.1) it is clear that the Chern class c(h1
−) only depends on the cohomology

class [h1
−].

We now compute the Chern map of a 1-cocycle h1
− ∈ Z1(U ,Ω), that is, we make the computation

of δ∗ in (12.7.2) explicit. If necessary we refine the covering U to V via a refinement map σ in
order to make sure that σ(h1

−) ∈ C1
0 (V,O∗). Pulling back σ(h1

−)ij under exp yields a 1-cochain
log hσ(i)σ(j) ∈ C1(V,O). Applying δ to the result gives a 2-coboundary

gijk = log hjk − log hik + log hij ∈ C2(V,O), (12.8.2)

where we have suppressed σ in the indices. Because h1
− is a (multiplicative) 1-cocycle, that is

hλµhµνhνλ = 1, (12.8.2) gives that gijk/2πi is in fact Z valued. As the Snake Lemma shows,
gijk/2πi is a 2-cocycle in Z2(U ,Z). Thus c(h1

−)ijk = gijk/2πi ∈ H2(Ω,Z).
We summarize:

Theorem 12.8.3. Suppose Ω ⊂ Cn is a Cousin-I domain, H1(Ω,O) = 0. A Cousin-II problem
{U , h1

−} on Ω is solvable if and only if the Chern class c(h1
−) is zero. A divisor D on Ω is principal

if and only if its Chern class c(D) equals zero. Suppose moreover that H2(Ω,O) = 0. Then the
Chern map is an isomorphism,

H1(Ω,O) ∼= H2(Ω,Z).

Proof. The first part rephrases what we have seen before, the last part follows from the long exact
sequence (12.7.2).

12.9 Exercises

Exercise 12.1. Let Ω be a domain in C, {aλ} a family of isolated points in Ω and {mλ} any
corresponding family of positive integers. Construct a continuous function on Ω which for each Λ is
equal to (z − aλ)mλ on a suitable disc ∆(aλ, ρλ) and which is equal to 1 outside ∪λ∆(aλ, 2ρλ).

Exercise 12.2. (Continuation) Prove that there is a holomorphic function f on Ω which vanishes
of precise order mλ in aλ, ∀λ but which has no other zeros on Ω.

Exercise 12.3. What does an arbitrary divisor on Ω ⊂ C look like? Split it into a positive and a
negative part. Prove that every divisor problem on Ω ⊂ C is solvable.

Exercise 12.4. Prove Proposition (12.13) on the equivalence of the divisor problem and the
corresponding Cousin-II problem.
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Exercise 12.5. Is every Cousin-II problem on a domain Ω ⊂ C solvable?

Exercise 12.6. Let Ω be a Cousin-II domain in Cn,M an (n−1)-dimensional complex submanifold
of Ω. Prove that there is a global holomorphic defining function f for M , that is,

M = {z ∈ Ω : f(z) = 0},

while f is nowhere divisible by the square of a non-unit. [By the last condition, every holomorphic
function on a neighborhood U of a ∈ Ω which vanishes on M ∩U must equal a multiple of f around
a.]

Exercise 12.7. (Continuation). Let h be a holomorphic function on M . Prove that there is a
holomorphic function g on Ω such that g | M = h. [If ∂f

∂/ zn; 6= 0 at a ∈ M , then M is locally
given by zn = ϕ(z′) and h(z′, ϕ(z′)) will be holomorphic on a neighborhood of a′, hence one may
interpret h as a holomorphic function on a neighborhood of a which is independent of zn. Now look
at the proof of Theorem (7.21), but divide by f instead of zn.]

Exercise 12.8. Calculate Hs(U ,F) for the trivial covering U = {Ω} of Ω.

Exercise 12.9. Prove that Ω is a Cousin-I domain if and only if H1(Ω,O) = 0. Compute H1(Ω,O)
for Ω = C3 − {0}.

Exercise 12.10. Check that refinement commutes with the coboundary operator.

Exercise 12.11. Prove that an exact sequence of sheaves induces exact sequences of (chain) groups
(6e,6e’)

Exercise 12.12. Let Ω ⊂ Cn be a simply connected domain in the usual sense. Prove that
H1(Ω,Z) = 0.

Exercise 12.13. Compute H1(A,Z) for the annulus A = {z ∈ C : 1 < |z| < 2}.

Exercise 12.14. Let Ω and Ω′ in Cn be biholomorphically equivalent (or at least homeomorphic).
Prove that H2(Ω′,Z) = 0 if and only if H2(Ω,Z) = 0. Can you prove, more generally, that
Hp(Ω′,Z) ∼= Hp(Ω,Z)?

Exercise 12.15. Show that all convex domains in Cn are Cousin-II domains.

Exercise 12.16. Let Ω be a domain in C2. Prove that Ω is a Cousin-II domain

(i) if Ω = D1 ×D2 where D1 ⊂ C and D2 ⊂ C are simply connected;

(ii) if Ω = D1 ×D2 where D2 ⊂ C is simply connected.

Exercise 12.17. Give an example of an exact sequence of sheaves such that for some covering U
of Ω and some s, Cs(U ,G) 6= Cs0(U ,G). (Cp. (12.6.6))

Exercise 12.18. (Sheaf of divisors) The quotient sheaf D = M∗/O∗ of germs of invertible
meromorphic functions modulo invertible holomorphic functions over the points of Ω is called the
sheaf of divisors of Ω.

(i) Show that a divisor D = {Uλ, fλ} belonging to a covering U of Ω is a global section of D over
Ω;

(ii) Show that the divisor problem for given D may be formulated as follows: Is there a section
of f of M∗ over Ω which is mapped onto the given section D under the quotient map
q : M∗ −→M∗/O∗?
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(iii) Show that the following sequence of sheaves over Ω is exact:

0 −→ O∗ i−→M∗ q−→ D −→ 0.

(iv) Show that the divisor problem for D is solvable if and only if D ⊂ kerϕ where ϕ is the map
Γ(Ω,D) −→ H1(Ω,O∗) in the long exact cohomology sequence generated by the sequence in
(iii).

Exercise 12.19. Let Ω be the domain Cn − {0}, n ≥ 3. Show that H1(Ω,O) = 0. Next show
H2(Ω,Z) = 0. Conclude that the Poincaré problem for Ω is solvable and observe that the proof of
Theorem 5.73 is completed.

Exercise 12.20. Let Ω = Cn − {z : z1 = z2 = · · · = zk = 0}. Prove that if k ≤ n − 2, then
H1(Ω,O) = 0.

Exercise 12.21. De Rham cohomology Dolbeault cohomology is modeled on the (easier) De
Rham cohomology: Consider a domain Ω ⊂ Rn, and its sheaf of germs of s-forms ∧s.

(i) Define a linear operator d from C∞ to Λ1 by

df =
n∑
1

∂f

∂xj
dxj

and from Λs to Λs+1 by

d(f(x) dxi1 ∧ . . . ∧ dxis) = df ∧ dxi1 ∧ . . . ∧ dxis

and linearity. Show that d2 = 0.

(ii) A p-form u is called closed if du = 0, exact if it is of the form dv. Prove that on a ball every
closed p-form is exact. Conclude that

0 −→ C d−→ Λ1 d−→ Λ2 d−→ . . .

is an exact sequence of sheaves.

(iii) Introduce de Rham cohomology groups Hp
d (Ω) as closed p-forms modulo exact p-forms. Copy

the proof of the Dolbeault Theorem to show that

Hp(Ω,C) ∼= Hp
d (Ω).
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divergence theorem, 193
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