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Chapter 1
Introduction

Let us begin with the following (elementary) problem.
(S-C) We are given two domains D C R, G C R? and a function

f:DxG—R

that is separately continuous on D x G, i.e.:

e f(a,-) is continuous on G for arbitrary a € D,

e f(-,b) is continuous on D for arbitrary b € G.

We ask whether the above conditions imply that f is continuous on D x G.

It is well known that the answer is negative. However, recall that the answer
was not known for instance to A. Cauchy (1) , who in 1821 in his Cours d’Analyse
claimed that f must be continuous (cf. [Pio 1985-86], [Pio 1996], [Pio 2000]). Ac-
cording to C.J. Thomae (cf. [Tho 1870], p. 13, [Tho 1873], p. 15) (?), the error
had been first discovered by E. Heine (3) . As an counterexample may serve the
function

%7 if ’ 0’0
p=q=1,D=G=R, f(z,y):= {5 o 1f§i ziiio 0;

, (*)
which was already known to G. Peano in 1884 (*) (cf. [Gen 1884], p. 173).

Since the answer is in general negative, one can ask how big is the set S¢(f) of
discontinuity points (a,b) € DxG of a separately continuous function f. A partial
answer was first given in 1899 by R. Baire (°) ([Bai 1899], see also [Rud 1981]),
who proved that every separately continuous function f : R x R — R is of the
first Baire class, i.e. there exists a sequence (fx)?2, C C(R?,R) such that fr, — f
pointwise on R2. Consequently, if f : R x R — R is separately continuous, then
f is Borel measurable and S¢(f) must be of the first Baire category, i.e. S¢(f) C
Ui, Fk, where int F, = @, k € N. Moreover, Baire proved that if f : [0,1] x
[0,1] — R is separately continuous, then S¢(f) is an F,—set (6) whose projections
are of the first Baire category. Conversely, if S C [0,1] x [0, 1] is an F,—set whose
projections are of the first Baire category, then there exists a separately continuous
function f:1[0,1] x [0,1] — R with Sc(f) = S (cf. [Ker 1943], [Mas-Mik 2000]).

It is natural to ask whether the above results may be generalized to the case
of separately continuous functions f : R® — R, n > 3, i.e. those functions f for

Augustin Cauchy (1789-1857) — French mathematician and physicist.
Carl Johannes Thomae (1840-1921) — German mathematician.
Eduard Heine (1821-1881) — German mathematician.

Giuseppe Peano (1858-1932) — Italian mathematician.

René-Louis Baire (1874-1932) — French mathematician.

(6) That is, a countable union of closed sets.

U W N =



2 1 Introduction

which f(z1,...,2j-1,,&j41,...,2,) € C(R) for arbitrary (z1,...,2,) € R and
j € {1,...,n}. H. Lebesgue (7) proved ([Leb 1905]) that every such a function
is of the (n — 1) Baire class, i.e. there exists a sequence (fz)72, of functions of
the (n — 2) Baire class such that fy — f pointwise on R™. In particular, every
separately continuous function f : R™ —— R is Borel measurable. Moreover,
H. Lebesgue proved that the above result is exact, i.e. for n > 3 there exists a
separately continuous function f : R™ — R that is not of the (n — 2) Baire class.

It is clear that one may formulate similar problems substituting the class C of
continuous functions by other classes F, e.g.:

e F =CF = the class of C¥—functions, k € NU {oo, w}, where C* means the
class of real analytic functions,

o F ="H = the class of harmonic functions,

o F = SH = the class of subharmonic functions (in this case we allow that
f:DxG— [—00,+0)).
Thus our more general problem is the following one.

(S-F) We are given two domains D C RP, G C R? and a function

f:DxG—R

that is separately of class F on D x G, i.e.:

o f(a, ) € F(G) for arbitrary a € D,

e f(,b) € F(D) for arbitrary b € G.
We ask whether f € F(D x Q).

Moreover, in the case where the answer is negative, one may study the set
Sz (f) of all points (a,b) € D x G such that f ¢ F(U) for every neighborhood U
of (a,b).

Observe that the Peano function (*) is separately real analytic. Consequently,
our problem has the negative solution for F = C* with arbitrary k € NU {oc0, w}
and, therefore, one may be interested in the structure of S¢x(f). The structure of
Scw (f) was completely characterized in [Ray 1988], [Sic 1990] (%), and [Blo 1992]
(cf. Theorem 4.6.2).

Surprisingly, in the case of harmonic functions the answer is positive — every
separately harmonic function is harmonic — cf. [Lel 1961] (9) (Theorem 4.5.1).

In the case of subharmonic functions the answer is once again negative —
cf. [Wie-Zei 1991].

Analogous problems may be formulated in the case where D C CP, G C CY are
domains and f : D x G — C is a function that is separately of class F with:

o F = O = the class of all holomorphic functions,

o F = M = the class of all meromorphic functions,

o F = PSH = the class of all plurisubharmonic functions (in this case we
allow that f: D x G — [—o00, +00)).

7
8

Henri Lebesgue (1875-1941) — French mathematician.
Jézef Siciak (1931~ ) — Polish mathematician.
(?) Pierre Lelong (1912~ ) — French mathematician.




In the case of holomorphic functions the answer is positive — every separately
holomorphic function is holomorphic (Theorem 2.1.5) — this is the famous Hartogs
theorem (*°) (cf. [Har 1906]). In the sequel we will be mostly concentrated on the
holomorphic case. We would like to point out that investigations of the separately
holomorphic functions begun at 1899 ([Osg 1899]) (11) , that is almost at the same
time as first Baire’s results on separately continuous functions ([Bai 1899]).

Since the answer to the main question (S-O) is positive, we may consider the
following strengthened problem.

(S-On)  Given two domains D C CP, G C CY, a non-empty set B C G, and
a function f: D x G — C such that:

e f(a,-) € O(G) for every a € D,

e f(-,b) € O(D) for every b € B (ounly in B),
we ask whether f € O(D x G).

The problem has a long history that began with [Huk 1930] (12) (Theorem
2.2.2) and has been continued in [Ter 1967], [Ter 1972] (*3) — Theorems 4.1.1 and
4.1.4. Terada was the first who used the pluripotential theory — the newest tool
at that tme. Roughly speaking, the final result says that the answer is positive
iff the set B is not pluripolar (i.e. B is not thin from the point of view of the
pluricomplex potential theory — cf. Definition 3.3.18).

The problem (S-Oy) leads to the following general question.

(S-Oc)  Given two domains D C CP, G C CY, two non-empty sets A C D,
B C G, and a function f: (A x G) U (D x B) — C such that:

o f(a, ) € O(G) for every a € A,

o f(-,b) € O(D) for every b € B,
we ask whether f may be holomorphically extended to an open (independent of f)
neighborhood of the cross X := (A x G) U (D x B) (note that (S-Oy) is just the
case where A = D). Investigations of (S-O¢) began with [Ber 1912] (') and have
been continued for instance in [Ber 1912], [Sic 1969a], [Sic 1969b], [Akh-Ron 1973],
[Zah 1976], [Sic 1981a], [Shi 1989], [Ngu-Sic 1991], [Ngu-Zer 1991], [Ngu-Zer 1995],
[NTV 1997], [Ale-Zer 2001], [Zer 2002] in which it has been completely solved —
Theorem 4.3.1. Roughly speaking, if the sets A, B are not pluripolar and regular
(i.e. every point of A (resp. B) is a density point of A (resp. B) in the sense of the
pluricomplex potential theory), then there exists a universal neighborhood X of X
suckl\that every function f separately holomorphic on X extends holomorphically
to X.

The results extend (in a non-trivial way) to N—fold crosses

N
X = UA1X-"XAJ‘,1XDJ'XAJ*+1X--'XAN
j=1

10) Friedrich Hartogs (1874-1943) — German mathematician.

1) William Osgood (1864-1943) — American mathematician.

12) Masuo Hukuhara (1905~ ) — Japanese mathematician.

13) Toshiaki Terada (1941- ) — Japanese mathematician.

(1*) Sergei Natanovich Bernstein (1880 — 1968)) — Russian mathematician.
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with A; Cc D; C C%,j=1,...,N, and separately holomorphic functions, i.e. func-
tions f : X — C such that f(a1,...,a;-1,,aj41,...,an) € O(D;) for all
(a1,...,an) € Ay x -+ x Ay and j € {1,...,N}) — Theorem 4.3.1.

So far our separately holomorphic functions f : X — C had no singularities
on X. The fundamental paper by E.M. Chirka and A. Sadullaev ([Chi-Sad 1988])
and next some applications to mathematical tomography ([Okt 1998], [Okt 1999])
showed that the following problems seems to be important.

(S-Og) Let ACDCCP, BCGCC?beas in (S-O¢), let

McX:=(AxG)U(D x B),

and let f: X \ M — C be a separately holomorphic on X \ M, i.e.:
e f(a,-) is holomorphic in {w € G : (a,w) ¢ M} for every a € A,
f(-,b) is holomorphic in {z € D : (z,b) ¢ M} for every b € B.
We ask whether there exist a universal open neighborhood X of X and a relatively
closed set M ¢ X (both independent of f) such that f extends holomorphically
to X \ M.

Observe that the case where M = & reduces to (S-O¢). The problem general-
izes to N—fold crosses and to separately meromorphic functions. A solution of (S-
Os) has been found in a series of papers [Sic 2001], [Jar-Pfl 2001a], [Jar-Pfl 2001b)],
[Jar-Pfl 2003a], [Jar-Pfl 2003b], [Jar-Pfl 2003¢], [Jar-Pfl 2007] — Chapters 5 and
7.

Analogous problems may be also stated for separately meromorphic functions,
for example:

(S-M)  Given two domains D C CP?, G C C9, a “thin” (in a certain sense)
relatively closed set S C D x G, and a function f : D x G\ S — C that is
separately meromorphic on D x G, i.e.:

e f(a,-) extends meromorphically to G for every a € D with {a} x G ¢ S,

e f(-,b) extends meromorphically to D for every b € B with D x {b} ¢ S,
we ask under which assumptions on S the function f extends meromorphically to
D x G.

The problem generalizes in a natural way to crosses and N—fold crosses (also
with singularities), cf. e.g. [Kaz 1978a], [Kaz 1978b|, [Kaz 1984], [Shi 1989],
[Shi 1991], [Jar-Pfl 2003c] — Chapter 6.

Similar questions as above may be formulated for a boundary cross. To be
more precise:

(S-Op) Given two domains D C CP, G C C9, two non-empty sets A C 9D,
B C 0G, and a function f: (A x (GUB))U ((DUA) x B) — C such that:

e f(a,-) € O(G) for every a € A,

o f(-,b) € O(D) for every b € B,

e f(ab) = Dggaf(z,b) = G%iqf)nabf(a,w), (a,b) € A x B, where the limits

are taken in a certain sense (e.g. non-tangential), we ask whether f may be holo-
morphically extended to a function f on an open (independent of f) subset X of



-~

D x G such that X C X and fla,b) = lim f(z,w), (a,b) € X (where
X3(z,w)—(a,b)

the limit has to be specialized) — Chapter 9.

Another possible generalization of the problem of holomorphicity of separately
holomorphic functions is to consider non-linear fibers. Let us illustrate the main
idea by the following particular case (cf. [Chi 2006]).

(S-Op) Let D CCP, GC CY 2C D xC?be domains and let

D xG>3(z,w) — (z,0(z,w)) € 2

be a homeomorphic mapping such that ¢(-,w) is holomorphic for every w € G.
Suppose that f : 2 — C is such that:

e f(a,-) is holomorphic on the fiber domain ¢({a} x G) for every a € D,

o f(,o(,b) € O(D) every b € G.
We ask whether f € O(£2). The answer is positive — Chapter 10. Note that the
classical Hartogs theorem is just the case where ¢(z,w) := w and 2 := D x G.

All above problems may be also formulated in the category of Riemann domains
over C™ and/or complex manifolds.

The graph below represents interrelations between different parts of the book.
We hope that it may help the reader to find an optimal path through the text.

[ROAD MAP OF THE BOOK. WILL BE COMPLETED. . . . . . . . . . . . . ]



Chapter 2

Classical results

2.1 Osgood and Hartogs theorems (1899 — 1906)

Definition 2.1.1. Let @ # 2 C C" be open. We say that a function f: 2 — C
is separately holomorphic on 2 (f € Os(£2)) if for any a = (aq,...,a,) € 2 and
j € {1,...,n}, the function ¢ — f(a1,...,a;-1,(,aj41,-..,a,) is holomorphic
in a neighborhood of { = a; (as a function of one complex variable).

Clearly, O(£2) C O4(£2). At the end of the 19*" century, due to the Cauchy
integral representation, the following equivalence was well known.

Theorem 2.1.2. Let 2 C C" be open and let f : 2 — C. Then the following
conditions are equivalent:

(i) f is complez differentiable at any point of £2;

(i) f € O(92);

(iil) f € Os(2)NC().

Thus O(£2) = O4(£2) NC(£2). The first result dealing with separately holomor-
phic functions without the continuity assumption was the following one.

Theorem 2.1.3 (Osgood). (a) [Osg 1899] If f € O4(£2) is locally bounded, then
f is continuous. Consequently, by Theorem 2.1.2(iii), O(2) = {f € Os(2) : f is
locally bounded}.

(b) [Osg 1900] Suppose that n = p+q and f : 2 — C is such that for every
(a,b) € £2 C CPxC1 the functions z — f(z,b) and w — f(a,w) are holomorphic
in neighborhoods of a and b, respectively (e.g. n =2, p=q=1, f € O5(12)). Then
the set So(f) is nowhere dense in (2.

Recall that So(f) denotes the set of all points a € {2 such that f ¢ O(U) for
every neighborhood U of a. It is clear that Sp(f) is relatively closed in {2.
Define

Izl := max{|z1],...,|2nl}, 2z=1(21,...,2n) € C",
Pla,r) =Pp(a,r) :={2€C": ||z—allo <T}, a€C" r>0,
P(r) = P,(r) := P,(0,7),

K(a,r) :=Pi(a,r), K(r):=Pi(r), D:=K(1), T=0D.

Proof. (a) Nowadays a standard proof of (a) is based on the Schwarz lemma. If
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|f(2)] < C for z € P(a,r) C §2, then

|f(Z) _f(a“)| < |f(zla227z3a"'7zn) _f(alvz%z?n"'vzn)'
+ | f(a1, 22,23, ..., 2n) — fla1,a2,23, ..., 20)| + ...

+1f(ar,. ..y an-1,2n) — flar,...,an—1,an)|

2C
< 7(|21 —a1| + |22 —as] + -+ |20 — anl),

and consequently f is continuous at a.

Another proof, based on the Montel theorem, may be done by induction on n.
Suppose the result is true for n — 1 and let f € Os(f2) be locally bounded. Take a
polydisc P(a,r) € £2. Write z = (2, z,) € C"~! x C. By the inductive assumption,
f(,zn) € O(P,_1(a’,7)) for all 2, € K(a,,r). Take a sequence P(a,r) > a* — a
such that f(a¥) — o € C. We like to show that o = f(a). By the Montel
theorem (applied to the sequence (f(-,ak))?2, C O(P,_1(a’,7))), there exists a
subsequence (ks)2°; such that f(-,aks) — g locally uniformly in P,_;(a’,7).
Since f(2',-) € C(K(an,r)) for all 2’ € P,_1(a’, ), we must have g = f(-,a). Thus
o = lim, o0 f((a¥),ak0)) = g(a') = f(a).

(b) follows from a Baire argument. Let P,(a,r) x Py(b,r) € {2 be arbitrary.
Define

Ay :={z € Ppla,r) : Vep, )+ |f(z,w)] <k}, keN.

Then Ay, is closed in Py (a,r) and Py(a,r) = Uz, Ak. Hence, by Baire’s theorem,
there exists a ko such that Ay, has a non-empty interior. Thus f is bounded on a
non-empty open set U = P,(c, ) xPy(b,r) C Pp(a,r) xPy(b,r). By (a), f € OU).
Hence U C 22\ So(f). O

W. Osgood also observed that the proof of Theorem 2.1.3(b) shows that in
order to prove that Os(£2) = O(£2) for arbitrary open set 2 C C”, it suffices to
check the following lemma, which is nowadays called the Hartogs lemma.

Lemma 2.1.4 (Hartogs lemma). Let f: K(r) x Py, (r) — C be such that:
o f(a,) € O(Py(r)) for every a € K(r),
o [eOK(r)xPy,(d)) for some 0 < <r.

Then f € O(K(r) X Pp(r)).

Proof that Lemma 2.1.4 implies that O4(£2) = O(£2). We use induction on n. For
n = 1 the theorem is trivial. Suppose that O,(£2) = O({2) for arbitrary open set
NcCvl Fix 2cCr=CxCv!and f € Oi02). Tt is sufficient to show
that f is holomorphic in a neighborhood of an arbitrary point (zg,wp) € §2. Let
P, ((z0,wo),2r) C 2, and let

Ap ={w e Pp_1(wo,7) : Viek (20, |f(z,w)| <k}, k€N
Clearly Ay C Ag41. Since f(z,-) € C(Pp—1(wo,2r)) for arbitrary z € K(zq,2r)

(by the inductive assumption), the sets Ay are closed in P,,_1(wp,r). Moreover,
Uken Ak = Pr_1(wo,r). Using Baire’s property we conclude that int Ay, # @
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for some ko. Let Pp_1(£0,0) C Ag,- In particular, by Theorem 2.1.3(a), f €
O(K (z9,7) X Pr_1(&0,9)). Now we apply Lemma 2.1.4 (with m :=n — 1) to the
function K(r) x P,_1(r) 3 (z,w) — f(20 + 2,& + w), and we conclude that
f € O(Pn((20,&0),7)).It remains to observe that (zg, wo) € Pn((20,&0),7). O

The main step, based on the above remark by Osgood, was done by Hartogs
in [Har 1906].

Theorem 2.1.5 (Hartogs theorem). The Hartogs lemma (Lemma 2.1.4) is true.
Consequently, Os(§2) = O(2) for arbitrary open set 2 C C".

Nowadays there exist various proofs of the Hartogs lemma. We present below
two of them:

e Leja’s proof [Lej 1950] (1) , based on the Leja’s polynomial lemma (Lemma
2.1.6),

e Koseki’s proof [Kos 1966] (2) , based on an elementary version of the Har-
togs lemma (Lemma 2.1.7).

We like to point out that both proofs are based on classical complex analy-
sis and are independent of the Hartogs lemma for plurisubharmonic functions
(cf. Proposition 3.3.13).

2.1.1 Leja’s proof of the Hartogs lemma

Let P(C™) denote the space of all complex polynomials of n complex variables.

Lemma 2.1.6 (Leja’s polynomial lemma, cf. [Lej 1933a], [Lej 1933b]). Let K C C
be a compact set such that

inf{diam S : S is a connected component of K} > 0
(e.g. K is a continuum (*)) and let F C P(C) be such that

Veer @ sup [p(z)| < +oo,
peF

i.e. F is pointwise bounded on K. Then

|
Vaek Vu>1 EIM:M(K,a,w,f)>0 Eln:n(K,a,w)>0 : sup sup |p(z)| < Mwoee?,
pEF z€K(a,n)

or equivalently,

d
Vos1 IM=M(Kw,F)>0 3 0=0(Kw) : supsup [p(z)| < MwEr.
KC — open PpEF z€L

1) Franciszek Leja (1885 — 1979) — Polish mathematician.
2) Ken’iti Koseki (1917-1980) — Japanese mathematician.
(3) That is, a compact connected set having more than one point.
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Notice that n and (2 are independent of F.

Proof. Let r > 0 be such that diam S > 2r for every connected component S of
K.

Step 1°: Let A C [0,7] be a closed set with m := £L1(A) > 0. Then for every
d € N there exist tg,...,tq € A, 0 <ty < -+ < tg < r, such that

2 -2

ty —t; > = 4, k=0,...,d, j <k.
Proof of Step 1°. Let to = min A, sg 1= to + é—zm Then A; := A\ [0, s9). Observe
that A is closed and non-empty (indeed, if A C [to,s0), then m = L1(A) <
So —tg = ;—Zm < m — a contradiction).
. 2212 12—0?

Put t; := min Ay, s1 = t1 + —=—m. Then t; —ty > sg — g = ~—pz—m.
Let Ay := A\ [0,s1); Az is again non-empty (if A C [to,s0) U [t1,51)), then
m<sg—ty+s1 —t1 = Z—zm < m — a contradiction). Let ty := min As. Then
to—1t1 281 —t1 = 22_12m.

d2
We continue and = min A = 4= (d-1)"
e continue and we get to,...,tq—1 = min Ag_1, Sq—1 = lg—1 + —pz—m,

Ag = A\ [0,84-1). Suppose that A; = @. Then A C [to,S0) U...[ta—1,84-1)
and hence m < sg —tg+ -+ 84-1 — tg—1 = g—zm = m — a contradiction. Thus

e} ; _ d*—(d-1)?
tq := min Ag is well defined and tg —t4-1 > s4-1 — ta—1 = —F—m. O

Step 29: For any B C K and a € K, let
ma(B) :={t €[0,r] : BNOK(a,t) # &}.

Observe that if B is closed, then so is m,(B).
Step 3°: Let

1 2, .2
I(w) ::exp(/ 1oga —Zx dx), a>0.
0 x

Observe that log I(a) = log(1 + a?) + 2acarctan(1/a). In particular, log I(a) <
(7 + a)a.

Step 4°: From now on p will denote an arbitrary polynomial from the family
F and d = degp.

For any closed set B C K, a € K and n > 0 we have

p(2)| < |IpllsI), =€ K(a,n),

where
s n+r—LYA)
L

In particular, if B = K, then A = [0, 7] and, consequently,

p(2)| < llpllI?(v/n/r), =€ K™,

where K™ :=J,_x Pn(a,n); notice that K™ is also compact.

e A :=7,(B).
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Proof of Step 4°. The case where £!(A) = 0 is obvious. Assume that m :=
LY(A) > 0. Let tg,...,tq be as in Step 1°. Take arbitrary zx € B N 9K (a,ty),
k=0,...,d. Let Ty :={z0,..., 24},

d
LTy =[] ==L, k=0,....d
=0 Zk Zj

J#k

If z € K(a, 77) then |z —zj| < |z —al + |z; —a] < n+t;. Moreover, since
2

m + Zzm, and, consequently, |z—zj| <
(a? —|— d2) ’i_ 0,...,d. On the other hand, |z — 2| > |tp — t;| > ‘kdg ‘
Thus, if z € K(a,n), then

m.

LW (2, Ta)| <

=~
Q
[\v]
M|+
&
INA
[\
<.
==
Q
S| +
&.|M
INA
[N}
’\4
5

<.

Ul
E
—
]
o
o}
(V)
< 4
ey
¥
S—
>
—
O]
[\v]
[\v]
jSH
=
|
—
]
o
~
—
S~—

Then, for z € K(a,n), we have

sd
’Z (zk) L( ) (z Td)’ < ||p||SB(Sd+1)215d(Oc),
k=0

which implies that
2) < llpllp/2(sd + 1)1%(a)

It remains to let s — +o0. O

Step 5% Let (K5)2; be a sequence of compact subsets of K such that K C
Kop1, K =J2, K. Then for every n > 0 there exists a sequence (ms(n))52, C
[0,7], ms(n) — r such that

)] < Il (VAT (0), = € KO,

where
2. ntr—msn)

, seN.
ms(n)

Proof of Step 5°. Take ai1,...,ay € K such that K C Uk 1 K(ag,m) =: L.
Let Ag s := 7, (Ks). Then Ags ' [0,7] when s / +oo, which implies that
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LY(Ags) /' rwhen s / +oo, k=1,...,N. Put ms(n) := ming—1,__ n L*(Ax.s).
It is clear that m4(n) — r. By Step 4° we know that

p(2)] < Ipllx. I (anrs) < lplx.Ies), 2 € K(ax,n),

where
2 7I+7” _‘Cl(Ak,s)
Qp o = 1
’ L1(A,s)
Hence,
p(2)| < Ipllx,I%as), z €L,
and, finally, by Step 4%, we get the required inequality. O
Step 6°: Let

Ky ={z€ K :Vyer:|p(z)| <s}, seN
Observe that K, is compact, K C Kg11, and K = Ufil K (because F is point-

wise bounded on K). Let Fsq = {250,...,2s4) be the d—th system of Fekete
points for K, i.e. Fs q realizes the maximum of the continuous function

K;H—la(zo,...,zd)»—) H |zj—Zk|.

0<j<k<d
Put
Z— Zg i
LW (2 Fog) =] =22, k=o0,...,d
3=0 Zs,k T Zs,j
Jj#k

Observe that |L™*) (2, Fy 4)| < 1 for z € K,. Hence, by Step 5°, we get

d
p() = | D P20 Lz, Foa)| < sd + 1)(1(@)1@)){ e K™ seN.
k=0

Step 6°: We move to the main proof. Fix an w > 1. Let dy = do(w) € N
be such that v/d+1 < Yw for d > dy. Let n = n(r,w) > 0 be so small that
I(y/n/r) < ¥Yw. Finally, let sg = so(r,w) € N be such I(a,) < ¢w for s > so. In
view of Step 5Y, if d > dj, then

()] < s(d+ V(16D en) < st 2 e KO, s> 5

It remains to find an estimate for d < do. Let S := {z0,...,24,} C K be an
arbitrary set of dg + 1 distinct points. Put

My := max sup|p(z;)| < +oo.
k=0,...,do pe F
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Then, for d < dy we get

do dO
p()] = £ 9)| < Mo max L(z,8)] = M < Mo,
=0 jmo ZEK ™

e KM, 0

Proof of Lemma 2.1.4 via Leja’s polynomial lemma. Let n := 14+m. Observe that
it is sufficient to show that f € O(P,(r")) for arbitrary 0 < ' < r. Thus we may
assume that |f| < C < 400 in K(r) x Pp,(d) and f(z,-) is bounded for any
z € P (r). We have

fz,w) = Z fa)w®, 2z € K(r), w e Ppy(r),

Qe
where
falz) = (D (2, 0)(0) = DOV f)(=,0), =€ K(r), o€ 2.

The last equality follows from the fact that f € O(K(r) x Py, (d)). In particular,
fo € O(K(r)) for arbitrary a. Moreover, by the Cauchy inequalities, we obtain

falz)| < C/81, 2 € K(r), a € ZT.
Applying once more the Cauchy inequalities (for the function f(z,-)), we have

ILf (2, )lp, ()

|fa(2)] < o] , z€K(r), aeZ,

where for a function ¢ : A — C we set ||¢||a := sup{|e(z)| : © € A}. Conse-
quently,
limsup |fo(2)[Y1 < 1/r, ze K(r).

Ja] =00
Our aim is to show that the series ) gz fa(z)w* converges locally normally in
K(r) x P, (r).

Take an arbitrary 6 € (0,1) and let w > 1 be such that 6y := w?@ < 1. Fix a

point a € K(r) and 0 < p <7 — |a|]. Let 0 < pp < p be so small that rpy < wdp.
Write

fal2) =) fanlz —a)¥, 2 € K(a,r—|a]),
k=0

||

Pa(z) = Zfa,k(z —a)k, F={(r/w)p,:ac VA
k=0
In view of (2.1.1), the Cauchy inequalities imply that

C
|fa,lc| < W
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Consequently, in view of (2.1.2), if z € K(a, po), then

Sled

P

Pa(2)] < Ifa(2)] + i | fak(z —a)f| < C(z)(f)‘al ¢ (Po)“”“ 1_1

,
k=lal+1
< C(z)(%)la‘ + 1 _C%O %(g—;)la < C(z)(%)m‘ n Cl(%)m.

Hence, the family F is pointwise bounded on K(a,po). By Leja’s polynomial
lemma there exist 0 < < po and M > 0 such that

NS

lof
() <M, s Ko, w7

Finally, for (z,w) € K(a,n) X Pp,(0r) we get

w

a2 < (Ipale) 01 () ) 0121 < 220y () < (Mr+C)ol,

-
which implies that the series ZanT fa(z)w* converges normally in K(a,n) X
P,.(0r). O

2.1.2 Koseki’s proof of the Hartogs lemma

The main ingredient of Koseki’s proof is the following lemma.

Lemma 2.1.7 (Koseki’s lemma, cf. [Kos 1966]). Let 2 C C be open, ¢, € O(12),
py >0, v > 1. Assume that the sequence (|, |P* )52, is locally uniformly bounded
in 2 and

limsup o, (2)[P* <¢, z€ (2

v——+0o0

Then for any K € 2 and € > 0 there exists a vy such that
lou(2)|PY <c+e, zeK,v>uw.

Proof. The result is local — it is sufficient to show that for any ¢ > 0 and a € 2
there exist a disc K(a,n) C 2 and vy such that

low (2)|Pr <c+e, z€ K(a,n), v> .

We may assume that 2 = K(2), a = 0. Let C' > 0 be such that |p,[P» < C in D
for arbitrary v. We may also assume that ¢, Z 0, v > 1. Write ¢, = B,4, in D,
where B, is a finite Blaschke product and v, has no zeros in D. Let x, € O(D)
be a branch of 2~ in D. Given arbitrary ¢ € 0D, we have

limsup |x,(z)| = limsup |1, (2)[P* = limsup |, (2)[P* < C,
D3z—(¢ D3z—(¢ D3z—(
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and so |xy| < Cin D, v € N. In particular, the family (x,)52; is equicontinuous
in D. Fix an ¢ > 0 and let 0 < 5 < 1 be such that [x,(z) — x.(0)] < &/2 for
z € K(n) and v > 1. Then

lou ()P < [ ()17 = Ixu(2)] <e/2+ Ixu(0)], 2 € K(n), v>1.

It remains to estimate x,(0). Observe that

1 2 ,
Ix»(0)] < 5/ loy, ()P d, v > 1.
0

Let
Ay :={0€10,2n] : |<pl,(ew)|p” <c+e/d, v >k}

The sets Ay are closed, Ay C Agq1, and [, oy Ar = [0,27]. For v > k we have

1 0\ |pv ei9 o
|xu<o>|s§(/Ak o ()] d0+/[0727r]\Ak o - )
< %((C+E/4)£1(Ak) +C(27T—£1(Ak))) et/

where £ denotes the Lebesgue measure in R. Hence |y, (0)| < ¢+ ¢/2 for v >
1. |

Proof of Lemma 2.1.4 via Koseki’s lemma. We begin as in the proof based on
Leja’s polynomial lemma:

fz,w) = Z fa(z)w®, ze€ K(r), wePy(r),

agZ
where
fa € OK(r), |falz)<C/8l? ze K@), aeczm, (2.1.1)
limsup | fo ()Y <1/r, 2 € K(r). (2.1.2)
|| =400
Write Z7' = {1, az,...} so that |o,| < |apqi]|, v = 1,2,.... Let 2 := K(r),

¢v = fa,, v = 1/]ay|. Fix a 6 € (0,1) and let € > 0 be such that (1 +re)f < 1.
Applying Lemma 2.1.7 to K := K (0r), we obtain |¢, (2)[P» < 1/r+e for z € K(0r)
and v > vg. This means that

1fa2)] < (U/r+e)el 2 e K(0r), |a] > 1.
Hence

|fal2)w® < (1 +re)d)el 2z e K(0r), we P, (0r), | > 1.

® is convergent normally in P, (6r), which

Consequently, the series EQEZQL fa(z)w
implies that f € O(IP,,(0r)). Since 0 was arbitrary, we conclude that f € O(P,(r)).

O



2.1 Osgood and Hartogs theorems (1899 — 1906) 15

2.1.3 Generalized Hartogs lemma. Counterexamples

Lemma 2.1.4 may be easily generalized (EXERCISE) to the following form.

Lemma 2.1.8 (Hartogs lemma). Let U C 2 C D x C? be domains such that
for every a € D the fiber U, := {w € CY : (a,w) € U} is non-empty and 2, is
connected. Let f: 2 — C be such that:

i f(av') € O(Qa); a€D,

o feOU).
Then f € O(02).

Lemma 2.1.4 is not true without the assumption that f € O(K(r) x P,,(9))
for some 0 < § < r (even if f satisfies some additional regularity conditions) —
cf. for instance [Har 1906], [Lej 1950], [Fuk 1983].

Example 2.1.9 ([Lej 1950]). We construct a function f : C x C — C such that:
o f(a,-) € O(C) for every a € C,
o feO(C\R_)xC), where R_:={x € R:z <0},

but f is unbounded near (0,0) (in particular, f is not holomorphic near (0, 0)).
Let

Li= |J K(z,1/k) CC,

zeER_
Ay = F(k) \ Ly, By:= F(k) N (f/ﬁ.l \ Lgt2), Cf:= F(/{J) ﬂf}ﬁ.g, keN.

By the Runge theorem, for each k € N, there exists a polynomial P, € P(C) such
that
| Pr(2)] Sl//ﬂk, z € Ap U, |Pk(z)|2kk, z € By.

Let -
flz,w) := ZPk(z)wk, (z,w) € C2.
k=1

Observe that f is well defined because for any z € C there exists a ko(z) € N such
that z € Ay UCY, for any k > ko(z) and therefore

|Pi(2)w"] < ([wl/k)", k> ko(2).

In particular, f(z,-) € O(C) for any z € C. Moreover, for any zy € C\ R_ there
exist rg > 0 and kg € N such that K(zq,r9) C Ay for k > ko. Hence

|Pk(z)wk| < (|w|/k)k, (z,w) € K(z9,70) X C, k > ko,

and consequently, by the Weierstrass theorem, f € O((C\ R_) x C).
Suppose that f is bounded in a neighborhood of (0,0), i.e. |f(z,w)| < C,
(z,w) € Py(r). Then, by the Cauchy inequalities, we get

|Pe(2)] < C/r*, k€N, z e K(r).
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Consequently, taking z € By N K (r) with k> 1, we get
EF < |P.(2)| < C/rF, k> 1,
a contradiction.

Example 2.1.10 ([Fuk 1983]). We construct a function f : C x D — C such
that:

e fla,)€OD) acC,

o for any wy € D, the function f(-,wp) is unbounded near 0 (in particular,
not holomorphic near (0, wp)).
Let

1 1 1 1

Ak::{x+iyef(k):x< 0rx22—k+m}, 2, = int Ay,

= 9k 9k+2

. — 1 1 1

1 .
+W}7 Uk I:HltBk.
By the Runge approximation theorem for each kg; there exists a polynomial Py €
P(C) such that |Py| < 1/2% on Ay, and |P;| > 2% on Bj. Observe that:
o C=Upli Moty 2,
o 1/2" e UxnN,2,41 2 kEN,
o 1/2° € Ay, for s # k.
Define

flzow) =Y Pu(z)uw*, (z,w) € CxD.
k=1

Then:

o if a € N2, P, then | P (a)w®| < 1/2% for k > ko, and hence f(a,-) €
O(D);

o ifwy € D, and 1/2% < |wg|, then

F(1/2%0 wo)| = | Por (1/2%)wg™ | = [Pa(1/250 )
seN, s#kko
> (kR0 g Fko — 3™ 1725 > (2Fofwg|)FRe — 1 — oo,
k—+o00
seN, s#kko

2.2 Hukuhara and Shimoda theorems (1930-1957)

Theorem 2.1.5 and Lemma 2.1.8 suggest the following problem, nowadays called
the Hukuhara problem.

(S-On)  Given two domains D C CP, G C CY, a non-empty set B C G, and
a function f: D x G — C that is separately holomorphic in the following sense:

e f(a,) € O(G) for every a € D,

o f(-,b) € O(D) for every b € B,
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we ask whether f € O(D x G).

In the above situation we write f € O4(X) with X := (D x G) U (D x B).
Notice that from the set-theoretic point of view the set X is nothing else as
the Cartesian product D x G which is, of course, independent of B. Writing
X = (D x G)U (D x B) we point out the role played by the set B.

Remark 2.2.1. (a) Theorem 2.1.5 and Lemma 2.1.8 guaranties that the answer
is positive (i.e. Os5(X) = O(D x G)) whenever B is open.

(b) Observe that the answer must be negative if B is too “thin”. For example,
if B := ¢g=1(0), where g € O(G), g # 0, then for arbitrary function ¢ : D — C,
the function f(z,w) = p(2)g(w), (z,w) € D x G, belongs to Os(X) (and, of
course, may be not holomorphic on D x G).

The next step in the development started in 1930 with the paper by M.
Hukuhara [Huk 1930].

Theorem 2.2.2 (Hukuhara). If p = ¢ = 1 and B has an accumulation point in
G, then every locally bounded function f € O4(X) is holomorphic on D x G.

Below (Theorem 2.2.4) we present a more general result (cf. [Ter 1972]) whose
proof uses the same ideas as the original proof by Hukuhara.

Definition 2.2.3. We say that a set B C CY is an identity set at a point by € B
if for any open connected neighborhood U of by and f € O(U), if f =0on BNU,
then f=0on U.

Observe that if ¢ = 1 and B C G has an accumulation point by € G, then B is
an identity set at by in the sense of the above definition.

Theorem 2.2.4. For arbitrary p and q, if B is an identity set at a point by € G,
then every locally bounded function f € O4(X) is holomorphic on D x G.

The following notion will be very useful in the sequel.

Definition 2.2.5. Let {2 be a topological space (e.g. an open set in C™). We say
that a sequence (£2;)%2; of open subsets of 2 is an ezhaustion sequence for (2 if
2, € Qk+1 c .Q, k €N, and = Uliil 2.

In the case where {2 is connected we will always assume that each (2 is also
connected.

Proof. Let (Dg)52, and (G)72, be exhaustion sequences for D and G, respec-
tively, with by € Gy. It suffices to prove that f is holomorphic on each Dy x Gj.
Thus, we may additionally assume that f is bounded.
Observe that f must be continuous. Indeed (cf. the proof of Theorem 2.1.3(a)),
let
D x G > (2, wr) — (20, wp) € D x G

and f(zx,wg) — a € C. By a Montel argument we may assume that f(zg, ) —
g locally uniformly in G with g € O(G). In particular, f(zx,wr) — g(wp) = a.
Recall that if b € B, then f(-,b) € O(D). Hence, f(zr,b) — f(20,b) = g(b),
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b € B. Since B is an identity set, we conclude that f(zp,:) = g. Thus a =

9(wo) = f (20, wo).
Fix an arbitrary polydisc P = P(a,r) € D and define

ry L 1 f(Caw)
TE = G o =€

d¢, (z,w) € P xG,

where 8P(a,r) := 0K (a1,7) X - -+ x K (a,,7). Then f € O4(P x G)NC(P x G)
and so f € O(P x G). Moreover, by the Cauchy integral formula, f(z,b) = f(z,b)

for (z,b) € P x B. Since B is an identity set, we conclude that f = f in P x G,
which finishes the proof. O

It took another 30 years before I. Shimoda came back to the Hukuhara prob-
lem. He proved in [Shi 1957] an analogous result to the one of Osgood (Theorem
2.1.3(b)).

Theorem 2.2.6 (Shimoda (4) ). If p=¢q =1 and B has an accumulation point
in G, then for every function f € O4(X) the set So(f) is nowhere dense.

Below we present a more general result (cf. [Ter 1972]) whose proof goes along
the same ideas as the original proof by Shimoda.

Theorem 2.2.7. For arbitrary p and q, if B is an identity set at a point by € G,
then for every function f € O4(X) the set 2y := D x G\ So(f) is dense in D x G.
Moreover, {20 = Uy X G, where Uy is an open dense subset of D.

Proof. First observe that if P (a, ) xPq(b, 1) C 29 and Pp(a,r)xPy(b, R) C DXG,
then Lemma 2.1.8 implies that Pp(a,r) X Py(b, R) C 2. Consequently, {2p must
be of the form 2y = Uy x G.

Take an arbitrary polydisc P = P(a,r) C D and a point b € G. Let Gy € G
be a subdomain of G such that b, by € Gg. Define

A i ={2€ P:Vyeq, : |f(z,w)| <k}, keN.

Then obviously A C Agt1, £k € N, and P = UzO:1 Aj. Moreover, each Ay is
closed in P. Indeed, let Ay > z; — z9 € P. Using a Montel argument, we may
assume that f(zs,-) — g locally uniformly in Gy with g € O(Gy), |g| < k. Since
B is an identity set at by, we conclude that g = f(zo, ).

Now, a Baire argument implies that there exists a ko such that U := int Ay, #
@. Consequently, by Theorem 2.2.4, f € O(U x Gy). O

(#) Isae Shimoda (1916— ) — Japanese mathematician.



Chapter 3

Prerequisities

For the reader’s convenience we decided to collect in the present chapter various
auxiliary results. Most of them may be found (with proofs) in [Jar-Pfl 2000].
Therefore, all the proofs which may be found in [Jar-Pfl 2000] will be skipped.
Some of the results presented below will be very specialized — the reader should
consult the Road map of the book at the end of Introduction to see where a given
item will be really needed. We recommend to follow the graph from the Road map
of the book.

3.1 Extension of holomorphic functions

Riemann domains appear in a very natural way while discussing problems related
to holomorphic continuation. There exists an example of a bounded domain D C
C? such that every function f € O(D) extends beyond D, but there is no domain
D C C2? such that D C D and each function f € O(D) extends holomorphically
to D (cf. [Sha 1976]).

3.1.1 Riemann regions
See [Jar-Pfl 2000], § 1.1.

Definition 3.1.1. A pair (X, p) is called a Riemann region over C" (1) (shortly
(X,p) € ®R(CM)) if:

e X is a topological Hausdorff space,

e p: X — C" is locally homeomorphic, i.e. each point a € X has an
open neighborhood U such that p(U) is open in C" and p|ly : U — p(U) is
homeomorphic.

The mapping p is called the projection. For z € p(X) the set p~1(z) is called
the stalk over z. A subset A C X is said to be univalent if p|a : A — p(A) is
homeomorphic.

If X is connected, then we say that (X,p) is a Riemann domain over C"
((X,p) € Re(CM)).

If X is o—compact, i.e. X = J)~, K,, where each K, is compact, then we say
that (X, p) is countable at infinity (X,p) € Ra(CM)).

(*) Georg Riemann (1826-1866) — German mathematician.
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We say that a Riemann region (X, p) € R(C") is relatively compact ((X,p) €
Rp(C™)) if there exists (X', p") € R(C™) such that X is a relatively compact open
set in X' and p = p'|x,

Remark 3.1.2. (a) If 2 C C” is an open set, then (§2,id) € R (C™). This is
the standard identification of open sets in C™ with Riemann regions.

(b) If (X,p) € B(C™), then p is an open mapping. In particular, the set p(X) is
open in C". For any a € p(X) the stalk p~!(a) is a discrete subset of X.

(¢) If (X,p) € R(C™), then the family (U, p|v)v, where U runs over all univalent
open subsets of X, introduces on X an atlas of an n—dimensional complex
manifold.

(d) If (X,p) € R(C"), (Y,q) € R(C™), then (X x Y,p x q) € R(C"™™), where
(p x q)(z,y) = (p(x),q(y))

(e) Let (X,p) € R.(C") and let Y be an open univalent subset such that p(Y) =
p(X). Then Y = X.

(f) Every Riemann domain is metrizable.

(g) R(C™) C Ruoo(C™). Consequently, a Riemann region is countable at infinity
iff it has an at most countable number of connected components.

Let (X,p) € R(C™). For a € X and 0 < r < 400, we introduce on X the
notion of a polydisc centered at a of radius v as an open univalent neighborhood
P(a,r) = Px(a,r) of a such that p(Px(a,r)) = P,(p(a),r), where P, (p(a), +00) :=

~

C™. Notice that Px(a,r) exists for small > 0. We define:
e the distance to the boundary dx : X — (0,400

dx (a) == sup{r € (0, +oc] : Px(a,r) exists}, a € X;

the mazimal polydisc centered at a point a € X: Px(a) = Px(a,dx(a));

® DPa = p|ﬁiX(a)a
o dx(A):=inf{dx(a):a€ A}, AC X;

A =, ca Px(a,m), 0 < r < dx(A);
Xoo :={a € X :dx(a) = +o0}.

Remark 3.1.3. (a) The set X is the union of all connected components Y C X
such that ply : ¥ — C" is homeomorphic (cf. Remark 3.1.2(e)). Moreover,

ldx () — dx(a)| < |p(z) —pla)le, a€X\ X, v€Px(a)
In particular, the function dx is continuous.
(b) If K C X is compact, then set K(") is compact for any 0 < r < dx (K).

(c) If K is compact and univalent, then K (") is univalent for small 7 > 0.
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For z,£ € C" and 0 < r < 400 let A¢(z,7) := 2+ K(r)€, where A¢(z,+00) :=
z + C¢§. For a point a € X, 0 <7 < +o0, and § € C", we introduce on X the
notion of a disc in direction £ centered at a of radius r as a univalent set A¢(a,r)
containing a such that p(ﬁg(a,r)) = A¢(p(a),r). Observe that ﬁg(a,r) exists

for small r > 0. Note that Ag(a,r) = {a} for every r > 0. We define the distance
to the boundary in direction &:

dx,e:X — (0,+00], dxe(a):=sup{r>0: A\g(a,r) exists}, a€ X.

Remark 3.1.4. (a) The function
X xC" > (2,8) — dxe(z) € (0,400
is lower semicontinuous.

(b) The polydisc Px (a, r) exists iff the disc AAg (a,r) exists for any & with ||€]|ec = 1.
Moreover,

Px(a,r)= |J Aclar), dy=inf{dxe:€£€C, ||¢]o =1}
cecn
l€lloo=1

For f: X — C and a € X, we define the formal derivatives of f at a

of I(foph) of A(fopt) .
= a_ / B — = 2 -a / — 1 PR
provided that the right hand sides exist, where _82j and —6‘% on the right hand

side are taken in the classical sense. If f is of class C* in an open neighborhood of
a and «, 3 € Z'} are such that |a| + || < k, then we may define the derivatives

s = () e ah) e ) ene ) 10

Df(a) = D™ f(a).

3.1.2 Holomorphic functions on Riemann regions

See [Jar-Pfl 2000], § 1.1.

Definition 3.1.5. Let (X,p) € R(C"). A function f : X — C is said to be
holomorphic (f € O(X)) if for each open univalent subset U C X the function
fo(ply)~?t is holomorphic in the standard sense on the open set p(U) C C™.

If (Y,q) € BR(C™), then a continuous mapping F' : X — Y is said to be
holomorphic (F € O(X,Y)) if go F € O(X,C™).
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For f € O(X) and a € X, we define the Taylor series of f at a:

1.5 = Y PTG ) = o), zec

Q€L
and its radius of convergence T, f,
d(Tof) :==sup{r > 0: T, f(z) is convergent for z € P(p(a),r)}.

Notice that d(T,f) > dx(a) and f(z) = T, f(p(z)) for x € Px(a). Moreover,

Dof(@)) "

1 1

= limsu ( max —

ATaf)  hesor \aczt ol
la|=k

Proposition 3.1.6 (Identity principle). Let (X,p) € R.(C"), (Y,q) € R(C™),
F, G e OX,Y), and assume that int{x € X : F(z) = G(z)} # @. Then F =G
on X.

3.1.3 Lebesgue measure on Riemann regions

Let (X,p) € Ro(C™). A set A C X is called (Lebesgue) measurable if for any
open univalent set U C X the set p(ANU) is Lebesgue measurable in C™ (in the
classical sense). Then:

e any Borel subset of X is measurable,

e aset A C X is measurable iff any point ¢ € X has an open univalent
neighborhood U such that p(ANU) is Lebesgue measurable in the classical sense.

Since X is countable at infinity we may write X = U;’il U;, where each U; is
open and univalent. Put By := Uy, Bj :=U; \ (U1 U---UU;_1), j € Na. For any
measurable set A C X put

LX(A) = Z L2 (p(AN By)),

where £2" denotes the standard Lebesgue measure in C". One can prove that £X
is a regular measure which is independent of the choice of the sequence (Uj);";l.
It is called the Lebesgue measure on X. If f : A — [0,400] is a measurable

function, then
o0

facx = / f o (ply,)tdL?,
/A jz:; p(ANB;) '

3.1.4 Sheaf of /—germs of holomorphic functions

See [Jar-Pfl 2000], Example 1.6.6.
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Let I be an arbitrary non-empty set of indices. For a € C" define
Ol .= {(U, f) : U is an open neighborhood of a, f = (fi)icr € O(U)},
For (U, f), (V,g) € O we define an equivalence relation

U, f) = (V,g) == 3w_ neighborhood of a © W C U NV, filw = gilw, i € I

Put SO
ol=0l/~.

The class }a = (U, f)]

f. at a understood as

o is called the I-germ of f at a. Notice that the value of
fala) = (fi(a))ier

is well defined.

Let RI be the ring of all families (S;);c; of power series centered at a that are
convergent in a common (independent of i € I) neighborhood of a, which may
depend on the family (S;)ier (i-e. inf{d(S;) : ¢ € I} > 0). Then the mapping

O35 fo — (Tufi)icr € R} (3.1.1)

is an isomorphism. This gives an equivalent description of O which also intro-
duces on Of a structure of a commutative ring with the unit element — the ring
of I-germs of holomorphic functions at a. Put

o=\ ol

acCn

and let 7! : O — C” be given by the formula WI(}G) =a.
For .fa = [(Uv .f)]é put

V(fo.U) = {[(U. f)], : be U}

b
~

One may easily check that: N
e the system {V(f,,U): f, € O, (U, f) € f.} is a neighborhood basis of a
HausdorfF topology on O such that 7TI|V(? 0 V(f,,U) — U is homeomorphic.

Thus (Of, 7) € R(C"). It is called the sheaf of I-germs of holomorphic functions
in C™. One can easily prove that

dor(f,) = inf{d(T.f;) i€ I}.
For ig € I define F;; : ol —¢c, Fy, (}a) := f;,(a). Then
]Fio © (WI|V(?Q’U))_1 = fio on U.

This shows that F;, € O(O7).
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3.1.5 Holomorphic extension of Riemann regions

See [Jar-Pfl 2000], § 1.4.

Definition 3.1.7. Let (X, p), (Y, q) € R(C™). A continuous mapping ¢ : X — Y
is said to be a morphism if go ¢ = p.

If o : (X,p) — (Y, q) is a morphism such that ¢ is bijectiveand ¢~ : Y — X
is also a morphism, then we say that ¢ is an isomorphism.

Observe that if 21, 23 C C™ are open and ¢ : (£21,id) — (f22,id) is a
morphism, then 21 C (25 and ¢ is the inclusion operator.

Remark 3.1.8. Let ¢ : (X,p) — (Y, ¢) be a morphism.

(a) If ¢ : (X,p) — (Y, q) is a morphism with ¢(a) = ¥(a) for some a € X, then
@ = 1 on the connected component of X that contains a.

(b) ¢ is locally biholomorphic. In particular, ¢ is an open mapping.
(¢) ¢ is an isomorphism iff ¢ is bijective.
(d) If A C X is univalent, then ¢(A) is univalent. In particular:

. cp(]IADX(a,r)) = @y(gp(a),r), a€X,0<r<dx(a),

e dyoyp>dx,

e if ¢ is an isomorphism, then dy o ¢ = dx.

(e) If every connected component of YV intersects ¢(X) and dy o ¢ = dx, then
p(X) =Y.

(f) The mapping
¢":OY) — O(X), ¢7(9) =90,

is injective iff every connected component of Y intersects p(X).

(8) Tp)g = Talgo ), g € OY), a € X. In particular, d(Tof) > dy(¢(a)) for
any a € X and f € ¢*(O(Y)).

Definition 3.1.9. Let (X,p) € R(C™) and let @ # F C O(X). We say that
a morphism ¢ : (X,p) — (Y,q) is an F-extension if ¢* is injective and F C
©*(O(Y)), i.e. for each f € F there exists exactly one g =: f? € O(Y) such that
gop=f. Put

Fe={f?:feFt={9€eO):gopeF}

Notice that if X is connected, then Y must be connected.
If F = O(X), then we say that ¢ : (X,p) — (Y, q) is a holomorphic extension.
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Remark 3.1.10. Let (X,p) € R(C") and let @ # F C O(X). We define a
morphism (cf. § 3.1.4 with I := F):
o= pr: (X,p) — (0P, x5,
#(z) = [(Pu(p(2), dx (2)), (f o ;) ser)loer @€ X

After the identification (3.1.1), the mapping ¢ may be written as

o(x) == (Tpf)fer, =€ X.

Then ¢ is a morphism and Fyo ¢ = f for any f € F. Consequently, if X
denotes the union of those connected component of OF) that intersect ¢(X) and
p:=71)|¢, then

X

¢ (X,p) — (X,p)

is an F—extension.

Remark 3.1.11. Let ¢ : (X,p) — (Y,q) be a holomorphic extension. Then
f(X) = f?(Y) for every f € O(X).

3.1.6 Regions of existence

See [Jar-Pfl 2000], § 1.7.

Definition 3.1.12. Let (X,p) € RR(C") and let @ # F C O(X). We say that
(X,p) is an F-region of existence if

dx(a) =inf{d(Tof) : f € F}, a€X;

equivalently, for any r > dx (a) there exists an f € F such that d(T,f) <r

If F ={f}, then we say that (X, p) is a region of existence of f.

If F = O(X), then we say that (X,p) is a region of existence.

If X is connected, then we say that (X, p) is an F-domain of ezistence, domain
of existence of f, and domain of existence, respectively.

Remark 3.1.13. (a) (X,p) is an F-region of existence iff for any F-extension

P (Xyp) - (Y7Q)
we have dy o ¢ = dx (i.e. ¢ is surjective — cf. Remark 3.1.8(e)).

(b) If (X, p) = (£2,id), where {2 is an open set in C", then (£2,id) is an F-region
of existence iff there are no domains 2, 0 c C" with @ # 2 C 2N Q
2 ¢ (2, such that for each f € F there exists an f €0 ) with f = f on (2.

(¢) (X,p) is an F-region of existence iff there exists a dense subset A C X such
that dx(a) = inf{d(Tof) : f € F}, a € A.
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3.1.7 Maximal holomorphic extensions
See [Jar-Pfl 2000], § 1.8.

Definition 3.1.14. An F-extension ¢ : (X,p) — ()?,ﬁ) is called mazimal if for
any F-extension ¢ : (X,p) — (Y, q) there exists a morphism o : (Y, q) — ()?,]/5)
such that 0 o1 = . The maximal F-extension is uniquely determined up to an
isomorphism. In the above situation we say that ¢ : (X,p) — (X,p) is the
F-envelope of holomorphy of (X,p). If F = O(X), then we simply say that
v:(X,p) — ()?,]3) is the envelope of holomorphy of (X, p).

We say that (X, p) is an F-region of holomorphy if for every F—extension

¢:(X,p) — (Y,q)

the mapping ¢ is an isomorphism.

If (X,p)is an O(X)-region of holomorphy, then we say that (X, p) is a region
of holomorphy. If X is connected, then we say that (X,p) is an F—-domain of
holomorphy and domain of holomorphy, respectively.

Remark 3.1.15. If p : (X,p) — ()?,]’5) is the maximal F-extension, then ()?,]/5)
is an F¥-region of holomorphy.

Theorem 3.1.16 (Thullen theorem (?)). Let (X,p) be a Riemann region over
C™ and let @ # F C O(X). Then (X,p) has an F—envelope of holomorphy.

Proof. Tt suffices to prove that the F—extension
YF (Xap) - (Xaﬁ)v

constructed in Remark 3.1.10, is maximal. Let ¢ : (X,p) — (Y, ¢) be another
F—extension. By the same method as in Remark 3.1.10 we construct a morphism

PFv (Yv q) - (O(}-w)ﬂr(}ﬂp))'

Observe that ((’)(fw),ﬂ(}—w)) ~ (O 7(F)). Moreover, prs 01 = pr. Conse-
quently, o7+ (Y) C X (up to an isomorphism). O

Definition 3.1.17. We say that F separates points in X if for any x1,20 € X
with x1 # xo there exist f € F such that f(z1) # f(x2).

We say that F weakly separates points in X if for any x1, 29 € X with z1 # x4
and p(x1) = p(x2) there exist f € F and a € Z7} such that D*f(x1) # D%f(x2),
i.e. the exists an f € F such that Ty, f # T, f.

We say that F is d-stable if: f € F = D € F,acZ].

Observe that in F is d-stable and p € F"™, then F separates points in X iff F
weakly separates points in X.
If (X, p) is univalent, then every family F weakly separates points in X.

(?) Peter Thullen (1907-1996) — German mathematician.
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Remark 3.1.18. The morphism g is injective iff F weakly separates points in
X. Recall that dg(pr(x)) = inf{d(T.f): f e F}, v € X.

Proposition 3.1.19. Let (X,p) € R(C™), @ £ F C O(X). Then the following
conditions are equivalent:

(i) (X,p) is an F-region of holomorphy;

(ii) F weakly separates points in X and (X,p) is an F-region of existence;

(iii) there exists a dense subset A C X with A =p~1(p(A)) such that:

o for any ', 2" € A with 2’ # 2" and p(2’) = p(z") there exists an f € F
such that Ty f # Tpn f,

o dx(z)=inf{d(T,f): feF}, zeA

Proposition 3.1.20. Let (X,p) € Ro(C™). Then the following conditions are
equivalent:

(i) (X,p) is a region of holomorphy;

(ii) NO(X)) :={f € O(X) : (X,p) is an {f}—domain of existence} # &;

(iii) M(O(X)) is of the second Baire category in O(X).

Remark 3.1.21. The above result remains true if we substitute O(X) by a natural
Fréchet space (3) F, i.e. a vector space F C O(X) endowed with a structure of a
Fréchet space such that if f, — f in F, then fr — f locally uniformly in X.
For example: F = H*(X) := the space of all bounded holomorphic functions on
X with the topology of uniform convergence.

3.1.8 Singular sets

See [Jar-Pfl 2000], § 3.4.
Let (X,p) € R(C"), let M be a closed subset of X satisfying the following
condition

for any domain D C X the set D\ M is connected and dense in D,  (3.1.2)

and let @ # F C O(X \ M).
Notice that:
e intM = g;
e every pluripolar set (cf. Definition 3.3.18) satisfies (3.1.2);
e consequently, every thin set (cf. Definition 3.1.26) satisfies (3.1.2);
e in particular, every analytic set of dimension < n — 1 satisfies (3.1.2).

Definition 3.1.22. We say that a point a € M is non-singular with respect to F
(a € M,s 7) if there exists an open neighborhood U of a such that for each f € F
there exists a function f € O(U) with f = f on U\ M.

If a € My 5 := M\ M,s 7, then we say that a is singular with respect to F. If
M,s.Fr =D, ie. Mgy = M, then we say that M is singular with respect to F. If
F = O(X \ M), then we simply say that M is singular and we skip the index £.

(®) René Fréchet (1878-1973) — French mathematician.
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Remark 3.1.23. Notice the difference between the notion of “the singular analytic
subset M of X” and “the singular points Sing(M) of an analytic subset M of X”.
Recall that if M is an analytic subset of X, then a point a € M is called regular
(a € Reg(M)) if there exists an open neighborhood U of a such that M NU is a
complex manifold. If a € Sing(M) := M \ Reg(M ), then we say that a is singular
— cf. [Chi 1989], § 2.3.

Remark 3.1.24. (a) The set M 7 is closed in M and satisfies (3.1.2).

(b) Each function f € F has a holomorphic extension f € O(X \ M, ).

(c) Ms 5 = (M F), 7 where F:={f:[f € F}, ie M, is singular with
respect to j-:

(d) Ms 7N U =(MNU)s 7|y, for every open set U C X.

(e) If M is an analytic subset of X, then {a € M : dim, M < n —2} C M,
(cf. [Chi 1989], Appendix I). In other words, if M # @& is singular, then M is of
pure codimension one.

Proposition 3.1.25. Let M C X be an analytic subset of pure dimension (n—1),
and let M = J,c; M; be the decomposition of M into irreducible components
(cf. [Chi 1989], Section 5.4). Then Msr = U;.ar,c . » Mi- In particular, the set
My 7 is also analytic.

Definition 3.1.26. A set M C X is thin in X if for any a € X there exist a
connected neighborhood U C X of a and a holomorphic function ¢ € O(U), ¢ # 0,
such that PNU C ¢~1(0). Note that every thin set is pluripolar (cf. Definition
3.3.18).

Proposition 3.1.27. If M is a closed thin set, then M, r is analytic.

3.2 Holomorphic convexity

See [Jar-Pfl 2000], § 1.10.

Definition 3.2.1. Let (X,p) € R(C™). For a compact set K € X put
KO = {z € X +Yseowx + |f(@)] < £}

The set KO is called the holomorphic hull of K. We say that K is holomor-
phically convex if K = K9X), We say that (X,p) is holomorphically convex if
K9 is compact for every compact K € X.

Proposition 3.2.2. Let (X,p) € Roo(C™). Then X is holomorphically convex iff
there exists a sequence (Kj)]@‘;l of holomorphically conver compact sets such that
Kj C intKj+1, 7€N, and X = U;il KJ‘.
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Theorem 3.2.3 (Cartan-Thullen theorem (*)). Let (X,p) € Roo(C"). Then the
following conditions are equivalent:

(i) (X,p) is a region of holomorphy;

(ii) O(X) separates points in X and dX(I?O(X)) = dx(K) for every compact
KelX; R

(iii) O(X) separates points in X and dx(K®X)) > 0 for every compact K €
X

(iv) O(X) separates points in X and for any set A C X with dx(A) = 0 there
exists an f € O(X) such that sup 4 |f| = +oo;

(v) O(X) separates points in X and X is holomorphically convex;

(vi) O(X) separates points in X and for any infinite set A C X with no limit
points in X there exists an f € F such that sup 4 |f| = +o00.

Notice that in fact, if X is holomorphically convex, then O(X) separates points
in X — cf. Theorem 3.5.9.

Definition 3.2.4. Any (X, p) € R (C") satistying (vi) is called a Riemann—Stein
region over C".

3.3 Plurisubharmonic functions

See [Jar-Pfl 2000], § 2.1.
Let (X,p) € Ro(C™) (notice that in fact the majority of results remains true
for arbitrary (X,p) € R(C™)).

Definition 3.3.1. For u: X — R_, :=[—00,40), a € X, and £ € C", we put

A5 (wopg ) (pla) +AE).

A function u : X — R_ is called plurisubharmonic (psh) in X (u € PSH(X))
if:

e 1 is upper semicontinuous on X,

o for every a € X and £ € C" the function u, ¢ is subharmonic in a neigh-
borhood of zero (as a function of one complex variable).

Notice that the above definition has a local character. Consequently, whenever
we are interested in local properties of psh functions, we may assume that (X, p) =
(D,id), where D is a domain in C™.

We say that a function u : X — R is logarithmically plurisubharmonic (log—
psh) if logu € PSH(X).

For I C R_o we put PSH(X,I):={u € PSH(X) :u(X) C I}.

Remark 3.3.2. (a) For an upper semicontinuous function v : X — R_., the
following conditions are equivalent:

(*) Henri Cartan (1904-2008) — French mathematician.
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(i) u € PSH(X);
(ii) Yaex Yeccn:|e)|w=1 Jo<R<dx(a):

2
u(a) = uqe(0) < —/ ua_g(reie)dﬁ, 0<r<R;
27T 0 ’

(ifl) Vaex Veecn:|j¢)w=1 Jo<r<dx (o)’

u(a) < !

< — Uq, CdEQC, 0<r<R;
7 [yt

(iV) Van vieC":ll&llmzl E|O<R§dx(a) V0<T<R vaP(C): if ua,g S Re f on 8K(7”),
then u(a) < Re f(0) (where P(C) stands for the space of all complex polyno-
mials of one complex variable);

(V) Vaex Veecr:|¢)lw=1 Jo<R<dx () Yo<r<r thH(K(r))ﬁC(?(r)): if uge < hon
OK(r), then u(a) < h(0) (where H({2) stands for the space of all functions
harmonic in (2);

(vi) for any a € X and £ € C™ the function
K(ox,e(@) 3 A— (1 (ol 50.0)"1)(pla) + AE)
is subharmonic;
(vii) wo (ply)~t € PSH(p(U)) for any univalent open set U C X.
(b) PSH(X) + PSH(X) = PSH(X), Rsg-PSH(X)=PSH(X).
(¢) |f] is log-psh on X for any f € O(X).
(d) If (u,)S2, C PSH(X) and u, \, u pointwise on X, then u € PSH(X).
In particular, if (u, )32, C PSH(X, [—00,0]), then > 0 | u, € PSH(X).

(e) If (uy)$2, € PSH(X) and u, — wu locally uniformly in X, then u €
PSH(X).

(f) If ug,...,uny € PSH(X), then max{ui,...,un} € PSH(X) (cf. Proposition
3.3.11).

(g) (Liouville type theorem) If u € PSH(C™) and supe. v < 400, then u = const.

(h) Let I C R be an open interval and let ¢ : I — R be convex and increasing.
Then ¢ o u € PSH(X) for every u € PSH(X, I). Consequently:

If u e PSH(X), then e* € PSH(X) (in particular, any log—psh function is
psh).
If u e PSH(X,Ry), then u? € PSH(X) for every p > 1.
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(i) If uy, us are log—psh, then uq + ug is log—psh.

(j) (Maximum principle) If X is connected, u € PSH(X), and u < u(a) for some
a € X, then u = u(a). Consequently, if Y € X is a domain, v € PSH(Y),
and u # const, then

u(z) < sup{limsupu(y): (€ Y}, x€Y.
Yoy—(

Let £2 C C" be open and let u € C?(§2,R). We define the Levi form of u at a

()

Zjafk

92 _
Lu(a;€) =Y aiu(a)gjgk, a€ D, €= (&,...,&)€Cm
j.k=1

Observe that
82ua,5

ONOX

Lu(a;§) = (0).

Consequently, we have the following

Proposition 3.3.3. Let u € C?(X,R). Then
u € PSH(X) <= Vaeq, cecn @ Lu(a; &) > 0.
Remark 3.3.4. Let (Y,q) € R(C™),F € O(Y, X),u € C*(X,R). Then
L(wo F)(bin) = Lu(F(b); (po F)'(b)(n)), beY, neC™

Consequently, if u € PSH(£2) NC?*(X,R), then uo F € PSH(Y) — cf. Propo-
sition 3.3.16.

Definition 3.3.5. We say that a function u € C2(X,R) is strictly plurisubhar-
monic if
V(LEQ, ge(Cn), ¢ Eu(a,ﬁ) > 0.

Proposition 3.3.6. Let Y C X be open, v € PSH(Y), u € PSH(X). Assume
that

limsupv(y) <wu(¢), ¢ €Y.
Y3y—¢

Put

u(z) = {max{v(x),u(x)}, rey
u(z), reX\Y

Then uw € PSH(X).

(°) Eugenio Elia Levi (1883-1917) — Italian mathematician.
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To simplify notation we will use the following abbreviations:
ef = (e®,...,e*), z-w:=(z1w1,...,2Wy),
z2=(21,---,2n), w=(wy,...,w,) €C".
Let a = (a1,...,a,) €C", r = (r1,...,m) € RZ) = (Ry0)". If
doP(a,r) - R_o
is bounded from above and measurable, i.e. the function
[0,2m)" 3 0 — u(a + 7 - €)

is Lebesgue measurable, then we define

Plusa,rz) = / (H ~lai ol Jula + - e®)ac” o)
s Wy by (271’ [0271']” ; |,,, 6707_ Zj_aj)|2 )

z= (Zl,...,Zn) € ]P’(a,r),
1

— u(a + 7 - e?)dL™ ().
(2m)n /[0,27r]n

If u:P(a,7) — R_ is bounded from above and measurable, then we define

1 1
A(u;a,r :z—/ udﬁani/ wdL*™.
(0:7) = o ) o B Joan

Proposition 3.3.7. Let 2 C C™ be open, u € PSH({2), a € 2. Then

J(u;a,7) = P(u;a;r;a) =

J(uya,7r) \u(a), A(u;a,r)\ u(a) when r\, 0.

Proposition 3.3.8. Let uy,us € PSH(X). If ur < ua almost everywhere in X,
then ui < usg everywhere.

Proposition 3.3.9. Let 2 C C" be open, u € PSH(2), P(a,r) € 2, r € RY,
Then

u(z) < P(uja,r;2), z¢€P(a,r),
u(a) < J(u;a,7),
u(a) < A(u;a,r)

Proposition 3.3.10. If X is connected, w € PSH(X), and v £ —oo, then u is
locally integrable; in particular, the set u=1(—o0) is of zero measure.

Proposition 3.3.11. If a family (u;)ic; C PSH(X) is locally bounded from above,
then the function

u = (supu;)”
iel

is psh in X.
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Here v* denotes the upper regularization of v, v*(z) := limsup,_,, v(y), r € X,

Proposition 3.3.12. If a sequence (u,)52, C PSH(X) is locally bounded from
above, then the function
u = (limsupu,)*

V—00

is psh on X.

Proposition 3.3.13 (Hartogs lemma). Let (ug)32, C PSH(X) be a sequence
locally bounded from above. Assume that for some m € R

limsup up < m.
k— o0

Then for every compact subset K C X and for every e > 0, there exists a ko such
that
m}f{ixuk <m+e, k2>ko.

Definition 3.3.14 (Regularization). Let
D(21,. . y2n) =W(21) - U(zn), z=1(21,...,2,) €C",

where ¥ € C3°(C,R) is such that:
supp¥ =D, ¥(z) =¥(|z]), z € C, /Wdﬁz =1

Put )
Z n
@E(Z) = &a—né(g), zeC , €> 0.
Let
X ={reX:dx(x) >¢e}, e>0.

For every function u € L*(X,loc), define

w@)i= [ aa(ple) o)L )
Px (x)
— [ @on o) + cw)p(ide (), w € Xe.

The function u. is called the e-regularization of u. Observe that for a € X. and
z € Px(a,dx(a) —¢) we get

us(z) = / u(y) . (p(x) — p(y))dL™ (y)

Px (a)

— [ won o) + cw)b(widc® (w) (M
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Proposition 3.3.15. Ifu € PSH(X), u #Z —o0, then u. € PSH(X:) NC>®(X:)
and u: \, u pointwise in X when e \, 0.

Proposition 3.3.16. Let (Y,q) € R(C™), F € O(Y,X). Thenuo F € PSH(Y)
for any v € PSH(X).

Corollary 3.3.17. Let u : X — R_,, be upper semicontinuous. Then u is psh
on X iff for any analytic disc ¢ : D — X the function u o ¢ is subharmonic in
D.

Definition 3.3.18. A set M C X is called (locally) pluripolar (M € PLP) if any
point a € M has a connected neighborhood U, and a function v, € PSH(U,)
with v, # —00, M NU, C v;1(—o0). For A C X put

PLP(A) = {P € PLP(X): P C A}.

By Proposition 3.3.10, if M is pluripolar, then £X(M) = 0. It is clear that
any thin set (cf. Definition 3.1.26) is pluripolar.

Proposition 3.3.19. (a) Let (u;)ier C PSH(X) be locally bounded from above.
Put u := sup;c; u;. Then the set {x € X : u(z) < u*(x)} is of zero measure.

(b) Let (uy)ven C PSH(X) be a sequence locally bounded from above. Put
w:=limsup,_, | o u,. Then the set {x € X :u(x) < u*(x)} is of zero measure.

Notice that in fact the set {z € X : u(z) < u*(z)} is pluripolar — cf. Theorem
3.3.29.

Theorem* 3.3.20 (Josefson theorem; cf. [Jos 1978]). If M C C" is pluripolar,
then there exists a v € PSH(C"), v # —oo, such that M C v~!(—o0).

Proposition 3.3.21. Let M; C C" be pluripolar, j € N. Then M := Ujoil M; is
pluripolar.

Theorem 3.3.22. Let M C X be pluripolar. Then there exists a v € PSH(X),
v # —o0, such that M C v~ !(—00).

Proof. We may assume that X is connected. Let X = [J;-, Ui be an open covering
by univalent sets (cf. Remark 3.1.2(g)). Then each set Ay := p(M NUy) is pluripo-
lar, and consequently, by Proposition 3.3.21, the set A := [J;—, Ay is pluripolar.
Hence, by the Josefson theorem (Theorem 3.3.20), there exists a u € PSH(C™),
u # —oo, such that u = —oco on A. By Proposition 3.3.10, u|,x) # —oo. Now,
we only need to put v := uwop. Then v € PSH(X) (Proposition 3.3.16), v # —oo,
and v = —oo on M. O

Remark 3.3.23. [WILL BE COMPLETED [E11980]. . . . . . . . . . . . . ]

Proposition 3.3.24. Let M; C X be pluripolar, j € N. Then M := U;’il M; is
pluripolar.
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Proposition 3.3.25 (Removable singularities of psh functions). Let M be a closed
pluripolar subset of X .
(a) Let u € PSH(X \ M) be locally bounded from above in X (°). Define

u(z) == limsup wu(w), ze€X
X\M3w—z

(notice that u is well-defined). Then u € PSH(X).
(b) For every function u € PSH(X) we have

u(z) = limsup wu(w), ze€ X.
X\M>3w—z

(¢) The set X \ M is connected.

Corollary 3.3.26. Let M be a closed pluripolar subset of X. Let f € O(X \ M)
be locally bounded in X. Then f extends holomorphically to X.

Proposition 3.3.27. Let (Y,q) € R (C™).
(a) If AC X XY is pluripolar, then

P:={zcX: A, ¢ PLPY)} € PLP(X),
where
Ay ={weY : (z,w) € A}
(b) If AC X XY is thin, then
P:={z€ X : A, is not thin in Y} € PLP(X).

(c) Let Q C X XY be such that Q(q,.) € PLP(Y), a € X. Let C C X XY be
such that
{zeX:Cr. )¢ PLP(Y)} ¢ PLP(X)
(e C = C' xC" C X xY, where C' ¢ PLP(X), C" ¢ PLP(Y)). Then
C\Q¢PLP(X xY).
Proof. We may assume that X = D and Y = G are domains in C® and C™,
respectively.

(a) Let v € PSH(D x G), v # —o0, be such that A C v=}(—00) (Theorem
3.3.20). Fix a compact K € G with int K # @. Define

u(z) :==sup{v(z,w) :we K}, z€D.

Then v € PSH(D) and u # —oc. If z € P, then A(, ) ¢ PLP. Hence, v(z,-) =
—00, and consequently, u(z) = —oo. Thus A C u™1(—c0).
(b) Using the definition of a thin sets and Lindeldf theorem, we get

A | J{(z,w) € U x Vi : p1(z,w) = 0},
k=1

(°) That is every point a € X has a neighborhood Vg such that u is bounded from above in
Vi \ M.
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where Uy, x Vi, C D x G is connected, ¢ € O(Uy x Vi), and ¢ # 0. Observe that
for any k the set

P, :={z€U:pr(z,-)=0} = ﬂ {z € Uy : vi(z,w) =0}
we Vi

is analytic in Uy. Hence the set Py := J—, Py is pluripolar. If a ¢ Py, then

Afa,y C U {w € Vi : pg(a,w) = 0},
keN: aeUy

and consequently, the set A, .) is thin.

(c) Suppose that C'\ @ is pluripolar. Then, by (a), there exists a pluripolar
set P C D such that the fiber (C'\ Q)(q,.) is pluripolar, a € D\ P. Consequently,
the fiber C, .y is pluripolar, a € D\ P; a contradiction. O

Exercise 3.3.28. The set P in Proposition 3.3.27(b) need not be thin. Complete
the following example. Let X =Y :=D,

A= ({0} x {jwl = 1/4) U | {17k} x {Jw] = 1 - 1/k}.

keNy
Then P={0}U{l/k:keN, k>2}.

Theorem* 3.3.29 (Bedford—Taylor theorem; cf. [Kli 1991], Th. 4.7.6). (a) As-
sume that a family (u;)icr C PSH(X) is locally bounded from above. Put u :=
sup;c; wi. Then the set {x € X :u(z) < u*(x)} is pluripolar.

(b) Assume that a sequence (u,)52, C PSH(X) is locally bounded from above.
Put w:=limsup,_, o, uy. Then the set {x € X : u(x) < u*(x)} is pluripolar.

3.4 Relative extremal function
Let (X,p) € Ro(C™), A C X.

Definition 3.4.1. The relative extremal function of A with respect to X is defined
as the upper semicontinuous regularization hj y of the function

hax =sup{u: ve PSH(X), u<1, ula <0}

For an open set Y C X we put hay := hanv,y, b}y y = hjnyy-

Put wa x = limg— 400 B x,, Where (Xj)72, is an exhaustion sequence for X
(cf. Definition 2.2.5). The function wy x is called the generalized relative extremal
function of A in X. One can easily check that the definition is independent of the
exhausting sequence (Xj)22 ;.
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Proposition 3.4.2. (a) If Y is a connected component of X, then ha,x = hay
and wa,x =way onY.

(b) Wi x € PSH(X) (cf. Proposition 3.3.11), wa x € PSH(X) (cf. Remark
3.8.2(d)). In particular, by the mazimum principle (cf. Proposition 3.53.2(j)), if X
is connected and Iy x # 1, then hy x(z) <1, z € X.

(¢) If Y1 C Yy C X are open, Ay C Y1, and Ay C Ay C Ya, then hasy, <ha, v,
(and so hy, y, < Wi, y,) on Yi. In particular, hy x <wa x.

(d) There exists a P € PLP(A) such that b}y yx = 0 on A\ P (cf. Theo-
rem 3.3.29(a)) and hence, by (b), Ky x < ha\px. Consequently, by Proposition
3.3.24, there exists a P € PLP(A) such that wa,x =0 on A\ P and hence, by
(bie), By x Swax <hapx < Pap x-

Proposition 3.4.3. If A ¢ PLP, then wacn =0 (and so hy c. =0).

Proof. Let u = wacn. Then u € PSH(C™) and w < 1. Thus u = const (cf. Re-
mark 3.3.2(g)). Since A ¢ PLP, Proposition 3.4.2(d) implies that there exists an
a € A such that u(a) = 0. O

Definition 3.4.4. We say that a set A C X is pluriregular at a point a € A if
hZ7U(a) = 0 for any open neighborhood U of a. Observe that A is pluriregular
at a iff there exists a basis U(a) of neighborhoods of a such that h ;;(a) = 0 for
every U € U(a). Define

A*:={a € A: A is pluriregular at a}.

We say that A is locally pluriregular if A # @ and A is pluriregular at every
point a € A, i.e. @ # A C A*. Observe that any non-empty open set is locally
pluriregular.

Remark 3.4.5. ws x =0 on A*. Consequently:
(a) hy x Swax <ha x <hy. x,
(b) if A is locally pluriregular, then wa, x =R} y.

Proposition 3.4.6. A\ A* € PLP.

Proof. We may assume that X is connected. Let (Uy)?2; be a basis of the topology
of X. Put Py := {2 € Uy : hay,(2) < hiyy, (2)}, P:=U,Z, Ps. Then P € PLP
(cf. Theorem 3.3.29(a) and Proposition 3.3.24). If a € (A\P)NUk, then b y;, (a) =
hau,(a) =0,k eN. Thus A\ A* C P. O

Proposition 3.4.7 ([Ale-Hec 2004]). Assume that X is connected. The following
conditions are equivalent:

(i) for every A C X we have wa,x =l y;

(ii) for any A C X and P € PLP(X) we have hy ,p x = h} x;

(iii) for every P € PLP(X) we have b} x =1; /

(iv) for every P € PLP(X) there exists a v € PSH(X), v # —o0, v <0, such
that P C v~1(—00);

(v) for every A C X we have hy x = h’y. x.
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Moreover:

o by Theorem 3.8.22, condition (iv) (and, consequently, each other condition)
is always satisfied if (X, p) is relatively compact (cf. Definition 3.1.1);

o conditions (ii), (iii), (iv) are also equivalent if we fix a pluripolar set P C X.

Proof. (ii) = (iil): hp x =hy x =

(ili) = (iv): By Proposition 3 3.19(3) there exists an @ € X such that
hpx(a) = 1. Take a sequence (ug)7>, C PSH(X) with ux < 1, ux < 0 on
P, and ug(a) > 1—1/2% k € N. Define v := ;7 (ux — 1). Then v € PSH(X),
v <0, P Cvl(-00), and v(a) > —1.

(iv) = (ii): Let u € PSH(X), u < 1on X, u < 0 on A. Then, for every
e>0,wegetu+ev<1lonXandu+ev<0o0on AUP. Thus u+ev < haup,x
and hence u + ev < By p x. Thus u < h¥ px on X \ v7!(—00). Consequently,
by Proposition 3.3.8, u < hAUpX and, finally, hy x < haupx-

(i) = (i): By Pr0p051t10n 3.4. 2(d) there exists a set P € PLP(A) such that

(i) = (ii): Using the fact that (iv) is always satisfied for relatively compact
open sets and the implication (iv) = (ii), for every exhaustion sequence (X3)%° ,
we have

haup,x =waupx = lim hj p X = lim 7} X, T WAX = P x-
’ k—+oc0 ' k—+oo Ok ,
v

(
(ii
6(

Proposition 3.4.8. Let G C C"™* be an arbitrary domain and let A C CFx G =:
D. Then ha p(z,w) = hp,c(w), (z,w) € D, where

(iil): hpx =hpe x =hg x = 1.
(v): The 1nequahty “<” follows from Remark 3.4.5. By Proposition
) and (ii) we get hly x = hlqa x = P x- O

) =
) =
3.4.6(b

B:=prg(A)={w e G:3,ccr: (2,w) € A}.

Proof. 1t is clear that hp c(w) < ha,p(z,w). Conversely, if u € PSH(D), u <1
on D and v < 0 on A, then u(z,w) = v(w) with v € PSH(G). Obviously, v < 1
on G and v <0 on B. hence v < hp . O

Proposition 3.4.9 ([Ale-Hec 2004]). Let G C C"~! be an arbitrary bounded do-
main, let B C C be polar, and let C C G, C ¢ PLP. Put D .= Cx G C C",
A:=BxC. Then by p(2) <wa,p(z) =1, 2 € D.

Proof. By Propositions 3.4.7 and 3.4.8, b7y p(2,w) = h¢ g(w) < 1, (2,w) € D.
Since A € PLP, Proposition 3.4.7 implies that for very exhaustion sequence
(Dr)gZy we have wa,p = limy 400 by p, = 1. O

Theorem 3.4.10 (Product property; [Edi-Pol 1997], [Edi 2002]). Let D; C C™
be a domain, A; C Dj;, j = 1,2. Assume that Ai, As are open or Ay, Ay are
compact. Then

hAl X A2,D1x D2 (21722) = max{hALDl (Zl)v hAz,Dz (22)}7 (21’22) € D1 x Ds.
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Moreover, if Dy, Ds are bounded, then for arbitrary subsets A1y C Dy, As C Do
we have

P, s Ay Dy Do (215 22) = max{hy, p (21), ha, p,(22)}, (21,22) € D1 X Da.

Proposition 3.4.11. (a) wa,x = hj. x-

(b) If X € Ry(C") (cf. Definition 3.1.1), then Wiy ,px ="} x for any AC X
and P € PLP(X). ’

(c) If X € Ry(C™), then a set P C X is pluripolar iff hp v = 1.

(d) waup,x = wa.x for arbitrary A C X and P € PLP(X).

(e) If P € PLP, then (A\ P)* = A*. In particular, if A is locally pluriregular,
then A\ P is locally pluriregular.

(f) AN A* is locally pluriregular.

(g) If AC X, BCY are locally pluriregular, then A x B C X XY is locally
plurireqular.

(h) Let P C Ax B C X xY. Assume that B is locally pluriregular and for
any a € A the fiber P,y is pluripolar (we do not assume that P is pluripolar).
Then for any open set V. x W C D x G we have WaxB\P, VxW = WAxB, VxW -
In particular, if A is also locally pluriregular, then A x B\ P is locally pluriregular

(cf- (9, €).

Proof. (a) The inequality “<” follows from Remark 3.4.5. Take an arbitrary ex-
haustion sequence (Xj)%2,. By Proposition 3.4.7(v) (applied to the relatively
compact open sets Xi, k € N), we get

w = lim A% = lim A%. > R 5.
AX ko too A, X, ko too A* X, Z ax x

(b) and (c) follow directly from Proposition 3.4.7.

(d) follows from (b).

(e) We only need to show that A* C (A\ P)*. Fix a point a € A*. If U is an
open bounded neighborhood of a, then, using (b), we have iy, p ;;(a) = b} ;(a) =

0. It remains to observe that a € A\ P (otherwise, a has a bounded neighborhood
U such that U N (A\ P) = @, which implies that 1 = ha\py(a) =} ;;(a) = 0; a
contradiction).

(f) follows from (e) and Proposition 3.4.6(b).

(g) Take (a,b) € A x B and let U, V be arbitrary univalent relatively compact
neighborhoods of a and b, respectively. By Theorem 3.4.10, we get

hféle,UxV(aab) = max{hZU(a), h*B,V(b)} =0.

(h) Take an open set V- x W C D x G. We may assume that V and W are
relatively compact. Take a u € PSH(V x W), v < 1, with u < 0 on (A x B)N
(V. x W)\ P. Then for any a € ANV we have u(a,-) < 0on (BNW)\ Pg ..
Hence u(a,b) < h};’\P(a,_),W(b) =hpw(b)=0,be BNW. O

Proposition 3.4.12. Let X, / X € Y and let Ay C Xi, A ~ A. Then
h*Ak,Xk. \t hZ,X'
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Proof. Let up := ha, x,. Obviously, ugt1 < up. Let v := limg_ oo uf. Then
v € PSH(X) and b} y < v < 1. Put Py = {z € Xy : up(2) < uj(2)}. Then
P, € PLP, k € N (cf. Theorem 3.3.29(a)), and hence P := |J;—, P € PLP.
Observe that v = limg_4oour < 0 on A\ P. Consequently, by Proposition
3.4.11(b),v§hj‘4\P’X =h} x- O

Proposition 3.4.13. (a) If AC X € R(C™), A¢ PLP,0< pu<1, and
0= {2 € X 1y x () < b,

then ANS ¢ PLP for any connected component S of 2, (in particular, ANS # & ).
(b) If A is locally pluriregular, then Iy o = (1/p)h}y x on £2,.

Proof. (a) By Proposition 3.4.11(c) we have to prove that h} , (2) <1, z € £,.
Let B :={z € A: h} x(z) = 0}. Then B C AN (2, and therefore it suffices to
show that hj o, (2) <1 for any z € §2,,. Observe that

A\BC{ze€ X :hax(z) <hjx(2)}

Consequently, the set A\ B is pluripolar and hence, by Proposition 3.4.11(b),
R x = hp x- Put

P:={z€ X :hpx(2) <hpx(2)}U{z€2,:hpan,(z)< h*Bﬂ”(z)};

P is pluripolar. Define

u = max{h} x, php o} on £,
. h x on X\ 2, '

Then u € PSH(X) (cf. Proposition 3.3.6), v < 1on X, and v =0 on B\ P. Thus
u < hp px =hp x and, finally, h; o < (1/p)u < (1/p)hp x <1in §2,,.

(b) If A is locally pluriregular, then B = A and hence b} o < (1/p)h} x in
£2,,. The converse inequality is obvious. [l

Proposition 3.4.14. Let D; be Riemann a domain over C™ and let A; C D; be
locally pluriregular, j =1,... , N. Put

N
X = {(zl,...,zN) €Dy x--- XDN:Zth’Dj(Zj) < 1}.

J=1

Then

o~

N
Ry an x(2) = > i p,(z), z=(21,...,2n) € X.
j=1



3.4 Relative extremal function 41

Proof. The inequality “>” is obvious. To get the opposite inequality we proceed
by induction on N > 2.

Let N = 2 (cf. [Sic 1981a]): Put u := W% € PSH(X) and fix a point

(a1,a2) € X. If a; € Ay, then u(ay, ) € PSH(Ds2), u(ar,-) <1, and u(aq,-) <0
on As. Therefore,

u(aq, ) < hzzyD2 = hZth(al) + hzzyD2 on Ds.

In particular, u(ai,az) < h%, p (a1) + h}, p,(az). The same argument works if
az € Ay. If ay ¢ Ay, then R4, b, (a1) + P4, b, (a2) < 1 and hence

pi=1-hy, p, (@) € (0,1]

Put
(Dg)u = {ZQ € Dy : h:k42,D2 (22) < /1,}
It is clear that Ay C (D2), 3 as. Put

vi= %(u(ah ) — h*Al,Dl(al)) € PSH((D2)p)-

Then v <1 and v <0 on As. Therefore, by Proposition 3.4.13(b),
* 1 *
v s hAz,(DQ)u(GQ) = ;hAz,Dz (az) on (Da),.
Consequently, u(ay,as) < k4, b, (a1) + P4, D, (az2), which finishes the proof for

N = 2.
Now, assume that the formula is true for N — 1 > 2. Put

N-1
Y = {(21, .. .,ZN,1) €Dy x---xXDn_1: Z h*Aj,Dj(Zj) < 1}
j=1
By the inductive hypothesis, we conclude that
N-1
Wasesan &)= 2 Wa,p, (@), 2= (1 zv) €Y.
j=1

Now we apply the case N = 2 to the following situation:
Z:={(?,2v) €Y x Dy : h;leXAN_ly(z’) + Wy .py (2v) < 1}

So

~

h* o(2') + My py(2n) =1 z=(2,2n) € Z.

A1><-~~><AN_1,Y A1><~~~XAN,2(Z),

Tt remains to observe that Z = Y. O
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Definition 3.4.15. We say that an Riemann region (X, p) is hyperconvez if there
exists a function u € PSH(X,R_) such that

{reX: ukx)<t}eX, t<O0.

Theorem* 3.4.16 ([Bed-Tay 1976], [Bed 1981]). Let (X,p) € Reo(C™). There
erists a Monge—Ampere operator

PSH(X) N L>®(X,loc) 3 u — (dd°u)" € R(X),
where R(X) denotes the space of all non-negative Borel measure on X, such that:

(a) if u € PSH(X) N C2(X,R), then (dd°u)™ = 4™n! det [83—;,} ) cx,
J9%k ] k=1,...,n

(b) if PSH(X) N L>®(X,loc) 2 u, \, u € PSH(X) N L*(X,loc), then we get
(dd°u,)"™ — (ddu)™ in the weak sense.

Definition 3.4.17. The measure pa x = (dd°h} x)" is called the equilibrium
measure for A.

Theorem* 3.4.18 ([Bed 1981], [Zer 1986], [Kli 1991], [Ale-Zer 2001]). Let X € Y
be a hyperconvex open set and let K € X be compact.

(a) pre,x (X \ K)=0.

(b) Let P C K be such that jig x(P) = 0. Then hj p x = hj x-

3.5 Pseudoconvexity
See [Jar-Pfl 2000], § 2.2.

Definition 3.5.1. Let S C PSH(X). For a compact set K C X we put

KS:={z € X :Yyes : u(z) < supu}.
K

We say that a Riemann region (X,p) € Roo(C") is pseudoconver if for any
compact set K C X the set KPSMX) ig relatively compact.

Remark 3.5.2. (a) KPSHX) ¢ KOX) . Consequently, if (X,p) € Roo(C") is
holomorphically convex, then (X, p) is pseudoconvex.

(b) If (X, p) is hyperconvex (Definition 3.4.15), then (X, p) is pseudoconvex.

3.5.1 Smooth regions

Let (X,p) € Roo(C™) and let £2 € X be open.
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Definition 3.5.3. We say that 012 is smooth of class C* (or C¥~smooth) at a point
a € 92 if there exist an open neighborhood U of a and a function u € C¥(U,R)
such that

QNU={zecU:ulx)<0}, U\R2={zxcU:u(z)>0},
gradu(z) #0, ze€UNOaL,

where

ou ou
Here k € NU{oo}U{w}, where u € C¥ means that u is real analytic. The function
w is called a local defining function for 2 at a. We say that (2 is C¥—smooth if 012
is CF—smooth at any point a € 92. Put

gradu(z) := (

" du

0z

TE(00) = {g eC: (2)€; = 0}, z e Unan.

j=1

The space T.C(942) is called the complex tangent space to 92 at x. The definition
of TS(9£2) is independent of u. If n = 1, then T.(9£2) = {0}.

We say that 0f2 is strongly pseudoconvex at a point a € 0f2 if there exist an
open neighborhood U of a and a local defining function u € C?(U, R) such that

Lu(z;€) >0, zeUNaN, £cTS(02)\{0}.

The definition is independent of u. We say that {2 is strongly pseudoconvez if 052
is strongly pseudoconvex at any point a € 912. If n = 1, then any C2-smooth open
set {2 € X is strongly pseudoconvex.

3.5.2 Pseudoconvexity in terms of the boundary distance
Proposition 3.5.4. Let (X,p) € R(C). Then —logdx € SH(X).

Theorem 3.5.5. Let (X, p) € Roo(C™). Then the following conditions are equiv-
alent:

(i) for any compact K C X the set KPSHX)NCT(X) s compact;

(i) (X,p) is pseudoconvex;

(ili) for any £ € C™ the function —logdx ¢ is psh on X;

(iv) —logdx € PSH(X);

(v) there ezists an exhaustion function u € PSH(X)NC(X), i.e. for anyt € R
the set {x € X : u(x) <t} is relatively compact;

(vi) there exists an exhaustion function u € PSH(X);

(vil) there exists a strictly psh exhaustion function u € C*(X) (cf. Definition
3.3.5).
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3.5.3 Basic properties of pseudoconvex domains

Theorem 3.5.6. Let (X,p) € R.(C"), (Y, q) € R(C™).

(a) If X = U, en Xv, where X, is a pseudoconver open subset of X with X, C
Xut1, v €N, then X is pseudoconvez.

(b) If Y = int(), oy X, where X, is a pseudoconvex open subset of X, v € N,
then Y is pseudoconver.

(c) If (Xj,p;) € Re(C™) is pseudoconvex, j = 1,...,N, then Xi X --- x X 1s
pseudoconvex.

(d) Any Riemann domain over C is pseudoconver.

(e) If X is pseudoconver and u € PSH(X), then Y = {z € X : u(z) < 0} is
pseudoconvex.

(f) If X is pseudoconver andY C X is an open set such that for any point a € 0Y
there exists an open neighborhood U, such that Y NU, is pseudoconvex, then
Y is pseudoconver.

(g) If X is pseudoconver and M is an analytic subset of X of pure dimension
(n—1), then X \ M is pseudoconvez.

(h) If Z € X xY is pseudoconvex, then for any yo € Y the fiber Zy, :={zx € X :
(x,y0) € Z} is a pseudoconver open subset of X .

(i) If X is pseudoconvez, f : X — Y be holomorphic, and Z C Y is open
pseudoconver, then f~1(Z) is pseudoconvex.

3.5.4 Smooth pseudoconvex domains

So far, pseudoconvex domains were characterized by the plurisubharmonicity of
the function —logdx. In the case of smooth open subsets {2 € X we can say
more, namely:

Theorem 3.5.7. Let (X,p) € R.(C") and let 2 € X be a C*~smooth open set.
Then (£2,p|) is pseudoconvex iff any local defining function u € C?(U,R) satisfies
the following Levi condition

Lu(;€) >0, z€UNIN, £cTE(00).

Theorem 3.5.8. Let 2 € X be strongly pseudoconvez.

(a) If 2 is Ck-smooth (k > 2), then there exist an open neighborhood U of 2
and a strictly psh defining function u € C*(U,R).

In particular, any strongly pseudoconver open set is hyperconvex.

(b) For any open neighborhood U of §2 there exists a strongly pseudoconvex
C>®-smooth open set £2 such that 2 C ' C U. Consequently, every function
f € O(£2) may be approximated locally uniformy in 2 by functions holomorphic
in a neighborhood of 2 (cf. [Jar-Pfl 2000], Proposition 2.7.7).
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3.5.5 Levi problem

In view of Remark 3.5.2(a) it is natural to ask whether any pseudoconvex Riemann
region is a region of holomorphy. This is the famous Levi Problem. The problem,
formulated by E.E. Levi in 1910 , was solved by Oka only in 1942 for n = 2 and in
1954 by Oka, Norguet, and Bremermann for n > 2 (7) (8) (9). [BIOGRAPHICAL
DATA OF NORGUET. WILL BE COMPLETED. . . . . . . . . . . . . . . .|

Theorem 3.5.9 (Solution of the Levi problem ). Let (X, p) € Roo(C™). Then the
following conditions are equivalent:

(i) (X,p) is a region of holomorphy;

(il) O(X) separates points in X and (X, p) is holomorphically convez;

(iii) (X, p) is holomorphically convex;

(iv) (X,p) is pseudoconvez.

Proposition 3.5.10. If (X,p) € R.(C") is a domain of holomorphy, then every
u € PSH(X) is a Hartogs plurisubharmonic function, i.e. there exists a sequence
(fe)52, C O(X) such that:

e the sequence (|fx|'/*)32, is locally bounded in X,

o u=v", where v :=limsup,_, (1/k)log|fx|.

Proof. The Hartogs domain
Y= {(z,w) € X xC: |w| < e7 ")}

is a domain of holomorphy (cf. Theorem 3.5.6(¢)). Let f € O(Y) be non-continu-
able beyond Y. Write f in form of the Hartogs series

where fr € O(X), k € N. Obviously v := limsup,_, (1/k)log|fx] < u. In
particular, v* < u and, by the Hartogs lemma (Proposition 3.3.13), the sequence
(| fr|*/*¥)2; is locally bounded in X. Suppose that v*(a) < u(a). Then v(z) <
v*(z) < —logR < u(a), z € Px (a,7) € X. Thus f(z,-) extends holomorphically
to K(R) for every z € @X(a,r). Consequently, by the Hartogs lemma (Lemma
2.1.4), the function f extends holomorphically to ]?”X(a,r) x K(R). Since f is
non-continuable, we conclude that R < e~*(%); a contradiction. O

3.6 The Grauert boundary of a Riemann domain

See [Jar-Pfl 2000], § 1.5.

™) Kiyoshi Oka (1901-1978) — Japanese mathematician.
8) Frangois Norguet (1929- ) — French mathematician.
(9) Hans—Joachim Bremermann (1926-1996) — German mathematician.
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Let (X,p), (Y,q) € R(C™) and let ¢ : X — Y be a morphism. Our aim is to

=p
define an abstract boundary 9 X of X with respect to the morphism . The idea
of such an abstract boundary is due to H. Grauert (10) .

In the case where (X,p) = (G,id) (G is a domain in C"), (Y,q) = (C",id),

=id

= id, the abstract boundary 0 G coincides with the set of, so-called, prime ends
of G.

For a € X let B.(a) denote the family of all open connected neighborhoods U
of a.

Definition 3.6.1. We say that a filter basis a of subdomains of X is a p—boundary
point of X (') if:

e a has no accumulation points in X,

e there exists a point yg € Y such that lim ¢(a) = yo,

e for any V € B.(yo) there exists exactly one connected component U =:
C(a,V) of ¢~ 1(V) such that U € a,

o for any U € a there exists a V' € B.(yo) such that U = C(a, V).

=
Let 0 X denote the set of all p—boundary points of X. We put

© =p
X =XUodX

- =y -
and we extend ¢ to ¢ : X — Y by putting ¢(a) := yo if a and yo are as

- - =
above. Moreover, we put p@ = qop. We endow X with a Hausdorff topology
which coincides with the initial topology on X and is such that the mapping ¢ is

11) We say that a non-empty family § of subsets of a topological space X is a filter if:

o Ac3 ACB=— BE€3,

o A, A eF=A1NAETF,

o O¢GF.

A non-empty family B of non-empty subsets of X is said to be a filter basis if:

® VA, Arep Jaep : AC A1 N A,

It is clear that for each filter basis 9 the family Fyp := {A C X : Igegp : B C A} is a filter.

We say that a filter § is convergent to a point a € X if each neighborhood of a belongs to §.
We shortly write a € lim §.

We say that a filter basis 9P is convergent to a if a € lim §p (equivalently, each neighborhood
of a contains an element of P); we put lim P := lim F .

5103 Hans Grauert (1930~ ) — German mathematician.

We say that a is an accumulation point of a filter § (resp. filter basis B) if a € A for any A €
(resp. A € P).

Let us recall a few elementary properties of filters:

e If § C § are filters and if a is an accumulation point of §, then a is an accumulation point
of §.

e Ifaclimg, then a € lim§ for any filter § D J.

e If a is an accumulation point of §, then there exists a filter § O § such that a € lim §’.

e a € Aiff there exists a filter basis 3 consisting of subsets of A such that a € lim .

e Let Y be another topological space and let ¢ : X — Y. Then ¢ is continuous iff for any
filter basis P in X the filter basis p(P) := {p(A) : A € P} satisfies the relation: p(limP) C
lim ().

e X is Hausdorff iff any filter in X converges to at most one point. If X is a Hausdorff space
and lim § = {a}, then we write lim § = a.
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=
continuous: by an open neighborhood of a point a € 9 X we mean any set of the
form

~ =p
Us:=UU{be 00X : U belongs to the filter generated by b},

where U € a.

=¢ ~ =¢
Proposition 3.6.2. For any a € 0 X and for any neighborhood Uy C X there
exists a neighborhood Wy C U, such that dx = dy on W. In particular,

lim dx(y) =0.

X>y—a

Let R(A) denote the family of all relatively closed pluripolar subsets of A.

Proposition 3.6.3. (a) Assume that a € ng s such that there exists a neigh-
borhood U Ci):((p of a with the following properties:

o V:=p(U)isopen inY,

« Pi=pUNaX)eAW),

o p:U\ ng — V'\ P is biholomorphic.
Then the mapping p|uy : U — V' is homeomorphic.

=p
(b) Let ¥ denote the set of all points a € 0 X which satisfies the above condi-
tions. Put

p
X =XUX.
Then:
e
o (X, p’ ;(g:') is a Riemann domain over C",
- *p
* ¢l X, p(/J ;{w) — (Y, q) is a morphism,
xp
e Y e RWX).

*p

The following proposition shows that X is in some sense maximal.

Proposition 3.6.4. Suppose that W C X is an open subset such that:
o o(W)=V\P, where V is an open subset of Y and P € R(V),
o ©: W — V\ P is biholomorphic.

*p -
Then there exists an open set U C X such that W C U and ¢ : U — V s
biholomorphic.

3.7 The Docquier—Grauert criteria

See [Jar-Pfl 2000], § 2.9.
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The aim of this section is to localize the description of the pseudoconvexity.
The main local criteria for the pseudoconvexity are contained in the following
theorem. Let (X,p) € R.(C™). Put

A:=D"1xD, 6A:=D"!xaD.

Theorem 3.7.1 (Docquier—Grauert criteria). The following conditions are equiv-
alent:

(po) (X,p) is a Riemann-Stein domain;

(p1) there exists a function uw € PSH(X) such that {x € X : u(zx) <t} € X
for any t € R;

(p2) int(KPSHX)) € X for any compact K C X ;

(p3) X = U2 2o, where 2, is a is strongly pseudoconver domain with real
analytic boundary, and 2, € 2,41, v > 1;

(pa) there exist a Riemann—Stein domain (Y, q) over C™ and a morphism

¢:(X,p) — (Y.q)

=p =¢
such that any point a € 0 X has a neighborhood U C X (cf. § 3.6) such that the
region (X NU,p) is holomorphically convex;

(ps) (Kontinuitatssatz) for any sequence of holomorphic mappings

Uy, D, — X,

where D,, C C is a neighborhood of D, v > 1, we have the following implication:
if U, $,(0D) € X, then U, 4,(B) € X;

(ps) for any biholomorphic mapping f: W — f(W) C X, where W C C" is
a neighborhood of A, if f(6A) € X, then f(A) € X;

(p7) there exist a Riemann—Stein domain (Y, q) over C™ and a morphism

¢:(X,p) — (Y.q)

_ =p
such that there is no continuous mapping f : D" — X with the following prop-
erties:

(0A) €

(t1) f
f)
f(%maX¢®

@ o f extends to a biholomorphic mapping in a neighborhood of]D)

1)
(f2)
(f3)
(ta) @
) there exist a Riemann—Stein domain (Y, q) over C™ and a morphism

¢:(X,p) — (Y.q)

(p3

= =p

such that any point a € 0 X has an open neighborhood U C X such that there is
N

no continuous mapping f: D — U with the above properties (11 — T4).

Notice that the Docquier—Grauert criteria remain true in the case where (X, p)
be a Riemann domain over an n—dimensional connected Stein manifold M.
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3.8 Meromorphic functions

See [Jar-Pfl 2000], § 3.6.
Let (X, p) € R(C™).

Definition 3.8.1. A function f : X \ S — C, where S = S(f) is a closed subset
of X with (3.1.2), is said to be meromorphic on X (f € M(X)) if:

(a) f € O(X\S) and S is singular for f in the sense of § 3.1.8,

(b) for any point a € S there exist an open connected neighborhood U of a and
functions @, € O(U), 1 #£ 0, such that ¥f = ¢ on U\ S. we say that (¢,1)) is
a local representation of f at a. Note that in view of (a) we must have ¢(a) = 0.
Consequently, either S = @ or S is an (n — 1)—dimensional set of pure codimension
one.
The set R(f) := X \ S(f) is called the set of regular points of f.

We say that a point a € S is a pole of f (a € P(f)) if there exists a local
representation (o, 1) of f at a such that ¢(a) # 0.

We say that a point a € S is a point of indeterminacy of f (a € Z(f)) if for
every local representation (p,v) of f at a we have p(a) = 0.

Obviously, S(f) = P(f) UZ(f) and P(f) NZ(f) = @. Moreover, Z(f) is an
analytic set of dimension < n — 2. In particular, if n = 1, then Z(f) = @.

The theory of extension of holomorphic mappings developed in § 3.1 may be
repeated word for word for meromorphic functions and leads to the following
Thullen theorem (cf. Theorem 3.1.16).

Theorem 3.8.2 (Thullen theorem). Let @ # F C M(X). Then (X,p) has an
F-envelope of meromorphy o : (X,p) — (X, p) such that (X,p) is a Riemann—
Stein domain. In particular, the envelope of meromorphy of (X, p) coincides with
its envelope of holomorphy.

Theorem 3.8.3. Let f € M(X). Then there exist o, € O(X), ¥ # 0, such
that f = /1.

3.9 Sections of regions of holomorphy

This section is based on [Jar-Pfl 2005b)].

Remark 3.9.1. (a) Let (X,p) be an S—region of holomorphy and let U C X be
a univalent domain for which there exists a domain V' D p(U) such that for every
[ € S there exists a function Fy € O(V) such that Fy = fo (p|y)~! on p(U).
Then there exists a univalent domain W O U with p(W) = V.

Indeed, we only need to observe that we may assume that (X, p) coincides with
(X,P) constructed in Remark 3.1.10.

(b) If (X,p) € R (C™) is an S—region of holomorphy, then there exists a finite
or countable subfamily Sy C S such that (X, p) is an Sy—region of holomorphy.
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Indeed, we may assume that X is connected. The case where (X, p) ~ (C™,id)
is trivial. Thus assume that dx(z) < 400, v € X. Let A C X be a countable
dense subset such that A = p~!(p(A)). By proposition 3.1.19, for any x € A and
r > dx(x) there exists an f,, € S such that d(T,fy,) < r, and for 2/, 2" € A,
with 2’ # 2 and p(2) = p(z”), there exists an fy v € S such that Tyifyr o #
Tyifz 2. Now, we may take

So:={for:x€A Q37 >dx(z)}
U {fm’,w” : xlvx” €A o # xnv p(xl) = p(x//)}.

Let (X,p) € R(C"), C* = Ck x C*,
p=(u,v): X — CF x C".

Put 2 = p(X), 2 := u(X), 2° := v(X). For a € (2 define X, := u~(a),

Pa = v|x,. Similarly, for b € 2°, put X° :=v71(b), p® := u|x».

Remark 3.9.2. For every a € 2, (X4, p4) is a Riemann region over C*. If (X, p)
is countable at infinity, then so is (X4, pa)-

Let @ # S C O(X). For a € % define f, := f|x,, Sa == {fa: f € S} C
O(X,), and analogously, f* := f|ys, S®:={fb: f € S} C O(X?), b e 02°.

Theorem 3.9.3 ([Jar-Pfl 2005b]). Let (X,p) € Roo(C™) and let @ # S C O(X).
Assume that (X, p) is an S-region of holomorphy. Then there exists a pluripo-
lar set P, C (2 such that for every a € 2y \ Pi, (Xa,pa) is an S,—region of
holomorphy.

Proof. By Remark 3.9.1(b), we may assume that S is finite or countable.

Step 1. There exists a pluripolar set P C {2 such that for any a € (2 \ P,
(Xa,pa) is an S,—region of existence.

Define Ry y(z) := d(Ty fu(z)), f €S, b€ 2F, v € X’ Recall that

1 1/v
1/Ryp(x) zlimsup( max —|Q(0’5)f(x)|) ., zeXP
v——+00 BEZﬂ_: |Bl=v ﬁ'

Obviously, Ry p(z) > dx(x), € Xb. By the Cauchy inequalities, we get

SUPB  (z0,r) |f|

1
L1008

. 0<r<dx(z), xe@x(xo,rﬁ), BeZ.

Consequently, the function —log(R¢)« (where , denotes the lower semicontinuous
regularization on X°) is plurisubharmonic on X°. Put

Pf’b = u({x c Xb : (Rf’b)*(x) < RfJ,(:E)}) C Qk.
It is known that Py is pluripolar (cf. Theorem 3.3.29(b)). Put

;= inf Ry = .
Ry, }relst,b, Ry, (Ryp)

inf
fes
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Observe that — log(ﬁb)* is plurisubharmonic on X°. Put
Py i=u({z € X": (Ry).(z) < Ry(x)}) C 2.

The set P, is also pluripolar (cf. Theorem 3.3.29(a)). Now let B C £2° be a dense
countable set. Define

P=( U Pw)u(Un)ce

feS, beB beB

Then P is pluripolar.

Take an a € 24\ P and suppose that X, is not an S,—region of existence. Then
there exist a point zg € X, and a number r > dx, (zo) such that b := v(zg) € B
and Ry(zo) > r. Since a ¢ P, we have

~ ~

(Rp)«(x0) = Rp(x0) = inf (Ryp)s = }Ielfs Ryp = Ry(xo) > 1.

inf
fes
In particular, there exists 0 < € < dx (o) such that (ﬁb)*(x) >r, € @Xb(xo).
Since,

Ry(x) = inf Ry p(x) > inf (Ryp).(2) = Ry() = (B)«(2),
we conclude that Ry(z) > r, 2 € Pys(2g). Put U := Px(20,£). Hence, by the
classical Hartogs lemma (cf. Lemma 2.1.4), for every f € S, the function fo(p|y)~!
extends holomorphically to V :=P(a,e) x P(b,r). Since (X, p) is an S—domain of
holomorphy, by Remark 3.9.1(a), there exists a univalent domain W C X, U C W,
such that p(W) = V. In particular, dx, (o) > r; a contradiction.

Step 2. There exists a pluripolar set P C (2, such that for any a € {2 \ P the
family S, weakly separates points in X,.

Take a € (2, 2/, 2" € X, with 2’ # 2" and p,(2') = p.(z”) =: b. Since S
weakly separates points in X, there exists an f € S such that T,/ f # T, f. Put
r:=min{d(Tyf),d(Tef)} and let

Py g = ﬂ {Z € ]P’(a, T) : Tm’f(zv U}) = Tw”f(za w)}
weP(b,r)

Then P, ;o & P(a,r) is an analytic subset. For any z € P(a,7)\ Py 2 o~ We have
Tm’f(za ) 7_é T-T”f(zv ) on P(ba ’I“).

Take a countable dense set A C 2;. For any a € A let B, C X, be a countable
dense subset such that p;'(ps(B,s)) = Ba. Then

P = U Pa,a:’,a:”

1o

acA, ',z €B,
Iliwuv pa(w/):pa(a:”)

is a pluripolar set.
Fix ag € 2, \ P, x(, 2( € Xa,, with 2, # 2 and pa,(x)) = Da, (x)) =: bo. Put
r = min{dx (zf),dx (z§)}. Let a € ANP(ap,r/2) and 2’,2"” € B, be such that
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x' € Px(z(,7/2), 2" € Px(x5,7/2), pa(z’) = pa(x”). Since ap ¢ P, we conclude
that Tyf(ao, ) # Twf(ao, ) on P(bo,7/2). Consequently, Ty, f(ao, ) # Tuyf (a0, -)
on P(bo,7/2), which implies that Ty fa, # Ty fao- O

Corollary 3.9.4. Let D C CF x C* be a domain, let @ # S C O(D) and let
A C prex(D). Assume that for any a € A we are given a domain G(a) D D, in
C* such that:

o for any f € S, the function f(a,-) extends to an fac€ O(G(a)),
e the domain G(a) is a {fa : f € S}—domain of holomorphy.

Let (X,p) be the S—envelope of holomorphy of D. Then there exists a pluripolar
set P C A such that for every a € A\ P we have (X,,p,) =~ (G(a),id).

Proposition 3.9.5. Let D C CP? be a domain, let (G,7g) € R(C?), and let
2 C D x G be a Riemann domain of holomorphy over CP x C? (12 is considered
with the projection wg := idp xXwg). Let M C 2 be a relatively closed pluripolar
set that is singular with respect to a family S C O(2\ M). Then there exists a
pluripolar set P C D such that for any a € D\ P, the fiber M, .y is singular with
respect to the family S* := {f(a,-) : f € S} C O(2(q,) \ M(q,.)-

Proof. Observe that 2\ M is a domain of holomorphy with respect to the family
Fo := FUO(L2). By Theorem 3.9.3, there exists a pluripolar set P C D such that
for any a € D\ P, the fiber 2, .y \ M(q,.) is a domain of holomorphy with respect
to the family (Fo)®. In particular, for any a € D\ P, the fiber M, .) is singular
with respect to F*°. |

Lemma 3.9.6. Let D C C¥, Gy ¢ G C C* be domains of holomorphy and let
A C D. Assume that for every a € A we are given a relatively closed pluripolar
set M(a) C G. Let S denote the set of all functions f € O(D x Gy) such that for
every a € A, the function f(a,-) extends to an fa € O(G\ M(a)). Assume that
for every a € A the set M(a) is singular with respect to the family {fa : f e St
Then there exists a pluripolar set P C A such that if we put Ag := A\ P, then the

set
M(Ao) = | {a} x M(a)
a€Ap

is relatively closed in Ay X G.

Proof. First observe that every function from O(G) may be regarded as an element
of 8, which implies that for every a € A the domain G(a) := G\ M(a) is a
{fa : f € S}—domain of holomorphy.

Let (X,p) be the S—envelope of holomorphy of D x Gy. Since D and G are
domains of holomorphy, we may assume that p(X) C D x G.

By Corollary 3.9.4, there exists a pluripolar set P C A such that for every
a € Ag := A\ P we have (X,,pq) ~ (G(a),id). Thus p is injective on the set
B = p (Ay x G) and p(B) = Uaea,ta} x Gla) = (Ao x G) \ M(Ap). Hence
p(B) = p(X)N (Ao x G) and, consequently, p(B) is relatively open in Ag x G. O



Chapter 4
Classical cross theorem

4.1 Terada theorem (1967 — 1972)

Recall the Hukuhara problem (§ 2.2):

(S-On)  Given two domains D C CP, G C C%, a non-empty set B C G, and a
function f € O4(X), where X := (D x G)U(D x B), we ask whether f € O(DxG).
After Theorems 2.2.4 and 2.2.7, the next important step was the one by T. Terada
([Ter 1967]) who finally was able to answer the question raised by Hukuhara. We
are going to present a “modern” proof of Terada’s theorem, based on the notion
of relative extremal function — cf. § 3.4.

Theorem 4.1.1 (Terada). If B ¢ PLP, then Os(X) = O(D x G).

Proof. Fix an f € O4(X). By Theorem 2.2.7, f € O(Uy x G), where Uy is an
open dense subset of D. To prove that Uy = D we only need to show that if
P(a,r) € Uy and P(a, R) C D for 0 < r < R, then P(a, R) C Uy. Write

fz,w) = Z faw)(z—=a)*, (z,w) € P(a,r) x G, (4.1.1)

P
Q€

where fo € O(G), o € Z&. Moreover, by the Cauchy inequalities, for every
compact K € G, we get

Hf&”K'S rlal

, aecZt.

Consequently, the sequence of log-psh functions

we= (3 15l) "L ke

la|=k

is locally bounded in G. Define v := limsup;_,, . ug. Notice that logu* €
PSH(G) — cf. Proposition 3.3.12. We know that © < 1/r on G and « < 1/R on
B. We may assume that G is bounded and B is locally pluriregular (cf. Proposition
3.4.6(b)). By Theorem 3.3.29(a) and Proposition 3.4.11(b),

logu* + logr

1 <h}
log R/ tishpe

(cf. Definition 3.4.1). Hence

1 /R
u(w) < E(;)M, weG, ={weG:hpgw)<pp, 0<p<l (412)
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Recall that B C G, (cf. Remark 3.4.5) and every connected component of G,
intersects B (cf. Proposition 3.4.13).

Inequality (4.1.2) and the Hartogs lemma for plurisubharmonic functions (cf.
Proposition 3.3.13) imply that the series (4.1.1) converges locally uniformly to a
(holomorphic) function f in the open set

U P, R(r/R)") x G,.

o<u<1
A standard argument shows that fz f and, finally P(a, R) C Uy. O

Exercise 4.1.2. Simplify the proof of Theorem 4.1.1 under additional assumption
that B is of positive Lebesgue measure.

Exercise 4.1.3. Prove the Hartogs, Hukuhara, Shimoda, and Terada theorems
in the case where D and G are Riemann domains over CP and CY, respectively.

Theorem 4.1.4 ([Ter 1972]). Assume that D C C? is a domain such that:

(t)  there exist a sequence (£24)52, of open subsets of D and a sequence

(z1)72, C D for which:
(*) D =Upei Nozr 255 26 € (Mo i1 2) \ 2, 2 — 20 € D,
(**) Vien Varso Veso0 Joco) & lo(2x)| = M, |p| <€ on 2.

Let G C CY be a domain of holomorphy and let B C G be an F, pluripolar set.
Then Os(X) ¢ O(D x G).

Remark 4.1.5. (a) D := D satisfies ().

Indeed, if Ag, k € N, are as in Example 2.1.10, then we take 2 := int(A; ND),
2 i= 1/2% 25 := 0. Condition (**) may be checked using Runge’s theorem (like
in Example 2.1.10).

(b) Taking 2, x DP~L, we easily conclude that DP also satisfies (). Thus
every polydisc P(a, r) satisfies () with arbitrary zg € P(a,r) (use a biholomorphic
mapping @ : P(a,r) — D" with &(z¢) = 0).

(c) Consequently, every bounded domain D C CP satisfies () with arbitrary
zo € D.

(d) Assumption that G is a domain of holomorphy is unessential — we may
always substitute G by its envelope of holomorphy (which may be a Riemann
domain over C1).

(e) | 7| We do not know whether the assumption that B € F, is essential
Proof of Theorem 4.1.4. Let u € PSH(C?), u # —o0, be such that B C u=!(—o0)

(cf. Theorem 3.3.20). Since G is a domain of holomorphy, u = v*, where

. 1
v = limsup — log | gm|
m——+oo m

(gm)35_; C O(G) is such that the sequence (|gm|'/™)%_, is locally bounded in
G (cf. Proposition 3.5.10). Let wg € G be such that u(wg) = v(wg) > —o0
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(cf. Propositions 3.3.10, 3.3.19). Fix a sequence (Gy)2; of subdomains of G such
that wo € Gy, € Gi41 € G, G = U;O:1 G and B = U,;“;l By, where By, is compact,
& # B, C BNGy, By C Biy1-

Let ¢y :=supg, , u. Observe that

<0 on Gi41

1
limsup — log |e™ "% g, (w)| = v — cx < u — ¢k {
m =—00 on B

m— 400

Put Q := ¢ — u(wp) > 0. Using the Hartogs lemma for plurisubharmonic
functions (cf. Proposition 3.3.13), for every ny > 0, we choose an my € N such
that with ¢, := e""*%g,, € O(G) we have:

(1) Jal < 1on Gy,

(2) n(wo)| = e—2me@s,

(3)  |yx| < e7™mk@r on By.

Take an arbitrary exhaustion sequence (Dy )22 | for D. Using (**), we construct
inductively My > 0, ¢ € O(D), and ni > 0 such that:

(4) Mye ™ @k >k + 1+ Z]S:ll lps(zr) s (wo)| (we choose My, > 0),

(5)  |pr(z)| = My, |px] < 1/2% on 2 (we choose ¢y),

(6) |pr|e ™ k@ < 1/2% on Dy, (we choose nyg > 0).

Define

o0

fzw) =Y or(2)e(w), (2,w) € DxG.

k=1
Take an arbitrary a € D, say a € 2, for k > ky. Then we get

(1),(5) 1
er@uin()] & o, we G k> k.
Hence f(a,-) € O(G).
Take an arbitrary b € B, say b € By, for k > ko. Then we get

3) oo ® 1
|k (2)YR®)] < len(z)le™™ ™ < o, 2 € D, k 2 ko.

Thus f(-,b) € O(D). Consequently, f € O4(X), X := (D x G) U (D x B). To
prove that f ¢ O(D x G) it suffices to show that |f(zr, wo)| > k, k € N. We have

k—1 00
|f (21 wo)| = [pn (1) tbn(wo)| = Y s (zi)s (wo)| = D [ (1) s (wo)|
s=1 s=k+1

(1),(2),(4),(5) o~ 1
2 Mke—kaQk _ (Mke—kaQk _ k _ 1) — Z ? Z k I:‘

s=k+1
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4.2 Crosses

After Terada’s results (cf. Theorems 4.1.1, 4.1.4) it was clear that the next step
should be a solution of the following general problem (cf. Chapter 1).

(S-Oc)  We are given two domains D C CP, G C C?%, two non-empty sets
A C D, B C G. Define the cross

X = K(A,B; D,G) := (Ax G)U (D x B).

We say that a function f : X — C is separately holomorphic on X (f € O4(X))
if:

e f(a,) € O(G) for every a € A,

o f(-,b) € O(D) for every b € B.
We ask whether there exists an open neighborhood X C D x G of X such that
every function f € O4(X) extends holomorphically to X. Observe that the
Hukuhara problem was just the case where A = D and X = D x G. Notice
once again that different crosses may have the same geometric image.

Figure 4.2.1. X = (Ax G)U (D x B) C X.

Remark 4.2.1. To get an insight into the problem consider the following elemen-
tary situation.
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Recall that a domain 2 C C™ is a Reinhardt domain if for every a = (aq, ...,
ap) € §2 the set

{(z1,...,20) € C" |zl = |aj|, j=1,...,n}

is contained in §2 (cf. [Jar-Pfl 2008], Definition 1.5.2). A domain 2 C C" is
acomplete Reinhardt domain if for every a = (a1, ..., a,) € {2 the set

{(z1,...,20) € C" 1 |zj| <laj|, j=1,...,n}

is contained in 2 (cf. [Jar-Pfl 2008], Definition 1.3.8) A Reinhardt (') domain
2 C C" with 0 € 2 is a domain of holomorphy iff {2 is logarithmically convez,
i.e. the set log (2 is convex (cf. [Jar-Pfl 2008], Theorem 1.11.13), where

log 2:= {(z1,...,2,) ER™: (e*,..., ") € f2.

Moreover, if 2 C C" is a Reinhardt domain with 0 € 2, then its envelope of
holomorphy is a complete Reinhardt {2 with log 2 = conv(log §2), where conv(A)
denotes the convex hull of A (cf. [Jar-Pfl 2008], § 1.12).

Assume that each of the sets A C D C CP, B C G C C1? is complete Reinhardt
domains of holomorphy. Then 2 := (A x G) U (D x B) is a Reinhardt domain
in CP*¢ with 0 € 2. Observe that, by the Hartogs lemma (cf. Lemma 2.1.4),
O4(X) = O(£2). Consequently, every function f € O4(X) extends holomorphi-
cally to the envelope Q2 of holomorphy of {2, which satisfies log 2= conv(log £2).
Note that log2 = (logA X logG) U (logD x log B), where each of the sets
log A Clog D C RP, log B C log G C RY is a convex domain. Thus

log 2 = {t(a’,b') + (1 — t)(a",b") :
(a',b") € log A x log G, (a",b") €logD x log B, t € [0,1]}.

[WILL BE COMPLETED. . . . . . . . . « « « o o o v o]
Finally,
2={(z,w) € DxG:h}y p(z)+hpglw) <1}

In the general situation, in view of the above remark, we put

X =K(A,B;D,G) :={(z,w) € DX G :wa.p(z) +wpsaw) <1}.

4.2.1 N—fold crosses

The extension problem (S-O¢) may be generalized to more complicated objects.

(') Karl August Reinhardt (1895-1941) — German mathematician.
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Definition 4.2.2. Let D; be a Riemann domain over C" and let @ # A; C Dj,
j=1,...,N, N >2. Let

A; Z=A1><"'><Aj,1,j=2,...,N, A;-/IZAjJrlX"'XAN,jZ].,...,N—]..

Similarly, for a = (a1,...,ay) € A1 X --- X Ay, we write a} := (a1,...,a;-1),

aj = (aj41,...,an). Define the N—fold cross

N
X =K(Ar,...,An; Dy, ..., Dy) = K((A;, D;)}L,) == | (4] x D; x A)),
j=1

where A} x Dy x A} := D1 x A and Ay x Dy x AY, .= Ay x Dy.
Define the center of the cross X

C(X) 2:A1><"'><AN.

Observe that the geometric image of X may be the same for different systems

(4;, Dj)j»v:l. For example, if A; = D;, j=1,...,N —1, then the geometric image

of X is just the Cartesian product D; x --- x Dy independently of Ay.
We say that a function f : X — C is separately holomorphic on X (f €
0Os(X)) if for any (a1,...,an) € A1 X ---x Ay and j € {1,..., N}, the function

Dj > zj — f(a},z,a]) € C
is holomorphic in D;.
(S-Oc) We ask whether there exists an open neighborhood X CDyx-x

Dy of X such that every f € O4(X) extends holomorphically to X.
Define

/X-\:/K\(Alv"'vAN;Dla"'vDN) :/K\((Aijj)jv:1)

N
= {(Zl,...,ZN) €Dy x---XxDpn: ZwAijj(Zj) < ].}
j=1
Exercise 4.2.3. Prove the following properties of N—fold crosses.

(a) X is connected.
(b) If Ay,...,An ¢ PLP, then X ¢ PLP.
(¢) If Ay,..., Ay are locally pluriregular, then X C X (use Remark 3.4.5).

(d) If Dq,...,Dy are domains of holomorphy, then X is a region of holomorphy
(use Theorem 3.5.6(¢)).
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cm

cr

c

Figure 422. X = (Dl X Az X A3) @] (Al X Doy X A3) U (Al X Ao X D3).

(e) If (Djx)72, is a sequence of subdomains of D; with D C Dj pt1, Ajk =
DjkﬂAj @,kEN,andDj:U;O:IDjvk,jzl,...,N,then

)

K((4;,D;1)}0) /X,

(f) If D; € Rp(C™) (cf. Definition 3.1.1), (Dj k)52, is a sequence of subdomains
of D; such that D; / Dj, Djr D Ajr /A, j=1,...,N, then

K((Ajr, Djx)isy) /X
(use Proposition 3.4.12).

(g) If Aq,..., An are locally pluriregular, then X is connected.
Hint: We may assume that D; € R,(C™), j = 1,...,N. It suffices to show

that every point a = (a1,...,an) € X may be connected in X with a point
from e(X). Put e := Y2 " kY po(a;). If e = 0, then {(a,...,an—1)} x

Dy C X. Ife > 0, then by Proposition 3.4.13, the connected component S
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of the open set {zx € Dn : b, p, (2n) < 1—¢} that contains ay, intersects

Ap. Consequently, a may be connected inside of X with (a1y...,an—1,bN),
where by € Ayn. Repeating the above argument, we easily show that a may
be connected inside of X with a point b € ¢(X).

(h) If P; € PLP(D;), j=1,...,N, then
K((A;\ P, D)) =X

(use Proposition 3.4.11(d)). In particular,

—

K((A;nA;, DY) =X,
where A7 is given in Definition 3.4.4, j = 1,..., N (use Proposition 3.4.6).
(i) If Ay,..., Ay are locally pluriregular and
? = /K\((Aj,Dj)jv:_ll) C D1 X+ X DN,l7
then - R .
K( ?V,AN;Y,DN) =X
(use Proposition 3.4.14).
(j) Assume that B; C Aj, B; ¢ PLP,j=1,...,N. Let f € Os(X) be such that
f=0o0on By x---x By. Then f =0 on X.

Hint: Tt suffices to show that f = 0 on ¢(X). Fix a point (ai,...,an) €
c(X). We know that that for any b; € Bj, j = 1,...,N — 1, we have
f(b1,...,bn—1,-) = 0 on By. Since By ¢ PLP, we conclude that f(by,

..., bnv-1,-) = 0 on Dj and, therefore, f(b1,...,bn—1,an) = 0. Now we re-
peat the same procedure with respect to the (N — 1)-th variables: f(by, ...,
by—2,,an) = 0 on By_1 and hence f(by,...,bny_2,an—_1,an) = 0. Finite

induction finishes the proof.

4.3 Main cross theorem (1969 — 2001)

The problem of holomorphic continuation of separately holomorphic functions de-
fined on N—fold crosses has been investigated in several paper, e.g. [Ber 1912,
[Sic 1969a], [Sic 1969b], [Akh-Ron 1973], [Zah 1976], [Sic 1981a], [Shi 1989], [Ngu-Sic 1991],
[Ngu-Zer 1991], [Ngu-Zer 1995], [NTV 1997], [Ale-Zer 2001], [Zer 2002] and has
led to the following result. The breaking point of the proof was made in [Zah 1976].

Theorem 4.3.1. Assume that D; is a Riemann domain over C™ such that O(D;)
separates points in D; (cf. Definition 3.1.17) and A; C D; is locally pluriregular,
j=1,...,N. Put X := K((A;,D;)})). Let f € Oy(X). Then

o~ —~

(*)  there exists an fe O(X) such that f=fonX and supg | f| = supx | f].
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A proof will be presented in § 4.8.

Remark 4.3.2. (a) Let (X,p) € R(R"™) be such that O(X) separates points in

X. Let a: (X,p) — (X,p) be a maximal holomorphic extension (cf. Theorem
3.1.16). Then « is injective (Remark 3.1.18). Thus we may assume that X is a

subdomain of X, p = plx, a = id.

(b) Let D, denote the envelope of holomorphy of D; with D; being a subdomain
of Dj (cf. (a)). Then for every function g € O(D;) there exists (exactly one)
extension § = &€,(g9) € O(D;) with § = ¢g on D; and Supp, lg| = supp, |gl,
j=1,...,N (cf. Remark 3.1.11). '

PutY = K((Aj,Dj) 1) Since Wy, p; Swa;p; on Dj, j=1,...,N, we get
X CY. For f € 04(X) define g : Y — C,

g(aj)z_]) j) g; (f( _77 7a]))(zj) (aj)z_]) j)eA/ XD XA/I ]:177N

It is clear that g € O4(Y) and supy |g| = Sup x |f|. Suppose that g extends to an
§ € O(Y) with supy |g] = supy |g|. Then f= gl % gives the extension to X with
sup g |f| =supy |f|. Consequently,

e in the extension problem described in Theorem 4.3.1 we may always assume
that D; = Dj, i.e. D; is a Riemann domain of holomorphy over C", j =1,..., N.

Sometimes the assumption that Ap,..., Ay are locally pluriregular is too re-
strictive and it is better to consider the following equivalent form of Theorem
4.3.1.

Theorem 4.3.3. Let D; be as in Theorem 4.3.1 and let A; C D; be non-
pluripolar, j =1,...,N. Put

X = K((Aj,Dj);‘vzl)v Y :=K((4;NA},D )J 1)

(recall that Y = X — - ¢f. Ezercise 4.2. B(h)) Let f € O4(X). Then
(**)  there exists an fe (’)( ) such that f=fonY and sup g |f| <supx |f]-

It is obvious that Theorem 4.3.3 = Theorem 4.3.1. Conversely, since A; N Aj
is locally pluriregular (cf. Prop051t10n 3.4.11(f)), j = 1,...,N, Theorem 4.3.1

implies that there exists an f € (’)( ) such that f = fonY and supg |f|
supy |f| < supx |f]-

Remark 4.3.4. Let D;, A;, j=1,...,N, X, and X be as in Theorem 4.3.1.
In the case where N = 2 we will always write D := Dy, p := ny, G := Do,
q = na, A= Al, B = AQ.
We present below procedures which allow us to prove Theorems 4.3.1 and 4.3.3
under some additional useful assumptions.
(P1) Let (Djx)32, be an exhaustion sequence for D; with Aj7k = A; N
Dj i # @ (observe that A is locally plurlregular) keN j=1,...,N. Put

Xy = K((Ag,k,Dg,k)j,l) Notice that X /' X, X /' X (ct. Exer018e42 3(e)).



62 4 Classical cross theorem

Obviously, if f € O5(X ) then f|Xk € 0s(Xg), ke N. Suppose that for each k
there exists an fj, € (’)(Xk) with f, = f on X, and Supg, |fk| <supy, |f|. Then
(*) is true.

Indeed, since ﬁ;+1 = ﬁ on the non-pluripolar set X, we conclude that ﬁ_H =
fk in t/l\le domain /)Ek. T}/l\us, we obtain an f € 0(5(\) with f = f on X and
supg |f| = supgensupg, [fk| < suppensupx, |f| = supx |f]-

In particular:

o (t) we may always assume that D; € Rp(C™), j=1,...,N,

o if Dq,...,Dyn are Riemann domains of holomorphy, then we may assume
that they are strongly pseudoconvex with real analytic boundaries (cf. § 3.5._1),
o we may always assume that f(ai,...,a;-1,,aj+1,...,an) € O(D;) for

every (ay,...,an) € Ay X -+ X Ay, j=1,...,N.

(P2) Assume that D; € Rp(C™), j=1,...,N (asin (})). Let A;r ~ Aj,
j=1,...,N. We assume that each set A; is non-pluripolar. Put

Xy = K((Ajr, Dj)iL1), Y= K((Ajx N A5 4, Di)ily).

Observe that Y, € X, ~ X and Yk = /)Ek e x (cf. Proposition 3.4.6 and
Exercise 4.2.3(f)). Suppose that (**) holds for each k, i.e. there exists an fj €
O(X ) with fr = f on Yy and supg, |fx] < supx, |f| < supx [f]. Then (*) is
true.

Indeed, since Y ¢ PLP, we get fri1 = fk on X. Thus we get a function
fe O(X) such that sup ¢ |f| < supx |f| and f = f on each Yk It remains to
use Exercise 4.2.3(j) to show that f f on every X and hence f fon X.

In particular,

o ifD; e Ry(C™), j=1,...,N (asin (1)), then we may always assume that
AjeD;, j=1,...,N.

(P3) We may additionally assume that N = 2.

Indeed, suppose that the result is true for N = 2. We proceed by induc-
tion on N > 2. Suppose that the theorem is true for N —1 > 2. Put Y :=
K((Aj,Dj);.V:_ll), Z = K(A\,An;Y,Dy). Observe that if zxy € Ay, then
f(,zn) € O4(Y). By inductive assumption there exists an f,, € O(Y) with
Jfon = f(2n) on Y and supy |f.y| < supy |f(-,2n)| < supx |f|. Define g :
Z — C,

. , if (2/,2v) €Y x A
o2 o) = Fon (2)) '(/N) KA
f(ZaZN)) lf(Z,ZN)EANXDN

Obviously, g is well-defined and g € O4(Z). It is clear that holomorphic functions
onY separate points and A’y is locally pluriregular. Using the case N = 2, we
find an f € O(Z) with f = g on Z and supy |f] < supy |g| < supx | f|. It remains
to recall that Z = X (cf. Exercise 4.2.3(1)).

Observe that the above proof shows that if the main theorem is true for N = 2
and bounded functions [ € Os(X), then it holds for arbitrary N and bounded
separately holomorphic functions.
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(P4) If N =2, then we may additionally assume that f is bounded.

Indeed, we already know (by (P1)) that we may assume that D; € R, (C"9),
j = 1,2 (as in (7)) and that for arbitrary (ai,as) € A1 x Ay we have f(ai,-) €
O(D3), f(-,a2) € O(Dy). Define

A ={z1 € A1 :|f(z1,-)] < k on Dy},
Agyk IZ{ZQGAQ : |f(,22)| <kon Dl}, k e N.

Observe that Aj, " A;j. We may assume that A;, ¢ PLP, k> 1, j = 1,2.
Observe that |f| < k on K (A1, Aak; D1, D2), k € N. Now we only need to use
(P2).

(P5) Assume that N =2 and let f € O4(X) be bounded.

(a) If B is an identity set, then f|axq is continuous.

(b) If B is an identity set and A € D, then f extends to an f € Oy(Z), where
Z .= K(A B;D,G).

(¢c) If A, B are identity sets, then f is continuous on X.

(d) If A €@ D, B € G are identity sets, then f extends to a continuous function
f € 04(2), with Z := K(A,B;D,G).

Indeed, for the proof of (a) let A x G 3 (z5,ws) — (20,w0) € A x G,
f(zs,ws) — a. The sequence of holomorphic functions (f(zs,-))52, is bounded.
Consequently, by the Montel theorem, we may assume that f(zs,:) — g locally
uniformly in G with g € O(G). In particular, f(zs,ws) — g(wg) = a. On the
other hand, f(zs,w) — f(20,w) for w € B. Hence, g = f(20,-) on B and, finally,
g = f(z0,-) on G, which gives (a).

(b) Let A > 2z, — 20 € A C D. By a Montel argument there exists a
subsequence (ks)22, such that f(zx,,) — ¢*° locally uniformly in G. Observe
that g% (w) = f(z0,w), w € B. Consequently, g*° does not depend neither on the
subsequences and nor the sequence (z)72; C A with z, — zo. Define

~ ) flz,w), on X,
few) = {gz(w), on Ax G’

Then fvis well defined and separately holomorphic on Y.

(¢) In view of (a), to prove that f is continuous on X, we only need to consider
the case where

A XG53 (zs,ws) — (20,wp) € (D x B)\ (4 xG),

f(zs,ws) — . Analogously as in the first part of the proof, we may assume
that f(zs,-) — g locally uniformly in G. Hence g(ws) — g(wo) = a. Moreover,
g(w) = f(z20,w) on w € B. In particular, g(wo) = f(z0,wp), which finishes the
proof.

(d) follows from (b).



64 4 Classical cross theorem

(P6) Assume that N =2, D, G are relatively compact (as (1)), and A € D,
B & G are non-pluripolar. Put

Y .= K(ANA*BNB*:D,G), Z:=K(A4 B;D,Q),
W = K(AN(A)*, BN (B)*;D,G).

Let f € O4(X) be bounded. We know by (P5) that f extends a continuous
feo,z ). Suppose that (**) holds for Z, i.e. there exists an f € (’)( ) such
that f fon W and supyz |f| < supy |f|. Observe that Y C Z and X=YcC
W = Z. Thus f|X solves (**) for X.

(P7)  Summarizing, to prove Theorem 4.3.1 in its full generality, it suffices
to prove Theorem 4.3.3 under the following additional assumptions:
N =2,
D, G are strongly pseudoconver domains with real analytic boundaries,
A, B are compact non-pluripolar,
fa,") € O(G), a € A, f(-,b) € O(D), be B,
[fI <1 on X (and f is continuous on X ).

4.4 Siciak’s approach

The aim of this section is present some of Siciak’s results from the paper [Sic 1969a].
J. Siciak was the one who initiated modern theory of separately holomorphic func-
tions on crosses. To be historically correct, one should mention that already in
1911 Bernstein (cf. [Ber 1912]) discussed the following general 2-fold cross situa-
tion: ny = ng = 1, D1 = Dy = an ellipse with foci 1, =1, A; = As = [-1,1],
f € Os(K (A1, A2; D1D3)) bounded. It seems that this result has been not recog-
nized for a long time up to a paper by Akhiezer and Ronkin (cf. [Akh-Ron 1973],
see also [Ron 1977]).

Observe that in the following results the domains Dq,..., Dy and sets Aj,

, An satisfy very restrictive assumptions, much more restrictive than those
considered in Remark 4.3.4. Since not all reduction procedures (from Remark
4.3.4) preserve these special additional assumptions, we can apply only some of
them.

Theorem 4.4.1. Let D C CP be a domain and let G1,...,G4 C C be simply
connected domains symmetric with respect to the real axis R. Assume that A C D
is locally plurireqular and B; = [aj,b;] C G;NR, a; < b;, j = 1,...,q. Put
X = K(A, Bl,.. Bq,D Gl,... Gq). Let f € Os(X) be bounded on X. Then
there exists an f € (’)( ) such that f f on X and supg |f| =supx |f|. If A is
additionally compact, then the result remains true for locally bounded f € O4(X).

Notice that the assumptions that f is bounded or locally bounded are, in fact,
superfluous (cf. Theorem 4.3.1).
We need some auxiliary results, whose proofs may be found e.g. in [Gol 1983].
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Lemma 4.4.2. Let D C H' := {x +iy : x € R, y > 0} be a simply connected
domain and let L C RN OD be an open interval. Assume that g : D — HT
is a biholomorphic mapping. Then g extends to a continuous injective mapping
G:DUL —H" with §(L) C R.

Lemma 4.4.3. For every —o0o < c¢ < —1 <1 <d < 400 there exist 0 < p < 400
and a biholomorphic mapping h : HT — R with

R=R(p) :={u+iv:ue(0,p), ve (0}

such that h(c) = p + im, h(=1) = im, h(1) = 0, h(d) = p, where h denotes the
extension of h to a homeomorphic mapping h : A R (which exists by the
Carathéodory theorem,).

Corollary 4.4.4. Let D C H* be a simply connected domain such that (c,d) C
RNOD with —o0 < ¢ < -1 <1 < d < +o0o. Then there exist 0 < p < +o0
and a biholomorphic mapping g : HY — R with R = R(p) that extends to a
continuous injective mapping g : DU(c,d) — R such that g((c, —1]) = (p+in, i7],
g(_l) =1, g([_lv ]-]) = [7;71—70]! g(l) =0, g([lvd)) = [Ovp)

Lemma 4.4.5. Let D C C be a simply connected domain symmetric with respect
to a line L. Let [a,b] C LN D, a # b. Then there exist uniquely determined
R e (1,400] and

g:D—E={weC:|w+Vw? -1 <R}, g biholomorphic,

such that g([a,b]) = [-1,1], g(a) = =1, g(b) = 1, and the branch of Vw? —1 is
chosen so that vz? —1 >0 for z € (1,400).

Proof. Let
2 a+b
91(z) := b—a(z_ 5 ), z e C.
Then ¢g; maps biholomorphically D onto the simply connected domain Dy := g1(D)
that is symmetric with respect to the real axis, g1([a,b]) = [-1,1], g1(a) = —1,

g1(b) = 1. If D; = C, then we put R := 400, g := g1.
Assume that Dy # C. Let (¢,d) := D1 N R (observe that D; N R must be
connected because D; is symmetric and simply connected — EXERCISE). Put

DY :={z€ D;:Imz > 0};

observe that D is a simply connected domain. Then there exist p € (0, +o0o] and
a biholomorphic mapping

g2: D} — Dy :={u+iv:uec(0,p), vem}

such that 52((07_1]) = (P + iﬂ—viﬂ—]a 52(_1) =1, 52([_17 ]-]) = [7;71—70]7 §2(1) =0,
g2([1,d)) = [0, p) (Corollary 4.4.4). The mapping g3 := exp maps biholomorphi-
cally D5 onto the domain

D3 ={weC:1<|w <R:=¢€", Imw > 0},
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g3(lp + im,in] = [-R,~1], g5([im,0]) = CF := {¢ € T : Im( > 0}, g3([0,p]) =
1, R].

Next, the Zhukovski mapping g4(z) := %(z + 1/z) maps D3 onto the domain
&t :={we &:Imw >0}, g4([-R,—-1]) = [-3(R+ 1/R), —1], g4(CT) = [-1,1],
94([1,R]) =1, 5(R+1/R].

Let g5 := ga0gzoga: DY — &7,

g5(w), w e Df
g6(w) == gs0gzoga(w), we(cd).
95(0), w e DY

Finally, g := gg o g1 satisfies all the required properties.

It remains to prove that R and g are uniquely determined. Suppose that
h:D— & :={weC:|w+ vw?—1| < R’} is another biholomorphic mapping
with the above properties. Then the biholomorphic mapping f := g;loho g logy:
A(1,R) — A(1, R") with f(£1) = £1, where

Alr_yry)={ze€C:r_ <|z| <ry}.
Consequently, R’ = R and g = h. O

Corollary 4.4.6. Assume that D is a simply connected domain symmetric with
respect to the real line R and [a,b] C DNR, a <b. Let R and g be as in Lemma
4.4.5. Then the function @(z) := g(z) + /¢%(z) — 1, z € D\ [a,b], is the unique
biholomorphic mapping of D\ [a,b] onto A(1, R) such that ®(a) = —1, P(b) =
Moreover:

o P(z)=P(z), z€ D\ [a,b],

o the limits @(x+10) := lim, o1 @(x+1iy) and $(x—i0) := lim,_,o_ P(z+1y)
exist for x € [a,b],

o P(x+1i0)=P(x —i0)=1/P(xz —i0), x € [a,b],

o the functions (a,b) 3 x — &(x +i0) and (a,b) 3 x — P(x — i0) are real
analytic,

e the function m(x x)/y/1— =P’ (x —i0)/P(x —i0), = € (a,b),
is Riemann integrable and fa (z)dx = arcsin g|g =T.

Put

Dk (2) + dF D
T2 ) ok (x—zO)—!—QJ k(x —i0), 2=z €a,b]

Then:

o &, c0(D),

o || <O,

o |Py] <1 ona,b)].
Corollary 4.4.7. Let D, a, b, R, and @ be as in Corollary 4.4.6. Then

. log ||
Wa,b],D = 1a,p],D = @-
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Proof. Let u := lfogg‘ﬁl. It clear that u € H(D \ [a,b]) and 0 <u < 1 on D \ [a,b].
Moreover, v is continuous on D and v = 0 on [a,b]. Hence v € SH(D) and,
consequently, hi, ) p > u. Applying the maximum principle to the subharmonic

function hy, ), —w on D\ [a,b], gives the converse inequality. O

Lemma 4.4.8. Let D, a, b, R, m, &, and ($)7>, be as in Corollary 4.4.6. Let
f € O(D). Then

2)=> adp(z), z€D, (4.4.1)

where

sgn b
_2 i k/ m(z)f (2)Bx (x)dz, k€ Ty,

Moreover:
e the series converges locally uniformly in D,
o if|f| <M, then |cx| < 2M/RF, k € N.

Proof. Applying the Laurent expansion to the function F := fo®~! in the annulus
A(1, R) gives
F(w) =ag+ Y (apw® +a_jpw™), 1<w| <R,
k=1

where

1 FQ -1 / f2) g
"2 Sy CFF “ = om [@(2)|=r it G tsrs R ke

Since F' is continuous for 1 < |w| < R, we have

271'2 Ck‘H

f(x) / . 1 b f({E)
2m a mq‘ (2 — i0)dz — —

omi 3 m@/(x +ZO)dm
/ m(x @k(x —i0) + & * (2 — ZO))d{E = / m(z) f(x) Py (x)d.

In particular, ¢ = ag, cx = 2ax, = 2a_g, k € N. Consequently, we get (4.4.1) on
D\ [a,b], the series being locally uniformly convergent in D \ [a,b]. It remains to
observe that series (4.4.1) is uniformly convergent in {z € D : |®(z)| < R} for
arbitrary 0 < 6 < 1. In fact, if |@(z)| < R, then

oM
ler®r(2)] < ﬁ@(zﬂk <2M@*, keN. O
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Proof of Theorem 4.4.1. First observe that, using the same procedures as in Re-
mark 4.3.4, we may reduce the proof to the case where D is bounded, A € D, and
q = 1. In the case where A is compact we easily reduce the proof to the case where
f is bounded, |f| < M on X. In particular, f is continuous on X (cf. Remark
4.3.4(P5)).

Write G := G, [a,b] := [a1,b1], F :=[a,b]. Let R, g be associated to (G, [a, b])
as in Lemma 4.4.5 and let m, @, ($y)72; be associated by Corollary 4.4.6. Define

9sgn k

ck(z) = p-

b
/ m(t) (=, OBr(t)dt, 2 €D, k€L,

We have (cf. Lemma 4.4.8):

f(sz) = ch(z)ék(u})v (va) €EAXG,
k=0

2M
cr € OD), lew| <2M,  |en(2)| < —f

TR z€A, keZy.

Hence
lex| < 2MR*"ap=Y on D, ke N.
For 0 < 6 < 1 define

log |®(w)| 1 log 6 }

0y = {(z,w) €D X G Wy p +hpolw) =ip+ = 0 g T

Observe that 29 X when 6 /" 1. For (z,w) € 29 we get

ek (2) P (w)| < 2M RFMa 0 =D |@(w) ¥ < 2M (RM.0 (D=1 p(w)|)* < 2M0*,
keN.
Thus, the series is uniformly convergent on {2y and its sum fsatisﬁes the inequality

-~ 2M

su < —.
QfIfI, o

Using the same argument for the function f™ instead of f we conclude that

~ 2M™
9 m| <
sgflf < T3
which gives
w0

Letting m — +o0 leads to the conclusion that |f| < M on §2. O
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Theorem 4.4.9. Let Dq,...,D, C C be simply connected domains symmetric
with respect to the real azis R and let Aj = [aj,b;] C D;NR, a; <bj, j=1,...,n.
Put X = K((Aj,D;)7_). Let f € Os(X). Then there exists an fe (’)(/X\) such
that f = f on X and sup |f| <supx |f].

We need some auxiliary results.

Theorem 4.4.10 (Leja’s polynomial lemma). Let Ki,..., K, C C be continua,
K:=K;x--x K, CC", and let F C P(C") be such that

Veek : sup [p(z)| < +o0,
peF

i.e. F s pointwise bounded on K. Then

VaEK vLu>1 ElM:M(K,a,w,}')>O EIn:n(K,a,w)>0 : sup  Ssup |p(2)| < deegp’
pEF zeP(a,n)

equivalently,

d
Vs1 IM=M(Kw,F)>0 3 0=0(Kw) @ Supsup [p(z)| < Mw P,
KC$ — open PEF 2€0

Notice that 7 is independent of F.

Proof. The case n = 1 is covered by Lemma 2.1.6. Assume that the result is
true for (n — 1) variables and consider the case of n variables. Take a point
a € K':== Ky x--x K,_1 and put Fyr := {p(d’,-) : p € F}. By Lemma 2.1.6
there exist an open neighborhood 2, := Ugck, K (¢ n(Ky, ¢, vw)) of Ky (2,
does not depend on a’) and a constant M (a’) such that

p(d, 2n)| < M(a)V&'®?, 2, € 0, fEF.

Now, let F' := {\/c_uidegpp(-,zn) : Zn € §2,}. Observe that F’ is pointwise
bounded on K’. Thus, by the inductive assumption, there exist an open neigh-
borhood (2’ of K’ and a constant M such that

Ve (! za)| < MV, 2 € ) 2 € 2uypEF. H

Theorem 4.4.11. Let K be a compact subset of an open set 2 C C™. Assume
that for every point a € A there exist continua Ki,..., K, C C such that a €
Ky x---x K, C K. Let a sequence (fa)O‘EZT C O(£2) be locally uniformly bounded
in §2 and such that

limsup(|fo(2)|[R*)Y1* <1, 2 €K,

|| =400

where R € R . Then for every w > 1 there exist a constant M = M(w) > 0 and
an open neighborhood (2, of K, 2, C {2, such that

Ifa(2)|R® < Mwl®l, 2e0,, ae VAR
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70
Proof. Take an arbitrary w > 1. It suffices to show that for every point a € K
there exist M, n > 0 such that
fa(2)|R* < Ml 2 € B(a,n), a € ZT.
Fix a point a € K and let
Bla,r0) C 2, 0<p<r<ry, p/r<w/max{Ri,...,Rmn}
Put
My = sup max [fo(z)] < +o0.
QLT 2€B(a,r)

Write
fa(z):Zfa7k(z_a)7 ZEB(G,T()),
k=0

where f, 1 is a homogeneous polynomial of degree k. Put

||

Pa(z) = Z far(z—a), F:={(R/w)pa:acZ}.
k=0

The Cauchy inequalities imply that

M,y
|fa,k| < T_k
Consequently, if z € B(a, p), then
la|+1 wlal oo 0 &
Pa()| < falD)|+ Y anlz—a) < M)+ 00 - (£)
k=0 k=|a|+1
la| la| la|
w w

la| lal+1 1

w P

< My(2) 2 + My (2) < My(z)—
< Ma(z) Re + My - 12 2(2) Re

Hence, the family F is pointwise bounded on B(a, p). By Leja’s polynomial lemma

(Theorem 4.4.10) there exist 0 < n < p and M > 0 such that
(R/w)|pa(z)] < Mwel 2 e B(a,n), o € ZT.
Finally, for z € B(a, ), we get
R fa(2)] < R[pa(2)] + Msw!® < Mw?®l 4+ Myw!®l < (M + Mz)w?el. O
Proof/oi Theorem 4.4.9. We use induction on n. The case n = 1 is trivial (X =
X).

X = X = D). Suppose that the result is true for n — 1. Fix an f € Og(
In view of Theorem 4.4.1 we only need to show that f is locally bounded on X,
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i.e. for any subdomains Dg-) € D; with A; C D?, j =1,...,n, the function f is
bounded on K ((4;, DY)7_,). Fix an jo € {1,...,n}. We are going to show that
. 0 . -
f is bounded on A x D} x A’ . We may assume that jo = n.
We want to prove that f is bounded on A/, x D%. Put

Y = K((AjaDj)ngll)v Z = K(A;ﬂAnv?an)

Recall that Z = X. In view of the inductive assumption, for every z, € A, the
function f(,z,) extends to a function fzn holomorphic on ¥ with fzn = f(-, zn)
on Y. Define g: Z — C,

/ / ’
9(2, 2n) = Ji(Z yZn), (2, 2n) € 4n X Dy,
on (ZI)7 (Z/azn) €Y x An

Then g € O4(Z). For 0 < e <1 put

n—1
Vo {Groza) €V YW p () < 1-¢}.
j=1

Using a Baire argument, we show that there exist a constant C > 0 and a non-
trivial interval [a,,b]] C [an,by] such that |g(z',2,)] < C on Y. X [al,,b,] and

n’ n n’ n

g|Y€X[a, p | is continuous (cf. Remark 4.3.4(d, f)). Let R, g, m, @, ($r)72, be
associated to (Dy, [al,,b]]). Define

n’-n

9sgn k
cx(2) =

/ mg(t)g( , )Pp(t)dt, 2 €Y., keZ,.
We have

(2, 2n) = ch(z')@k(zn), (2',2n) € A, X Dy,
k=0

2maxse(ar b, 19(2, 1)

c €O(Ye), el <2C, |en(2)| < i

, 2 €A kel,.

Hence, by Theorem 4.4.10,

lek] < L)k on A, keZy.

(Rqeie)
Finally, if
Dy :={2n € Dy, : |¥(2,)| < Re™ %},
then
o 726
9(2', 20)| < C(e) Z T C(Z)_E, (2, 2n) € A, X Di.c.

=0

In remains to observe that for sufficiently small € we get DS C D, .. O
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4.5 Browder and Lelong theorems

Theorem 4.5.1 ([Bro 1961], [Lel 1961]). (a) If 2 C R™ ~ R™ 440 C C" is open,
then

A(“Q) = {f € AS(Q) : vae() EI7">0 vmeR"rﬂP(a,T)CQ vjE{l,...,n} :
flx1, ., -1, Tjr1,- -, Tn) € O(K(aj,7))} = Lo,

where A(£2) denotes the space of all real analytic functions f: 2 — R.

(b) If 2 CR™ x - - xR"™  then Hn, ... .ny)(£2) = H(12), where Hn, ... nn)(£2)
denotes the space of all functions f : 2 — R such that for every (ai,...,an) € (2,
the function x; — f(ai1,...,a;-1,%;,aj4+1,...,an) is harmonic in a neighborhood
of a; (as a function of n; variables), j=1,...,N.

Notice that the function

o d TV (0,y) £ 0,0)
Jleww): {o, (z,) = (0,0)

is separately analytic and of class C*°(R?), but not analytic (near (0,0)) (EXER-
CISE).

Proof. (a)Fixan f € Lo andana = (a1, ...,an) € £2. Let  be as in the definition
of L. Take an arbitrary 0 < s < r and put

X = K(([aj — s,a; + 5], K(aj’r));'l:l)'

Directly from the definition of CQ it follows that f extends to an f € O4(X).
Now Theorem 4.4.9 implies that f extends holomorphically to X which is a C"—
neighborhood of a. In particular, f is real analytic in an R"— nelghborhood of
a.

(b) It suffices to show that H,,, . ny)(82) C Le. In fact, we only need to
observe that if f € H(B(r) NR™), then f extends holomorphically to P(r/y/n).

Indeed, it is well known that f may be represented by its real Taylor se-
ries f(x) = Zaem cox®, x € B(r) NR™ that is convergent locally uniformly in

B(r) NR™. Consequently, the complex series Eaezi Coz® is locally convergent in

P(r/\/n). O

4.6 p—separately analytic functions

Definition 4.6.1. Let 2 C R™ x --- x R"™¥ (N > 2) be open, let f: 2 — R,
and let 1 < p < N — 1. We say that f is p—separately analytic in 2 (f €
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Ay, nn),p(£2)), if for any a = (a1,...,anx) € 2and 1 < iy <--- <ip < N the
function

(.237;1 goee ,xip) — f(al, D 7S [P S ¢ 7 S ,aip_l, a:ip,aip_i_l, .o ,CLN)
is analytic in an open neighborhood of (a;,,...,a;,).

Observe that A, . nx)1(82) = An,,...ny)(£2) =: the space of all functions
f: 2 — R such that for any (ai1,...,ay) € 2 and j € {1,..., N}, the function
xzj — f(ar,...,aj-1,%5,a;41,...,an) is analytic in a neighborhood of a; (as a
function of n; variables).

Theorem 4.6.2. Let 2 CR™ x--- xR™ be open, f: 2 —R, 1<p<N-1,
and let

S=8a(f):={ac Q:VYocvca: f¢AU).

(@) If f € A(ny,....nn).p(82), then: ‘

(*) Prgri o ygin_p (8) € PLP(CM1 x -+ x C¥N=r) for all 1 < j; < --- <
JN—p < N.

(b) For every relatively closed set S C §2 with (*), there exists a function
J € Apny,nn)p(§2) such that S = Sa(f).

In the case where N = 2, ny = ny = 1, the result was proved in [Ray 1989],
[Ray 1990]. In the general case, part (a) with p > N/2 and part (b) with an
arbitrary p were proved in [Sic 1990]. Finally, part (a) with arbitrary p was proved
in [Blo 1992].

Proof. [A SKETCH OF THE PROOF. WILL BE COMPLETED. . . . | (]

4.7 Separate subharmonicity

See [Jar-Pfl 2000], § 2.1. Let 2 C R™ X --- x R™ be open. A function u :
2 — R_ is said to separately subharmonic (u € SH(p, .. ny)(§2)) if for every
(a1,...,an) € £2, the function z; — f(a1,...,aj-1,2;,a;41,...,an) is subhar-
monic in a neighborhood of a; (as a function of n; variables), j =1,...,N.

In view of Theorem 4.5.1(b), one could conjecture every separately subhar-
monic functions is subharmonic.

In the case where {2 C C" is open, one could at least conjecture that a function
u : §2 — R_ is plurisubharmonic iff every a € X and £ € C" the function ug ¢ is
subharmonic in a neighborhood of zero, i.e. iff v is subharmonic on complex affine
lines through §2. Observe that every such a function is of class SH ... 2)(§2). The
above conjecture has been formulated by P. Lelong, who proved ([Lel 1945]) that
the answer is positive if we additionally assume that u is locally bounded from
above in (2. The general answer is still not known

It is known that if £2 C R™ x---xR" is open and v € SH(y, ... ny)(§2) is such
that for every point a € (2 there exist an open neighborhood U C {2, a number
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0 < r < 400, and a function v € L"(£2) such that v < v in U, then v € SH(S?2)
([Rii 1989]). The case r = 400 is due to Avanissian [Ava 1961]. The case r =1 is
due to Arsove [Ars 1966].

In particular, if £2 C C™ is open and u : 2 — R_,, is subharmonic on
every complex affine line and such that for every point a € {2 there exist an open
neighborhood U C {2, a number 0 < 7 < 400, and a function v € L"(2) such that
u<wvin U, then u € PSH(12).

The example constructed in [Wie-Zei 1991] shows that in general the answer
is negative and we have SH(,,, . ny)(£2) ¢ SH(§2). More precisely, there exists
a function u : C? — Ry such that for every (zp,wp) € C? the functions u(zo, )
and u(-,wp) are C°> subharmonic, but u ¢ SH(C?).

Indeed, let
~ Kk —izk if A k
e (2) = Re(—iz"), 10<'rgz<7r/  secC,
0, otherwise
~ 1 e
Up i= Up * Dy ypn (z ] exp(ﬁ)), z € C,

u(z,w) = Zuk(z)uk(w), (z,w) € C?,
k=1

where (@ )c~0 are regularization functions as in Definition 3.3.14. Observe that:
o if z = 7€', then Re(—iz") = r¥ sin(ky);

consequently, @ is a non-negative continuous function;

Uy is subharmonic on Ay := {0 < Argz < 7/k} and, consequently, on C;

uy, is a non-negative subharmonic function on C (cf. Proposition 3.3.15);

supp ur C Ay, for k> 1;

for every zg € C we have ug(z0) =0 for k > 1;

consequently, u(zo, ) is a well defined non-negative C>° subharmonic func-

. \/U(% exp(5t), § exp(5E)) > ur(F exp(5)) > Ur(F exp(5f) — 7= exp(§1)) =
k

4.8 Proof of the cross theorem

We need some auxiliary results. We begin with the following general theorem from
functional analysis.

Theorem 4.8.1 ([Mit 1961], see also [Jar-Pfl 2000], Lemma 3.5.9). Let Ho, H1 be
separable Hilbert spaces with dimHy = dimH, = oo, and let T : Hy — Hi be a
linear injective compact operator (2) such that T(Ho) is dense in Hi. Then there
exists an orthogonal basis (b)ren C Ho such that:

(2) Recall that a linear operator 7' : X — Y, where X and Y are locally convex topological
vector spaces, is compact if for any bounded set B C X the set T'(B) is relatively compact in Y.
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o (T(by))52, is an orthonormal basis in Hi,

o |bllx, =: vk /" +oo when k / +00.
Moreover, if there exist a locally convex nuclear space V and linear continuous
operators Hy EAINEVELN Hy such that T = Ty o Ty, then the above basis (by)keN
may be chosen in such a way that the series Y, | vy < is convergent for any & > 0.

In the case of the cross theorem the above general result implies the following
fundamental theorem.

Theorem 4.8.2 ([Zah 1976], [Zer 1982], [Zer 1986], [Ngu-Zer 1991], [Zer 1991],
[Ale-Zer 2001], [Zer 2002], see also [Jar-Pfl 2000], Lemma 3.5.10). Let 2 € X be
a strongly pseudoconver open set on a Riemann region (X,p) over C" and let
A C 2 be compact and such such that AN S is non-pluripolar for every connected
component S of (2. Put

o Ho:=Ly(92) (%),

o Hi = clpzapu, o) (LE(2)|a) = the closure of L7 (2)|a in L*(A, pan),
where pa o is the equilibrium measure for A (cf. Definition 3.4.17).
Then the linear operators

Hoo f -5 FeO(), O2)>f -2 flaeH

are well defined, injective, and continuous (4). Moreover, Ty is compact. In par-

ticular, the operator Hg 3 f T=hph fla € Hi is compact.

Let (bi)32, C Ho, (V)52 be as in Theorem 4.8.1. Then for any o € (0,1)
and for any compact
K cC{ze:h}q(2) <a}

there exists a constant C = C(«a, K) > 0 such that
bkl < Cvg, keN. (4.8.1)

Remark 4.8.3. An independent proof of Theorem 4.8.2 has been given by A. Ze-
riahi in [Zer 2002].

Proof of Theorem 4.3.3. To simplify the proof we assume additionally that D,
..., DN are domains of holomorphy.

We already know (cf. Remark 4.3.4(P7)) that we may assume that N = 2,
D, G are strongly pseudoconvex domains with real analytic boundaries, A € D,
B € G are compact and non-pluripolar, f(a,-) € O(G), a € A, f(-,b) € O(D),
be B, |f|<1lon X, and f is continuous on X.

Let p:= pa.p, Ho := L2(D), Hy := the closure of Hy|a in L?*(A, u), and let
(br)?2; be the basis from Theorem 4.8.2; v, == ||bg||#,, k¥ € N. For any w € B we
have f(-,w) € Ho and f(-,w)|a € H;i. Hence

f(aw) = ch(w)bka
k=1

(3) L3 (22) := L*(£2) N O(2); observe that LZ(£2) is a complex Hilbert space with the scalar
product given by the formula (f, g) — [, fgdL*".
(*) Recall that O(£2) is a nuclear space.
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where
Ck l/k / f 'UJ k( ) / f U} k( ) ( )

cf. Theorem 4.8.1. The series is convergent in L2 (D) (in particular, locally uni-
formly in D) and in L?(A, u1). Since f is continuous, the formula

Bu(w) == /A f(z w)bk(2)du(z), we G,

defines a holomorphic function on G, k € N. We are going to prove that the series

Z Ek (w)bk (Z)

converges locally uniformly in X.

Take a compact K x L C X and let a > maxg h p, 8 > maxy hj; o be such
that a+ 8 < 1. First, we will prove that there exists a constant C’(L, 3) > 0 such
that

&l < C'(L, B, keN. (4.8.2)

Suppose for a moment that (4.8.2) is true. Then, using Theorems 4.8.2 and 4.8.1,
we get

Yo l@lzlibrllx <> (LB O, a)vg
k=1 k=1
=C'(L,B)C(K, ) ZV‘Hﬁ "= M(K,L) < 400,

which gives the normal convergence on K x L. Let
0 —~
=Y G(wbk(z), (2,w) € X;
k=1

obviously f is holomorphic. Recall that f = f on D x B. Hence f = f on
Y =K(AnA*",BnB*D,G)c XNX.
Moreover, if K, L are as above, then

sup |f| < M(K,L) < +c0.
KXxL

Taking f™ instead of f, we conclude that

sup |fm| <M(K,L)< 400, meN,
KXL



4.9 Cross theorem for generalized crosses 77

which implies that |f| <1
We move to the proof of (4.8.2). By the Holder inequality, we get
[ck(w)| < Vu(4), weG, keN

(recall that |f| < 1). On the other hand, if w € B, then

Bl = lew) = |5 [ fewe(ac )] < /D).

Vg
For k € N such that vy > 1, let

log [c|

U = .
log vy,

The sequence (ux);2; is bounded from above in G, w := limsup,,_, , ., ux <0, and
u<—1lon B. Let P:={w € G:u(w) <u*(w)}; P € PLP. Thus u* € PSH(G),
u* <0, and u* = u < —1 on B\ P. Consequently, 1 + u* < h*B\RG = hg
(cf. Proposition 3.4.11(d)). Hence 1 + u* < 8 on L. Now, by the Hartogs lemma,
ug < S —1on L for k > 1, which implies (4.8.2). O

4.9 Cross theorem for generalized crosses

Definition 4.9.1. Let D; € R.(C"), let @ # A; C Dy, and let ¥; C A} x A7,
j=1,...,N. We define a generalized N -fold cross

T:=GK(Ay,...,An;D1,...,Dn; %1, ..., 5n) = GK((A;,D;,%)3) :

{ (a),2,a)) € A x Dy x A : (d),a )¢z}

J’J

HCZ

and its center
C(T) ZZTﬁ(Al X'-'XAN)Z(Al X"'XAN)\A(),

where
N

Ao = (V{(@)a,a)) € A7 x 45 x A7 : (a)a) € 5 ).
j=1
We say that a function f : T' — C is separately holomorphic on T (f € O4(T))
if for any j € {1,..., N} and (a},a}) € A} x A7\ ¥;, the function
Dj > zj — f(d},zj,a]) € C

is holomorphic in D;.
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cm

I cm2

cm

Figure 4.9.1. Generalized 3—fold cross.

Observe that:

o GK((4;,D;,9)} ) = K((Aj,D;);L1);

o if N= 2, then GK(Al, AQ; Dl, DQ; 21, 22) = K(A1 \ ZQ, AQ \ 21; Dl, DQ),
roughly speaking, generalized 2—fold crosses are nothing new in comparison with
the standard 2—fold crosses; for N > 3 generalized N—fold crosses are geometrically
different than the standard ones — for instance, this makes the theory of extension
with singularities for N > 3 essentially more difficult — cf. Chapters 5, 7;

e if one of the sets X1,..., Xy is pluripolar, then Ay € PLP.

Theorem 4.9.2 (Extension theorem for generalized crosses). Assume that D;
is a Riemann domain of holomorphy over C", A; C Dj is locally pluriregular,
¥ C A} x A is pluripolar, j = 1,...,N, X = K((Aj,Dj)ﬁvzl), and T =
GK((A;,D;,%5)iL,). Then for every f € Oy(T) such that
(*) foranyje€{l,...,N} and b; € D;, the function
A; X A}' \E; 3 (2, 2]) — f(zg»,b 2!

]’zj VR

s continuous,
there exists an f € O(X) such that f = f on T and supg |f| = supp |f|.
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Remark 4.9.3. (a) The assumption (*) is obviously a necessary condition for a
function f € O4(T) to be holomorphically extendible to X. We do not know
whether the theorem remains true without (*)

(b) If N = 2, then every generalized 2—fold cross is a “standard” 2—fold cross
and X = T. Consequently, the result follows from Theorem 4.3.1 for arbitrary
f € Os(T) (without the assumption (*)).

(¢) The case where 1 = --- = Xy = & follows immediately from Theorem
4.3.1 (without (*)).

Proof of Theorem 4.9.2. We apply induction on N. As we already observed the
result is true for N = 2. Assume that the result is true for N — 1 > 2. Take an
f € Os(T) with (*). Let

Q = {ZN S AN : Elje{l,...,Nfl} : (Ej)(~,21\7) ¢ 'P£'P}
Then, by Proposition 3.3.27, Q@ € PLP. Take a zy € Ay \ Q and define

T(zn) == GK((A;,D;, (%) (on)) iy '), Y = K((A;, D)),
Put gg’ = Ajp1 X X AN, 'dg.' = (aj41,...,an-1), j=1,...,N —1. Observe
that
T(.’ZN) =T(zn)U (AIN \ ).
It is clear that f(-,zn) € Os(T(2n)). Moreover, the function f(-, zy) satisfies (*)
on T(zy). Indeed, let j € {1,...,N — 1}, b; € D;. Then the continuity of the
function B
A;XA;/\( )( ZN)B(;, ;’)»—>f(z bj,ZJ,ZN)
follows directly from the condition (*) for the function f.
By the inductive assumption, there exists an sz € O(Y) with f., = f(-, z2n)
on T'(zy) and supy |sz| = Supq(sy) [f(-; 2n)[. Consider the 2-fold cross

Z = /IE(A};\EN,AN\Q;?aDN) = (A \Zn) x Dy) U (Y x (Ay \ Q).

Observe that Z = X (cf. Proposition 3.4.14). Let g : Z — C be given by the
formula

Fu(@),  if (2 2n) €Y x (Ax\ Q)

Observe that g is well-defined. R
Indeed, let (2/,zn) € (A \ZN) X DN)N(Y x (An\Q)). If 2’ € T(zy), then
obviously f..(2") = f(7/,zn). Suppose that 2’ ¢ T'(zn). Then 2z’ € P(zx), where

o) {f(zczm, it (2,2n) € (A \ Sw) x Dy

N-1

P(zn) =) {(wj,wj, @) e A x Ay x AL (w), wj)e(zj)(.g,v)}.

Jj=1
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In view of the definition of @, the set P(zy) is pluripolar. Take a sequence
A\ (BN UP(zn)) 22" — 2.

Then 2" € T(zy). Thus f., () = f(2’*,zn) and, by (*) (with j := N and
by 1= 2), fox (') = £(&', 2).

It is clear that g € O5(Z) and supy |g| < supz | f].

By Theorem 4.3.1, we get a holomorphic extension f € (’)(/X\) with f: g on
Z and supg |f| =supy |g| < supp |f|. It remains to show that f=fonT.

~

Take a point a € T'. If a € (Ay\Xn) X Dy C Z, then f(a) = g(a) = f(a). In
the remaining case we may assume that for instance a = (a1, ay) € Dy x (AY\ X1).

Let To := U, eanoT(2n) x {28} C Y x (AN \ Q) C Z. On the other
hand Ty C U, eay@T.2n) X {2n} C T. Observe that if b = (V/,bn) € T,
then ]?(b) =g(b) = be (') = f(b). Thus, we only need to show that there exists
a sequence (bV)52; C To N ({a1} x (A \ 31)) with ¥ — a (and then use the
continuity of f(a1,-) on A} \ 31).

Since @ is pluripolar, we may find a sequence b%, — ay with b5, € An \ Q.
Let P := U;il(zl)(~,byv)~ In view of the definition of @, the set P is pluripolar.

In particular, we may find a sequence (b%,...,0%_;) — (az,...,an—1) with
(0%,...,0%_1) € (Aa x -+ x Ay_1) \ P. Put " := (a1,b%,...,b%). Then b¥ — a
and obviously b € T'(b%,) x {b%} C Tp. O

Remark 4.9.4. In the context of Theorem 4.9.2, one may formulate the following
general problem:

Assume that D; is a Riemann domain of holomorphy over C%, A; C Dj is
locally pluriregular, @ # B; C A} x A7, j=1,...,N,

N
W .= U {(a'-,aj,a;-') € Al x Dj x A} : (d},d}) € Bj}.

J 3 &g

We say that a function f: W — C is separately holomorphic on W (f € O4(W))
if for any j € {1,..., N} and (af,a}) € By, the function

Dj > zj — f(d},zj,a]) € C
is holomorphic in D;.

Given an f € O4(W), we look for conditions on By, ..., By, and f, under
which the exists an open neighborhood 2 of W (independent of f) such that f
extends holomorphically to {2

It is clear that the configuration of the sets must be special. For example, if
one of the branches {(a}, a;,a) € A} x D; x A7 : (a,a) € B;} does not intersect

3%
the others, then the answer is definitively negative.
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4.10 Chirka—Sadullaev theorem

Theorem 4.10.1 ([Chi-Sad 1988] (°)). Let A C DP be locally pluriregular, let
X := K(A,D;D?,C) = (A x C)UDPT! and let M C X be a relatively closed set
such that:

o MNDPH =g,

o M, is polar for every a € A.

Then there exists a relatively closed pluripolar set M c X =DP x C such that:

e MNXCM,

o for every f € O(DPTY) such that for every a € A, the function f(a,-)
extends holomorphically to C\ M, .y, there exists an fe 0(5(\\ M\) such that
f=fonX\M,

e DPxC)\ M is a domain of holomorphy,

o if all the fibers M(, .y, a € A, are discrete, then M is analytic.

Proof. 1t is known (cf. [Chi-Sad 1988]) that each function f € O (X \ M) has
the univalent domain of existence Gy C DP x C. Let G denote the connected
component of int ﬂfeos(X\M) G that contains DPT! and let M :=DP x C \ G.
It remains to show that M is pluripolar. Take (a,b) € Ax C\ M. Since M(, . is
polar, there exists a curve 7 : [0,1] — C\ M, .y such that y(0) = 0, v(1) = b.
Since M is relatively closed, there exists an € > 0 so small that P(a,e) C DP and

(P(a,e) x (v([0,1]) + K())) " M = @.
Put V, := DU (y([0,1]) + K (¢)) and consider the cross
Y := K(ANP(a,e),D;P(a,e), V) C X \ M.

Then f|y € O4(Y) for any f € O,(X \ M). Consequently, by Theorem 4.3.1, we
get Y C G. In particular, (a,b) € {a} x V, CY CG.
Thus M.y C M, for all a € A, and therefore, by Lemma 5 from

[Chi-Sad 1988], M is pluripolar.
In the case where all the fibers M, .), a € A, are discrete, Lemma 8 from

[Chi-Sad 1988] implies that M is analytic.
[A MORE DETAILED PROOF. WILL BE COMPLETED. . . . . . | O

4.11 Grauert—Remmert, Dloussky, and Chirka the-
orems

The following three extensions theorems with singularities, which are nowadays
standard tools in complex analysis.

(5) See also [Jar-Pfl 2001b].
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Theorem 4.11.1. Let G be a Riemann domain over C™ such that O(G) separates
points in G and let G be its envelope of holomorphy. We assume that G is a
subdomain of G. N

(a) (Grauert—-Remmert — [Gra-Rem 1956]) Let M C G be an analytic subset
of codimension one. Then G \ M s the envelope of holomorphy of G\ M.

(b) (Dloussky — [Dlo 1977], see also [Por 2002]) Let M C G be a relatively
closed thin subset. Then there exists an analytic subset M ofG such that MNG C
M and G \ M s the envelope of holomorphy of G\ M.

(c) (Chirka — [Chi 1993]) Let M C G be a relatively closed pluripolar set.
Then there exists a relatively closed pluripolar set M C G such that MNG C M
and G \ M s the envelope of holomorphy of G\ M.

Roughly speaking, the above results say that if M C G is analytic (resp.
pluripolar), then m =G \ M where M C G is analytic (resp. pluripolar) and
M NG C M. Observe that in general MNnG &M, eg:

e if M is analytic and dimM < n — 2, then M = & (cf. [Jar-Pfl 2008],
Propositions 1.9.11, 1.9.14),

e if M is a compact pluripolar set, then M=o (cf. [Jar-Pfl 2008], Theorem
1.9.1).

[A SI)(ETCH OF PORTEN’S PROOF OF THE DLOUSSKY THEOREM. WILL BE COM-
PLETED. . . . . e e e ]
[A SKETCH OF THE PROOF OF THE CHIRKA THEOREM. WILL BE COMPLETED. ]



Chapter 5
Cross theorem with singularities

5.1 Formulation of the extension problem with sin-
gularities

The notion of separately holomorphic functions on a cross X extends in a natural
way to X \ M.

Definition 5.1.1. Let D; € R, (C™) and let @ # A; C D;, j=1,...,N. Put
X = K((Aj,Dj);V:l). Let M C X be such that for any a = (a1,...,an) €
c(X)=A; x---x Ay and j € {1,..., N} the fiber

M(a_/i,~,a;/) = {Zj S Dj : (a},zj,a;-') S M}
is closed in Dj (1) We say that a function f : X \ M — C is separately
holomorphic on X\ M (f € O,(X \ M)) if foranya € ¢(X) and j € {1,...,N},
either M(a37,7a3/) =Dj or M(,,,},?a;_/) & D; and the function

Dj \M(a37.7a3') Dz f(a;,zj,a;') eC
is holomorphic.

In the context of Theorems 4.3.1 and 4.11.1, one may formulate the following
extension problem with singularities (in its elementary version).

Definition 5.1.2. Let D;, A4;, j =1,..., N, be as in Theorem 4.3.1. Let M be
an analytic subset of an open neighborhood U C X of X (resp. M C X be a
relatively closed pluripolar set). We ask whether there exists an analytic subset
(resp. a relatively closed pluripolar set) M C X such that:

(A) M N Uy C M for an open neighborhood Uy C U of X (resp. MNTcCM
for aset T C X with T\ M ¢ PLP),

(B) if M is analytic in X (ie. U = 3(\), then M is the union of all one
codimensional irreducible components of M,

(C) for every f € O4(X \ M) there exists an fe (’)(3(\ \ ]\/4\) with f = f on
X\ M (resp. on T'\ M),

(D) the set M is singular with respect to the family F := {f feO(X\M)}.

Roughly speaking, 3(\\]/\4\ is the envelope of holomorphy of X \ M with respect
to O4(X \ M). Obviously, by Theorem 4.3.1, if M = &, then M = @.

(*) For example, M is relatively closed in X. We do not exclude the cases where M (@ ety =9
A

or M(a_’jr,a}/) = D;.
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Remark 5.1.3. (a) Observe that Theorem 4.10.1 solves a special case of our
extension problem with singularities (D = D?, G :=C, B =D).

(b) We will see in Theorem 5.3.1 that in the case N = 2 the set T' will be
always of the form T'= K(A’, B’; D,G), where A’ C A, B’ C B are such that
A\ A’, B\ B’ are pluripolar and for any (a,b) € A’ x B’ the fibers M(,.y, M(. )
are pluripolar. Observe that in such a case the set T\ M is automatically non-
pluripolar (cf. Exercise 5.3.3(b)).

(¢) Note that the function f in (C) is uniquely determined because T'\ M ¢
PLP. - -

(d) Observe that if M satisfies (A), (B), (C), then we may always replace M
by Mg # (cf. §3.1.8). Thus, condition (D) is a consequence of (A), (B), (C).

(e) Since X is a domain of holomorphy and (9( )|X\M C F, condition (D) is

satisfied iff 3(\\ M is an F-domain of holomorphy. Notice that if 7= X, then
F=0(X\M).

(f) Observe that in M is analytic and non-empty, then M must be of pure
codimension one (cf. Proposition 3.1.25).

Our next aim to is prove that the above (and even some more general) extension
problems with singularities have always solutions. This will be done in §§ 5.3, 5.4
and in Chapter 7. e .

First we like to clarify why we require M NT C M and not simply MNX C M
(like in the analytic case).

Remark 5.1.4. Let N =2, ny =no =1, Dy = Dy, = C, A; =D, X :=
K (D, A5;C,C). Note that X =2 (cf. Proposition 3.4.3). Assume that M C
{0} x C is a closed (pluripolar) set and suppose that M is a solution of the above
extension problem with singularities for which T'= X.

Put Y := K(D,, A5 C,,C) ¢ X\ M C C2\ M. Then Y = C, x C. If
[ € Os(X\ M), then fly € Os(Y). Thus, every f € Os (X\M) extends to an
fe (’)((C x C) with f=finY and, consequently, f f on C, x C\ M. Since
€2\ M is a domain of holomorphy, we conclude that M C {0} x C. Consider the

following two particular cases.
(a) Let A2 =D, M := {0} xD. Let fo: X \ M — C,

1/z, ifz#0
folz,w) = {o, if2=0, |w>1
and observe that fo € Os(X \ M). Since fo extends to an ]?0 € (9((C2 \ ]\//.7) with
fo = foon X\M we conclude that fo(z w) =1/z, (z, ) (X\M) (C, xC).
Hence {0} x C C M. Thus M = {0} x C. Consequently, MNX = {0} xC ¢ M,
a contradiction.
(b) Let Ay :={w e C:r < |w| <1}, where 0 <r <1,

M :={0} x {weC:|w| =71}
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Now we look at the function fo € Os(X \ M) defined by

w, fz#0orz=0, |w >r
0, ifz=0,|w<r

fo(z,w) := {

Obviously, ﬁ)(z,w) = w, (z,w) € C?\ M. Since MNX C M and fy = fo on
X\ M, we get w= fo(0,w) = fo(0,w) =0, |w| < r; a contradiction.

5.2 Oktem and Siciak theorems

The next step after Theorem 4.10.1 was done 10 years later by Oktem who stud-
ied the following range problem in the mathematical tomography (cf. [Okt 1998,
[Okt 1999]).

For w = (cos a, sina) let wt := (—sina, cosa). Define

lyp ={x=(z1,22) € R?: (z,w) = 21 cosa + xpsina = p}, pER,
and let £, , be the Lebesgue measure on the line ¢,, ,. For 11 € R.., the exponential
Radon transform is given by the following mapping
C(R2,R) 3 h s Ry(h), Ru(h):T xR — R,
Ru(Wwp) = [ ha)ero L, (a).
w,p

The main problem is to recover h from R,,(h) which is measured. So it is important
to know the shape of the range of R,,. For g : TXxR — Clet g: T x C — C be
the Fourier transform of g with respect to the second variable, i.e.

§w,0) = /R 9(w,p)e=PdL (p).

Theorem 5.2.1 (Oktem (1998)). Let g : T x R — C and p # 0. Then the
following statements are equivalent:

(i) there is h € C§°(R?,C) with g = R, (h);

(i) g € C°(T x R,C) and g(w,it) = g(o,—it) whenever w,o € T and t € R
are such that tw + pwt = —to + po+.

To prove this result Oktem used the following extension theorem with singu-
larities.

Theorem 5.2.2 (Oktem (1998/1999)). Let
X :=K(R,R;C,C)=(RxC)U(CxR), M:={(z,2)€cC?: 2 =2}

(note that C% = /X\) Then for every f € O4(X \ M) there exists an fe O(C2\ M)
with f = f on X \ M.
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Oktem’s result (Theorem 5.2.2) was extended by J. Siciak in [Sic 2001].

Theorem 5.2.3 (Siciak (2001)). Let D; = C, let A; C C be locally regular,
j=1,....,N, and let X := K((Aj,C)j-V:l) (note that X = CN). Let

M :={zeCV:P(z) =0},

where P is a non-constant polynomial of N-complex variables. Then for any
fe(’)(X\M)therezsanfEO(CN\M)suchthatf fon X\ M.

The above theorem has been generalized in cf. [Jar-Pfl 2001a], [Jar-Pfl 2001b],
[Jar-Pfl 2003a], [Jar-Pfl 2003b)], [Jar-Pfl 2008] to various cross theorems with ana-
lytic and pluripolar singularities, which will be presented in the next sections.

5.3 Extension theorems with singularities in the
case where N = 2

We begin with the case NV = 2. We should point out that this is case is essentially
simpler than the case N > 3. Although in the present section we are interested in
the case N = 2, some results (whose proofs for N > 3 are not essentially different
from the case N = 2) will be presented for arbitrary N. Our aim is to prove the
following theorem.

Theorem 5.3.1 (Extension theorem with singularities). Let D and G be a Rie-
mann domains of holomorphy over CP and C4, respectively. Let A C D, B C G be
locally plurireqular, X = K(A,B,;D,G), and let M C X be a relatively closed
set. Put

A = A/(M) = {a cA: M(a7.) S Pﬁp},
B = B/(M) = {b €eB: M(.’b) S 'Pﬁp}

and assume that A\ A" € PLP, B\ B’ € PLP (e.g. M € PLP — cf. Propo-
sition 3.8.27). Put X' := K(A',B'; D,G). Then there exists a relatively closed
pluripolar set M c X such that:

e« MNX'C M,

o for any f € Os(X \ M) there exists an fe (9(/)2\]\//.7) with f = f on
X'\ M,

o the set M is singular with respect to the family {f fe0s(X\ M)},

o if for any (a,b) € A" x B’ the fibers Mq,.y, M(.p are thin in G and D,
respectively, then M is analytic,

o if M C U be an analytic subset of an open neighborhood U C x ofX then
M NUy C M for an open neighborhood Uy C U of X ; moreover, if U = X then
M is the union of all irreducible one-codimensional components of M .
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The case where G = C9, and B is open was studied in [Chi-Sad 1988] (for
qg=1) () and in [Kaz 1988] (for arbitrary gq).

To simplify formulations we will use the following terminology related to The-
orem 5.3.1:

e we say that we are dealing with the pluripolar case if M C X is a relatively
closed such that A'(M), B'(M) € PLP;

e we say that we are dealing with the analytic case if M is an analytic subset
of an open neighborhood U of X.

Remark 5.3.2. (a) In the language of Definition 5.1.2 we have T' = X'.
(b) Observe that in the analytic case we have

A/:{GGAIM(m,) #G}, BIZ{bGBIM(.b) #D}

In particular, X \ M = X'\ M and it MNX' C M, then MNXcCM. Thus, in
the analytic case we may take T'= X.

(c) Suppose that the pluripolar case is already proved. Let M be an analytic
subset of U. Then M N X is pluripolar and for all (a,b) € A’ x B’, the fibers
M.y, M.y are analytic.

We may apply the pluripolar case to M N X and we get an analytic set M such
that:

e MNXCM,
for any f € O (X' \ M) there exists an fe (’)(X\M) with f = f on X\ M,
e the set M is singular with respect to the family {f: f € O4(X \ M)}.
Thus in order to finish the proof in the analytic case we have to show that

MN Uy C M. Unfortunately, we do not know any elementary proof of this
inclusion (having the inclusion MNnXcM ) Consequently, the analytic case
will be proved using different methods.

(d) Suppose that the pluripolar case is already proved. Then, in order to prove

the analytic case, we may assume that U = X.
Indeed, as we have observed in (c¢), we only need to show that Mn Uy C M,

where M constructed via the pluripolar case. Take arbitrary (a,b) € A x B
and domains of holomorphy D' € D, G' € G with (a,b) € D’ x G'. Since
({a} x G) U (D x {b}) C X C U, there exists an r > 0 such that P(a,r) C D/,
P(b,r) C G, and (P(a,r) x G')U (D' x B(b,r)) C U (*). Put

Y := K(ANP(a,r), BNPO,7);P(a,r),G') C X,
Z := K(AnP(a,r), BNE(b,r); D', P(b,r)) C X.

Observe that Y C @(a,r) x G' C U. Consequently, M NY satisfies the “global”
assumptions (with respect to domains P(a,r), G’ and test sets A N P(a,r), BN

(2) Cf. Theorem 4.10.1.
(3) Here and in the sequel, to simplify notation, we will write P(a,r) without specifying the
Riemann domain in which the “polydisc” is contained — it will always follow from the context.
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]IA”(b7 r)). Hence MNY C M. It remains to show that M NY C M NY. Indeed,
since O, (X\M)|Y\M C Os(Y\ M), each function f € Og4(X\ M) has an extension
f € O(Y \ MnN Y) with f¥ = fon Y \ M. Since M is singular, we must have
MnY ciMNY.

Repeating the same argument with respect to Z we conclude that MNZ c M.
Thus M NUy C M for an open neighborhood Uy C U of X.

(e) Let S C X be an analytic set of pure codimension one. Then SN X # .

Indeed, suppose that SN X = @&. Since S is of pure codimension one, X \ S
is a domain of holomorphy, and therefore, there exists a g € (’)(3(\ \ S) such that
/)E\ S is the domain of existence of g (cf. Proposition 3.1.20). Since X C X \ S,
we conclude that g|x € Os(X). By Theorem 4.3.1 there exists a g € (9(/)2) such
that g = g on X, and consequently, on X \ S. Thus g extends holomorphically to
3(\; a contradiction.

(f) Let M & X be an analytic set. Suppose that M c X is an analytic set
such that:

e MnN Uy C M for an open neighborhood Uy C X of X,

e every function f € F := Os(X\M)NC(X \ M) extends to an fe O(X\\M)
with f:f on X \ M,

o the set M is singular with respect to the family {f ferF}
Then M is the union of all irreducible components of M of codimension one. In
particular, the last assertion of Theorem 5.3.1 follows from the others.

Indeed, let M be the union of all irreducible components of M of codimension
one. Consider two cases:

M # @: Similarly as in (a), there exists a non-continuable function g € (’)(3(\\
M) Then g|x\p € Os(X \ M) NC(X \ M) and, therefore, there exists a g €

(X\M) with § = g on X \ M. Hence, g = gonX\(MUM) Since g is

non-continuable, we conclude that MC M The set M as a non-empty singular
set, is also of pure codimension one. Since Mn Uy C M and SNUy # @ for every
irreducible component of M (by (e)), we conclude (using the identity principle for
analytlc sets) that McM (cf. [Chi 1993], § 5.3). Conbequently, McM

M = @: It remains to exclude the situation when M +o. If M &, then the
codimension of M is > 2. If M # @ then the codimension of M is 1. Since we
have M C M (as above), we get a contradiction.

(g) Our assumption that the fibers M, .y, M(. ), (a,b) € A’ x B’, are pluripolar
is in fact very weak and there is a lot of non-pluripolar sets M C X that fulfil this
condition — cf. Remark 5.4.9.

Exercise 5.3.3. Let T be an N—fold generalized cross and let M C ¢(T'). Prove
the following statements.

(a) Let Aq,...,An be locally pluriregular, let ¥ D Xy be pluripolar, and
assume that the ﬁber M(a, .y is pluripolar for every aly € Ay \ Xn. Then the set
(A \ Xy )XAN)\Mlsdensemc( )\ M.



5.3 Extension theorems with singularities in the case where N = 2 89

Hint: Take an a = (a’,an) € ¢(T)\ M. Since Ay is locally pluriregular
and X'y is pluripolar, there exists a sequence A’ \ X% > a’* — a/. The set
P =, Mgk .y is pluripolar. In particular, there exists a sequence Ay \ P 3
ak, — ay. Then (A \ X)) x Ay)\ M > (a’*,a%,) — a.

(b) If Ay,..., AN ¢ PLP, ¥1,..., XN € PLP, and Mg . a1y € PLP for each
(a},a]) € (A} x AY)\ ¥, then o

777

{(a;,aj,a;') S A; X AJ‘ X A;/ : (a;-,a;-’) ¢ Ej, a; ¢ M(a37.7a;_/)}, j=1,...,N,
are not pluripolar and therefore, ¢(T") \ M ¢ PLP (use Proposition 3.3.27(c)).
(c) If Aq,..., Ay are locally pluriregular, ¥4, ..., Xy € PLP, and M(a37.7a3_/) €
PLP for every (a},a) € (A} x A7)\ ¥;, then the sets

3077

{(a;,aj,a;') S A; X Aj X A;-/ : (a;-,a;-/) ¢ Ej, aj; ¢ M(a;’.’a;/)}, j= 1,..., N,

are locally pluriregular, and therefore, ¢(T") \ M is locally pluriregular (use Propo-
sition 3.4.11(h)).

The main “technical tool” in the proof of Theorem 5.3.1 is the following theo-
rem.

Theorem 5.3.4 (Glueing theorem). Let D, G be Riemann domains of holomorphy
over CP and C9, respectively, let A C D, B C G be locally plurireqular, X :=
K(A,B;D,G), let M C X and let A’ C A, B' C B be such that:

o for any (a,b) € Ax B the fibers M, .y, M.y are relatively closed in G and
D, respectively,

o A\ A, B\ B’ are pluripolar,

o for any (a,b) € A" x B’ the fibers M(q,.), M(.p) are pluripolar.

In the analytic case we additionally assume that M G U is an analytic set in
a connected open neighborhood U C x of X.

Fix a family @ # F C Os(X \ M).

Let (Di)52, (Gr)52, be exhaustion sequences of Riemann domains of holo-
morphy for D and G, respectively, such that

@#A;C :ZAIﬁDkCAﬁDk =: Apg,
@#B,@ '=B'NGL C BNGy =: By.

Put = := A} x BL\ M or Zj := Ay X B, k€ N.
We assume that for each k € N, (a,b) € =, there exist:

e polydiscs @D(a,mﬂ) C Dy, ﬁc(b, Skb) C G,
o relatively closed pluripolar sets

Sk,a C @D(a,rk,a) X Gk =: Vk@, Sk’b C Dk X @G(b, Sk,b) =: Vk’b,

such that:
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Spa N (A NPp(a,rra)) x Gi) C M,
kYA (Dy x (B NPg(b, skp))) C M,

o for any f € F there exist ﬁm € O(Vi,a \ Sk,a); fk7b € O(Vkb\ Sk2) with

fra=1 on(A'NBp(a,ria)) x G\ M,
fk’b =f onDpx (BN @G(ba skb)) \ M,

e in the analytic case we additionally assume that
Via UVFR c U, Sp,uS™ c M.

Then there exists a relatively closed pluripolar set M C X such that:

o MNX' CM, where X' := K(A',B'; D,G),

o for any f € F there exists an fe 0(5(\\]\//.7) with f: fon X'\ M,

o M is singular with respect to the family {f fer},

e if all the sets Sk.q, S®°, (a,b) € Zy, k € N, are thin, then M is analytic,

e in the analytic case we additionally have MnN Uo C M for an open neigh-
borhood Uy C U of X'; moreover, if 5 = Ay, x By, then MNUy C M for an open
neighborhood Uy C U of X (*).

Proof. We may assume that for any k € N and (a,b) € =
o Sy o is singular with respect to the family {fka cfeFy,
e Skbis singular with respect to the family {fk’b :feF}.
In particular, Sy, (resp. S¥?) is thin iff it is analytic.
Fix a k € N and define (details are explained below):

Vi= | VeaUV*, fi= |J fraUS™
(a,b)EZ) (a,b)EE},
Sei= |J SkauS™ W,
(a,b)eE}
X := K(Ay, Bi; Dy, Gr), X, = K(A}, By; Dy, Gi).

Observe that X} C V. Indeed, let (z,w) € X}, e.g. 2 = a € A}, w € Gy. Since
M,y is pluripolar, there exists a b € By, \ M(,,.). Then (a,b) € A} x Bj,\ M and
(z,w) € @D(a,r;m) X G = Vi q.

Notice that in the case =} = Ay x By we obviously have X C Vi. Moreover,
in the analytic case we get Vi, C U.

Take an f € F. We want to glue the sets {Sk.q, Skb i (a,b) € Zx} and the

functions {f;m, frbs (a,b) € Zk} to obtain a global holomorphic function fj on
Vie \ Sk

(4) Note that this is the only place where the case =) = Aj X Bj plays an important role.
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Let (a,b) € Z). Observe ﬁ,a =f= fk’b on the non-pluripolar set
(A" NPp(a,rra)) x (B'NPa(b,skp)) \ M
(cf. Exercise 5.3.3(b)). Hence
Fra = F5 on Pp(a,mha) x Pa(b, skp) \ (Ska USHP).

Since Sj,, and Skt are singular, we conclude that
Ska N (Pp(a,ria) X Pa(b, skp)) = S50 N (Pp(a, rr.a) X Pa(b, sip)).

Now let a’,a” € 4} be such that C == Pp(a,rew) NPp(a”,rkar) # 2. Fixa
be B\ (Mg ,)UMgr.y). We know that

fkﬂ/ = ,]Fk’b = ,]F]Wl// on C' x ]@G(b, TkJ,) \ (Skﬂ/ U Skt u Skﬂw).
Hence, by the identity principle, we conclude that
}V]C’a/ = ']’Fk’aw on C x Gk \ (Sk’a/ @] Sk’aﬁ)

and, moreover,
Sk‘7a’ ﬂ (C X Gk) = Sk7(l.” ﬂ (C X Gk‘)

The same argument works for v',0" € By.

Let Uy be the connected component of V, N /X\;C with X} C Ug. Recall that
/X\; = /X\k (cf. Exercise 4.2.3(h)). Observe that in the case where = = Ay x By
we have X C U.

We have constructed a relatively closed pluripolar set Sy C Uy such that:

e SpNX ;C Cc M,

e for any f € F there exists an f € O(Ug \ Sg) with fr = f on X}, \ M,

e if all the sets {Sk.4, S : (a,b) € =1} are thin, then Sy, is analytic,

e in the analytic case we have Sy, C M.

Recall that X}, C Uy, C 5(\;@. Observe that the envelope of holomorphy fjk of
Uy coincides with X . In fact, let h € O(Uy), then h|x; € Os(X7)- So, in virtue
of Theorem 4.3.1, there exists an h € (’)(/)Zk) with h = h on X. Hence h = h on
Ug.

Applying Theorem 4.11.1, we find a relatively closed pluripolar set ]\//.Tk - 5(\;C
such that:

] ]/\Zk NUg C Sk,

e for any f € F there exists an function ﬁ € (’)(X\k \ ]\/4}) with ﬁ = fr on
Uk \ Sk (in particular, fi=fon X\ M),

e the set Mk is singular with respect to the family { fk f €7 F1,

e if all the sets {Skq, S*°: (a, b) Z)} are analytic, then M, is analytic.

Recall that Xk / X and Xk ya X. Using again the singularity of the Mk S,
we get, Mk+1 N Xk = Mk and, consequently:
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o M= Uiz, M, & is a relatively closed pluripolar subset of X with MNX' C
M (in the analytic case we have MNnXc M),

e for each f € F, the function f = Ure, ﬁ is holomorphic on X \ M with
f=fonX' \ M (in the analytic case we have X'\ M = X \ M),

o Mis singular with respect to the family {f fery},

e ifall the sets {Sk.q, S¥?: (a,b) € =, k € N} are thin, then M is analytic,

e in the analytic case, if Uy := (g~ Uk, then

o0 o0
MﬁU@ZUM\kﬂUkCUSkCM. O
k=1 k=1
First we use Theorem 5.3.4 to prove that the analytic case may be always
reduced to the case where U = X.

Lemma 5.3.5. Suppose that Theorem 5.3.1 is true in the analytic case with U =
X. Then it is true in the analytic case with arbitrary U.

Proof. We only need to check all the assumptions of Theorem 5.3.4 with =) =
Ay x By, (notice that this is the only place where this case will be used). Fixak € N
and (a,b) € 5. We are going to construct ry o, Sk.q, and fkﬂ (the construction of
Skb, S*P, and f*P is symmetric). Let 7 > 0 be such that P((a,b),r) € Dy, x G,

~

P(a,r) x Gg41 C U. Consider the 2—fold cross
Yk,(a,b) = K(A N @(a, ’I“), Bt @(a, ’I“), Gk—i—l) c X.

Observe that every function f € O4(X \ M) belongs to O(Y (4,5 \ M). Thus we
are in the special case and our assumptions imply that for every f € Os(X \ M)
extends to an ]’”Vk,a € O(}/}k7(a7b) \ M) with ]’”Vk,a = fon Yy \ M. Note that
{a} x Gy41 C ?k’(a’b). Let ri o € (0,7) be so small that Vi o :=P(a,k,q) X Gk C
}/}k’(a,b). Then the triple (rgq, M N Vgq, ﬁ7a|v,m) solves our problem. O

Remark 5.3.6. Observe that in the analytic case with U = X we only need
to prove that every function f € O4(X \ M) extends holomorphically to an f €

O(X \ M) with f = fon X \ M.

Lemma 5.3.7. In the analytic case with U = X it suffices to consider only the
case where M = g=1(0) with ¢ € O(X), g # 0, in particular, M is of pure
codimension one.

Proof. Since X is pseudoconvex, M may be written as
M:{zéf:gl(z):--'zgk(z)zo},

where g; € (’)(/X\), 9; Z0,j=1,...,k Put M; := ;1(0),]': 1,..., k.
Take an f € Os5(X \ M). Observe that f; := fx\a, € Os(X \ M;). Suppose
that for each j there exists an fAJ € 0(5(\\ Mj) such that fj = fon X\ M.
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Gluing the functions (f])k leads to an f € 0(5(\ \ M) with f= fAJ on 5(\\ M;,

j=1>

ji=1,...,k. Therefore,f:fonX\M. O

We move to the proof of Theorem 5.3.1. In the analytic case we assume that
M is as in Lemma 5.3.7. The main idea is to apply Theorem 5.3.4 with =} =
A} x B;,\ M. Thus in fact we have to check the following lemma.

Lemma 5.3.8. For anya € A" and a domain of holomorphy G' € G with B'NG" #
& there exist an v > 0 and a relatively closed pluripolar set S C P(a,r) x G' =:
V C X such that:

e (ANP(a,r)xG)NSCM,

o for every function f € Oy(X \ M) there exists an f € O(V '\ S) such that
f=fon(ANPa,r)xG\S,

o if all the fibers M. .y, z € A’, are thin, then S is analytic,

e in the analytic case we have S C M.

First, we reduce the proof of Lemma 5.3.8 to a proof of the following lemma.

Lemma 5.3.9. For any (a,b) € A’ x G and for any polydiscs @(a,ro) € D,
]IAD(b, Ry) € G with Ry > ro, if M N @((a,b),ro) = @, then for every 0 < R’ < Ry
there exist an 0 < 1 < rg and a relatively closed pluripolar set S C @(a,r') X
@(b, RY=VC X such that:

o ((A'NP(a,r")) xB(b,R))NS C M,

o for every function h € O4(Y \ M), where

Y := K(A' nB(a, r0), P(b,r0); B(a, 7o), B(b, Ro))
=P((a,b),70) U (A’ N P(a,0)) x P(b, Ry)), (°)

there exists an h € O(V'\ S) such that h = h on (A’ N B(a, 7)) x P(b, R') \ M,
o if all the fibers M, ., z € A’, are thin, then S is analytic,
e in the analytic case we have S C M.

Proof that Lemma 5.3.9 implies Lemma 5.3.8. Let a and G’ be as in Lemma 5.3.8.
Fix a domain G” € G with G’ € G”. Let {2 be the set of all w € G” such that
there exist r,, > 0 with

-~

P((a, w), 7)) C X N (P(a,7) x G")),

and a relatively closed pluripolar set .S, C @((a, w), Ty ) such that:

o Sun((ANP(a,ry)) x P(w,ry)) C M,

o every f € O (X \ M) extends to an f,, € O(]IA”((a,w),rw)\Sw) with f, = f
on (A’ NP(a,r4)) x P(w, 1) \ M,

(5) Notice that, by the Terada theorem (Theorem 4.1.1), the space Os(Y \ M) consist of all
functions h € O(P((a,b),ro) such that h(z,-) extends holomorphically to B(b, Ro) for every
z € A’ NP(a,ro).
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e S, is singular with respect to the family {f, : f € O5(X \ M)},

e if all the fibers M, .), z € A’, are thin, then S is analytic,

e in the analytic case we have S,, C M.

It is clear that {2 is open. Observe that 2 # @. Indeed, since B’ N G’ \
M,y # @, we find a point w € B’V G"\ M(g,,.). Therefore there is a polydisc
P((a,w),r’) C X\\M Put

Z = K(A' NP(a,7'), B NPw,r);B(a, ), Pw,)).
Observe that for every f € O4(X \ M) the function f|z belongs to Os(Z). Let
0 < ry < 7’ be such that ]P’((a W), Ty) C Z. By Theorem 4.3.1, for any f €
O4(X \ M) there exists an f,, € O(P((a,w),ry)) with

fu = f on P((a,w),70) N Z D (A NP(a, 7)) x B(w, 7).

Consequently, w € (2.
Moreover, {2 is relatively closed in G”. Indeed, let ¢ be an accumulation point
of 2 in G” and let P(c,3R) C G". Take a point w € 2N P(c, R) \ Mg,y and let

0<p< min{r,, 2R} be such that P((aaw% p)N(MUS,) = 2. Observe that
fw c O(P((G,IU),,O)) and

fulz,) = f(z,-) € O(F(w,p) \ M...y), =€ A'NP(a,p).
Define

Y = K(A' nP(a, p), P(w, p); P(a, p), P(w, 2R))
= P((a,w), p) U((A' NP(a,p)) x P(w,2R))

and put ?U,:Y\M—NC,

= fwv On]@((a,w),p) ~
YL o (AN E(a,p) x B(w,2R) \ M

Then }w is well defined and }w € Os(Y \ M). Now, by Lemma 5.3.9 (with
b:=w, 1o :=p, Ro:= 2R, R’ := R) there exist 0 < ' < p and a relatively closed
pluripolar set S C @(a, ') x ]IAD(w, R) such that:

e SN((A'NP(a,r)) x P(w,R)) C M

o cvery f € Os(X \ M) extends to an fu € O(P(a,r") x P(w, R) \ S) with
fu = fu on (A NP(a, 1)) x B(w, R) \ M,

e S is singular with respect to the family {fw (e O(X\ M)},

e if all the fibers M, .), z € A’, are thin, then S is analytic,

e in the analytic case we have S C M. R
Take an 7. > 0 so small that ]P’((a ¢),re) C ]P(a p') x P(w, R) and put

Se i =SNP((a,c),re), fc = fw|@((a7c)7rc)\s.
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Obviously f. = fu = ?w = f on (A’ NP(a,r.)) x P(c,r.) \ M. Hence ¢ € £2.
Thus 2 = G”. There exists a finite set T C G such that

GCU (W, T4y).

weT

Define r := min{r,, : w € T'}. Take w’,w” € T with
C =P, rw) NPW, ryn) # @.

Then fw/ = f = fur on (ANP(a,r))x (P(w', 7 )NP(w”, 7))\ M. Consequently,
fur = fur on P(a )X C\(Sw/ USy). Since Sy and S, are singular, we conclude
that they coincide on ]P(a r) x C' and that the functions fwf and fwu glue together.

Thus we get a relatively closed pluripolar set S C ]P’(a r) x G’ =: V such
that S N (4’ N P(a, r)) X G') C M and any function f € O,(X \ M) extends
holomorphically to an f € O(V \ S) with f = fon (ANPlar) x G\ M.
Moreover, in the analytic case we have S C M. O

In the next step we reduce the proof of Lemma 5.3.9 to a proof of the following
lemma.

Lemma 5.3.10. Let A C P(rg) C CP be locally pluriregular and let M be a
relatively closed subset of the cross Z := K (A, K(ro);P(ro), K(Ro)) with Ry > 19
such that:

o the fiber M. .y is polar for all z € A" C A,

o A\ A is pluripolar,

o MnN (P(rg) x K(ro)) is pluripolar,

o B':={we K(ro): M) € PLP} (note that K(ro)\ B’ € PLP),

e in the analytic case we have M = g=1(0) with g € 0(2), g # 0, and
Ali={z2€ A: M ) # K(Ro)}.

Then there emsts a relatively closed pluripolar set M C Z such that:

e MNZ cM, with Z' := K(A', B';P(ro), K(Ro)),

o for every f € F :=O(P(ro) x K(ro) \ M)NO(Z\ M) (°) there exists an
fe (9(2 \ ]\//.7) such that [ = f on Z' \ M,

o if MN(P(ro) x K(ro)) is analytic and all the fibers M. .y, z € A’, are thin,
then M is analytic, .

e in the analytic case we have M C M.

Proof that Lemma 5.5.10 implies Lemma 5.3.9. Consider the conﬁgura‘mon like in
Lemma 5.3.9. We may assume that P(a, ro) = P »(10) C CP, P(b, Ro) = Py(Ro) C

(6) Observe that if M N (P(rg) X K(rg)) # @ and f € Os(Z \ M), then f need not belong to
O(P(ro) x K(ro) \ M). For example: take p = 1, ro = 1, assume additionally that A ¢ D is
closed in D, and let M := A x {0}. Define f: Z\ M — C, f(z,w) :=0if w # 0, f(#,0) :=
Then f € Os(Z\ M)\ O(D? \ M).
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C4. Put

Y = K(AI N ]P)p(ro),Pq(r0)§Pp(r0)7Pq(R0))
=P,iq(ro) U ((A' NP,(ro)) x Py(Ro)).

Let R6 be the supremum of all 0 < R’ < Ry such that there exist an r = rgp/ €
(0,70), and a relatively closed pluripolar set S = Sg C V := P,(r) x Py (R') for
which:

o SN((A'NPy(r)) x Py(Ry)) C M,

e for any function h € Oy (Y \ M) there exists an h = hr € O(V \ S) such
that h = h on (A’ NP,(r)) x Py(R')\ M,

e the set S is singular with respect to the family {h : h € O4(Y \ M)} (in
particular, S NP4 (ro) = @),

e if all the fibers M, .), z € A’, are thin, then S is analytic,

e in the analytic case we have S C M.

It suffices to show that R{, = Ro. Suppose that R, < Ry. Fix R < R < Ry
and choose 0 < R’ < R’ < R}, such that V R9IRr > Ry. Let r:=rg,, S:= S5,
h:=hg. Fix an R” with R) < R"” < VR 'R". Put

My i= (801 (By(r) x B(R))) U (M\ (By(r) x Py(R))).

Observe that:

e the set M, N (Py(r) x Py(R')) = SN (Py(r) x Py(R)) is pluripolar,

o he OF,(r) x Py(R)\ M,) for every h € O,(Y \ M),

o M,NY C M,

e if all the fibers M. .), z € A’, are thin, then the set M,N (P, (r) xPy(R')) =
SN (Py(r) xPy(R')) is analytic and all the fibers (My)(.,.) C M. .y, z € A'NPy(r),
are thin,

e in the analytic case we have M, C M.

Write w = (w',w,) € C? = C97! x C. Let
C:={(z,w) € (A NPL(r)) x Pe_1(R') : (Mg)(s,u, is polar}.
In the case where all the fibers M. .y, z € A’, are thin we put
C:={(zuw) € (A NPy(r)) x Pg_1(R') : (My)(z,u, is discrete}.

By Proposition 3.4.11(h), C is locally pluriregular. Observe that for every ¢ € C

and for every h € O4(Y \ M), the function h(c,-) is holomorphic in K(Rp) \
(Mg)(ec,.y- Consequently, applying Lemma 5.3.10 to the cross

Z, = K(C,K(R);Pp(r) x Pa_1(R), K(Ro)),

we conclude that there exists a relatively closed pluripolar set S, C A ¢ such that:
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e S,NZ,C M,
e any function h € O5(Y \ M) extends holomorphically to a ﬁq € (9(2q \Sy)
with hy = h on Z/,\ My,
Sy is singular with respect to the family {Eq theO,(Y\ M)},
if all the fibers M, .y, z € A’, are thin, then S, is analytic,
in the analytic case we have S, C M.

Using the product property of the relative extremal function (Theorem 3.4.10),
we get

Zy = {(z,0',w,) € Py(r) x Py_1(R') x K(Ro) :
happ(r)qu_l(m)('szl) + Wi (rr), K (o) (Wq) < 1}
={(z,w',wy) € Py(r) x Py_1(R’) x K(Rp) :
hjvqu_l(R'),Pp(r)qu_l(R')(Zvw/) + i (rr), K (Ro) (Wq) < 1}
={(z,w',wy) € Pp(r) x Py_1(R') x K(Rop) :
Wap, ) (%) + Pk (rr) K (Ro) (Wq) < 1}

Consequently, since R” < Ry, we find an r, € (0,7) such that
P,(ry) X Py_1(R) x K(R") C Z,.

Thus any function h € O4(Y \ M) extends holomorphically to a function 7Lq on
(Py(rq) x Pe_1(R') x K(R"))\ S, and S, is singular with respect to the family
{hg:h € Os(Y \ M)}.

Repeating the above argument for the coordinates w,, v = 1,...,g — 1, and
gluing the obtained sets, we find an r, € (0,7) and a relatively closed pluripolar
set Sp := U?Zl S; such that any function h € Os(Y \ M) extends holomorphically

to a function hg := U?Zl Ej holomorphic in Py (r,) x W\ Sp, where
q
U ) x P(R") x Py_;(R).

Observe that W is a complete Reinhardt domain in C?. Let W denote the en-
velope of holomorphy of W (it is known that W is a complete logarithmically
convex Reinhardt domain in C? (cf. Remark refRemReinhardt) Applylng The-

orem 4.11.1, we find a relatively closed pluripolar subset So of Pp(ry) x W such
that

o SN (Py(r.) x W) C S,

e any function h € O4(Y \ M) extends to an he O p(74) X W \ So),
o Sy is singular with respect to the family {h: h € Oy (Y \ M)},

e if all the fibers M, .), a € A’, are thin, then 50 is analytic,

e in the analytic case we have §0 Cc M.
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Since W is logarithmically convex, we must have Py (y/ R’ q71R6) c W. Con-

sequently, Py (R"") C W. Recall that R > Rj. Let 0 < p < 7, be such that
P,(p) xPy(R") C Pu(re) x W. Put rgm == p, 8" = Sgm = SoN(Pp(p) X Py (R")).
Then any function h € O,(Y \ M) extends holomorphically to (P,(p) xP,(R"))\S’.

To get a contradiction it remains show that S’ N ((A'NP,(p)) x Pe(R")) C M
(7). Take (z,w) € ((A' NPy(p)) x Pg(R™))\ M. Since M, . is pluripolar, there
exists a curve 7 : [0, 1] — Py(R")\ M. .y such that v(0) = 0, v(1) = w. We may
assume that for small € > 0 we have

Pp(z,€) x (7([0,1]) + Pqg(e)) € (Bp(p) x Py(R™)) \ M.
Put Vi, :=7([0,1]) + P,4(¢). Consider the cross
W = K(ANP,y(z,¢),Py(e); Pp(z,€), Viy).

Then h € O4(W) for any h € O4(Y \ M). Consequently, by Theorem 4.3.1,
(z,w) € W CPy(r) x Pg(R")\ 5. O

Thus, it remains to prove Lemma 5.3.10 in the pluripolar and analytic cases.

5.3.1 Proof of Lemma 5.3.10 in the pluripolar case

Theorem 5.3.11. Assume that:
e P(rg) CCP, K(Ry) CC, Ry >ro, ACP(rg) is locally pluriregular,
o Z=K(A K(ro);P(ro), K(Ro)),
o M C Z is a relatively closed set such that M N (P(ro) N K (ro)) is pluripolar
and M,y € PLP for every a € A', where A" C A is such that A\ A" € PLP.
Put

F :=04(Z\ M)NO(P(rg) x K(rg) \ M).

Then there exists a relatively closed pluripolar set M C Z such that:
MnZ cM, L R
for any f € F there exists an f € O(Z\ M) with f = f on Z'\ M,
o the set M is singular with respect to the family {f feF},
o if all the fibers M, .y, a € A', are discrete, then M is analytic.

Proof. We are going to apply Theorem 5.3.4 (with D := P(rg), G := K(Ro),
B := K(ro), B':={b€ B: M3 € PLP}). Keep all the notation from Theorem
5.3.4. Assume additionally that B = K(rg) € Gy, for every k. Take (a,b) € =) =
Al x B, \ M.

The “horizontal” direction is simple: we take s = si, > 0 such that K(b,s) C
K(ro) and let &b := M N (D), x K(b,s)) =: Vkb; Skb i relatively closed

(7) Note that in the analytic case we have obviously S’ C M.
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pluripolar. Let S¥? be the singular part of Skb with respect to the family
{flveo\ar - f € F} and let f*P denote the extension of fly ke to VFP\ S0,

The “vertical” direction is more complicated: we have to show that there exist
an r = i, > 0 and a relatively closed pluripolar set S C Pp(a,r) X Gy =: Vi q
such that:

o P(a,r) C Dy,

e SN((ANP(a,r)) x Gx) C M,

e any function from f € F extends holomorphically to an f € OVi,a \ S)
with f = f on (&’ ﬂ]?’(a,r)) x G\ M (®).

For ¢ € K(Ry), let p = p. > 0 be such that K(c,p) € K(Ro) and M, .) N
0K (c,p) = @ (cf. [Arm-Gar 2001], Th. 7.3.9). Take p~ = p; > 0, p™ = pF >0
such that p~ < p < p*, K(c,p™) € K(Rog), and M,y NP = @, where P =
P, :=A(c,p~,p"). Let v :[0,1] — G \ M(,,.y be a curve such that v(0) = 0 and
~v(1) € 0K (¢, p). There exists an € = €, > 0 such that

(1}» ([0, 1])—|—K(5))UP)) nNM=go.
Put V=V, := K(ro) U (7([0,1]) + K(£)) U P and consider the cross
Y=Y.=K(ANP(a,e), K(ro); P(a,e),V).

Then f € O,(Y) for any f € F. Consequently, by Theorem 4.3.1, any function
from F extends holomorphically to Y D {a} x V. Shrinking P, € and V', we may

assume that any function f € F extends to a function f = f. € O(P(a,e) x W),
where

W =W,:=K(ro—e)U(y([0,1]) + K(¢)) U P.

In particular, f is holomorphic in P(a,e) x P, and therefore may be represented
by the Hartogs—Laurent series

= fw=e) + Y @) w =07
v=0 v=1
= [tz w)+ [ (z,w), (z,w)e€P(ae)x P,

where ft € O(P(a,e) x P(c,pT)) and f~ € O(P(a,e) x (C\ P(c,p7))). Re-
call that for any z € A’ NP(a,¢) the function f(z, -) extends holomorphically to
K(Ro)\ M;,.). Consequently, for any z € A'NP(a, £) the function f~ (2, ) extends
holomorphically to C\ (M., N K(c,p~)). Now, by Theorem 4.10.1, there exists
a relatively closed plurlpolar set S =S.cCP(a,e) x K(c, p~) such that:
e SN((ANP(a,e)) x K(c,p~)) C M,

e any function f~ extends holomorphically to an ?‘ € O(P(a,e) x C\ S).

( ) Then we can take as Sy , the singular part of S with respect to the family {f f € F} and
f = the extension of f to Vi, \ Sk,a-
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__ Since f = f*’ + f_, the function f extends holomorphically to a function
f=f. € OP(a,e) x K(c,p™)\ S). We may assume that the set S is singular
with respect to the family {f f € F}. In particular, if ¢/,¢" € K(Ry) and
C:=K(,pt)NK(, pl) # 2, then

Ser 1 (P(a,m) x C) = Ser N (B(a,n) x C), for = forr on Pla, ) x C,

where 1 := min{e.,e.}. Thus the functions fur, for and sets S., Ser may be
glued together. o
Now, select c1,...,cs € K(Ro) so that Gy C U, K(cj, pf ). Put

r=rpe:=min{e., 1 j=1,...,5}, Vig:=Pa,7) x Gy.

Then S := Vi, N U;Zl Se; gives the required relatively closed pluripolar subset of

Vi,a such that SN X C M and for any f € F, the function f:: Uj‘:l fcj extends
holomorphically f to Vi,q \ S. O

5.3.2 Proof of Lemma 5.3.10 in the analytic case

Theorem 5.3.12. Assume that:

e P(rg) CCP, K(Ry) CC, Ry >ro, ACP(rg) is locally pluriregular,

* Z=K(A K(r):P(ro), K(Ro)),

o M:=g1(0) withge O(Z), g #0.

Then for any f € Os(Z \ M) there exists an fe (9(2 \ M) with f=7fon
Z\ M.

Proof. First observe that O4,(Z \ M) C O(P(rg) x K(rg) \ M). Indeed, take
an f € O4(Z \ M) C OP(ro) x K(rg) \ M). Using the Hukuhara theorem
(Theorem 2.2.2), one can easily prove that for any a € A’, b € K(ro) \ M.,
and P((a,b),r) C P(rg) x K(ro) \ M, we have f € O(P((a,b),r)). Now, let
(20, wo) € P(ro) x K(ro) \ M be arbitrary. Since P(rg) \ M(. ) is domain, we may
find a subdomain U & P(ro) \ M. ) such that zo € U and A’'NU # &. Take
ana € A NU and let € > 0 be so small that P(a,e) C U and U x K(wq,e) C
P(rg) x K(rg) \ M. In particular, f € O(P(a,e) x K(wp,¢)). Finally, using the
Hartogs lemma (Lemma 2.1.8), we conclude that f € O(U x K (wo,€)).

The main proof will be based on Theorem 5.3.4 (similarly as the proof of The-
orem 5.3.11). As before, the “horizontal” case is simple. To prove the “vertical”
case define A" as the set of all a € A NP(ry) which satisfy the following condition:

(t) For every R’ € (rg,Rg) there exist R < R” < Ry, § > 0, m € N,
C1,...,¢m € K(R"), e > 0, and holomorphic functions ¢, : P(a,d) — K(c,,€),
w=1,...,m, such that:

P(a,d) C P(ro),
K(cy,e) € K(R"), p=1,...,m,
K(cy,e)NK(ey,e) =@ for p#v, pv=1,...,m,

H := K(ro) N H # @, where H := K(R")\ U, K(cy,¢),

p=1
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o (P(a,0) x K(R")NM =U;_{(2,¢u(2)) : 2 € P(a,d)}.
Notice that for every a € A" the fiber M, .y is discrete.

Now we prove that A\ A’ is pluripolar. Write

M= J{¢e P :g.(¢) =0},

where P, @ P(rg) x K(Ryp) is a polydisc and g, € O(P,) is a defining function for
M N Pj (cf. [Chi 1989], § 2.9). Define

Sy = {(z,w) €P, :g,(z,w) = 88%)’ (z,w) = O}

and observe that, by the implicit function theorem,
o0

AN pres(S)) c A
v=1

It is enough to show that each set prg,(Sy) is pluripolar. Fix a v. Let S be an
irreducible component of S,. We have to show that pre,(S) is pluripolar. If S
has codimension > 2, then prg,(S) is contained in a countable union of proper
analytic sets (cf. [Chi 1989], § 3.8). Consequently, pre, (S) is pluripolar. Thus we
may assume that S is of pure codimension one. The same argument as above
shows that pre, (Sing(S)) is pluripolar. It remains to prove that pre, (Reg(S)) is
pluripolar. Since g, is a defining function, for any (z,w) € Reg(S) there exists a

ke {1,...,p} such that gi: (z,w) # 0. Thus

p
Reg(S) = U Ty,
k=1

where T}, := {(z,w) € Reg(9) : ggz (z,w) # 0}. We only need to prove that each
set prep (Tk) is pluripolar, k = 1,...,p. Fix a k. To simplify notation, assume that
k = 1. Observe that, by the implicit function theorem, we can write

T = U{(z,w) €Qr:z1 =e(z2,...,2p, W)},

=1

where Q; C P, is a polydisc, Q; = Q) x Q) C C x CP, and ¢y : Q] — Q) is
holomorphic, £ € N. It suffices to prove that the projection of each set 77 :=

{(z,w) € Qs : 21 = Ye(22,...,2p,w)} is pluripolar. Fix an ¢. Since
G (Ve(22, ..y 2pyw), 22,y zp,w) =0, (22,...,2p,w) € QY,
we conclude that 2% = and, consequently, v, is independent of w. Thus

ow
pres (Th,0) = {71 = Ye(z2,. .., 2,)} and therefore the projection is pluripolar. The
proof that A\ A’ is pluripolar is completed.
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Similarly as in the proof of Theorem 5.3.11, we only need to check that for
any a € A" and 0 < R’ < Ry there exists an 7 > 0 such that P(a,r) C P(ro) and
for every f € F there exists an f € O(P(a,r) x K(R')\ M) such that f = f on
(A NP(a,r)) x K(R')\ M.

Indeed, take an a € A" and apply (). Put

Y := K(ANP(a,6), H;P(a,6), H).

Notice that Y does not intersect M. In partlcular f |y € O4(Y). Hence, by
Theorem 4.3.1, there exists an f1 € O(Y) with f; = f on Y. Take R” € (R',R"),
and £” > ¢’ > ¢, such that

o K(cy,e")eK(R"),p=1,...,m,

o K(cu,e")NK(ey,e")=oforp#v, pv=1,...,m.

Then there exists ¢’ € (0,0] such that

o P(a,d)x H' CY, where H := K(R")\ Ul K(c,. ).

In particular, f; € O(P(a,8') x H').

Fix a p € {1,...,m}. Then f; € O(P(a,d") x Alcy,e',€”)) (°) and

fi(z,) € O(K () \{pu(2)}), 2 € ANP(a,d).

Using the biholomorphic mapping
D, :P(a,8') x C—P(a,d') x C, D,(z,w) := (z,w — pu(2)),

we see that the function g := fi o ot is holomorphlc in P(a,d"”) x A( ' ') for
some 0" € (0,0'] and &’ <7’ <n” . Moreover, g(z,-) € O(K.(n")) (*°) for
any z € ANP(a,d"”). Using Theorem 4.3.1 for the cross

K(ANP(a,0"), A, n");P(a,6"), K(n")),

immediately shows that g extends holomorphically to P(a,§”) x K.(n"). Trans-
forming the above information back via @, for all 1, we conclude that the function

1 extends holomorphically to P(a,d”) x K(R"")\ M for some §" € (0,5”]. Thus,
f1 extends holomorphically to P(a, ") x K(R')\ M. O

5.4 Extension theorems with singularities in the
case where N > 3
Throughout this section D; denotes a Riemann domain of holomorphy over C™,

Aj C Dj is locally pluriregular, ¥; C A’ x A7 is pluripolar, j =1,..., N, N > 3,
X = K((4;,D;)}L), T := GK((A;, D}, Zj)}L4).

(°) Recall that A(a,r=,rt):={z € C:r~ <|z—a| <rT}, A(r~,r") := A(0,r—,rT).
(*°) Recall that K.« (r) := K(r) \ {0}.
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Definition 5.4.1. Let M C T be relatively closed. We say that a function
f T\ M — Cis separately holomorphic (f € Os(T \ M)) if for any j €
{1,...,N} and (a},a}) € (A} x A7)\ ¥; the function f(aj},-,a}) is holomorphic
in D \M(fljm(lj

To shorten the presentation, we concentrate our results in the form of the fol-
lowing general extension theorem with singularities, which will be later developed
into four independent theorems.

Theorem 5.4.2 (Main extension theorem with singularities). Let W € {X,T'}
and let M C W be relatively closed and such that for every j € {1,...,N} and
(a},a) € A} x A\ 5, the fiber M(a37,7a3_/) is pluripolar.

In the analytic case” we additionally assume that:

e M is a proper analytic set in an open neighborhood U C X of W,

o if W = X, then 5; = {(a},a]) € A} x A7 : M(a;,-,a;’) ¢ PLP}, j =

37

Fe Os(X \ M), fW=X
OJ(T\M)NC(T\ M), ifW=T"
where C*(T' \ M) denotes the set of all functions f: T\ M — C such that
(*) foranyje{l,...,N} and b; € D;, the function

Al AT\ (35 UMy, ) 3 (2], 27) — f(2],b5,2])

J 373 Jr <]

is continuous (cf. condition (*) in Theorem 4.9.2). Then there exists a relatively
closed pluripolar set M C X such that:
e MNTCM,
for any f € F there exists an fe (’)(/)Z\J/W\) with f: fonT\ M,
M is singular with respect to the family {f fer},
if for all j € {1,...,N} and (d/ € A' X A” \ X;, the fiber M(a av) is

thin in Dj, then M is analytic,

J’ J)

e in the analytic case we additionally have MnN Up C U for an open neigh-
borhood Uy C U of W,

e in the analytic case with U = /X\, the set M coincides with the union of all
irreducible components of M of codimension one.

Remark 5.4.3. Notice that in the analytic case we have

Ej:{(a a”) GAI A;-/ :M(a’j,-,ay) ¢ D;}, j=1,...,N.

3%
In particular, X \ M =T\ M.
Notice that Theorem 5.4.2 contains in fact the following four result.

Theorem 5.4.4 (Extension theorem with analytic singularities). Let M be a
proper analytic set in an open neighborhood U C X of X. Then there exists an
analytic set M C X such that:
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e Mn Uy C M for an open neighborhood Uy C U of X,

o for any f € Os(X \ M) there exists an fe (’)(/X\ \ ]\/4\) with f = f on
X\ M,

o Mis smgular with respect to the family {f fe0s(X\ M)},

o ifU = X, then the set M coincides with the union of all irreducible com-
ponents of M of codimension one.

Theorem 5.4.5 (Extension theorem for generalized crosses with analytic sin-
gularities). Let M be a proper analytic set in an open neighborhood U C x of
T. Assume that for every j € {1,...,N} and (a},a}) € A} x AT\ X, the fiber
M(a;,-,a;’) 1s pluripolar. Then there exists an analytic set M c X such that:

e Mn Uy C M for an open neighborhood Uy C U of T,

o forany f € O (T \ M)NC*(T \ M) there exists an fe (’)(/X\\M\) with
f fonT\ M,

o Mis smgular with respect to the family {f feO(T\M)NC*(T\ M)},

o fU = X, then the set M coincides with the union of all irreducible com-
ponents of M of codimension one.

Notice that Theorem 5.4.5 with M = & reduces to Theorem 4.9.2.

Theorem 5.4.6 (Extension theorem with pluripolar singularities) Let M C X be
a relatively closed set such that for every j € {1,..., N} and (a},a) € A} x A7\%;,
the fiber M(a;,_,a_;/) is pluripolar. Then there em'sts a relatively closed plumpolar set
M C X such that:

e« MNTC M,

. for any f € Os(X\ M) there exists an f € (’)(X\M) wzthf fonT\M,

o M is singular with respect to the family {f feO0(X\ M)}

Theorem 5.4.7 (Extension theorem for generalized crosses with pluripolar singu-
1aritieb) Let M C T be a relatively closed set such that for every j € {1,...,N}
and (d’ € A x A\ X, the fiber Mia,..az) s pluripolar. Then there exists a
relatively closed pluripolar set M C X such that:

e MNTCM ,

o forany f € O (T \ M)NC*(T \ M) there exists an fe (9(/)2 \ ]\//.7) with
f fonT\ M,

o M is singular with respect to the family {f feO(T\M)NC*(T\ M)}.

J’ J)

Observe that Theorems 5.4.5, 5.4.7 are interesting also in the case where M =
.

Theorems 5.4.4, 5.4.6 say that the extension problem in Definition 5.1.2 has a
solution with T"= X and T = T, respectively.

It is natural to ask how big is the class of all relatively closed sets M C W
with pluripolar fibers, that are not pluripolar.
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Proposition 5.4.8. Let S be a d-dimensional C'-submanifold of an open set
2 CC" with1 <d<2n—2. Then for every point zg € M there exist an open
neighborhood U and a C-linear isomorphism L : C"* — C" such that L(U) = D"
and if M := L(SNU), then for any a = (a1,...,a,) €D and j € {1,...,n}, the
fiber

M(a'v_. a) = {)\ eC: (al, . ,aj,1,>\,aj+1, . ,an) S M}

E

is finite.

Remark 5.4.9. (a) M satisfies the assumptions of Theorems 5.4.6, 5.4.7 for ar-
bitrary cross with N = n.

(b) Notice that there are real analytic 2-dimensional submanifolds of C2? that
are not locally pluripolar. For example (cf. [Sad 2005]):

y1 =1 + 73 : ,
S {y x2+x2 (w1 +iyy, @y +iyp) € C2
2 = 4y 2

Consequently, one may easily produce examples of sets M satisfying the assump-
tions of Theorems 5.4.6, 5.4.7 that are not pluripolar.

Proof of Proposition 5.4.8. [WILL BE COMPLETED. . . . . ] O

As an elementary application of Theorem 5.4.5 and Proposition 5.4.8 we get
the following extension theorem (cf. [Kar 1998]).

Theorem 5.4.10. Let S be a connected d—dimensional C' ~submanifold of a do-
main D C C™ with 1 < d < 2n —2. Then every function f € O(D \ S) extends
holomorphically to D unless M is a complex submanifold of codimension one.

Proof. Take a point a € S. Using Proposition 5.4.8 we find a neighborhood U, C D
of a and a C-linear isomorphism L, such that L,(U,) = D™ and all the one
dimensional fibers of the manifold M, := L,(S N U,) are finite. Now we apply
Theorem 5.4.6 with N =n, D; = 4; =D, j=1,...,n, M = M,. We get an
analytic set §a C U, with the following properties:

e S, CSNU,, N =N —~
e every function f € O(U, \ S) extends to an f, € O(U, \ S,) with f, = f
on U, \ S,

e S5, is either empty or of codimension one.

It is clear that if d < 2n — 3, then each S, must be empty and consequently, S
is removable. Thus assume that d = 2n — 2.
[WILL BE COMPLETED. . . . . . . . . . . | O

Observe that Remark 5.3.2(c, d) extends in a natural way to the case N > 3.
The following proposition generalizes Remark 5.3.2(e, f).

Proposition 5.4.11. (a) Let S C X be an analytic set of pure codimension one.
Then SNT # @.
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(b) Let M & X be an analytic set. Suppose that M c X is an analytic set
such that:

e Mn Uy C M for an open neighborhood Uy C x of T,

o cvery function f € Os(T'\ M) NC*(T'\ M) extends to an fe 0(5(\ \ ]\//.7)
with f fonT\ M,

o the set M is singular with respect to the family {f fe O (T\M)NC*(T\

Then M is the union of all irreducible components of M of codimension one.

Proof. (a) Suppose that SNT = &. Since S is of pure codimension one, the domain
X \ S is a domain of holomorphy, and therefore, there exists a g € O(X \ S) such

that 5(\\5 is the domain of existence of g (cf. Proposition 3.1.20). Since T' C 3(\\5,
we conclude that g|x € O5(T)NC(T). By Theorem 5.4.5 with M = &, there exists

age 0(5(\) such that g = g on T, and consequently, on X \ S. Thus g extends
holomorphically to /)E; a contradiction.

(b) Let M be the union of all irreducible components of M of codimension one.

In the case where M #+ &, similarly as in (a), there exists a non-continuable
function g € O(/)E\M) Then g|p\ v € Os (T\M)OC(T\M) and, therefore, there
exists a g € (’)(X\M) with g = g on T\M Hence, g = - gon X\(MUM) Since g
is non-continuable, we conclude that McC M The set M as a non-empty singular
set, is also of pure codimension one. Since Mn Uy C M and SNUy # & for every
irreducible component of M (by (a)), we conclude (using the identity principle for
analytic sets) that McM (cf. [Chi 1993], § 5.3). Consequently, McM

It remains to exclude the situation where M = @ (i.e. the codimension of M
is > 2), but M+ (i.e. the codimension of M is 1). Then McM (as above),
which obviously gives a contradiction. [l

The main “technical tool” in the proof of Theorem 5.4.2 is the following theo-
rem.

Theorem 5.4.12 (Glueing theorem). Let W € {X, T}, M C W, and F be as
in Theorem 5.4.2. If N > 4, then we additionally assume that Theorem 5.4.2 was
already proved for all (N — 2)—fold crosses.

Let (Dj k)52, be an exhaustion sequence for D; (in sense of Definition 2.2.5)
such that each D 1, is a domain of holomorphy and A := A;ND;; #3, k€N,
j=1,...,N. Put

A=A x o x Ajyg, Al i=Ajpe XX A,
Sk =5 N (A x AT L),
Xk = K((Ajr, Djr)ioy) = X 0 (Dig X -+ x Dy p),
Ty i= GE((Ajp: Dy Bi)3o1) = T0 (Die x -+ X D),
Wi =WnN(Dygx-xDyg) € { X, T}
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Let Zy := ¢(Tx) \ M. In the analytic case with W = X we take 5y := ¢(X ) =
Al,k X X AN,k-

Assume that for any k € N, j € {1,...,N}, and a € E}, there exist:

o r=rpq >0,

o relatively closed pluripolar set Sj o C @(a},r) X Djp X @(a;’, ) =:Vjka,
such that: R

o Pla,7r) C Dy x---xDny and Pla,r) "M =2 ifa ¢ M,

o SikaNTjra CM, where

Tjka={(2 2,2 € (A NP(a},r) x Djk x (A7 NP(a], 7)) :
(2j,2]) € Zjk} C Vika NTh,

o for any f € F there exists an fina € OVjka \ Sjka) with fixa = f on

TJ'J%LI \ M,
e in the analytic case we additionally assume that V.o C U and Sjpqo C M.

Then there exists a relatively closed pluripolar set M C X such that:
e MNTCM,

. for any f € F there exists an f € O(X \ M) with f fonT\ M,
o M is singular with respect to the family {f fer},

o if each set Sjy.q is thin in V4, then M is analytic,

e in the analytic case we additionally have MnN Up C U for an open neigh-
borhood Uy C U of W.

Thus, in order to prove Theorem 5.4.2, we only need to use induction on N
and verify all the assumptions of Theorem 5.4.12.

Proof. Step 1: We may assume that each set S; 1 , is singular with respect to the
family {fij : f € F}. In particular, Sj k,a 1s thin in Vj i, iff Sk . is analytic in
Vik.a-

Step 2: If N >4, then for any 1 < < v < N, define an auxiliary (N —2)—fold
Cross
Y,th = K((Ajv Dj)je{l,...,uf1,/1,+1,...,u71,u+1,...,N})'

We may assume that the number r = r , is so small that

~

P((a1, -y @u=1,Qu41,- - Qu—1,0041,...,an),7) CY,,, 1<pu<v <N,

Step 3: Fix a k € N. Put

Vi = U Vika, Ski= U Sjk.as fri= U E,k,a

aEE} aEZ} a€EZy

In the case where = = ¢(X}) we obviously have X C Vi. Observe that in
general we have T, C V.
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Indeed, let ¢ € Ty, e.g. ¢ = (a’,en) € (Ay_1 ; \ Enk) X Dy k. Since My ) is
pluripolar, there exists an ay € Ay \ M(q/,.). Then a := (a’;an) € c(Tx) \ M =
S and c € I/Ei(a',rk,a) X Dy = VN k,a-

Note that in the analytic case we additionally have V), C U and S; C M.

The main problem is to show that

(*) for arbitrary a,b € =y, i,j5 € {1,..., N} with

Wijkab = VikaNVigp # O

2, &y

we have ﬁ,k,a = fj}hb on Wi k.ab \ (Si7k,a U Sj,k,b) for all f € F.

Suppose for a moment that (*) is proved (the proof will be given in Step 5)
and we finish the main proof.

Step 4: Since the sets S; x,« and S are singular, we conclude that
Sika N Wijkab = Sikb OV Wijkasb,

which implies that the function ﬁc is well defined on Vi \ Si. Observe that:

o SkaNTy C M. Indeed, take ac € Sjx,aNTk. If ¢ € Tj 1 q, then obviously
c € M. Suppose that ¢ ¢ T q. Then ¢ € T, 1 for some i € {1,...,N} and
b€ cTy) \ M. In particular, ¢ € W xap. Thus ¢ € Sjra N Wjikap =
Si,k,b n Wj,i,k,a,b~ This means that c € Si,k,b NTrp C M.

° f;ka = fonTyNV; ko \M. Indeed, takeac € TNV ro\M. If c € T} .0,
then obviously J};ka(c) = f(c). Suppose ¢ € T; . for some i € {1,...,N} and
be C(Tk)\M Then ¢ € Wj7i7k,a,b\(Si,k7aUSj7k7b)- Thus ka,a(c) = f1'7k,b(c) = f(C)
Moreover,

e S; is a relatively closed pluripolar subset of Vi,

° ‘SJ? NTy C M,

(] ‘,ka S O(Vk \ Sk),

o fi=fonTi\M,

e S} is singular with respect to the family {fk cfeF},

e Sy is analytic provided that each set S; 1 , is analytic.

Let Uy denote the union of all connected component of Vi N A/X\k that intersect
T. Then X\k is the envelope of holomorphy of Uy.

Indeed, since X}, is a domain of holomorphy (Exercise 4.2.3(d)), we only need
to show that any function from O(Uy) extends holomorphically to A/X\k. Take a
g € O(Uy). Then g|lr, € O4(Tk) NC(Tk). By Theorem 4.9.2, g extends to
age€ 0(5(\;@) with g = g on T. Observe that T is locally pluriregular. In
particular, U N Ty, is not pluripolar for any connected component U of Uy. Hence,
by the identity principle, g = g on Uy (11).

By virtue of Theorem 4.11.1(c), there exists a relatively closed pluripolar set
J/W\k of /X\k, J/W\k N U, C Sk, such that /X\k \ ]\/4\k is the envelope of holomorphy

(**) Since X, is a domain (Exercise 4.2.3(g)), Uy in fact must be connected.
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of Uy \ Sk. Moreover, if Sy is analytic, then so is ]\//jk In particular, for each
f € F there exists an fk € O(/)Ek \ ]\/J\k) with fk = ﬁc on U \ Si. We may
assume that M, ki is singular with 1 respect to the family {ﬁ f € F}. In particular,
Mk+1 N Xk = Mk Recall that Xk e X. Consequently:

° =Uie, Mk is a relatively closed pluripolar subset of X with MNT C
M,

e for each f € F, the function f = Une; fk is holomorphic on X \ M with
f fonT\ M,

o Mis singular with respect to the family { f feF},

o if each set Sj 1, is analytic in Vj 1 q, then M is analytic,
e in the analytic case, if Uy := (J;—, Uy, then

]/\ZQU():U]/W\;CQU;CC USkCM.
k=1 k=1

This completes the proof of Theorem 5.4.12 modulo (*).

Step 5: We move to the proof of (*). Fix a,b € 5} and i,j € {1,..., N} such
that Wi jk.ap := Vika N Vikp 7 @, and f € F. We have the following two cases:
(a) i # j:  We may assume that i = N — 1, j = N. Write

w=(w,w") € (Dyx - xDn_2)x (Dn_1 X Dy).
Observe that

WN_1,Nkab = (@(a',m,a) N @(b', Tk,b)) X @(bN—l, Tk,b) X @(GN, Tk,a)-

Consider the following two subcases: R R R
e N =23: Then Wa3 x4 = (P(a1,7k,0) NP(b1,7k5)) X P(b2, k) X P(az, Tk,a)-
We are going to show that

fN—1,k,a = fN,k,b on ((P(ay, Thya) N @(bl,m,b)) x C)\ (S2,k,a U S3k.5),

where C C ]@(bg,’l‘]ﬁb) X @(ag,r;m) is a non-pluripolar set; then, by the identity
principle, we obtain fo o = f3.5.6 00 Woskap \ (S2,k.a U S3.15)-
Let

C = {c € ((Agp NP(by, 7)) X (A NPlag, rk.a))) \ D1 :
(S2,k,0)(c) € PLP, (S3,k.)(.,c) € PLP}.

The set C'is locally pluriregular (Exercise 5.3.3(c)). Fix a ¢ = (c2,¢3) € C. Recall
that P(al,rk a) U ]P’(bl, rkp) C Dy . Thus, the functions f3 k(5 c) and f(-,c) are
holomorphic on

P(b1, ) \ ((S5,5,0)(0) U M..0))-
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Moreover, they are equal on the non-pluripolar set (Aj; N @(bl,rk,b)) \ Mo
Hence, since the set (S3x,5)(.,c) U M. ) is polar, we get

Fon = F0) on (b1, i) \ (S5.6.0) (c) U Mi.0))-
An analogous argument shows that
foka =€) on Blar, mia) \ ((S2k0)(.0) U M.0)-
Hence,
Foka(€) = Fapp(€) on (Blar,ria) D BO1 1) \ (S200) () U (S3.00).)
Consequently,
Foa = fagp on (Blar, ma) N B(O1, 7)) % C)\ (S2ka U Sanp)-
e N >4: We are going to show that

IN—1ha = fnppon ((@(alvrk,a) NP, kb)) X C)\ (SN=1,k,0a U SN,kb)s

where C' C ]IA”(bN,l, Thb) X @(a]\;, Tk.q) 1S @ non-pluripolar set; then, by the identity
principle, we obtain

,]FN—l,k,a = fN,k,b on Wy—1.Nkab \ (SN=1,kaUSNkb)-
Let
Bn-1:={en-1€ An—1x NP(by_1,750) : (EN) (e 1) € PLP.
By Proposition 3.3.27 the set By_1 is locally pluriregular. Analogously, the set
By = {en € Ang NP(an, Tha) © (EN-1)(en) € PLP}
is locally pluriregular. Let
C:={ce€Bn_1XBn:(Sv-1ka)(,c) € PLP,
(SNkb) () € PLP, (X0)(0) EPLP, v=1,...,N —2}.

The set C is also locally pluriregular. Fix a ¢ = (ey—1,¢n) € C.
Observe that T'(. oy D T'ny_1,n(c), where

Yy

Tn_1n(c) = GK((Ay, Dy, (S0)(0)) 0t

Put AIVN ::Ay+1 Xoee XAN,Q, V= ].,...,N—Q.

The (N — 2)-fold cross X y_1,n, the sets (X,)(.¢), v =1,..., N — 2, and the
set M(. ) satisfy the assumptions of Theorem 5.4.2.

Indeed,

e thesets (X,)(.c), v =1,...,N — 1, are pluripolar,
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o foranyv e {l,...,N—2}and ((,()) € (A, x A))\ (E0)(0)s

(M o))y cmy = My, c,)

is pluripolar.

Consequently, since Theorem 5.4.2 is true for (N — 2), there exists a relatively
closed pluripolar set M (o) C Y ~N—1,~ such that:

o M(c)NTrn-1.n(c) C M,

o for any f € Os(X \ M) there exists an fe € O(}/}N,LN \ ]\/4\(0)) with
fc = f(, C) on TNfl,N(C) \ M(.7C).

Recall that @(a',rk,a) U @(b',rk,b) - ?N,l,N. Thus, the functions fN’k’b(',C)
and fc are holomorphic on

BV, r1.0) \ ((Sn k0 0) U M (€):

Moreover, they are equal to f(-,c) on the set ((T'x)(.,c)NTN-1,5(c)))\ M(. ¢y =: S.
Observe that S is not pluripolar.
Indeed, put A, := A, NP(by,r%p), v =1,..., N — 2. First observe that

(Avl X X AVN—Q) \ (EN)('7CN—1) - (C(Tk))('»c)'

On the other hand, (gl X oo X A/N_Q) \ P C ¢(T'~-1,~n), where P is pluripolar.
Hence, in view of the definition of the set By _1, we conclude that

(A1 5+ x Ay 2)\ Q C (e(T))(..e) N e(T'n—1,n5(0)),
where @ is pluripolar. In particular, the set
R := {{ S /Tl X - X /NlN,3 : Q(&.) ¢ 'P»C'P}

is pluripolar. Moreover, for any & € (ﬁl X e X EN,g) \ (En—2)(.¢), the fiber
(M) e,y = Me,.c) is pluripolar. Thus, for any

€€ (A x - x Ay_3) \ (RU (Sn-2)(.0))

the set (QUM(. ¢))(e,.) is pluripolar. Now, we are in a position to apply Proposition
3.3.27 and to conclude that S is not pluripolar.
Hence, since the set (Sy kp)(.,c) U M(c) is pluripolar, we get

Frin = Fe on BU,rep) \ ((Sn ) (o) U M(€):
An analogous argument shows that
Fy-tka = fe on P(a,1a) \ (SN-1,k,0) () U M(€)).

Hence,

fol,k,a('v c) = fN,k,b(', c)
on (B(a’, ra) VBO, 75,0)) \ (SN—1.000) (-.c) U (SNe) (0))-
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Consequently,
-tk = Fars on (B, ria) NBO 7)) X )\ (SN-1ka U SNkp)-
(b) i=j: We may assume that i = j = N. Write
w=(w,wy) € (D1 x--+xDyx_1)X Dy.

Observe that @ # Wi N N.ap = (]@(a’,rk,a) N ]?P\’(b’,r;@b)) x Dy . By (a) we know
that

fN,k,a = fN—1,k,a on (VN ke NVN-1ka)\ (SVkaUSN-1ka),

In—tkae=Ffnep on (V1 ke NV es) \ (SN=1,ka USNkb)-
Hence fn ko= fnkp 0D

(VN ko VVN-15a NV VN D) \ (SN=1ka USN ko USNED)
= (P(d, rp.a) NP, 715)) X Plan, Tha)) \ (SN—1.ka U SN k.0 U SN kp),

and finally, by the identity principle, fN’k,a = fN,k,b on Wy Nkab \ (SN ke U

SN k.b)-
The proof of (*) is completed. O

We move to the main proof of Theorem 5.4.2.

Proof that Theorem 5.3.1 => Theorem 5.4.2. Consider the general situation as in
in Theorem 5.4.2. Our aim is to prove Theorem 5.4.2 via Theorem 5.4.12. We
keep all the notations from Theorem 5.4.12.

Fixak € N, a € Zf, and j € {1,...,N}. We are going to construct,

Tk,as Sj.k,as fij with all of the properties listed in Theorem 5.4.12.

First assume that j = N. Let » > 0 be such that @(a,r) € D1 X - XDny
and @(a, r) N M = @& in the case where a ¢ M.

First consider the case where @(a, r)NM = @. Put

Wk,a =Wn @((L, T') € {Xk,a; Tk,a}
with

X=X NP(a,r) = K((A; NP(aj,r),P(az,m),),

Tio:=TNPa.r) = GK((4; NB(aj. 1), B(a;.7), 5 N B((a], af), 1)) }Ly).

Observe that for every function f € F € {O(X\M), O,(T\M)NC*(T'\ M)}, the
function flw, , belongs to Os(Xg,q) or to Og(Tk,a) NC*(Tk,q). Using Theorems
4.3.1 or 4.9.2, we know that f extends to an J?k,a € O(/)Ek’a) with fk,a = f on
T'k,o. Thus we may assume that the initial r is so small that every function f € F
extends to an }v}m € O(@(a,r)) with }v;m =fonTnN ]T”(a,r).
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Consider the special 2—fold crosses

~ ~ ~

YN,k,a = K((AE\/' \ EN) N (GIN,T),P(GN,T);P(GEV,T),DNJH_l)
= P(a,7) U (Al \ Sn) NP(aly, 7)) X Dy 41) C Pla,r) UT,

with

p::n1+"'+nN—1a q:=nn,
D = @(a'N,r), G :=Dnjg+1, B:= @(aN,T)
A=A = Ay NPy, )\ Sy,

Observe that every function from f € F may be identified with the function
fU fra € Os(Y N ko \ M). Since the case N = 2 was proved, we get a relatively
closed pluripolar set Sy i C Y n,k,q such that:

® SnikaNYnNiaeCM,

e for any function f € F there exists an fyrpa € O(Y Nk \ SN k) such
that fN,k,a = fon YNk \ M, N

o SN k. is singular with respect to the family {fn k.o : f € F}; in particular,
SN ke NP(a,r) =2,

e if all the fibers M., ), z)y € A’, are thin, then Sy j,, is analytic.

Note that {a/y} X Dy gt+1 C ?N,k,a. Let p = ryga € (0,7) be so small
that Vn k.q := P(aly,p) X Dng C Y N ko We substitute Sy ko and fn xqe by
SN ka N VN ka A0 fN kalVy o \Shx.a» TESDECtiVElY.

_In the analytic case we argue in a little bit different way. We may assume that
P(ay,7) X Dy k41 C U. Consider the 2—fold crosses W k.o € {XnNka, TN kal,

Xy pa == K(Ay NP(dy,7), Anhs1: Py, 1), Dnrs1) C X,
Znpa = K(Ay NPy, )\ Sn, Anps1; P(dy, 1), Dnpst).

Observe that every function f € F belongs to Os(X n k.o \M) or to Os(Z n ko \M).
Our assumptions imply that every f € F extends to an ]?N,k,a € O(/)EN,;C,G \ M)
with ]?N,k,a = fon Wy e\ M. Now we continue as in the pluripolar case and
we end up with Sy i, C M.

It is clear that all the requirements from Theorem 5.4.12 are satisfied for j = V.
We repeat the same procedure with respect to each j € {1,..., N — 1} and finally,
we put rg o ;=min{rjr,:j=1,...,N}. O



Chapter 6
Separately meromorphic functions

6.1 Rothstein theorem

Theorem 6.1.1 (Cf. [Rot 1950]). Let f € M(D? x D). Assume that A C DP
be a locally pluriregular set such that for any a € DP we have (S(f))(a,) # D9,
where S(f) denote the polar set of f, i.e. S(f) is the union of the set of all poles
of [ and the set of all indeterminancy points of f; recall that S(f) is analytic
and f € ODP x DI\ S(f)) — cf §3.8. Let G be a Riemann domain over CP
such that D7 C G (1) Assume that for every a € A the function f(a,-) extends
meromorphically to G. Then there exist an open neighborhood 2 of (DP x D) U
(A x G) and a function fe M(£2) such that F=fonDPxD.

Proof. (1) The case where A = D? (?), ¢ =1, G = K(R) (R > 1), and f €
O(D? x D):

The proof may be found for instance in [Siu 1974].
[WILL BE COMPLETED. . . . . « « « v« v v v e e oo e ]

(2) The case where A =DP g =1, and G = K(R):

Recall that (S(f)),) # D? for any a € DP, and therefore, for any a € DP
there exists a b € D? such that f is holomorphic in a neighborhood of (a,b). By
applying locally (1), we get the required result.

(3) The case where A = DP and G = Py (R):

Let Ry denote the radius of the maximal polydisc P4(Ry) such that f extends
meromorphically to D? x P,(Rg). We only need to show that Ry > R. Obviously
Ry > 1. Suppose that Ry < R.

Let S, be the set of all (z,w’) € DP x Py_1(Rp) such that (S(f))(,w,.) = D.
It is well known that S, is an analytic subset of DP x P,_q(Ry). Moreover, our
assumptions imply that S, # DP x P,_1(Rp). Applying locally the Rothstein
theorem to (DP x Py_1(Ro) \ Sy) x K(R) C CPT4~1 x C, we conclude that f
extends meromorphically to (D xPy_1(Ro)\S¢) X K (R))U(DP xP4(Ryp)). Observe
that, by the Levi extension theorem ([Jar-Pfl 2000], Prop. 3.4.5), the envelope of
holomorphy of ((D? x Py_1(Rp) x K(R)) \ (Sg x K(R))) U (DP x Py(Ry)) equals
DP x Py_1(Ro) x K(R). Consequently, the function f extends meromorphically
to DP x Py_1(Rp) x K(R). Repeating the same argument with respect to other
variables in C?, we conclude that f extends meromorphically to the domain DP x H,
where

H = LqJ Pj—l(RO) X K(R) X ]Pq—j (Ro)

1) That is, we identify D? with certain “polydisc” ﬁg(bo, r).
2) Observe that if A = DP, then we have to prove that f extends meromorphically to DP x G.
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The envelope of holomorphy of DP x H has the form DP x H , where H contains a
polydisc Py (Ry) with R > Ry. Thus f extends meromorphically to D x Py(Ry);
a contradiction — cf. the proof of Lemma 12 in [Jar-Pfl 2003b].

(4) The case where A C DP is locally pluriregular and G = P, (R):

For every z € DP, let ps(z) denote the radius of the maximal polydisc Py(r)
such that f(z,-) extends meromorphically to P,(r). Obviously, py > 1 on D? and
pr > Ron A.

Using (3), one can easily conclude that f extends meromorphically to the
Hartogs domain

D :={(z,w) e D’ x C?: |w| < (ps)«(2)}.

Let f € M(D) be the meromorphic extension of f.

Moreover, —log(ps). € PSH(DP).
__ Indeed, let D denote the envelope of holomorphy of D. It is known that
D C D? x CY is a Hartogs domain with complete g—circled fibers ([Jar-Pfl 2000],
Remark 3.1.2(h)). Moreover, f extends meromorphically to D ([Jar-Pfl 2000], Th.
3.6.6). In particular,

(pf)*(z) = 1nf{557(0§)(z,0) : g € (an |€| = 1}7 KAS ]D);D,

where

05, (0,6)(2,0) =sup{r > 0: (2,0) + K(r)(0,§) C D}.
Consequently, —log(pf). € PSH(DP) ([Jar-Pfl 2000], Th. 2.2.9(iv)).

Thus —log(pf)« € PSH(DP). Recall that py > R on A. Hence, using the local
pluriregularity of A, we conclude that (ps). > Ron A (3). Thus A x Py(R) C D,
and therefore D is the required neighborhood.

(5) The general case where A C DP is locally pluriregular and G is arbitrary:
Fix an a € A. Let Go denote the set of all b € G such that there exist r, > 0
and f, € M(P((a,b),rp)), P((a,b),rp) C DP x G, such that:

—~—

vaeAﬁf@(a,rb) : fb(a’ ) = f(a7 ) on P(b7 rb) (4)

Obviously Gy is open, Gy # @ (D? C Gy). Using the Rothstein theorem with
G = ]T”q (R), one can prove that Gy is closed in G. Thus Gy = G.

Moreover, one can also prove that if@(b', rb/)ﬁ]IA”(b”, ryr) # &, then fir = fpr on
P((a,b'), 70 ) NP((a,b"), 7). This gives a meromorphic extension of f to an open
neighborhood of {a} x G. Since a was arbitrary, we get the required neighborhood
0. O

In the case where A = DP the result may be strengthened as follows.

—log(pf)«
log R +1
Then v <1 and u < 0 on A\ P. Consequently, u < hZ\PDP = h’ pp- In particular, u < 0 on

A, ie. (pf)x > Ron A.

(4) As before, f(a,-) denotes the meromorphic extension of f(a,-).

(3) Suppose that h% p, = hapr on DP \ P, where P is pluripolar. Put u :=
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Theorem 6.1.2 (Cf. [Rot 1950]). Let f € M(DP x D?). Let G be a Riemann
domain over C? such that D C G. Assume that for every a € DP the function
f(a,-) extends meromorphically to G. Then there exists an f € M(DP x G) such
that f: f onDP x DT,

Proof. Let S :={z € DP: {z}xD? C S(f)}. It is known that S is a proper analytic
set. Let Sy := S x G. Using locally Theorem 6.1.1 on (D? \ §) x G, we easily
conclude that f extends meromorphically to an f € M((DP xD?)U (DP x G\ Sp)).
Using Proposition 3.1.25, we conclude that the envelope of holomorphy of the
domain (D? x D?) U (DP x G\ Sp) contains DP x G. Finally, Theorem 3.8.2, we
conclude that fextends meromorphically on DP x G. O

6.2 Extension of separately meromorphic
functions with singularities

It is known that the envelope of holomorphy (of any Riemann domain over C™)
coincides with the envelope of meromorphy (cf. [Jar-Pfl 2000], Theorem 3.6.6).
Thus it is natural to conjecture that in the above situation the domain X \ M is
also the envelope of meromorphy of X \ M with respect to separate meromorphic
functions.

Throughout this section D; denotes a Riemann domain of holomorphy over
Cni, Aj C Dj is locally pluriregular, ¥3; C A} x A7 is pluripolar, j = 1,..., N,
X = K((Aj,Dj)évzl), T .= GK((AJ,DJ,EJ)évzl) Moreover, S C X, M C NS
are relatively closed sets such that for any j € {1,..., N} and (a}, af) € A} x A7\
Y, the fiber S(a'j,..ay) is pluripolar.

Definition 6.2.1. We say that a function f € O4(X\S) is separately meromorphic
on T\ M (f € Os(X\S)NM(T\ M)) if for any j € {1,...,N} and (a},a}) €
Al x A%\ 8, the function

D;\ S(a a) D 25— f(a}, zj,a5)

extends meromorphically to D; \ M(a37,7a3,),

Theorem 6.2.2 (Extension theorem for meromorphic functions). Let S and M
be constructed according to Theorems 5.4.6 and 5.4.7, respectwely Then for every
Junction f € Os(X \ S)NM,(T \ M) there exists an fe O(X\S) OM(X\M)
such that f fonT\S.

The case M = @ was studied for instance in [Sak 1957], [Kaz 1976],
[Kaz 1978b], [Kaz 1984], [Shi 1986], and [Shi 1989)].

Proof. Obviously, by Theorem 5.4.6, every function f € O4(X \ S) N M (T \ M)
extends to an f € O(X \ S) with f = f on T\ S. We only need to show
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that f € M(/)E \ M ). Observe that it suffices to show that there exists an open
neighborhood 2 C X of T \ M (indepenedent of f) such that every connected
component of (2 intersects T'\ M and fe M(S2) for every f.

Indeed, suppose such an (2 is already constructed. By Theorem 5.4.7, the
envelope of holomorphy of (2 coincides with x \ M.

In fact, if g € O(2), then g|lp\ar € Os(T'\ M)NC(T \ M). Hence, there exists
age€ (9(/)2 \ M) with g = g on T\ M. Consequently, g = g on {2 because each
connected component of {2 intersects T\ M.

Thus, by Theorem 3.6.6 from [Jar-Pfl 2000], /)E\ M is the envelope of mero-

morphy of §2, which means that fextends meromorphically to an fe M(/X\\ M )

with f: fon £2. The indentity principle for meromorphic functions implies that

~

f=r
Indeed, take an @ € T'\ M. We may assume that

a= (ay,an) € (A \Zn) x Dy.

Fixaby € An\ S(ay,,) (recall that Si,r ) € PLP). Put b:= (a)y,by) € c(T)\ S.
Let » > 0 be such that @(b,r) cX \ S. In particular, f € O(]IAD(b,r)) for every
fFeEO(X\S)NM(T\ M).

Since M, .y is pluripolar, there exists a domain Gy € Dy \ M,y with
any € Gy, @(bN,r) C Gpy. Since M is relatively closed in T, we may assume
that r is so small that ((A%y \ ¥n) NP(a}y, 7)) x Gy C T\ M. By the Rothstein
theorem (Theorem 6.1.1), there exists an open connected neighborhood 2, C X

of {a’y} x Gn such that f e M(£2,) for every f.
We put 2 := UaeT\ g {2,. Observe that any connected component of {2 inter-
sects ¢(T') \ M. O

6.3 The case N =2

In the case where N = 2, M = &, Theorem 6.2.2 may be strengthened as follows.

Theorem 6.3.1 (Extension theorem for meromorphic functions). Let D, G be
Riemann domain of holomorphy over CP and CY, respectively, let @ # A C D,
@ # B C G be locally pluriregular sets, and let

X = K(A,B;D,G) = (Ax G)U(D x B).

Let S C X be a relatively closed set. Assume that:
(a) for every (a,b) € A x B we have intg S(,,.) = @, intp S(.p) = I,
(b) Ax BC (AxB)\S (%),

(5) In particular, for every (a,b) € A x B and for every neighborhood U C D x G of (a,b) the
set (A x B)NU\ S is not pluripolar.
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there exist exhaustions (Dy)52, and (Gr)32, of D and G, respectively, by do-
main of holomorphy such that:

(C) Ag ::AﬂDk#Q, Br := BNGy # 9,

(d) for every (a,b) € Ag x By we have By, \ S(q,.) # D, Ax \ S(.p) # D, k € N.

Then for every function f € O4(X \ S) N My(X) there exists a function fe
M(/)E) such that f = f on X\ S.

Let {2 be a Riemann region over C".

Definition 6.3.2. We say that a set A C (2 is plurithin at a point a € (2 if either
a¢ Aora€ Aand imsupy f415,-, w(2) < u(a) for a function u plurisubhar-
monic in a neighborhood of a.

Remark 6.3.3. (a) ([Kli 1991], Corollary 4.8.4) If A, B are plurithin at a, then
AU B is plurithin at a.

(b) (JArm-Gar 2001], Th. 7.2.2) Every polar set P C C is thin at any point
aeC.

(c) If A C C is not thin at a point a € A, then for any polar set P C C, the
set A\ P is not thin at a ((c) follows directly from (a) and (b)).

(d) If A C 2 is locally pluriregular at a point a € A, then A is not plurithin
at a.

If A C C is not thin at a point a € A, then A is locally regular at a.

Indeed, suppose that A C {2 is locally pluriregular at a and

limsup wu(z) < ¢ < u(a)
A\{a}>3z—a

for some u € PSH(V), where V is an open neighborhood of a. We may assume
that v < 0 on V. Take an open neighborhood U C V of a such that u < ¢ on
(A\{a})NU. Put v:= - +1. Thenv <1lonU and v <0 on (A\ {a})NU.

Hence v < hiy\ (oy)nv,0 = Mano,w on U. In particular, 0 = v(a) = % +1<0;a
contradiction.

Now, suppose that A C C is not thin at a and hij’U(a) > 0 for some neigh-
borhood U of a. Let P C U be a polar set such that hij’U = hanvy on U\ P
(cf. [Jar-Pfl 2000] Th. 2.1.41). In particular, h%;; = 0 on A\ P. By (c), the set
A\ P is not thin at a. Hence 0 < h}jy;7(a) = limsup g\ ps.—.q Raqp(2) = 0; a
contradiction.

(e) ([Arm-Gar 2001], Th. 7.3.9) If A C C is thin at a point a € A, then there
is a sequence 1, \ 0 such that {z € A: |z —a|=r,} =92, k=1,2,....

Proof. Tt suffices to prove that for each k there exists an open neighborhood 25 C
X of the cross Xy, 1= K(Ap, By; D, G) = (Ap x Gi) U (Dg x By) such that
there exists an f, € M(f2;,) with fr, = f on X} \ S.

Indeed, the envelope of holomorphy of {2 coincides with /)Zk (cf. the proof of
Theorem 5.4.12). Hence, by Theorem 3.6.6 from [Jar-Pfl 2000], the function f
extends to a function fi € M(/)Ek) Since X, \ S is not pluripolar (by (a)), we
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conclude that fk = fAkJrl on /)Ek Finally, we glue up the functions (fAk)zozl and we
get the required extension.

Fix (a,b) € Ay x By \ S and let r > 0 be such that P((a,b),r) C Dy x G, \ S.
Define ¥ := K(A ﬁf@(a,r),B N ]T”(b, r);f”(a,r),@(b,r)). Then f € O4(Y) and
hence, by Theorem 4.3.1, f|y extends holomorphically on Y. In particular, f
extends holomorphically to an open neighborhood of (a, b).

By the Rothstein theorem (Theorem 6.1.1), we get an open set
Qnap = (B(a,70) X G) U (Dy, x B(b,r43)) € X, C Dy x Gy,

for which there exists a function ]?k,a,b € M(€2k,q,p) such that flm,b =fonXnN
rap\S.

Now we show that if (24 45 N 2k, # &, then fk’a,b = ]?k,a/’b/ on 2445 N
{2 a' . Observe that

Qs N Doty = ((ﬁb(a, Tap) NP, Tar ) X Gk) U (@(a, ras) X B, rary ))

~

U (P(a/,ragb/) x B(b, rmb)) U (Dk x (B(b,74) N ]/I\D(b/,ragb/))).

First observe that ﬁm,b =f= ﬁm/yb/ on (Akak)ﬁ(I/P\)(a, ra,b)fo\)(b’, Tar b))\ S-
Hence, by (a), fk’a,b = ]?k,a/’b/ on ]?D(a, Tab) x@(b’, Te b ). The same argument works
on P(a/, Tar br) X P(b, Tab)-

If @(a,ra,b) N ]IA”(a’,ra/,b/) # @, then for any § € Bj we have fk,a,b(-,ﬂ) =
f(,8) on Ap N I/Pg(a,ra,b) \ S(/_@\)_/ Hence };C’a’b(',ﬁ) = f(,5) on I/P\y(a,ra’b), and,
consequently, ﬁ,a,b(-,ﬁ) = f(-,p) = ﬁ,agb/(-,ﬂ) on @(a,f\mb) N ﬁ\”(a’,ragb/) for

~

any 3 € By. The identity principle implies that frap = frar 00 (P(a,7q,5) N
P(a’,r41r)) X Gg. The same argument works on Dy x (P(b,7¢,5) NP, rar 1)).

It remains to observe that, by (d), 2, := U(a7b)€Akak\S 2.q.p is an open
neighborhood of X. O

Corollary 6.3.4 (Cf. [Sak 1957]). Let S C D x D be a relatively closed set such
that:

e intS =g,

o for every domain U C D x D the set U\ S is connected (6).

Let A (resp. B) denote the set of alla € D (resp. b € D) such that intc S(,,.) =
@ (resp. intc S(.p) = @). Put X := K(A,B;D,D) = (AxD)u (D x B).

Then for every function f: X \ S — C which is separately meromorphic on
X, there exists an [ € M(D x D) such that F=fonX \S.

Notice that the original proof of the above result is not correct — details may
be found in [Jar-Pfl 2003c].

(6) We shortly say that S does not separate domains.
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Proof. First we check that the sets A and B are not thin at any point of D (in
particular, they are dense in D).

Indeed, suppose that A is thin at a point a € D. By Remark 6.3.3(e), there
exist a circle C' C D such that C N A = @. Using a Baire category argument, we
conclude that there exist a non-empty open arc I' C C' and an open disc A C D
such that the 3—dimensional real surface I" x A is contained in S. Hence, since S
is nowhere dense and does not separate domains, we get a contradiction.

Consequently, by Remark 6.3.3(d), the sets A and B are locally regular and
hy p = hpp = 0. In particular, X =DxD.

Now, using the fact that A and B are dense in D, one can easily check that
all the assumptions of Theorem 6.3.1 (D = G = D) are satisfied with arbitrary
exhaustions D; := K(r;), G; = K(rj), 0 < r; / 1, which satisfy condition
(c). O

Corollary 6.3.5 (Cf. [Shi 1989]). Let D,G,A,B,X be as in Theorem 6.5.1.
Assume that S C X is a relatively closed set such that

o the set D\ A is of zero Lebesgue measure,

o for every a € A the fiber S, .y is pluripolar,

o for every b € B the fiber S(. ) is of zero Lebesgue measure.

Then for every function f : X \ S — C which is separately meromorphic on

X, there exists an fe M(D x G) such that f: fonX\S.

Proof. One can easily check that all the assumptions of Theorem 6.3.1 are satisfied.
It remains to observe that h’y , =0 (because h% , =0 on A and the set D\ A is

of zero measure). Hence X = D x G. O



Chapter 7
General cross theorem with singularities

7.1 General extension theorem with singularities

Our aim is to generalize Theorems 5.3.1 5.4.6, and 5.4.7, by dropping the assump-
tion that M is relatively closed.

Throughout this section D; C C™ denotes a domain of holomorphy, A; C
Dj is locally pluriregular, ¥; C A} x A;-' is pluripolar, j = 1,..., N, X :=
K((Aj, D)), T == GK((4;,D;,%;)L,), W € {X,T}, M C W is such
that for any j € {1,...,N} and (a ;, j) (A x AY)\ ¥; the fiber Ma,.av)
is closed and pluripolar If W = X, the we additionally assume that for any
j€{l,...,N} and (a},a}) € A} x A7 the fiber Mg:,. ) is closed.

The definition of a separately holomorphic function f : W — C extends easily
to the above situation (cf. Definition 5.4.1).

The main result is the following theorem.

Theorem 7.1.1 (Extension theorem for generalized crosses with pluripolar sin-
gularities). Let W € {X, T}, and let

j__C{OS(X\M), ifW =X
O(T\M)YNnC*(T'\M), ifW=T
be such that for every a € c(W)\ M there exist a polydisc P(a,r) such that for
ei))ery f € F there exists an f, € O(P(a,7(a))) with fo = f onP(a,r(a))N(T\ M)
( Then there exist pluripolar sets ¥y C A} x AY with ¥; C ¥, j=1,...,N, and
relatwely closed pluripolar set M C X such that:

o MN(T'Uc(T)) C M, where T' := GK((A;,D;,55)N),

. for any f € F there exists an f € O(X\M) with f fonT Ue(T)\ M,

o M is singular with respect to the family {f fer},

e ifforallje{l,...,N} and (a},a}) € A} x AY\%;, the fiber M(a . a7y is
thin in Dj, then M is analytic. .

The main “technical tool” in the proof of Theorem 7.1.1 is the following theo-
rem.

(1) Observe that if M is relatively closed in W, then an argument as in the first part of the proof
of Theorem 5.4.2 (cf. p. 112) shows that the above condition is satisfied with F := O(X \ M) or
F:=0(T\M)NnC*(T\ M).
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Theorem 7.1.2 (Glueing theorem). Let W € {X,T}, M C W, and F be as in
Theorem 7.1.1. If N > 4, then we additionally assume that Theorem 7.1.1 was
already proved for all (N — 2)—fold crosses.

Let (Dj k)52, be an exhaustion sequence for D; (in sense of Definition 2.2.5)
such that each D 1, is a domain of holomorphy and A := A;ND;; #3, k€N,
j=1,...,N. Put

Ao = A X X Aoy A= A X X AN,
ik :ZE'O(A;-k XAI-/ k)s
Xy = K((Ajx, Djr)ey) = X N(Dyg x -+ X Dy ),
T) := GK((Aj,k,Dj,k,Ej,k)jzl) =T 0 (Digx - X D),
Wi =W N (Dygx - x D) € { Xy, T}
Let =) == c¢(Wy) \ M.

Assume that for any k € N, j € {1,...,N}, and a € Y}, there exist:
o T =rpq, 0< T <r(a),

o relatively closed pluripolar set Sjk.q C @( ’., ) X Dj i X ]@(a}', ) =:Vjka,
e a pluripolar set P]kaCAJkXA/k\Ep
such that:

o P(a,r) CDip XX Dnpy,
° SjkaﬂTjkaCM, where

T .0 = {(2], 2, 2}) € (Agkﬂlp( 7)) X Dj x (A7, NP(af,7))
(;’ j)¢EJkUnga}CV}kaﬁTk,

o for any f € F there exists an fj;m € O(Vjk,a \ Sjk,a) with fjka f on
Goka \ M.

Then there exist a relatively closed pluripolar set Mc X and pluripolar sets
Py C Ay x AU\ %, j=1,...,N, such that:

o MNT C M, where T' := GK((4;,D;,%; UP)3,y),

° for any f € F there exists an f € (’)(X\M) with f fonT \ M,

o Mis singular with respect to the family {f fer},

o if each set Sj.q is thin in Vjy o, then M s analytic.

Proof. (Cf. the proof of Theorem 5.4.12.)

Step 1: We may assume that each set S, is singular with respect to the
family {};ka : f € F}. In particular, Sj i, N e(Tk) C M and fvj,k,a = f on
Vika N C(Tk) \ M.

Step 2: If N > 4, then for any 1 < pp < v < N, define an auxiliary (N — 2)—fold
CTOss

Yu,l/ = K((Aj, Dj)je{l,...,/L—1,/L—i—l,...,l/—l,l/—i—l,...,N})~
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We may assume that the number r = r , is so small that

P((a1, ..y au—1,Qu41,---Qu—1,0041,...,an),7) CY,,, 1<pu<v <N,
Step 3: Fix a k € N. Put
Vii= J Vika Sei= U Sikar fr= | fika
aEE} aEZ} a€EZ}

Then T, C Vi (the same proof as in Step 3 of Theorem 5.4.12).
The main problem is to show that

(*) for arbitrary a,b € =%, 4,5 € {1,..., N} with

Wigkab = Vika N Vjgy # O

v, &y

The proof of (*) is analogous as in the proof of Theorem 5.4.12 (and Theorem
5.3.4 for N = 2).

Wehaveﬂk,l—fjkbonW”kab\( Sik,aUSjkp) forall feF.

Step 4: Since the sets Sj o and Sj 1 are singular, we conclude that
Sika M Wijkab = Sikb N Wijkab,

which implies that the function }vk is well defined on Vj \ Si. Moreover,
e S} is a relatively closed pluripolar subset of Vi,

Sk Ne(Ty) C M,

]ik S O(Vk \ Sk),

fe=fone(Ty)\ M, N

St is singular with respect to the family {fx : f € F},

Sy, is analytic provided that each set S; 1 . is analytic.

Let Uy, denote the union of all connected component of Vj, N X r that intersect
Ty. Then X % is the envelope of holomorphy of Uy, ((the same proof as in Step 3 of
Theorem 5.4. 12) By virtue of Theorem 4.11.1(c), there exists a relatively closed

pluripolar set Mk of Xk, Mk N U C Sk, such that Xk \ Mk 15 the envelope of
holomorphy of Uy \ Sk. Moreover, if Sk is analytlc then so is Mk In particular,
for each f € ]—' there exists an fk € O(Xk\Mk) with fk = fk on Uy \ Sk. We may
assume that M, K is singular with 1 respect to the family { fk f € F}. In particular,
Mk+1 N Xk = Mk Recall that Xk e X. Consequently:

. = Uiz, M, is a relatively closed pluripolar subset of X with M ﬁc( ) C
M,

e for each f € F, the function f = Une; fk is holomorphic on X \ M with
F=fone(m\ A,

o Mis singular with respect to the family { f fery},

o if each set Sj 1, is analytic in Vj 1 q, then M is analytic.
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Observe that by Propositions 3.9.5 and 3.3.27, for anyj € {1,...,N} there
exists a plurlpolar set Q; C A’ x A7\X; such that for all (a}, J) (A} ><A”)\( ;U
Q;), the fiber M(a a) is singular with respect to the family {f( aj, -, ] al): feF}.

For any k € N and j €{1,...,N} exists a countable set I, C =} such that
=k C Uaelk P((L,Tk@). Put Pj = Uzo 1 Uaelk i k,a € PLP.

Our construction shows that f( aj,- J) = f(aj,-,a) on Dj \ Mia,- ) for
( ;, J) S A/ X A” \ (Ej UPj). Hence M(a7,~,a;) C M(ai"’“;,) for ( ;, J) S A/
AT\ (35U QJ U P ;). Thus we only need to put ¥ := ¥; UQ; U P;.

This completes the proof of Theorem 7.1.2. |

We move to the main proof of Theorem 7.1.1.

Proof of Theorem 7.1.1. We are going to apply Theorem 7.1.2.
_ Assume for simplicity that j = N. For each a € ¢(T) \ M let P(a,r(a)) and
fa € O(P(a,r(a)) be such that f, = f on P(a,r) N (T \ M), f € F.

For each by € Ay \ Xn, let My be the singular part of M, .y with reipect
to the family {f(by,-) : f € F} (taken in the sense of § 3.1.8) and let fy
stand for the holomorphic extension of f(bly, ) to Dy \ M Nb,- Observe that
Iz, = fa(bly, ) on Plan,r(a)) \ My, because fn = f(bly, ") = fa(bly,") on
Plan,r(a)) \ M@, ). In particular, My N P(an,7(a)) = @.

We are going to apply Lemma 3.9.6 with:

e ki=n1+--+ny_1, £l :=npn,

o D :=P(a)y,r(a)), Go :=Plan,r(a)), G := Dy,

o A= (Ay\Xy)NPlaly,r(a)),

o M(by) = MNJ’?W by € A.

Notice that {f; : f € F} C S, where S is defined in Lemma 3.9.6. Moreover,
for every by € A the set M (bly) is singular with respect to the family {g(b)y,-) :
g € 8}, because it is singular with respect to the subfamily { N, fE€F 1.

Consequently, by Lemma 3.9.6, there exists a pluripolar set P = Py , such
that the set

Myo:= [ {bh} x M(by)
by EA\P
is relatively closed in (A\ P) x G.
Consider the special 2—fold crosses

Y o= K(A\ P,Go; D,G) = (D x Go) U((A\ P) x G) C (D x Go) UT.

Since My q is relatively closed in Y y 4, we may apply Theorem 5.3.1 for the family
.7:1\/7(1 = {g S OS(YNﬂ \ MN,(L) : E|f€_7: L g= ]7(1 on D x GO} C OS(YNﬂ \ MN7(L),
and consequently, we get a relatively closed pluripolar set Sy, C Y N,q such that:
L4 SN,amZN,aCMN,aCMv
o for any function f € Fy 4 there exists an fAN@ € O(?N,k,a \ SN k,a) such
that .]?N,a =fonZnra\Mna,
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® SN k. is singular with respect to the family {fN,a : f € Fn.a}; in particular,
Sn.a NP(a,r(a)) =2,

o if all the fibers M (b)), by € A\ P, are thin (in fact, analytic), then Sy q
is analytic. R

Note that {a/y} x G C Y, Let (Dni)52; be an exhaustion of Dy by
domains of holomorphy. Then for every k € N there exists a p = ry .o € (0,7(a))
so small that Vi k. := P(aly,p) X Dy C IA’Nﬂ. Define Sy k.o := SN, N VN ka0
and ,fN,k,a = fN,a|VN,kya\SN,kya-

Obviously, an analogous construction may be dome for j € {1,...,N — 1}.
This is shows that all the assumptions of Theorem 7.1.2 are satisfied. O
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Generalized Hartogs theorems



Symbols

General symbols

:= the set of natural numbers, 0 ¢ N; Ny :=NU{0}; Ny :={neN:n >k},
:= the ring of integer numbers;

:= the field of rational numbers;

R := the field of real numbers;

C := the field of complex numbers;

Re z := the real part of z € C, Im z := the imaginary part of z € C;

Z := x — iy = the conjugate of z = = + iy;

|z| := /22 4+ y? = the modulus of a complex number z = x + iy;

A™ := the Cartesian product of n copies of the set A, e.g. C™;

set A C C;

r<y<=z;<y;, j=1....,n = (z1,...,Tn), Y= (Y1,.--,Yn) € R

A, = A\ {0}, e.g. C,, (C™),; AT := (A", eg. C

Ay ={acA:a>0},eg Z,, Ry A} —(A+) e.g. 2, R
A_:={acA:a <0}

Asg:={a€A:a>0},eg Ry AL := (A50)", e.g. RY;

Acg:={a€ A:a<0};

R_ :={-o0}UR, Ris :=RU{+o0};

A+B:={a+b:a€ A beB},a+B:={a}+B, ABCX,aeX,Xisa
vector space;

A-B:={a-b:ac A, beB}, AcCC,BcCCm

O N Z

0, ifj#k
Sik =1 1 j 7 = the Kronecker symbol;

1, ifj=k
e= (e ,en) := the canonical basis in C", e; := (6;,1,...,0;n), j=1,...,n
1=1, (1,...,1)6N”;2::2-1:(2,...,2)EN";
(2,w) := >77_| 2jW; = the Hermitian scalar product in C™;
w :(ml,.. wn), w=(wy,...,w,) €C
Z-w = (zlwl, e ZpWn)y 2= (21, 2n), W= (W1,...,wy) € C
e = (e”,...,e"), z=(z1,...,2n) € C"

1/2

Iz]| := (=, z>1/2 = (Z?Zl |zj|2) = the Euclidean norm in C";
I2lloo := max{|z1], ..., |zn|} = the maximum norm in C";
lzlli :== |z1]| + - - + |2n| = the ¢*norm in C™;

#A := the number of elements of A;

diam A := the diameter of the set A C C™ with respect to the Euclidean distance;
conv A := the convex hull of the set A;

A € X :<= A is relatively compact in X;
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pry: X xY — X pry(z,y) ==z, or pry:XO@Y — X, pry(z+y):=uxa;

Euclidean balls:

B(a,r) = By(a,r) :={z € C": ||z—a|| < r} = the open Euclidean ball in C" with
center ¢ € C" and radius r > 0; B,(a,0) := &; B(a, +o0) := C";

B(a,r) = Bu(a,7) := By(a,r) = {z € C" : ||z — a|| < r} = the closed Euclidean
ball in C" with center a € C" and radius r > 0; B,(a,0) := {a};

B(r) = B, (r) := B,(0,7); B(r) = B,(r) :=B,(0,r);

B =B, := B, (1) = the unit Euclidean ball in C™;

K(a,r) :=B(a,r); K(r):=K(0,r);

K(a,r) :=Bi(a,r); K(r):=K(0,7);

Ka(a,r) == K(a,r) \ {a} K. (r) = K.(0,7);

D:=K(1)={)\€C: |\ <1} = the unit disc;

T := oDy

Polydiscs:

P(a,r) = Py(a,r) := {2 € C" : ||z — a]l < r} = the polydisc with center a € C"
and radius r > 0; P,(a,+o0) := C™;

P(a,r) = Pu(a,r) :== Py(a,7); P,(a,0):= {a};

P(r) =Py (r) :=P,(0,7);

P, :=P,(1) = D" = the unit polydisc in C";

P(a,r) =Py(a,r) := K(a1,r1) X - - x K(an,ry) = the polydisc with center a € C™
and multiradius (polyradius) r = (r1,...,7,) € RZ;;  notice that P(a,r) =
P(a,r - 1);

P(r) =Py (r) :=P,(0,7);

oP(a,r) := 0K (a1,m) X -x 0K (an,r,) = the distinguished boundary of P(a, r);

Annuli:

Ala,r=rt) ={z€C:r < |z—a|<rt},aeC, —c0o <r~ <rt < +o0,
rt > 0;if r~ <0, then A(a,r,7") = K(a,r"); A(a,0,77) = K(a,r") \ {a};
A(r=,rT) = A0, r—,rt);

Laurent series:

2% =220 2= (21,0, 2) €ECM a = (ag, ..., ap) €ZM (00 :=1);
ali=alo!, a=(a,...,a,) €27,
laf == |aa| + -+ |om|, a=(a1,...,0p) €ER™;

(5) = clomtifeBt) o e 7, B € Zy;

(g) = (gi) . (g:% a=(a1,...,an) €2, B=(b1,...,0) € Zi;
Functions:

[flla:=sup{lf(a)|:a € A}, f: A —C

supp f := {z : f(x) # 0} = the support of f;

P(C™) := the space of all polynomials f : C" — C;

Py(C™) :={F € P(C") : deg F < d};

C1(£2) := the set of all upper semicontinuous functions u : 2 — R_;

aa—zfj(a) = %(%(a)—i%(a)), %’;(a) = %(%(a)—i—i%(a)) = the formal partial

derivatives of f at a;
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gradu(a) := (%(a), e %‘(a)) the gradient of u at a;
D = () 00 () 0 () 0o ()
C*(X,Y) := the space of all Ckfmapplngs f X —Y, keZi U{oc} U{w} (w
stands for the real analytic case);

CF(2) :=CF(n,0);

CH(2) 1= {f € CH(Q) s supp f € 2}

LN := Lebesgue measure in RY;

LP?(£2) := the space of all p-integrable functions on (2;

|l Izr () := the norm in LP(§2);

LP(£2,loc) := the space of all locally p—integrable functions on §2;

O(X,Y) := the space of all holomorphic mappings f : X — Y/

O(2) := O£, C) = the space of all holomorphic functions f : 2 — C;

g—gj(a) = laignao M = the j-th complex partial derivative of f at a;
D® = (%)m 0---0 (a‘zn )*n = a—th partial complex derivative;

LY (02):=0(2)N LP(Q) = the space of all p-integrable holomorphic functions on
2 ;

H>(£2) := the space of all bounded holomorphic functions on (2;

H(£2) := the space of all harmonic functions on {2, 2 C C;

SH({2) := the set of all subharmonic functions on 2, 2 C C;

PSH(X) := the set of all plurisubharmonic functions on X;

Lu(a; &) == E?,k:l %(a)szk = the Levi form of u at a.

List of symbols
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