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PREFACE

These notes reproduce almost verbatim a course taught
during the academic year 1962/6%. The original notes,
prepared by Joan Landman and Marion Weiner, were distributed
to the class during the year. The present edition differs
from the original only in that many mistakes have been
corrected. I am indebted to Miss Weiner who prepared this
edition and to several colleagues who supplied 1lists of
errata.

I intended the course as an introduction to the modern
theory of several complex variables, for people with background
mainly in classical analysis. The choice of material and the
mode of presentation were determined by this aim. Limitations
of time necessitated omitting several important topics.

Every account of the theory of several complex variables
is largely a report on the ideas of Oka. This one 1is no
exception,

L.B.

Zurich, July 8, 1964,
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Chapter 1. Basic Facts about Holomorphic Functions

§1. Preliminaries

We introduce the following notation:
R denotes the field of real riumbers.
€ denotes the field of complex numbers or the complex plane.
Cn denotes the space of n-tuples of complex numbers .
(zl, .. .,zn) =z C° may be considered as an n-dimensional vector
space over € or a 2n-dimensional vector space over R. c’ may there-

fore be identified with ]lgzn, which induces a topology in €*.

A. By function, we will mean a complex-valued function f unless

otherwise stated, for instance f: Cn-»C.

Definition 1. Let DC c” be open and f(zl, cee, zn) a function de-

fined in D. f is said to be holomorphic in D if, for every (zl. el zn) €D

andeachj =1 2,...,n,
. f(zl,...,zj-l-h,...,zn)-f(zl,.,.,zn) of
1im h = —a;-
In]-0 j

exists and is finite.
We remark that f is holomorphic (in D) if it is holomorphic in
each variable separately. Note that f is not assumed to be continuous.

Hence we obtain immediately:

Property 1. If fl and f2 are holomorphic in D) then fl + fz, fl -fz,

ff,, and, if f, # 0, fl/ f, are holomorphic (in D).
Property 2. If {fj} is a uniformly convergent sequence of holo-

morphic functions in D converging to f, then f is holomorphic in D.

That is, functions holomorphic on an open set form a ring which is closed

under uniform convergence.



Property 3. Maximum Principle. If f is holomorphic in D and
has a local maximum at a point p& D then f is identically constant in the

component of D containing p.

Definition 2. Let KCC" be any set. Let f be defiﬁed in K. Then
f is holomorphic in X if and only if to every point p of K there exists an
open set DC ¢" such that pe D, DNK is closed in D(i. e. D-K is open in Cn),
and there exists a function F holomorphic in D such that F = f on DNK.

B. We remark that for functions f: Rn-olR., the existence of all partial
derivatives of / axi, i=1,...,n does not imply f is continuous. However,
the corresponding theorem for functions of several complex variables is
true.

Theorem 1 (Hartogs). Every holomorphic function is continuous

(in all variables simultaneously).
Proof. Given in § 3.
For the remainder of this section and Section 2, assume Theorem 1.

Definitions 3. A closed polydisc about z0 in € is the set
e - = < - .
((zl, , 2 )| Iz z. |<rJ, j=L...,n; 0K< rJ eo} denoted {Iz z |< rJ}
An open polydlsc in €" 1s the interior of a closed polydisc,
i.e. theset (z,,...,z2 )| |z.-z.|<r,j=1...,n 0< r.<w]}, denoted
(o ozl fo -2l < v <o)

(Iz;-2)l< r.}.

The bo darz of a polydisc is the set

= 201 . .
{(zl,...,zn)‘ |zj-zj‘§rj, j=L...,n, andlzj zj' rJ. for someJ}.

The distinguished boundary of a polydisc is the set
0 53
(z,,...,2 )|z, =2  +r.e’), 0<{. <27},
{ 1 nl i3 =] }

Note that the dimension (over R) of the boundarjy of a polydisc is 2n-1,
while the dimension of the distinguished boundary is n.

V'e remark that proofs will be exhibited for the case n = 2. The
proofs in the general case are similar and may be completed via an induction

argument,



Theorem 2 (Cauchy Formula). Let f(z.,..., zn) be holomorphic
0 0
in the closed polydisc §|z.-z.|{<r.}. Thenfor{|z.-z.|<r.{,
in the closed polydise {|2 -/} < r}]. Taen for{lz; -/l< )}
f(z1 ..,z)

n
s
s 0 1 g_z o fE . K N L

Kl-zl =r |§n-zn| =r, > 3

Proof. (for n = 2). We may assume z0 =0. f(z.,z,) is, for fixed

1”2
zZy |22| <r in lzll <r. ';[_‘hus by Cauchy's
Formula

a holomorphic function of z %

2 1

1 1
f(z z ) * 5 f ?21- f(§1, zz)dt1 .

Similarly, f(§1. 22) is a holomorphic function of z, for each §1 . Applying
Cauchy's Formula to f((l, zz) gives
ft2)) = 57 J —L—{i‘f f(C!)d!}d(.
1'72 2ri t’l z 2ri X -z, z2 27772101
gyl ey eyl =x,
By Theorem 1 we may write this as a double integral

. L 1
fla,z,) = (537 f S T 1 e
A 175272

Corollary 1. A holomorphic function has derivatives w.r.t.
X and ¥y i=1,...,n, of all orders, i.e. holomorphic implies c”®.

Proof. Differentiate under integrals in Cauchy Formula as many

times as desired.
Corollary 2. f holomorphic implies 9f / 853. holomorphic.

Corollary 3. Let f be holemorphie in the polydisc P = { | zj-z;.)lg‘rj}.
and let || < M on P, then



v,+...tv ' '
( a1 nf ) <v1....vn.M
v, Vv v - v v '
n/ 0

1
azl azz ...azn XA r

where zo denotes .the center of the polydisc.

In Corollary 3, fis assur_ned to be holomorphic. in the open polydisc
and continuous on its closure. Without assuming continuity on the boundary
the inequality still holds with M = sup |f|.

Corollary 4. If f“ are holomorphic functions in DC €" and f“-» f
uniformly in D then afu/ azj -of/ azj normally, i.e. uniformly on com-
pact subsets of D. ‘

Corollary 5. Power Series Expansion. Let f be holomorphic in
int P, then
v v
0,1 9, n
. = - ooz - >0,
f(zl‘ 'zn) z avl. . .ur(‘zl zl) (zn zn) ' ,,1_.0

which converges absolutely and normally in the open polydisc.
Proof. Same as in one variable. Expand 1/(§j-zj) etc.

Note. Determining the domain of convergence of a given power

series is not trivial. We will do it later.

Corollary §. (Continuation of 5)

Proof. By Corollaries 4 and 5.

Corollary i. The power series expansion of a holomorpiic func-

tion is unique.
Proof. Corollary ¢ gives the coefficients.

Corollary 8. If f is holomorphic in a domain Dandf= 0 in a
neighborhood of a point of D, then f= 0 in D.

This is the basis of analytic continuation.



§2. An inequality
Definition 4. A continuous real-valued function u, of two real
variables, in a plane domain A is said to be subharmonic if, for any
closed disc A in , and for the corresponding function ¢ such that

¢ =u on the boundary of 4, and ¢ harmonic in A, u <¢ inA.

Properties of subharmonic functions.

1. If u and v are subharmonic then max (u, v) is subharmonic.

2. Being subharmonic is a local property, i.e., if a function is sub-
harmonic in a neighborhood of every point of a domain then it is subhar-
monic in the domain.

3. A harmonic function is subharmonic.

Remark. If f(z) is & hiolomorphic function and € > 0 then

log max (If(z)|, €) is subharmonic.

Proof. At a point where |f| < €, and thus in a neighborhood of
this point, log max (|f(z)], €) = log € = log (constant) is subharmonic. At
a point where |f| > €, log max (Ifl, €) = log Ifl which is harmonic since
f # 0 and therefore subharmonic. At a point where If | = €, and in a disc
such that |f| > €/2, max log (|f], €) is also subharmonic and log max
= max log. v

Theorem 3. Under the hypothesis of Theorem 2 and for
i ; .
) .

r.=1,z.=p.e
J J

] 2r 21 2
1.n 2 1-pj
loglf(z,...,z)|<(-—) H .
1 n =2 j=1 1-2p. cos (¢ .-6 )+p2
o o ! j PP P
(n-fold)

iel ié’n
log [fle *,....e )’d{il...den
Proof. Take e > 0. Let g = log max (lf(zl, cee, zn)l, €).
If we fix all variables but one, 8¢ is a subharmonic function. We will

prove the theorem for n = 2. Thus



g * log max (|f(zl, zz)l, €). Fixz,, th.en ge(zl, zz) is a subharmonic func-

i
tionof z,. Thusforz =p.e 1

1 1 1

1 ( 1"’? 6 ’

g(z,2 )< gle “,z,)df, .

€e'l"2 =27 2 ®¢ 27771
0 1-2p1 cos (¢ 1-6‘1)+pl

i0 i¢
For fixed 61, ge(e A 22) is a subharmonic function of 2y =Py 2.
Thus

27

2
1 -0
g (z,z )<—-f
2% Sy, 3
0 l-2p1 cos (¢1 91)"'01

27

2
1-p i6. i6
{%f 2 5 ge(e l, e 2)d62}dsl .
o l-2p2 cos («152~62)+p2

Using the continuity of f, write this as a double integral. But

loglf(zl, zz)lf_ ge(zl, 22)’ obtaining

log |f(zl, zz)l

27 27w 2
2 1-p. 6, i6
< ()2 T ] gle Le D, .
- 2r 21 1-2 s(6-¢)+2€ - 172
0 o T TR o8 TRy

Let €~0, then gewb log |f I . Therefore by the Lebesgue Monotone Conver-
gence Theorem

log If(zl. zz)l

27 27 2
2 l1-p . 6. i€
< ()2 TT ] log lite Le %)|ac.as, .
= j=1 1-2p, cos (0, -¢ )+p2 12
0 0 i I |



§ 3. Proof of Hartogs' Theorem 1

Use inductiun on n. The theorem is trivially true forn =1. As-
sume the theorem, and therefore all corollaries and following theorems

for n-1 variables.

Osgood' s Lemma. Let f(z . zn) be holomorphic for
|zJ| < RJ 0< RJ <. Then there exists { such that |§| < Rl' andp> 0

such that p < R1 -|§|, and a number M, such that If(zl,...,zn)l < M for
|zl-§l <p and lzjl <R for j> 2.

Hartogs' Lemma. Let f(zl. ey 2 ) be holomorphic in Iz I < RJ

and bounded for |z -L" < p and Iz l <R, i j>2. Thenfis contmuous in

|z|<RJ.

1

Proof of Osgood' s Lemma. Define for Izl < Rl’

m(z) = max |f(z, Zgiees zn)l . This maximum exists by induction

z.| <R,
=
i2 2
hypothesis. Denote by XN -{ | l I < Rl and m(z) < N}. Then
( ' I l <R} N Now?t is closed, for if a @ A, and a_-a,
1 r N r
m(a) = max If(a,zz, .. ..zn)| max lim If(a 1Zg ..,zn)l <max N =N.
r—o
For instance, by the Baire Category Theorem, one of the x N contains
a disc. For z, in this disc f is bounded.
Proof of Hartogs' Lemma. We may assumeR_ =1, j=1,.
€=0, and M = 1. LetDl={(zl,...,z ) Iz |<p<y, lJ | <1,. |z |<1}
Let z0 = (z;) yeoes zg) andz = (zl, cees zn) be interior pomts of Dl' Then
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0 0 1 0 0
|f(zo)-f(zl).| < |f(z , zg, cees zn)-f(zlf Zgeeees zn)l + ...

1 0

1.1
+ |f(zl, Zyo oo a2 1020

)-f(zi, s z:) |

-sz'zi ) . TR
(0-12) 1M -|2)])

* gz | ——52—y
A-lz ha-lz 1)
by the Cauchy integral representation on 1 variable and the existence of
the maximum of |f ] in D.. Since all the denominators are bounded away
from zero as il»zo, |f(z]o)-f(zl)|-0 as zl-zo, proving the continuity of
fat zo. The arbitrariness of the choice of zo implies the continuity of f in
the interior of Dl' '

Now fixz,,...,2 ; |z| < 1. Then
n’ i

2
1 )= Taf,....z) for |z]<1
ZpZgreeenZy -u=oa" 9oz )2, fo LB
where
Z
8 @y eennz ) = (2 .
v 2 N ViN\aV /4 =0
177
by the holomorphicity of f in z) Near zZ) = o, (zl, . ...zn) lies inDl and

here f is bounded and continuous. Thus

f(¢, Zgseens zn)

av(ZZ' cees zn) el dt

RTa
HERT I

and therefore the a are holomorphic. By our induction hypothesis, the
a, are continuous, and the proof will be complete once we show that the
power series converges normally for |z1| <1l. Now,

1

. v
lim sup I av(zz....,zn)l <1
Vo0



and

1
v

p

since the series converges for Izll < 1+n, for somen> 0. Set

|av(zz... ..zn)l < B
/\-{zj=e |0§¢j<21r,3 = 2....,n}.
/\vs{(zz....,zn)

Then /\v is open in /\, and~ lim m( /\y) = 0, where m(/\v) denotes
Voo
the measure of Av' For, if we let

00
QJ:.!‘JJ/\"

1
Iav(zz. cves zn)lv > 1, (zz, ooy zn)é/\}.

and note that
Q2% n
and
m(Ng) = lim m(S,)
5 e
then
N C_j = ¢ (the empty set).
Thus
m(an) =0 = lim m(C.TJ.).

Jjoo
Since Q.D/\., m(/\ ,)=0.
T i .

Nowletzj=rje J, rjng<l,j=2,...,n. By Theorem 3,

1
—1log|alz,...,2 )|
v v 2 n i6 i6

2 2 n
n (l-r.)logla e ....,e M|
$-_1-!T:l—f”‘j‘l I 1 y doz...den
v(27) N\Y =2

2
1-2r. cos(¢ .-6 Hr,
ch (¢J J)+rJ

i6

2 0y n
n (-r)logla(e %...,e )l
—ln—_l—ff]—r 1 v 3 d02...d9n.
v(2x) AJ j=2 l-2rj cos (¢j-6’j)+rj

v

IA
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Furthermore 2
l-rj 1-r’, 1+r,

) . 1 —_2
< 2 - l-rj S 1T

2 -
1-2 =0 )+r’. l-r.
rj, cos (¢J J) rJ ( rJ)

and Iavl < 1/pv. Hence,;

1

v log n-1
1 1 p l+r
> log |a|< T T = J;.\.fdez...den
v
n-1
1 l+r | Y
= (—21—-);-:1— (1_-1") log ; m(r'\v) .

Therefore for € > 0 there exists a number N(€) > 0 such that if v > N(e)
then

1 1 . le
" loglavl < elogp -log(p) R

Iay(zz....,zn)l< fe-;for |zj|§r< 1, j=2,...,n, v> N(e).

Hence, the series converges normally for |zj| <r<1j=2...,nand
€
|21| <p.

§ 4. Holomorphic Mappings

In this section we make several remarks about the mappings deter-
mined by holomorphic functions.

Note that: f is holomorphic if f€ c” and

of ;o
a—i—.- = 0 » ]-1,...,11,
]
where
o8 A, of

9z.  ox 1oy,
J J



1

We remark that, forn > 1, these criteria for holomorphicity form an

overdetermined system of equations. Many of the phenomena associated

with functions of several complex variables arise from just this fact.
Observe that as an easy consequence of the above remark, a holo-

morphic function of holomorphic functions is holomorphic.

Definition 5. Givenf.,: D --C, DCCn, i=L...,m denotel

=g, f=31 ri i ing i f. is holo-
fj(zl, , zn) KJ f {fJ} is a holomorphic mapping _}f each : is holo
morphic in D.
Note also that if

. = E.+in.; 2z, = x, +iy.,
§ = §j*ingizy = x4y

then 2
a(gl'...'gn; nlo'°'onn) a(§10°"0§n)

J = - .
a(xl,...,xn;yl,....yn) a(zl.....zn)

In particular, J > 0, i.e., a holomorphic mapping preserves
orientation. If J# 0, the map f is locally 1-1, and has an inverse, f-l.
which is holomorphic. Hence, a holomorphic mapping such that J # 0
carries holomorphic functions into holomorphic functions.

However, under a holomorphic mapping it is possible to map a
bounded domain onto all of €. There is no simple geometric charac-
terization of a holomorphic map (e. g. angle-preserving), and no Riemann's
mapping theorem. Hence, there is no canonical domain, like the disc,

and we are forced to consider arbitrary domains.
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Chapter 2. Domains of Holomorphy

§1. Examples and definitions

Definition 6. Let D;’pe“c Dgpe“c: ¢”. If f holomorphic in D

1
implies that there exists an F holomorphic in D2 such that F‘D1 = f, then

D, and D, are said to exhibit Hartogs' phenomenon.

Note that this does not occur for n = 1.

A, Examplel (n =2). Let

D= {(z, w)

and

-
Izl<l. |w|<1 and not Izli% and les.;.}

D* = {(z, w)

|z| <1, le < 1}.

*
We claim that D and D exhibit Hartogs' phenomenon. Let f(z, w) be holo-
morphic in D. Let

D {(z.w)l % <lz] <y, |w] < 1}.

D'C D. Hence

f(w, z)

2 i
z aj(w)z for fixed w, |w| <1

e and%< |zl<l.

Now the aj(w) are holomorphic in w, for

"
ol
B
ol

=
<|2
[}
-~

aj(w)
1,1z
lzl=3+ 55
Let
D" = {(Z’W)I %< |wl <1, |z] < 1}.
D"CD, here:
@ .
flw,z) = = b.(w)zJ.
J=0

For w, z such that -zl < le <1 a.nd%< Izl <1, the series must agree.

Therefore
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aj=0 for j<O0 .

[+) .
Thus f(w,z) = Z a.(w)z], for every fixed w, le < 1 and for every
*
z,]z| <1, i.e. inD .

A similar proof gives the holomorphicity in w.

Corollary. (Hartogs' Theorem). A holomorphic function of at least

two variables cannot have isolated non-removable singularities.

2
Exercise. Consider the domain 0 < r < Izll +... +|zn|2 <L
Show that, if f(zl. oo zn) is holomorphic in such a spherical shell, then it
is holomorphic for 0 < |zl|2+. . .+|zn| 2.1

Theorem 4. (Hartogs' 2nd Theorem). Let DC c” be any domain

homeomorphic to a ball, and bounded by a sufficiently smooth surface Z.
Then if F is holomorphic in a neighborhood of Z, F can be continued ana-
lytically over D.

V/e remark that this is a theorem in overdetermined systems, and

shall not be proven here.

Example 2. LetD = \(z, w) |w|< ] |< ljui(z, w)l < | |<1 |w|<1}
Then if f is holomorphic in D, f is holomorphlc in D {(z w)l I w|< 1, lz|<1}
(Proof as above.) Note that D is a cell.

open

B.  Definition 7. Let D®®"c €" and £ € boundary of D. £ is said to be

an essential boundary point of D if and ohly if there exists an f, holomorphic

in D and singular at £ (i. e., f is not the restriction of a function holomorphic

in a_domain D1 2D such that ISGDI.

open

Definition 8. D cc” is called a region of holomorphy if and only

if there exists a function f, holomorphic in D, and singular at every boundary
point.

We shall show that, if every boundary point of D is essential, then D is a
region of holomorphy.
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§ 2. Convexity with respect to a family of functions

A. Let X denote a topological space and Fa family of real or complex

valued continuous functions defined in X. Let KCX.

Definition 9. The F ~hull, ’12 ‘/71. , of K is the set of points p of X, such
that for each function f& F which is bounded byl onK, |f(p)| <L
We’ remark that ﬁ 7 is closed in X.

Note: If ?l and ?2 are families such that ?IC F o then
A N
K =K .
# 3,
Definition 10. X is called F-convex if K compact implies that R }

is compact.

Example. Suppose X = p°P¢ - g" , and F is the family of functions

which are linear on every component of D. Then D is F -convex if and only
if every component of D is convex, in the ordinary sense.

If ¥ consists of linear functions, then D is F -convex if it is convex.

Lemmal. LetKcC". Then K bounded implies ﬁ 4 bounded, where
3‘ is the family of monomials in zl; el
Proof. Let I-.'ii = sup Izi|. which exists and is finite as K is bounded.
z %€ K
The functions gi(z) = N:— e F ,i=1...,n. But lgi(z)l <1for every z€ K,

A, 1 AN S A
hence Igi(z)l <1for every z€ K]- . Hence, if z€& K; , l |z| li max Mi< ©,
i.e. K 7 is bounded. '

B. Note. Cn is a normed vector space under the norm,
I Izl I = max (Izll, cee, lznl) (and under many norras too, of course).
Definition 11. Let DP"cc™. The distance of a point z from the
boundary of D, denoted by A_(z) or simply A(z), is A(z)= inf | |z-'s‘| |
. D
¢ € bndry D

A(z) satisfies a Lipschitz condition with constant 1.
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Proof. A(z') = inf ||z’ -§H§inf (zr=z"|| + | |z"-¢| D
¢ ¢
< Hat=2" | +inf [2"-e] | = [|2* -2"| | + A"
¢

Therefore |A(z')-A(z")| < | |21 -2"] |

Definition 12. ¥or any set KC pP et .

ALK) = inf A (2) .
z&€ K
C. Note. KC CD, read 'K is relatively compact in D", is defined to
mean that the closure of X is conipact and contained in D; hence A(cl K)>0.

opPen - o , then the following

Theorem 5. (Cartan-Thullen). If D
conditions are equivalent: ‘
(i) D is a region of holomorphy.
(ii) All boundary points of D are essential.
(iii) If KC CD, then A(K) = A(K), where K = K  and # is the family of
all functions holomorphic in D.
(iv) D is holomorphically convex.

A
i.e. KT Dimplies K= ZD.
Corollary 1. If n =1, then every open set is a region of holomorphy.

Corollary 2. D is a region of holomorphy if and only if every compo-

nent of D is a domain of holomorphy.

Corollarx 3. If D =P and D - € are domains of holomorphy, then

DIX D C(I!p Yisa domam of holomorphy.

Corollary 4. If Da is a region of holomorphy for every a in some set
A, and if /) Da is open, then rFDa is a region of holomorphy.

Proof. Assume KC (N D, ); then KC D, for every a. LetK,
denote the hull of K in D with respect to all functions holomorphic in Da'
Ka is compact by assumpnon ano KCK . Thus KC' ﬂ K , and hence K

is compact. Since KC nD KC =(i ]D ).
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Note. In general, a union of regions of holomorphy is not a region
of holomorphy. However, if the regions are nested, i.e. DICD'ZC. NN
then their union is a region of holomorphy. This, however, we will prove

much later.

Coroulary 5. (Exercise) If D is geometrically convex then D is a

region of holomorphy.

D. Proof of Theorem 5. If D = € the theorem is easily verified,

Therefore, assume that D is a proper subset of c".

(i) implies (ii) by the definition of a region of holomorphy.

(ii) implies (iii). Assume (iii) does not hold. Then KC & D and
A(K) # A(f(). Let A(K) = M and A(ﬁ) =m. Thenm< M as K DK. Choose
r, R suchthat m< r < R < M. Thus, there exists a 2€ K such that A(Z)<r,
Let E = z,gK{z' | |z-z' || < R} ThenE is compact. Let f be a holo-

morphic function in D. max |f(z)| = u exists and is finite as f is continuous
~ z€ K
and K compact. If z€ K then

v+, .ty ' '
3 1 n A < ul....un.u
v v - v+.. .t T
z .

1 n
azl .. .azn

Since this inequality holds for all z€ K it holds at every point of ﬁ, and in
particular, at 2. Thus if f is expanded in a power series about 2, the seriec
will convergeinside a polydisc of radius R about ? However, this polydisc
contains, in its interior, points on the boundary of D. Therefore, these
boundary points are not essential.

(iii) implies (iv). Assume that KC € D. Then K is bounded, and
hencef( is bounded, by LLemma 1 above. 12 is closed relative to D, but since *
A(K) = A(ﬁ) > 0, ?{ is compact.

(iv) implies (i). Let B be any component of D. Cozstruct a

sequence of sets Dj' j=12,... such that DIC c ch c D3. ..CccDand

z€ B, | lzll <j, AB(z) > 31-} ). Let {pJ} be dense

D=VD, (e.g D, ={z
J ] J
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in B (‘ p. ¢ could be chosen ;s the set of points of B whose coordinates in
R2n are rational). For each j we find a pomt z E D such that ”z -p ”<A~(p )
and zJ& D.. We can find such a point since I)J doesn‘t come arb1trar11y
close to the boundary of D Now, for each j, there exists a function £, holo-
morphic in D, such that |fj| <1lin Dj and |fj(zj)| = Aj > 1. Next choose .
integers Nj > 0 such that

0 -N.

A, J<w,

1 3
Let

© f.(z) Nj j
glz) = TT l-(—J-—f (zj) ) .

Each term of g(z) is holomorphic. In fact, the infinite product converges

normally to a function not indentically zero. For

f.(z) f.(z) ,
A | < 1for eachj, inD,, implies that | &— | < 1for allj, in ..
fj(zj) j fj(zj) 1

Furthermore, recall that a necessary and suffig.:oient condition for the ab-

solute and uniform convergence of the product '];[' (1+¢ J.) is the uniform con-

vergence of the tail end of the series Z |¢ | Now for z€D ,, j>j',
f(z) | N,  -N. 1 -N, J
fL(-E-) < A, ), and by construction Z jA. J<w . Therefore gis
s

a holomorphxc function in D
""We claim that g cannot be continued holomorphically to a domain

D1 DE‘ For, at zj, g has a zero of at least the jth order. Thus
glz) = 0(”z-zj”j) as z - zj.
So, the derivatives of g up to order j vanish at z.. On the other hand,
q is a boundary point of D then there exists a subsequence {p }of {pl }
which converges to q. This means that the pJ. come arbitrarily close to
the boundary, i.e. A(pj ) = 3. This implies Zhat ||z -pj || - C and hence
v v v

that zj < q. Therefore if g is holomorphic at q, all the derivatives of g
v
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vanish at q. This can only happen if g = 0, a contradiction. Hence g is

not holomorphic at any boundary point.

Note. Under a holomorphic mapping, a region of holomorphy is

mapped into a region of holomorphy.

§ 3. Domains of Convergence of Power Series

A. In this section we consider power series of the form

") c kl kn
z ... kE:o a.kl B kn(zl-tl) . (zn-§n) (1)
n

470

for ¢ = (tl, e, :n) fixed. We say that the series converges at a point
zs= (21, ee, Qn) if there is some arrangement of terms for which the series

converges.

Note. In the sequel, we take § = 0 ; i. e. we deal with series of the _

form
) k

20
1
Z ... Z Z, ...2
k=0 kn=0akl”'kn 1 n

n

(1)

Abel's Lemma. If the series (1') converges at some point
z = (21, z gt Qn), then the series converges uniformly and absolutely in

every compact subset of the polydisc {|zj| < |23|}
Definition 13.

(i) A point { is said to be a point of normal convergence if there is

a neighborhood of § in which the series (1')converges absolutely and normally

(ii) The convergence domain of the series (1') is the set of points of

normal convergence.

From the definition, it is clear that a convergence domain is an open,

connected set, star-shaped about the origin.
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Corollary. If D is a domain of convergence of the series (1') and

(zl.zz,.. 2 )€Dthen (a LR .anzn)éD where Iail <l,i=l...,n

Definition 14. A domain with the above property is called a complete
circular domain.
If lail =1, i=1...,n, the domain is called a circular domain.
Intuitively, a domain is circular if it is rotation-invariant, and com-
plete circular if it has no "holes".
To any complete circular domain Dc€” we associate a set D*Cln
as follows: D* is the image of D under the mapping (z Zgeers2 )..
(lzl|, lzzl. Iz |) To D* we associate the set log D*, whxch is the image
of D* under the map (Izll, eev |zn| )~ (loglzl', vy loglznl), defined for
lzil #0,i=1...,n

2, . .
Example. If DCC is the complete circular domain {I zl| <l |z 2! < l},
then D* is the unit square and log D* the third quadrant, i.e.

log |z
D* d log D*
is ‘fzﬁ and log D* is r/jlsﬁoglz
B. Theorem 6. Let D be a complete circular domain. Then the follow-

ing conditions are equivalent:
(i) D is a domain of convergence.
(ii) log D* is convex.

(iii) D is a domain of holomorpiy.
Examgle Let DT C be the complete circular domain
(|z|< 1, lz |< or lz|< , |22|< 1 I). D* is then
log |z,

%2
1
% and log C* is

0 %1 lzll
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But, by Theorem 6, if there is a power series which converges nor-
mally in D, log D¥ must be convex. Therefore the power series must actually

converge in

log |z,|

log (-2}-)

1

0 log |zl'. and thus in
log (3)

Hence D exhibite Hartogs' Phenomenon.

Proof of Theorem 6.

- i¢ 1 i¢ n i91 i6 n
(i) implies (ii). Let (rle seeesT€ ) and (P.le e Rne ) be

arbitrary points of D. Then log D* is convex if‘ and only if
_, i iy i¢ i¢
(r"'R1 Ye 1.....raR1 Ye n)e Dfor eacha, 0<a< 1. Since (r,e 1,...,r el
171 nn 1 n
is a point of normal convergence |ak Kk l< A m where
ek

n
(rl+el) ces (rn+el)
el > 0 and A is some constant. Therefore for 0 <a <1,
a i¢ i¢
a A C . . 1
Iakl. B kn' < p akn . Similarly, since (Rle yeees Rne

)
(r1+e1) een (rn+€1)

is a point of normal convergence, we have 1t'or €y > 0, B some constant, and
-a
0<e <1,]a

K Il'a < B . Let

kl' ko (( k1 k )l-a

n
R1+62) . (Rn+ez)

p. = PRI

i 7Ry ,1i=1,...,,n. Then, |a

k |a|ak N -a='a'k1 k_|
kl n TR ook
constant

& ———— A} i= - .
$x X » wherep.>p,i=1...,n
A A n
pl .

Py
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(ii) implies (iii). By Theorem 5, a sufficient condition for (iii) to
hold is that D is convex with respect to the family Fof all the functions
holomorphic in D If D is convex with respect to a subfamily of Fthen D
is convex with respect to . But, (ii) implies that D is convex with respect
to monomials, as follows:

Let KCCD, and denote by 12 the hull of K w. r.t. monomials. I? is
closed in Cn and by Lemma 1, bounded. It remains to prove %C D or equiv-
alently that log (ﬁ)* Clog D*. Assume D # Cn, as we already know I?C c”.

Let p(z) = azlml. .2 "n be an arbitrary monomial, m, > 0 integers.
Then log |p(z)| = log lal + m, log lzll +... ¢+ m log lznl, and
log (hull of K w. r.t. log |p(z)| )* is simply the closed half space Dlog K*
defined by the hyperplane P with coefficients (ml. e mn) such that
Pﬁm # ¢ . Therefore the intersection of all such half spaces is

log {z € Cnlloglp(z)| < sup log| p(§)}*, waich is log (ﬁ)*. by the monotonicity
{eK

of the log.

Now, if a subset S of a complete circular domain D stays away from
oD, then—lgé-s-*.‘ stays away from 9 log D¥. To prove this it suffices to show
that (1) z € 9D implies az = (alzl, . ,anzn) € 3D for alla € € with |ai| =1
for all i and (2) every z € c” with (loglzll, cee, loglznl) € 0 log D* belongs to
dD. For then if log S* comes arbitrarily close to 8 log D*, given € > 0 there
are points s € S and d € 9D such that (using sup norm) for every
i, lloglsi!- logldil | < €, which implies | Isil-ldiH <€, e -dase=9;
and by (1) then, there is_a point d' € 3D with |si - d'i|< €' for all i: a contra-
diction. (1) is easily established once we note that z ¢ D implies for all
a with Iail =1, az ¢ D; because then if 2° € oD and € > 9 is given, there are

points X € D and v ¢ D such that Ihi-z?k € and |ui -z(i)| < € for all i. Hence

foralle, |a.| =1 |av, - a,z?|< € and Ia.l.-a.z9|< €, av ¢ Dand

i o 11 ii ii it
a) € Dsothat @z € dD, as claimed. (2) is proved similarly by considering
the preimage in Cn of a neighborhood of a boundary point of log D*.

Since clK is compact, there is a ball B in Cn, (|zil§_ r), =clK, and

a6 > 0 such that dist (log K*, d(log B¥MNlog D*))> é: for B D is a complete
circular domain and KC C (BMD).
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Let T = log B*¥Nlog D*. T is convex andC log D¥ We will show
~

that log (K)*C T, by considering the convex hull T1 of T, i.e. the inter-
section of all closed half-spaces in R" containing T. Now, if & ¢ Tl’ then
| and such that PA(TU{ED=(
Because BN D is a complete circular domain, if £° € T, then
{E € Rnli;‘i < &?}CT. Thus T can only be contained in a closed half space

1 4 n o .
expressible as {l; €eR lmlgl +... + mn§n <c;ceR, all mi > o}. Suppose
td Tl’ if log| Eil > log r for at least one i, say i =1, then we may take P to

there is a hyperplane P in R" separating § from T

be the hyperplane : log|21| = log r + €, where € > o is such that

log|§1| >logr+e If logIEil <log r for all i, either the separating hyper-
plane P can already be given with rational (and hence integral) coefficients;
or since PN log B* is then compact in R" and the distances of § and T1 to P
depend continuously on the coefficients of P, we can find a P with rational
coefficients effecting the separation. Therefore, the convex hull of T, which
is cl T, is the intersection of those closed half spaces 2T defined by hyper-
planes P with non-negative, integral coefficients and PMNclT = ¢ .

Thus, if P is any hyperplane to be considered in (the intersection
giving cl1T) then if we translate P parallel to itself into the half space DT
until it intersects E-K_* P becomes a hyperplane to be considered in (the
intersection gwmg log (K)*) and we have translated P a dlstance >6.
Therefore log (K)*C clT, and the distance of any point of log (K)* to such a
hyperplane P is > §, so that the closed ball of radius 6§ about any point of
log (I?)*C the closed half space DclT defined by every such hyperplane P and
thereforeCclT. By the convexity of T, it follows that log (f{)*c T, as claime

(iii) implies (i). (iii) implies that there exists a function f holomorphi
in D and in no larger domain. At any point z € D, we may expand f in a
power series wiich converges normally in a neighborhood of z. Thus there

is a power series which converges in D and in no larger domain.

§ 4. Bergman Domains

A. Definition 15. Let f(zl, - ,zn,h) eC, z, € C,i=1...,nandX ¢ B,

such that f is continuous in all variables simultaneously and holomorphic in
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u
o
-

some domain DC €" for each fixed A € ICE. Then {z f(zl,. . zn,h)

Z = (zl. cees zn) eD, ) € '1’} is called a Bergman Surface.
This is a surface of (real) dimension 2n-1.

Definition 16. A Bergman domain is a domain bounded by a finite

number of Bergman surfaces.

Izll <l, z,€ B(zl)} where
and bounded by Jordan curves:

Example. Letn=2. LetBs= {(zl. z,)

the B(zl) are domains parametrized by z

z, = g(zl, eu ), where g is continuous in all variables and holomorphic in
z for Izll <1+ €. Then B is a Bergman domain.
For example, we might choose
5
L S
2z, ¢ 7100

For n arbitrary, D = {(zl, cees zn)

glz, e) -

|zl| <1 z,€ B(zl),
zg€ B(zl, 22), ‘e } . These domains will be called quasi-product domains.

They reduce to product domains if B(zl) = B, independent of z) B(zl,zz) = B,,

1
etc. We list the following properties, stated for any Bergman domain and

proven for quasi-product domains in Cz.
Property 1. Every Bergman domain is a domain of holomorpi.y.

Proof. If (21, 22) is a boundary point then either

(a) I?ll =1, and then 2 _li is singular at (Ql,lz\z) and regular inside
1

or (b) 22 = g(’il, e ©) and then

1 L A A

Y is singular gt (zl, zz) and

z, -glz,, e %)
2 °°r
regular elsewhere.
Property 2. A Bergman domain has a distinguished boundary surface,

defined to be the set of those points of the boundary at which at least n
Bergman surfaces intersect. (The distinguished boundary in our example is

{(ew,g(ew, eﬁ))ldt. A elo, Zw}}) .
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Property 3. If f is holomorphic in a neighborhood of a Bergman
domain D then the maximum of |f | in D is achieved on the distinguished
boundary.

Proof. For each fixed zp |f(z z )l has its maximum on the boundary
of B(zl); hence, consider If(zl, g(zl, e ) )I . But for each fixed X, this func-

tion has its maximum on lzll =1

Corollary. If f is known on the distinguished boundary of a Bergman
domain B, it is known throughout B.
In fact, we have the following:

Bergman Generalization of Cauchy's Formula.

2 (¢ i i i
flz). z,) = (-271;) g S ié(e ) g(e¢ e ) gaield, o )gel
distinguished (e '21)(g(e ,e )-z )
bndry
21r 2n
Y2 )(g(e e )-zz)

§5. Analytic Polyhedra

In this section we shall define analytic polyhedra. We shall show
that every holomorphy region is a limit of an increasing sequence of analytic
polyhedra.

A.  Definition 17. Let D®P®"c ™ £ ..., holomorphic in D, and
A ={zlzeDand lfj(z)l <lj= 1,...,k} If ACC D, A is called an
analytic polyhedron (of dimension n) .

Corollary 1. Every analytic polyhedron is a region of holomorphy.

Proof. Let B be an analytic polyhedron, { € bndry B. Then
|fj(§)| =1 for some j, say j =1. But then
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1
g(z) 2 e———————
AOERD)

is holomorphic at every point of B and singular at §.

Corollary 2. Every connected analytic polyhedron is a Bergman
domain.

Proof. Let B be a connected analytic polyhedron, { € bndry B. Then
Ifj(t)l =1 for some j; i.e. every boundary point satisfies an equation of the

ir
form fj(zl' e, zn) -e = 0.

B. Theorem 7. Let D be a region of holomorphy, and KCC D. Choose
D_ such that Kc < poPe”
A in D such that KCC ACCD

C C D. Then there exists an analytic polyhedron

Proof. Let{ € bndry D . There exists a holomorphic function
gg in D such that Igf(t)l > 1, and |g§(z)| < lin K Hence, there exists a

neighborhood N, of each { € bndry Do such that Igg(Nc)l > 1. But bndry Do'

{

being compact, is covered by a finite number of such neighborhoods, say
Ngl, . .,Ngk Let A = {z Iggj(z)|< Lj=L...,k}.

Corollary. Let D be a region of holomorphy. Then there exists a
sequence A], i=1L 2,... of analytic polyhedra in D such that
A C'CA 4 CCD, and D = ue

JlJ

Proof. Choose D;’penc, c DgpenCC ...CC D such that U‘;’:l D, = D.

“Consider the sequence {ﬁ]} ; there exists a subsequence, say{Dj} , such
‘that

.cc U2 D
chcozccnzcc cp; D = UL D

Then by theorem 7, there exist Ai analytic polyhedra, such that

~ -~
~ -
DI‘C AICC DZC; A2CC ...CCD.
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Chapter 3. Pseudoconvexity

§1. Plurisubharmonic and pseudoconvex functions

A, Ve have already introduced the notion of a continuous subharmonic

function (I, § 2). We now extend this definition as follows:

Definition 18. Let Dbe openin €, ¢: D - B. Then ¢ is said to be
subharmonic if:
i) ~0<$<w,¢f -
ii) ¢ is upper semi-continuous; i. e. g}n}. sgp (') <¢(p)
iii) for any domain D é: C D; if h is harmonic in D, and continuous on
oDo. thenh> ¢ on BDO implies h > ¢ in Do ’

Property 1 (Mean Value Property, I). Let {| z-ZOI <r¢CD, ¢ sub-
harmonic in D. Then
2n
¢(zo) 5% S ¢(z°+rew) dé .
o
Property 2 (Mean Value Property, II). Let {IZ‘Zol <ryCD, ¢ sub-
harmonic in D. Then

r 2w
¢(z ) < -—lé g\ olz + re'’) r drdf .
Tr 'o o

Property 3 (Strong Maximum Principle). Let ¢ be subharmonic in
D. LetM = sup, ¢ . Then, in each component of D either ¢(z) < M or ¢
is constant.

_Progertz 4. If ¢ satisfies i), ii) and the integral condition of Property

lor 2, then ¢ is subharmonic in D.

Property 5. If ¢ and ¢ are subharmonic, then max (¢,¢) is subhar-
monic.

Property 6. If ¢ € CZ, ¢ is subharmonic if and only if A¢ >0 .
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Definition 19. Let DCC", ¢:D~ R, Then ¢ is said to be pluri-
subharmonic in D if:
i) ~0w<¢p<w, OF -
ii) ¢ is upper semicontinuous
iii) if (zl, cees zn) € D and a € € arbitrary, i =1,... n, then

$(€) =¢(z + Saj,....z + Ean) is subharmonic for small le] .
¢ is said to be pseudoconvex if it is plurisubharmonic and continuous.

Remark. Statement iii) above is equivalent to the following:
¢ o T(zl, vees zn) is subharmonic in each variable separately, for all

linear transformations T .

Corollary 1. Let DC c” , f:D = €. If fis holomorphic in D, then
log|f | is plurisubharmonic. Furthermore, if f # 0 on D, loglf | is pseudo-

convex.

Corollary 2. Plurisubharmonic functions satisfy the strong maximum

principle.

Corollary 3. If DC c” and ¢, ¥:D = B are plurisubharmonic, then so
are max(¢,¥), ¢ +¢, andA¢ , A > 0.

Definition 20. Let ¢ € C2. The the Hessian of ¢ is defined to be the

following matrix:
/ a2
H = .._a_g_. .
0z .0z
ik
Note that H is Hermitian, if ¢ is real valued.

Proposition 1. Let DC Cn, ¢:D=-R, ¢ € C2 . Then ¢ is pseudoconvex

if and only if the Hessian of ¢ is positive semidefinite.

Proof. Consider $(¢) = :ﬁ(z1 + §al, s + ran) » 3 € cC,

i=L...,n. Now &(f) is subharmonic if and only if A$ > 0. But
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n
s ¥ 3
J
2
92,02

= 4
‘4a§ j

il 0z
n

4 Z=
jo k=l

aij .

Proposition 2. Let DCC" , D CCD, ¢:D~ B such that ¢ is
pseudoconvex in D. Then there exists a sequence { ¢ ’; of pseudoconvex,
C” functions in D such that ¢ = ¢ uniformly in D

Proof. Define the "smoothmg functions" K_, €> 0.as follows:
K:C" -k
€
K E(l,') >0
1., -
Support Kec {“t” < €fiie Ke(t) 0 for
lell > e
Sn K€(§)d€1dnl e dEndnn =
(i
K € c®
€
Define: ¢ 6(z) = S Ke (z-%) ¢ () dEl cee dnn, where we take ¢ =0
c ' ‘
where it is undefined. Then ¢ e(z) ec®. Furthermore, ¢ g ¢ uniformly

in Do' as follows:

o(z) = f K_(€) ¢ (2)dE, ... dn
cn

n

¢€(z)= ‘gn K€(§) ¢(z-§)d§1 - drpn .
C

Therefore
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|6 (2)-¢ ()] < Sn K (0 |¢(2)- z-0)] &, ... an
¥

< max |6(z)-¢ (Z-C)l ~0ase=~0
Hell < ez e D,

since ¢ is uniformly continuous on Do .

Now ¢ ¢ is plurisubharmonic since

b= | x@oanag ... o
c"
is essentially a linear combination of plurisubharmonic functions with
positive coefficients.

Proposition 3. Let Adomamc C, g:A - DC c”; g holomorphic. Then

¢ is pseudoconvex in D if and only if ¢ (g(Y) ) is subharmonic and continuous

for all such g.

Proof. Assume ¢ is pseudoconvex. By proposition 2, we may assume
¢ € C*. Then g€ c® . Now,

g(t) = (gl(t).....gn(t))

and let &() = ¢g(f) .
Then
aa_§ n 22

— T S (g0,
otat j» k=l azjazk iUk =

1]

as the Hessian of ¢ is positive definite.

The converse is trivial, as the class of holomorphic g:A=D contains
all linear transformations.

Corollary. The image of a pseudoconvex function under a holomorphic

mapping is pseudoconvex.
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§ 2. Pseudoconvex domains

A. Definition 21. Let {I:I < I}C C. Then an analytic disc in Dis a
mapping g: {lrl < 1} - DC ", continuous on {kl < 1} and holomorphic
in the interior.

The boundary of the analytic disc is the mapping g restricted to |§|=l. :
setg{|t] <1} ==

Abusing terminology by suppressing mention of g, we shall refer to
Z itself as the analytic disc and to 9Z as the boundary. (Note that 9Z in
general is not the set-theoretic boundary of the point set Z.)

Theorem 8. Let DP*"CC". Then the following are equ1va1ent
1) Let {E } be a sequence of analytic discs in D. I Ul aEJC C D,
then lJ EJC c D ("Kontinuitatssatz").
n) -log A(z) is plurisubharmonic in D, where A(z) is taken in any norm,
iii) For any analytic disc £ in D, A(Z) = A(3Z).
iv) There exists a pseudoconvex function ¢ in D such that, for every
N > 0 there exists a KC C D for which ¢ > N on D-K. (Informally, ¢ = +w on
the boundary of D)

Exercises.

a) In Euclidean space, i) has the following analog:
Let DP"c c ", Let {Z } be a sequence of segments in D. If
V) anC (- p, then U ZJC' CD. Show that this property holds if and only if
every component of D is convex.

b) Find the analog of ii) in B".

Definition 22. A region with any and hence all of the above properties

is said to be pseudoconvex.

Corollary 1. Let D;)p en

CCn, Dj pseudoconvex. If nj:le is open,
then nj:iDj is pseudoconvex.

Corollary 2. Let Dop en

each component is pseudoconvex.

cc”. ThenDis pseudoconvex if and only if
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Corollary 3. The holomorphic image of a pseudoconvex region is
pseudoconvex.

Corollary 4. Let {AJ.} be a sequence of pseudoconvex domains such
that AJ.C: Aj 4 then UAj is pseudoconvex., ’

B. Proof of Theorem 8.

iii) implies i). U3 sz C D and A(Zj) = A(azj) imply cl( UZJ.)CD.
That UZ. is bounded follows from the fact that |g| assumes its maximum
over E on {I gl = l}, and Uazj is bounded.

ii) implies iv). If D is bounded, we may choose ¢ (z) = -log &(z).
If D is unbounded, choose ¢(z) = max (-log A(z), |zl| 2 +... + Iznl 2); where
A(z) is taken in the Euclidean norm.

ii) implies iii). Let Z be given by:
g {lel <1} -D.

Then -log A(g(¢) ) is subharmonic and continuous; hence it has a maximum on
{|§| < 1}. which is assumed on,‘ |§| = l}. Therefore,

~log A(9Z) > -log A(Z)
i.e. a(z)< a@)
But clearly, A(dZ) > A(Z).
iv) implies i). Let Zj be given by

gj:{ltlgl}-D.

Consider the subharmonic functions

&.(gj(g) ),j=12,...; where ¢ is the function given by
iv). Note that

max ¢ (g.(€) ) = max ¢(gj(§) ).

lel<1 HE
i.e. max ¢(z) =max ¢(z).
zeatj zer
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Now, vo Z:J.CC D;
© .
hence emp«i‘(UJ.=l azj)< M<o.
But therefore sup ¢ ({J © EJ,) < M<o,
=l
©co
implying U ja 5CCD.

i) implies ii). (Proof due to Hartogs). Since A(z) is continuous,
-log 4(z) is continuous. In fact -log 4(z) satisfies a Lipschitz condition on
compact subsets of D. To prove that -log A(z) is plurisubharmonic in D, it
is sufficient to show plurisubharmonicity at a point z € D. Thus we must show

that, for the set of points z = z, + §zl where z, and z, are arbitrary poi.nis of D

and C* respectively, and { € € is sufficiently small, l-log A(zo + §zl).= wlY) is
subharmonic as a function of {. For ”21” small enough in the norm used to
measure A(z), z € D for |§|§ 1. Furthermore, ¥(£) is subharmonic if it sat-
isfies the mean value property oi subharmonic functions, and it is enough to
show this for { = 0; i. e. to show that

*) W< o | weran.

o(—/j§

Let g(€) = h(¢) + ih*(¢), with h a real-valued function such that
h(eic) = w(ew), g holomorphic for |§| < 1, and continuous for l{' <1l We
claim that such a function exists. Firstly, the continuity of ¢ implies the
existence of a harmonic function h, in hl <1, equal to$ on |§| =1, Thus
h is defined and is continuous on the closed unit disc. Secondly, take h* to be
some conjugate function to h. Since g is now defined and holomorphic, and its
real part satisfies a Lipschitz condition on |§| = 1, its imaginary part satisfies
a Holder condition, Hence h* is continuous on [{I =1

Next, let b be any vector in c" with ”b“ =1, and let X o satisfy
0< A <1. Consider the analytic disc in C"
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2003z + 3z +2e 8, for [t] <land fixed0<a<n .

(1) Z(0)C D. This is obvious.

(2) Ifpe Z(A) and A i A, then there exist pj eI j) such that pJ.-p.

= -g(%o)
(Namely, pj z, + tozl +2e
3 U 3ZT(\ )C CD.
0<A<A

b where §‘° is the preimage of p.)

o
(For if z € 9Z(A ) then

. i€ i0
] -h 10 i
“2‘(Z°+ e 21)“ <hie ) < oe108 A(z°+ € zl) = oA(zo+ elazl) and hence
(3) holds.
@s={x

0<A< A _and Z()CD} is open in the space A = [01 }.

(5) S is closed in 4.

(This follows from (2), (3), and the Kontinuitatssatz. )
(6) S is the set [O,XO}.

(From (1), (4), and (3), S = A.)
Hence Z(A )C D for 0< A< 1. Consequently,

-g(0),

z°+)te b € D for 0<A<1, in fact for A complex, I.’\ | <1 z, +A éme-g(o)th

for 0 <A < 1 and a real, since we can incorporate e.m into b, as
“emb” = “b“ = 1. This means that a ball about z_ of radius I)L e.g(o)l is

€0)] o-h(0)°

contained in D, and therefore A(zo) > Ie Hence

-log A(zo) < h(0), but -log A(zo) = (0), and since h is harmonic

27 27
1 i6 1 i
! = —— £ = s
© so<h0) = & (e =L fue® e
o] o
C.  Lemma. Let X be an analytic disc in D, DCC". Then ZCbdry Z, the

hull of the boundary of Z with respect to holomorphic functions.

Proof. Let Z be given by the holomorphic mapping :

g:{|§| 51}- D.
For every f holomorphic in D, f(g(%)) is holomorphic and therefore |f(g(§))|
assumes its maximum M on {I ¢| = l}. Therefore |f(g(¢))| <M for g(¢)e dZ
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implies |f(g(t))| < M for g(f) e 3~ .

Theorem 9. If D 1s a region of holomorphy, then D
is pseudoconvex.

Proorf. Let Z% he a sequence of analytic dises in D;
such that U J 1 aZJch.

But J B%Jc u,rl d ch,c D, as D is a region of
holomorphy.

But by the above lemma, u,j-l ZJC U 3 ZJ, hence
u =1 Z cc D, Now apply theorem 8.

Theorem 10. Let D°pencq: . If, for every ¢ € oD,
there exists a ball N about { such that N /Y D 1s pseudoconvex,
then D 1s pseudoconvex.

Proof. Assume that D is bounded. Then 3D is compact.

By hypothesis, for { ¢ ¢D, there is a ball Ng,about £, such
that Nc/\D is pseudoconvex. The set%N }7 is an open covering
of ¢D. The compactness of oD implies that a finite number of
the NC cover dD; call them Nl,...,Np. If Ny NJI\ D £ b,

set Qi,j = NN NJ, for each i # §; 1, =1,2,e0e,p. In

each QiJ choose any ball Bij centered at any point f € (Qijn dD)
such that B:I. J(;' Qi i Since there are only a finite number of
sets Qi j? there are only finitely many B1 i Let r = min (radius
of Bi ). At each point £ € D the ball S(f,r) of radius r
centered at ¢ is contained in some Ni’ and hence S(L,r)ND is
pseudoconvex; because S({,r)AD = S(l;,r)/\(NiﬂD) and S(¢,r)

is pseudoconvex by Cor. 5, p. 16 and Thm. 9.

Nouw, consider the function ¢(z) = max(-log -Ié', -log A(z)).
We claim that ¢(z) is pseudoconvex. Clearly ¢(z) is continuous.
If A = {_z | alz) > r/e} then for z ¢ A, d»(z) -log-é = constant
and therefore is plurisubharmonic. If B = lz | A(z) < r/2],
then for z ¢ B, $(z) = -logA(z). But for z € B, z € S(¢,r) and
Alz) = AD(z) = AK(z) where K = S(f,r)ND., Since K is
pseudoconvex, -logA(z) is pseudoconvex. Thus $(z) is pseudo-
convex in D. As z approaches the &D, ¢(z) becomes infinite.

By part (4) of Theorem 3, D is pseudoconvex.

Now, consider the case when D is unbounded. Set D

D/\E_z | l|z||<,j}. Each Dj is a bounded set. If { & oD then
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either (i) L € 3D and f ¢ S, = zz | lz]) < J}or (11) Ce BSJ
and £ £ 3D, or (iii) ¢ e D and £ ¢ asJ. For case (1), by
hypothesis, there exists an N, about { such that NC/'D is
pseudoconvex. For case (ii), since SJ is convex, any ball
about {, N, lying in D, satisfies N,/AD, 1is pseudoconvex.
Por case (1i1), there exists a ball N({,r) such that NAD
is pseudoconvex. But N/’)S‘j is also pseudoconvex. Therefore
N/\DJ i1s pseudoconvex. Therefore each D, satisfies the
hypothesis of this theorem and is bounded. We have already
shown that therefore D. is pseudoconvex, j = 1,2,... .
Since Dy Dy and {DJS -> D, D is pseudoconvex (by Cor. 4
of Thm. 8).

Establishing the converse of Theorem 9 is the Levi Problem.

§3. Solution of the Levi Problem for tube domains

Definition 2%2. Let 2z, = x, + iyJ. The set
D= {(zl,...,zn) | (xl,...,xn) € Bc]Rnf where B is some
open subset of R", 1is called a tube domain. B 1s called
the base of the tube domain.

Example. D = i(zl, 2) | |x1| <1, |x2| < 13 is a tube
domain. Here, the base B, of D, is the unlt square in]!.

Theorem 11. Let D be a tube domain with base B.
The following properties are equivalent.

(1) D is pseudoconvex.

(2) Every component of B is convex.

(%) D is a region of’holomorphy.

Note. Assuming Theorem 11, (1) implies (2) is the
solution of the Levi Problem for tube domains.

Proof of Theorem 11. (1) implies (2). Let the norm be
the Euclidean norm, and let ¥(z) = -log A(z)). Then (1)
implies that y is pseudoconvex in D, and ¢(z) = -log AD(x1 +
1y, eeerx, + iyn) = -log AB(xl,...,xn) since D is a tube
domain.
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2

_aw?_ is positive definite. But
é)z.azk

Suppose ¥ € Cz. then the matrix

3% 95 741- (—gx— -i -L) (—§— -i —) ¥; and since ¢ is mdependent of the
J J

ay 8xk

2 2 -
a -
' 21 . . cas .
y's, 9293 1 ox axk . Thus every diagonal element is positive, i. e.

v

parallel to a coordinate axis, and since ¢ is pseudoconvex this property is
invariant under linear transformations. Hence ¢ is convex on every straight
line segment in B, and hence in-every component of B. We claim that this
implies that every component Bo of B is convex:

(a) Firstly, we show that if {)« v} is a sequence of straight line seg-

ments in Bo such that lim ).V =) and lim 8).u = u then if uC Bo' )LCBO.
V=0 V=

Indeed, since ¥ is convex on each straight line segment in B on each )\

max Y(x) = max Y(x), i.e. max (- logAB(x)) = max (- logA (x)) or eqmva-
xe)\ X€ 3)‘ xeh X€ ax

lently min A (x) = min AB(x) Since A (x) is a contmuous function, the
X€ )L X€ ax

equality holds in the hxmt min AB(x) = min AB(x). But u is a closed set
X €N XEP

and uC Bo' therefore min AB(x) > 0; henceC Bo'
XEU

(b) Now, letx,y e Bo. We must show that the line segment joining
them belongs to Bo' Since Bo is connected, there exists a curve j (t),
0<t<l, lyingin B, joining x and y; $(0)=x,$(1)=y. For t sufficiently
small, the line segment (x, ¢ (t))C Bo' As t - 1 there cannot exist a t, such
that for all t < to the line segment (x,¢ (t) )Z Bo

but the segment (x,b(to)) .;CBO, because this would violate (a).
Hence B, is convex.
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In the case ¢ ¢ C2 it suffices to show that if B is any component of

B and if A is a straight line segment in B then max q/;(x) = max ¥(x), for

X€EA X € O\
then the proof follows as above. So, letA be a stralght line segment in B
Then A C Bdomamc c B and the tube domain D over B satisfies D" CD.

Hence for every €e>0 there is a pseudoconvex C function w in D such that

Iw-w | < €in D q/l depending only on the x's; as we can defme smoothing ,

functxons K dependmg only on the x' s in the proof of Proposition 2. As in the

previous case, each w is convex on B and therefore max we(x)- max ¢ (x).
X€EL X€eN

But, max ¢¥(x) < maxw (x) + € = max ¢ (x) + € < maxy(x) + 2€, similarly
€
X€EA X€EN X€ OA X€EMN

max Y(x) > max we(x) -€ = max ¥ (x) -€> max ¢(x) - 2. Letting € V0
XEX X€EN X € N X €0
gives the desired equality.

(2) implies (3). Since every component of B is convex, every com-
poxient of D is convex. Hence D is a region of holomorphy.

(3) implies (1) has already been proved.,
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Chapter 4. Zeroes of Holomorphic Functions. Meromorphic Functions..

gl. Welerstrass Preparation Theorem

v v
zll... z® be a formal

A. Definition 24. Let > _a n
1°°°Vn

series about the origin. (This series is not assumed to be
convergent). Then the order of the series is the least
integer X such that a, . v, # 0, vyt ooty =K,

The series is said to ge normalized with respect to zy
(at the origin) if ord (series) = K and z§ occurs with non-zero
coefficient axo...0°

Note that the order of a serles 1s invariant under
holomorphic changes of variables, including non-singular

linear changes, which leave the origin fixed

n

¢

a Z » J= 1,...,1’1,
= Js s
det (ctJ.s) #0;

v v
1 n _
Corollary. If > aVl“°Vn 217 eee 2z, = f(z) 1is a
convergent series of order K, then the following are equivalenty

1) f 1is normalized with respect to zy at the origin

2) (aZl) £ 0

3) fK(zl,O,...,o);ﬁ o, whegi fx vdenotes the partial
sum 3 L4y =K Byl iivy B0 z ™ of the K th order
homogeneous polynomials in the series f.

Note that 1) and 3) are also equivalent gor formal power
series. We shall write f(z) = 5 avl...v zll...znn for the
sake of brevity, for all formal power series. When convergence
is assumed it will be mentioned explicitly.

Property 1. If¥_a, le...z:n = £ 1s any power
series, it may be normalizea witg respecg to z, (at the origin)
by a linear change of variables: 2y = EE; “Jscs’ J=1,.00,n;
det (aJS) £0. 8=
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Proof. Let f be of order K. Assume first that f is
convergent. Then

n n
f(C) = f( S;C"lscs:“u s;anscs) ’

and ord f() = ord f(z).

f(cl,o,...,o) = f&xllcl,...,anltlg; hence fK(Ql,O,...,O)
is non-zero for some choice of the a 17 J=1,...,n, We may
complete the matrix (aJk) so that det (ajk) #£ 0.

If f(z) is nonconvergent

£= fp + T +

frpp + oov s Tx £0;
where the f, are homogeneous polynomials in the zy of order j.
Now, consider fK as above.

Property 2. If ff(J)(z)} is a countable sequence of
power series, they may be simultaneously normalized with
respect to z; (at the origin) by one non-singular linear
change of variables.

Proof. For each J,

(3) (1
e(3) fKJ + fKJ+1 +...; orald) g

3 ] J
Consider the spherical hull

- - n o -
Z = {(all,azl,...,anl)l % |0.J1' = 1}.

Now fK (zl,...,zn) is a polynomial, and hence vanishes on
a closgd nowhere dense subset Qf:E::. But the union of
countably many nowhere dense sets is no??§re dense, so there
exists (all""’ahl) e > _ such that T (ayqseeera) £0
for every j. But we may now complete J(an,...,anl) £0
to a nonsingular matrix.

We have shown that, if we consider countable collections
of power series, and properties invariant under linear trans-
formations, we may assume these series to be normalized with
respect to Zq.
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Note the following properties of order:
(f, g denote formal power series)

ord fg = ord f + ord g

ord (f+g) > min(ord f, ord g) ,

ord f = 0 if and only if f 1is a unit; i.e.
if and only if there exists a g such thar fg = 1, where
g 1s a formal power series.

We remark here that the set of formal power series at a
point, as well as the subset of those power series which
converge in some neighborhood of the origin, form commutative
rings with unit. This ring 1s an integral domain, with units
the series of order zero.

We remark also that the definitions and consequences
stated above may easily be extended to series whose centers
are any point a ¢ ¢".

B. Theorem 12. (Weierstrass Preparation Theorem). Let f
be a formal power series, normalized w.r.t. zy, of order K.
Then

f = h(z? + alzI]{.'1 + oee + aK)
where h 1s a unit, @y, 00,8 poOWer series in ZgseresZ
and are non units; and this representation is unique.

If £ 1s a convergent power series, then h and ay are also.

Note. z? + alzK-1 + ...4ap as above is called a
Welerstrass polynomial.

Proof. We first make a series of remarks:

For K =0, the theorem is trivial,

For z = zq, the theorem is also clear.

Furthermore, if f=M%+%%4+”.+%L the a,
must have no constant term, for

ord f = ord h + ord (z§ + :9.1211{_"1 + e + aK) .
Therefore

n

_ K K-1
K = ord (z1 +agzZ) 4 e+ aK) .

If ord a = 0 for some ays
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K K-1 C
ord (z1 +ayz)y 4 aK) =K =~-1<K.

We now present a proof for the case of formal power series;
this (constructive) proof will give uniqueness in both cases.
However, if f 1s convergent, the convergence of h and the
a is more easily shown by a second proof.

f= fK + fK+1 E e } fJ homogeneous polynomials of

‘ord J where fK =27+ ...
We wish to construct a power series

% = Xy +X  +... such that
(1) (fK+fK+1+...) (xo+x1+...) = VgtV t e
K
where X, £0, Y = 2Zp ...

and all other y, are of order at most K-1 1in Zy .
From (1), we obtain

fyXo = ¥
K
But fK=z}§+..., yK=zl+...; hence X0=1.
Similarly, kal + fK+1x0 = Ygn

l.e. fra = - Ty t ¥k -
We choose xl so that Yk41 has order at most k-1 in

z,, as follows: Let f, a 21, .20
’ . = see
1 K+l v1+...+vn=K+1 V1+**Vn 1 n
K Hy My
fp = 2Zy+ > b Za T eeeZ
K 1 ”‘1+‘”+”'n=K Hyoooby 1 n
U-l?‘ K
Xl = ¢12 + 0222 + .00 + ChZp *

Take ¢y = - a4y o,,,.,0 20d

¢y = -~ %,0,...,1,0,...,0 ~ °k-1,0,...,1,0,...,0 2K+1,G..,0
for J > 2; the subscripts 1 appearing in the j th places.
Choose Xe, etc., similarly.
Note that we have proven uniqueness for both convergent
and nonconvergent series. We now proceed to the proof for

-b
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the case: f convergent. It is due to Silegel:
As before, write

f = fK+ fK+1 + o0 »
K
fK = 2 + oee o

For |zJ| < |21| y J=2,00e,n

K+1 K+2
IfK+1*'fK+2 +ooo| < cllzll + 02|21| + uen,
which 1is convergent for Izll < P small.
1 K
Therefore |f ., + fp o+ «o.l <5 l2|" ; IzJI <lzl <p <8,
f +r +..’
as —Eil__ﬁig____ <.% under the above conditions.
z

Consider f'K/z1 ; define tJ =z /z1 , J=2,...,n0.
Then f, /z1 is a polynomial in the tJ 5

-T-'-‘l'i'l‘,
4
1
where r 1s a homogeneous polynomial in the t, without a
constant term. Therefore, for ItJI <Py |rf < 1/2.
Under these conditions:

£ fK+(fK+1+ cee )
T Ty P
£ o +ee./2
I <5 1
f /z
fK+1+ cee 1

"

1+—r—1—

= 1l+q ,
where q 1s a power series in zy and the tJ. We restrict

ourselves to the above lnequalitiles; hence

lal < 1 .
Choosing some determination of log, we obtain:
log —%— = log (l4q)
K

qa-a%/2 +q’/3 - q4/4 + ool
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a convergent power series. Substituting, we obtain a convergent

power series in zl’tz""’tn 3 replacing tJ by zJ/z1 we

obtain a power series in ZpseeesZy and Laurent series in Z).
Now assume also that |21| > e » 0, Hence

£ o v o B(D
"108—f—=§a2 +§;-——=v+w
K V= vil w= z?

where a_, B are power series in ZpyeresZpe Therefore

v (]

log £ -~ log fK = Vv+w
i.e. eV = fx eV .

But fe' 1s an analytic function of z;, and eV isa

unit. Hence fe~v converges in a neighborhood of the origin,
by Abel's theorem. Therefore the series f‘Kew cannot contain
any negative powers of 295 and also no power of z) > K,

and we have obtained a convergent representation

£ = e(rye")
as claimed, unique by the above.
Corollary 1. Let f be a convergent power series, and
assume f vanishes at the origin. Then the set of zeroes
of f 1in a neighborhood of the origin is of dimension n-1l.

Proof. By a linear change of variables, we may assume
f 1s normalized with respect to Zy,

_ K K-1
f = h(z1 +a;2,7 aK)

For ZoseersZy small and fixed arbitrarily, C RRRENL: "
are small, and z§ + alz§'1 + .00 + ag is a complex polynomial,
with K roots’(counting multiplicity). Furthermore, these
zeroes are located In a neighborhood of the origin as they
depend continuously on the a,.

Definition 25. Let sclosed ¢ poPen — ¢, Then §
is said to be a (globally defined) analytic hypersurface or
analytic variety of codimension 1, if S is the set of zeroes

of a function f # 0, analytic in D.
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Corollary 2. S is locally arcwise connected.
Corollary 3. If n>1 and f- is holomorphic in D & €7,

then the zeroes of f are not isolated.

82, Rings of power series

A. As we have remarked previously, the set of convergent
power series in ZyseeerZy at a point forms a ring, as does
the set of formal power series. We shall now state some
algebraic results which will prove useful in the sequel.
Refer to any standard algebra text, e.g. van der Waerden,
Moderne Algebra, for proofs and details.

' Definition 26.- Let R be a commutative unitary ring.
R 1s saild to be an integral domain if: a e R, b e R,
ab =0 implies a=0 or b=0. An element a e R 1is
called a unit 1f a has an inverse in R. Elements a,b € R
will be called equivalent, written a =b, 1f a = eb, where
e 1s a unit. An element a € R 18 called reducible if
a=Dbc, where b and c¢ are non-units; a 1s otherwise
called irreducible or prime. R 1s a unique factorization
domain (U.F.D.) if every element may be written as a product
of primes, unique up to order and equivalence. A subset I
of R 1s an ideal if a,b ¢ I implies a-be I, and a ¢ I,
r. € R implies ar, € I. I 1s a proper ideal if I # R,
and maximal i1f it is proper and such that if </ is any ideal
satisfying I< </ < R, ‘then I =+ or </ =R. Aring
R 1s called a local ring if there exists a unique maximal
ideal. R[t] denotes thé ring of polynomiéis with coefficients
in R and R[t] the ring of power ggries in t with
coefficients in R. Let ZaJth R(t], ay € R, t an
indeterminate. 5:: aJtJ 18 called primitive if the coefficients
a, of t have nf common factor except units. (Note that
f eR[t) implicz £ = aog with a ¢ R and g e E[t] and
primitive.) Two polynomials will be called relatively prime
or coprime if they have no common polynomial factor. We use
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the following results.
Lemma a. (Gauss' Lemma) If R 1s UFD, R[t] is UFD.
Lemma b. Let p,q € R[t] (R[t]). Then p and q
primitive implies pq primitive.
Lemma c. Let P,,P, ¢ R[t], R an integral domain.

K K-1

+agtt Tt 4 gy

P t

1

L L-1

P 7+ blt

2 +.'0 +bL .

Then there exists a polynomial r in the coefficients ai’bj
called the resultant of P1 and Pa, which is zero if and
only if Pl and P2 have a common factor; 1i.e. if and only
if there exist p,q,s € R[t], deg q > O, such that
Pl = pq, P2 = 8q. Furthermore, there exist polynomials A
and B such that APl + BP2 =r,
Lemma d. No proper ideal I of a unitary ring R
contains a unit.
Lemma e. R 1s a local ring if the nonunits in R form
an ideal.
B. Definition 27. Let (J  denote the ring of formal
power series at the origin in n complex variables.
Property 1. (9n is an integral domqin with unit.
Property 2. The nonunits of (SL form an 1ideal;
hence C?n is a local ring.
Property 3. C?n is UFD.
Proof. We use induction on n. For n =1, units and
elements of order 1 are irreducible. All elements of
order > 1 are reducible, for if ord g=XK > 1,

glz) = 2% (2) ,

where gl(z) is a unit, and the decomposition is unique.
Hence, assume &n-l is UFD. We may assume f € (9n is
normalized at the origin. Then:

_ K K-1
f = h(z1 +a,z +

1 ...+aK) = hp ,
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where p 1s a Welerstrass polynomial; i.e. p e CS%_I[ZI]
and 1s monic. Now f 1s prime in CC% if and only if p
is prime in G:;_l[zll, for:

Assume p 1s reducible; i.e. .p = PPy - We may take
Py,P, to be Welerstrass polynomials. Hence f = (hpl)pe.

Conversely, assume f 1s reducible:

f

f1%,
(hypy ) (hgp,)

(hyhy) (p,0,) -

But p,p, = P by uniqueness, and hyh, = h.
But Con_l[zll is UFD by assumption and Gauss' lemma.
Now let fed .

f = hp.

But P = Py e P,

where the p; are irreducible Welerstrass polynomials. Hence
f = hpl se pr,

and this decomposition 1s unique up to order and equivalence,

for if
f = tl .o tz ,

ty h1 ry o

by the Welerstrass Theorem and then
Py «ee Ty = Py oo P,

by uniqueness. Hence {rl,...,rp§ = {pl,...,p£§ as
O, 1[z] 1s um.

Definition 28. Two holomorphic functions are said to
be relatively prime or coprime at a point if thelr power
serles expansions at that point have no common irreducible
factor other than a unit.

Lemma f. Let f,g be holomorphic functions in D,

0 e D ¢, n>1 coprime at the origin, such that
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£(0) = g(0) = 0. Then in any neighborhood of the origin,
there exist points at which f vanishes and g does not,
and points at which g vanishes and f'does not.

Proof. We may assume f and g are Welerstrass
polynomials

_ K K~-1 .
f = z, f a2y "+ ... F ag
g = %+bﬁ?l+”.+%.

Suppose there exist no such points. Let r(ai,bJ) be the
resultant of f and g.

r(ai"bJ) € &n_l *

For each ZpseeesZy in a neighborhood of the origin, there
exist z, such that f and g vanish simultaneously. But
if £ and g have a common zero viewed as polynomials in
one variable, then f,g have a common factor. Hence r(ai,bJ)
is zero for each ZpyeeesZy. But r 1s analytie, and hence
r = 0 near the origin, implies f,g have a common factor
as polynomials in C%r

Lemma g. Let f,g be holomorphic functlons coprime at
the origin. They they are also coprime in some neighborhood
of the origin.

Proof. Let f = up

g = vq,
where p,q are Welerstrass polynomials, and let
r = Ap + Bqg

be the resultant of p and gq. Let N be a neighborhood of
the origin so small that u,p,v,q,A and B are convergent.
Let a = (al,...,an) € N. To show f,g are coprime at a,
it suffices to show p,q are coprime. The equation

r = Ap + Bqg

persists where r,A,p,B and q are viewed as series about a,
i.e. as series in ci’ where
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51 = zy -2y .

Then P §§ + ..

q ;{ + eee

Now assume p and q have a common factor h "at a",
h € Cg;_l[cll. But p,q are primitive in {;; hence h
is also.

h = ho + hlcl + )
where h1 € {ﬁz-l' But h divides r. Therefore
r = hk\,

L Cﬁ;_l and k a primitive power series in ¢,
ke O,,08].

k = k) +Kk +...
By comparing coefficients

r = hokok s a relation in 69;-1 .

Hence A divides r, and

r-—
x = hk.

But h and k are primitive, hence hk 1s primitive,
hence hoko must be a unit, 1.e. hk is a unit, implying that
h 1is a unit. Thus p and q are coprime at a.

8 3. Meromorphic functions

Let x ¢ poPeM < Gn, and consider functions which
are each defined in some neighborhood of x in D. Call
two such functions equivalent if they coincide on a neighbor-
hood of x. This defines an equivalence relation, and the
equivalence class of a function f at x, denoted by [f]x,
is called the germ of f at x.

If f 1s a holomorphic function, then [f]x amounts to
a convergent power serles.

Germs at x form a ring with the obvious definition of
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addition and multiplication.

The ring 0}( of germs of holomorphic functions is a
commutative integral domain with identity and unique factori-
zation. Topologize the space of germs 0 UQ by
defining the following basis for the open sefs Let ke (9,
then ke ([ andso k= [f]xo , where f 1s defined
in an e-neighborhood Ny of x_ in D. At each y & Ny
take that class in (9 oconta:l.n:l.ng the direct analytic
continuation of £, 1i.e. take [f]y. Then define

[f] to be an open set and the collectlon of such
ety Y
sets to be the basis of open sets.

A holomorphic function f in D amounts to a
continuous mapping, f : D -> «f9 which assigns to each
point in D a holomorphic germ over that point.

Now form the quotient fleld M of ﬁ for each
Xx ¢ D. Topologize M= (/ M as follows Let £ € M,
then £ € Mxo 2= [—-—]x xegnd is represented by [I‘1]x /[f2]
where fl and f2 are golomorphic functions at Xy and
because of unique factorization we may take fl and f2
to be coprime at Xy Let Nxo be a neighborhood of X,
in which fl and f2 are defined and are still coprime.

At each y e Ny take that class in M represented by
[flly/[fely. The union over Ny of these classes we
define as an open set and the coglection of all such sets
we take as the basis for the topology.

The elements of I‘«ix are called germs of meromorphic
- functions over x.

Definition 29. A meromorphic function in D 1s a
.continuous mapping which assigns to each point of D a
© meromorphic germ over that point.

Meromorphic functions form a field.
At a point z, € D, a meromorphic function g 1is
efined by the quotient of two functions fl,f2 coprime
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and holomorphic at Ze

a) 1Irf fe(zo) £0, 1.e. f, 1s a unit, then fl/f2
is holomorphic there and hence g is holomorphic at z,
and therefore in a neighborhood of z,. 2z, 1s called a
regular point of g.

b) 1If fg(zo) =0 and fl(zo) #0, then g is
said to have a pole at Zy.

ec) If fg(zo) =0 and fl(zo) =0, then z  1is
called a point of indeterminacy of g. The set of such
points has topological dimension 2n-4%.

Corollary 1. The set of regular points of g 1is open,
and glregular pts is holomorphic. 7

Corollary 2. If z, is a pole of g, then there
exists a neighborhood N of z, in which every point is a
pole or a regular point. Furthermore, g has no isolated
poles (n > 1), and, for each number M > O there exists
a neighborhood Ny of =z, 1in which lg] > M.

Corollary 3. A point of indeterminacy is a limit
point of zeroes and poles of g.

Exercise. A point of indeterminacy of g 1s a limit
point of zeroes of g - a, where a 1s any complex number.

Poincaré's Problem

1) Weak form: Given a domain D, 1is every function
meromorphic in D a quotient of two functions holomorphic
in D?

2) Strong form: Given a domain D, g meromorphic
in D, 1is g the quotient of two functions holomorphic in
D and coprime at every point?

B4, Removable singularities

In this section we shall state three theorems. The
first, Radd's theorem, facilitates the proof of the first
theorem on removable singularities which is a direct
generalization of the Riemann theorem in one complex variable.
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A second theorem on removable singularities will be stated
but not proven.

Theorem 13 (Radf). Let f(z. ,ev0,Z_) Dbe continuous in
poPen — gn 1 n _

and holomorphic in (D- {z|f(z) = 05). Then
f 1s holomorphic in D.

Proof (Heinz). A function of n variables is holomorphic
if and only if it 1s holomorphic in each variable separately.
It 1s sufficient to prove the theorem for functions of one
variable.

If D' 1s any open disc whose closure 1s contained in
D Gn, we must prove that f£(z) 1is holomorphic in D'.
Without loss of generality, assume that D' 1s the unit disc
(lz]<1). Let | = (|z]=1) and A= ({zlf(z):O}tﬁ D).
Since f(z) 1s continuous in (D'(/ T ), it 1s bounded
there, and we may assume |f(z)] <1 in (D'UT ).

By hypothesis, f(z) 1is holomorphic in (D'-A).

Construct a complex-valued harmonic function g(z) in
D' such that g(z) = f(z) on [~. Then, consider the
following functions for z ¢ (D'-A) and a > O :

$,(z) = Re [£(z)-g(z)] + a log |f(2)
b,(z) = Re [f(z)-g(z)] - a log |f(z)]
6s(z) = Im [£(z)-g(z)] + @ log |f(2)]
oy(z) = Im[f(z)-g(z)] - @ log |f(z)] .

Note that for =z e (D'-A), a log |f(z)| < O. Now, as
z -> 3(D'-A), which consists of T— and points where
f =0, either :

(1) z -z ¢ (3(D'-4) N [7) and then [f(z)-g(z)]-> 0
or (1i) 2z -> Z, € (3(D'-A) NA ) and then [f(z)-g(z)]
remains bounded and 1log |f(z)] -> - oo . In either event,
bl(z) and d>3(z) -> negative numbers while 4)2(z) and
bu(z) -> positive numbers. But, since the 'bi are harmonic
in (D'-A), they assume both their maximum and their minimum
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be(z) and ¢u(z) are positive for all z ¢ ¢l(D1=A).
Let @ -> 0, then

¢1(z) -> Re [f(z)-g(z)] which implies Re [f(z)-g(2z)] <O
¢,(z) -> Re [£(z)-g(z)] which implies Re [f(z)-g(z)] >0
¢3(z) -> Im [£(2z)-g(2)] which implies Im [f(z)-g(2z)] <O
¢y(z) -> Im [£(z)-g(z)] which implies Im [f(2)-g(z)] > O

for all 2z € ¢l(D*~A). Therefore f(z) = g(z) for all
z € (c1(D'-A) (/I7). Since JA consists of points of [~ and
points of c¢l(D'-A), f£(z) = g(z) for 2z € dA. In any
component of the interior of A, f =20 and thus g = 0.
Therefore f(z) = g(z) in (D' U [7), which means that
f 1s harmonic in D', Thus f has continuous first order
partial derivatives. f satisfies the Cauchy-Riemann
equations in D-A, hence by continuity, on d3A and on T .
In the interior of A, f = 0 and therefore satisfies the
equations in A. Hence f satisfies the Cauchy-Riemann
equations in D' and is therefore holomorphic in DY,

Theorem 14, Let DP®® ¢ ", and let g # 0 be
holomorphic in D. Let f be holomorphic and bounded in
D - {é|g(z)= 0} . Then f 1s holomorphic in D.

Proof. Consider the function

gf 1if g#£0

0 if g=0

Then h 1s continuous as f 1s bounded, and holomorphic
where it 1s not zero. By Radf's theorem, h 1s holomorphic.
But g 1s holomorphic by assumption; hence

_ h
f‘s

is meromorphic. But f 1s bounded, thus without poles,
thus holomorphic.
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Theorem 15. Let D’ ¢ @% g,h holomorphic in D,
" not i1dentically zero and relatively prime at every point of
' D. Let f be holomorphic in the set D - fz|g(z) = h(z) = of.
Then f 1is holomorphic in D.
Theorem 16. Let DIOMRINE o0 ap4 16 g #0 be
holomorphic in D. Then (D - {zlg(z) = Q}) is connected.
Proof. Let S= (D~ leg(z) = 0f). Suppose that S
is not connected, then S = UUV where U and V are open,
disjoint sets. Define a function h=3% NV 44
holomorphic where g # 0, and is bounded; therefore h is
holomorphic in D. This is impossible since it implies that
h 1s identically 1 in D.

85. Complex manifolds

Remark. From now on, "differentiable" means "C%°",

differentiable
Definition 30, X 1is a ( complex ) manifold of

Tﬁ——v
(O;SIGX) dimension r, if the following conditions are

satisfied:
(1) X 41is a Hausdorff space.
(2) Given an open set in X and a function defined in

it, it 1s possible to say whether or not this function is
@1fferent1ab1e)
holcmorphic
(3) There exist coordinates: every point in X has
real, differentiable
a neighborhood where r (compiex, holomorphic) functions
are defined such that they give a homeomorphism of this
neighborhood onto a domain in ( ), and every function
. differentiable
defined in this neighborhood is ( holomorphic ) if
differentiable as a function of Xyseos
and only 1f 1t 1s ( holomorphic in each variable of zi,..:fgr)

The coordinates are called local coordinates and such a
neighborhood 1is called a coordinate patch.

(4) There is a countable basis for the open sets of X,
i.e. X 1s second countable.

Remarks. On a complex manifold we may talk about
holomorphic and meromorphic functions; on a differentiable
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manifold, about differentiable functions.

A connected l-dimensional complex manifold 1s called a
Riemann surface. ‘

Every complex manifold is a differentiable manifold.
Therefore it 1s natural to ask on which differentiable
mahifolds we can introduce the concept of holomorphic functions:
that is, which differentiable manifolds can be given a complex
structure. Necessary conditions are that the differentiable
manifold be orientable and of even dimension, r = 2n.

If n=1, these conditions are also sufficient; however,
if n> 1, they are not. In fact, in the latter case,
necessary and sufficient conditions are not known.

There are other differences between the cases n = 1
and n > 1:

(1) When n =1, axiom (4) in definition 30 is
unnecessary as it follows from axioms (1), (2), and (3).

When n > 1, axiom (4) is essential.

(11) If n=1 and X 1is compact, there exist non-
constant meromorphic functions on X (i.e. on every closed
Riemann surface there exist non-constant meromorphic functions).
However, when n > 1, there are compact complex manifolds
having no non-constant meromorphic functions.

(111) If n=1 and X 1s not compact, there exist
non-constant holomorphic functions (i.e. on every open
Riemann surface), while if n > 1 this is not necessarily so.

For example, let Y be a compact connected complex
manifold of dimension n > 1, then X = (¥-{pj) 1s not
compact and if there existed a non-constant holomorphic
function on X, it would be holomorphic also at p (by
Hartogs' Theorem), and it would be constant (by the maximum
modulus theorem).

Examples of Complex Manifolds.

1) ¢"

2) Any open subset of a complex manifold.

3) If X and Y are complex manifolds then X xY 1is
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~a complex manifold, where a function f 1s holomorphic in
"X xY if it 1s holomorphic in X and holomorphic in Y.
4) The complex projective space

P (8) = i[(zo,zl,...,zn)] z, are not all zeroj-,

where [(zo,...,z )] denotes the equivalence class of points
(zQ,...,z ) € 6“+T, where two points (Cg,...,¢ ) and
(co,...,cn) are equivale?t if and only if there 1s a

t # 0 such that I;J = th, J=0,1,...,n, with local
coordinates in a neighborhood of (zo,...,zn) where z, #0
for some 1, 0 <1 <n, being zo/zi,...,zi_l/zi, Zi+1/zi’
coey zn/zi, is a complex manifold. On this manifold

there exist meromorphic functions; the ratio of two homogeneous
polynomials of the same degree 1s such.

5) The speclal case of &, Pl(c) = Riemann sphere =

fo Uta3) .

6) Starting with a complex manifold of dimension n > 1,
omitting a single point, and imbedding Pl(c), we will obtain
a new complex manifold. This procedure is known as the
o -process. We do this for n = 2, starting with 02.

First we define the space X to consist of two types

of points:
T = {(22) | (z2p) & €8 ana (z),2)) # (0,03
I = {[(CI’CQ)] I (cl’CQ)s ca and (CI:CQ) # (0,0)}.
X = I VII.

Secondly, we make X 1into a Hausdorff space by defining
the following basis of open sets:

A neighborhood of a point p e I shall be a neighborhood
in the ordinary topology . of €2 such that its closure does
not contain (0,0).

A neighborhood of a point pe II, p = [(cl,cg)],
and say &, # 0, shall be the set of points; [(1,8)] e II
satisfying | - CQ/C1| <e, and (z),2,) € I satisfying
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2 #£0, lzll <E , Izal < ¢ and |22/21 - Ce/Cll < &,
for some € > O.

Thirdly, we define local coordinates., Near a point
of I, take zy and z, as coordinates. Near'a point
[(Cl:Ce)] of II, where say {, # 0 and hence
[(Cl,ta)] = [(cl/ce,l)] [(co,l)] say, take as local
coordinates t and T :

n

z, = (1+t)t CO
Zy = T

L = (14t)¢,
Ca = 1 .

On this new manifold X, the following holds: every
holomorphic function on X 1is constant on II. For if f
is holomorphic on X, it is holomorphic on X-Pl(c) = 02-{03.
By Hartogs' Theorem, f 1s also holomorphic at the origin
(0,0). Therefore f approaches some complex number, a,
as 1ts argument goes to the origin. Hence near every point
of Pl(e), the value of f 1s close to a. Thus f = a
on every point of Pl(c), but then f must be identically
a on II.

7) A globally presented, regularly imbedded analytic
subvariety Y, of codimension r in an n-dimensional
complex manifold X 1is defined as follows:

Let fl,...,fr be holomorphic functions defined on X,
such that, for every x ¢ X at which fl(x) = eee = fr(x)= o,
the rank of the Jacoblan matrix

- of,
- (%)

is r, 1.e. J 1is of maximal rank. The derivatives bfi/sz
are to be understood in the following way: Let N be a
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coordinate patch containing x, and let § : N -> ¢
define the local coordinates

I = (zl,...,zn) .

af .af '$ -1 (Z veeyZ )
Th i i = 1’ ’“n
en 3zJ = azJ

Then Y, as a subset of X, 1s defined as:

Note that Y 1s closed in X, and that axioms 1, 2 and 4
are clearly satisfied. We now define the local coordinates
in Y. .

Let y € Y, with local coordinates $(y) =(z,(y),...,2,(y)
defined in a neighborhood N of y, where Nc X, Assume
that, at y, det (bfi/sz) =det A0, J=1,...,0 by
relabeling the zJ if necessary. Define new coordinates

1 < fl(zl,...,zn)

¢

ér = fr(zl,...,zn)
‘el = Zra
Eoaa

Then the transformation taking z to { 1s given by the
square matrix;

(%g) = 1 0

which 1s nonsingular as det A # 0. Then the local coordinates
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in Y are (cr+1”“’cn)’ as fy=...=0(,=0 on Y.

Note. This example exhlbits the technique by which
statements in ¢" that are local, i.e. refer to some neighbor-
hood of a point, aré transformed into statements about analytic
manifolds X of dimension n. Hence, when proving results
about manifolds, we shall sometimes assume X C ¢", The
modification of notation needed for arbitrary manifolds will
be left to the reader.

Note. A regularly imbedded globally presented analytic
subvariety of codimension 1 1s called a hypersurface.

8) _ A regularly imbedded analytic subvariety Y of
codimension r 1s a closed subset of X such that every
point of Y has a neighborhood N in X such that
Y N N 1is a globally presented regularly imbedded analytic
subvariety of codimension r in N,
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Chapter 5. The Additive Cousin Problem
81. The Additive Problem, formulated

A. This "first" Cousin problem (there is a second one) is
a direct generalization of the Mittag-Leffler problem in one
complex variable: .

Given a domain D, a discrete set of points a, e D,

and polynomials Pv(zjé ), without constant term, find

a function f, meromorﬁhic in D, with singular part

Pv at a,. -

As we know, this problem is solvable for all domains D < €.
The Additive Cousin Problem is as follows (we shall denote it
by "Cousin I", or simply C.I in the sequel):

C.I Let X be a complex manifold, and U = {hii, iel
be a given open covering of X, I some index set. Let
meromorphic functions F1 defined in Uy, be given, such
that Fi--FJ is holomorphic in ui/)uJ. Find a function F,
meromorphic and defined on X, such that F-F1 is holomorphic
in uy.

This problem is not always solvable, as seen from the
following theorems:

Theorem 17. Extension Theorem (Oka). Let X be a
complex manifold such that the Cousin problem is always
solvable. Let Y be a globally presented regularly imbedded
analytic hypersurface of codimension 1. Then extension from
Y 1s always possible, i.e. given ¢, holomorphic on Y,
there exists §, holomorphic on X, such that ¢ = on Y.

Assuming this theorem for the moment, we exhibit the
following application:

Theorem 18 (Cartan). Let X C:Ga, open, such that the
Cousin problem is always solvable in X. Then X 1s a
region of holomorphy.

Proof. We may assume that X 1s a domain, that O ¢ X,
and that X # 02, as we already know that every ¢ 1sa
domain of holomorphy. Hence, assume b ¢ bdry X; b = (bl:bg)
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where bl?ba are fixed complex numbers. Then if
£(z) = bezl'b122° f{z) = 0 1s an analytic plane through
O and b. Let Y={z|f(z) =0J. Now ¥, =YAX 1s an
open set in C; hence Y1 is a region of holomorphy.
Therefore there exists a function ¢, holomorphic in Y,
and singular at b. But by the extension theorem, there
exists a §, holomorphic in X such that §=¢ on Yy,
and § 1s singular at b.
B. Proof of the Extension Theorem

Let Y= {f= 0} ; and let ¢ be holomorphic in Y.
There exists a covering U = {uiis X of Y such that 'Yc:\{ui;
and in each u, there exists a §, such that J,
holomorphic in u, and equal to $ on Y Nuy, by
definition of holomorphicity on closed sets (see proof of
Lemma p. 7#). Let Uy =X -Y, an open set in X.
Define: F, = §,/f, 140

Fb =1 .,

This covering and set of assoclated functions defines a
Cousin problem, for, on u, N Uy, FO"Fi is holomorphic.
Indeed, on uy n uJ, Fi'FJ is holomorphic except possibly
for points on Y. Hence, assume f(zy) =0, zje uif\ uy-
Introduce local coordinates (cl,..,,cn) such that f 51.
But now,

}1(0,C2,~-,C ) “EJ(ooCQJHUC ) = 0,

as and agree on Y, and
5, 3; By(Eypeenty) - By(00,00000)
Fy-Fy = a .

But in the power serles expansion of }1-53 , only terms
containing powers of 51 appear; hence Fi-F j is holomorphic
in uy N u 5’

By hypothesis, there exists F, meromorphic in X,
such that gy = F-F, 1s holomorphic in uy. We claim that

1
$ = fF 1s holomorphic in X and equal to ¢ on VY,
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Clearly, § 1s holomorphic on Uy =X - Y. Consider F
on uy, 1 #£ 0;

F = 8y +.?i , and 8y is holomorphic.

Hence, 3§ = I‘g1+I1 in w,, and on Yﬂui, T=9¢.

§ 2. Reformulation of the Cousin Problem

C.I'. (Cousin problem belonging to the covering U).
Given X, an analytic manifold of dimension n, covering
U= {uiﬁ and holomorphic functions f,, defined in u, Nu

1§ J
satisfying
fJi = - fij (antisymmetry)
fij + ka + Ly = 0 (compatibility),
find holomorphic fi’ defined in L such that
f'iJ = fi'fj'
Claim. C.I' implies C.I.
Proof. Assume C.I is given, and let f1J = Fi-FJ,

where the Fi are meromorphic functions defined in uy.
Then the fij are holomorphic and satisfy the symmetry
and compatibility conditions. Let f1 be the solution
functions of C.I', and define F = F;-f, in wuy;. Then
F 1s globally well-defined, for in uy N uJ

- fJ ,
hence F, - f, = Fy - fJ ,

and F solves C.I.

Induced Cousin Problem. Let U = guiﬁ, Jed;
V={v,5, 1eI betwo coverings of X, and assume that -
V 1is a refinement of U (i.e. every vy is contained
in some uJ), and let a Cousin problem belonging to the
covering U be given. We induce a Cousin problem belonging
to V as follows:
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Let 0~ be an "affinity" function fcorg\ I to J such
that v1<:. Uy 1) In vy /\VJ, assign fiJ = fo (1) (§)°
Clearly, the fiJ are antisymmetric and satisfy the
compatibility condition. .

We now reformulate the Cousin problem a second time:

C.I". Let a Cousin problem belonging to the covering
U be given. Find a refinement V of U such that the
induced problem 1s solvable with respect to V. (We shall
show later that the choice of the affinity function 1is
immaterial.)

Claim. C.I" implies C.I.

Let U= {uii be a given covering, with assoclated
meromorphic functions Fi' As before, define fij = Fi"FJ'
Let V = {vii, with assoclated giJ be the solvable induced
Cousin problem, with affinity function o°:

Vi & Yy (1) ?

813 = To(1)o (3)

Let 8y be the solution functions. Define

F = FO“'(:I.) - gi in Vi .
Then F 1s globally well defined and solves C.I, for

Fe1) “ For(g) = for(1)o(g) = B13 = 8178y

Furthermore, F'-F:L is holomorphic in uy, for, let x ¢ uy.
Then there exlists a v, containing x, and consider:

J

S I F R
= /
defined and holomorphic in VJ f\uo,(J) (\ui = vJ 1 uy,
and x ¢ vy /lui.
Remark. We may now conslder the Cousin problem for
locally finite coverings only (i.e., for coverings such that
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every point of X has a neighborhood which intersects only
~a finite subcollection of the cover), by virtue of the
following observations:

1) (Paracompactness). In any manifold every covering
has a locally finite refinement by open sets each relatively
compacdt in some open set of the origin covering and some
coordinate patch (see de Rham, Vari&tés Différentiables).

i1) C.I" implies C.I.

§3. Reduction of the Cousin Problem to non-homogeneous
Cauchy-Riemann equations

A. Intermediate Problem. Given a complex manifold X,
locally finite open covering U = {ui% , and holomorphic
functions £y defined in u114 uy, antisymmetric and
satisfying the compatibility condition, find functions 8ys
defined in Uy, such that 1"1J =8 - gJ where the 8y € c®

Proposition 1. The Intermediate Problem is always
solvable. The proof of this proposition will be presented
subsequently (p. 64).

Let the functions a,, v= l,...,n Dbe defined on X
as follows:

o
a, = —El in u

v 3, 3’

We claim the a, are globally well defined, 1i.e.,

v = 1,...,1‘1.

og og
—:1 - —:1 = 0 in u /) uy.
azv azv
But this 1s clear, for g -8y = fJi and fJi is holomorphic

there.. PFurthermore, the a, satisfy the following
compatibility -zondition:

Bzu azv

‘ and this 1is clear. Now we can state the final form of C.I:



Final Problem. Find a function A ¢ C®, defined on
X, such that aa/az; = a, v=1,...,n; where the a,
are as above.

More precisely, given a complex manifold X .of dimension
n and C® functions a, v-= l1,...,n; defined on X and
Satisfying the compatibility conditions

da v bau

%, o,

v)

H kv =1,.00,n

find a function A, defined on X, such that aA/aEv =a,
v=1,4..,n0.

Note. These differential equations are known as
non-homogeneous Cauchy-Riemann equations.

Proposition 2. The final problem implies C.I,

Proof. Assume there exists a function A, defined as
above. Set f1 = gi-A, defined in Uy, where the 8y € c®
are given by Proposition 1. Note that

M _ % wm o,
%, 0%, O,

i.e. the fi are holomorphic. But f:l"fJ = 8478 y= fi 't
Definition 31. Let X be a differentiable manifold,
U= {ufs a locally finite open covering. Then a partition
of unity subordinated to the covering U 1is a system of
functions mJ , defined on X, positive and C°° , Such that

0 on X-1u

n

®3 ]
ij = 1 at each point of X .

Proposition 3. Given any manifold X and locally finite
open covering U, there exists a partition of unity
subordinated to the covering U.

Proof. Note that, 1f V 1s a refinement of U, and
if there exists a partition w, for V, we may define a
partition mJ of U as follows: Let o be an affinity
function, as before (vic uo‘(i))‘ Now set
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o } w, on v, .
o (1) 0 otherwise

For those u'j not as yet included, define w, = O.

Let U be given. By Remark 1), p. 63, U has a
locally finite refinement V = {v, such that v, cc
some coordinate patch Py Since ‘X 1s paracompact and
Hausdorff it 1is normal, 80 that there is a locally finite
open covering V' = ivif such that v g SCVye For each i,
let f, bea diffeomorphism of P 1nto R, Let s1 f(vi)
and :ssi = £(v,); then 8, lopen . _ g gpen. In R" there are
c® functions yy : R" - [o 1] satisfying ¥, =1 on
cl 8y and E 0 outside s Let rpi' f= 91, and set
w, = 01/ z;_' 01.
B. Proof of Proposition 1.

Let w, be a fixed partition of unity subordinate
to U= {uf; . Set gy =§ ® fy; 1n uy, where this
sum is understood ag foll for x e Uy, wi(x) =0
unless X e uy /\uJ. When wi(x) =0, set w,f,, =0.
When mi(x) £ 0, fiJ is defined. Note that miix) =0
for all but a finite number of indices 1.

The g'j solve the intermediate problem, for

g - 8y = %kafik'gmkrjk
¥mk (fik+ fk,j)
= E;_-mk (fij) = fiJ .

Hence, we have reduced the Additive Cousin problem to an
existence theorem for the nonhomogeneous Cauchy-Riemann
equations. We shall exhibit a solution for a polydisc
shortly.

Example. Let X be a simply connected differentiable
manifold, U = fuizg a locally finite open covering. We pose
a "Cousin Problem" as follows:

To each uy N u ] let there be assigned a complex

1

[}
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+ f

k1 =0

number f1J such that fiJ = - fji and f1J J
= f "fJo

Then, find constants fi such that f1J 1
Let 8y be the solutions of the intermediate problem;
. ®
figiz gi-gJ; where 8y is defined in uy and 8y € c .
Define: 381
av = ?;—- , in u1 - v=1,...,0,

Then the a, are defined globally, as before, and
bav/axh = aau/axv. The final problem becomes: Find a

function A such that
oA = a
Exv v ?
Such a function exists, by Stokes! theorem. Set

V= 1,.--,1’14

f1 = 8y - A,

The f, are constants, as bfi/va =0, v=1,...,n0

Exercise. Prove the converse of the above example,
in the following form:

Let X be a domain in R". Then C.I solvable implies
that every curl-free vector field i1s a gradient.

Theorem 19, Let D = {(zl,...,zn) | |ZJ| <Ry < oS,
If a (zl,...,z ) are defined and C® 4in D, J = 1,...,n,
and satisfy da /Bz = aak/az then there 1s a C®
function ¢ 1n D such that 3/d9Z, =a, for J=1,...,n.

Proof. 1. Let D= {(zl,...,z) I"lz4l < ry < odfeeD.
Then the aJ are defined and C® 1n a neighborhood of Db‘
We cla1m that there exists a ¢ defined and ¢® in perhaps
a smaller neighborhood of D0 satisfying a¢/azj = ay
J=1,...,n. The proof is by induction on k, where we
assume a, =0 for J> k. For k=0, the problem is
reduced to solving the system of homogeneous Cauchy-Riemann
equations, a¢/a§J =0, of which ¢ = 0 1s a solution.
Assume that the problem can be solved for k= £-1, and
consider the case k = . Choose & > 0 sufficlently small,
and for { =¢ + in and (zl,...,zn) in an e, neighborhood
of Db’ N(sl,Do), €y <€ define
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a,(z seeesZy 158 seeesZy)
m(zl,...,zn) = "}r /f 3% ;Ez’zﬂ a dn

lgl<r,+e
u)(zl,...,zn) 1s then defined and €% 1in all variables in
N(e;,D,) and satisfies /3%, = a, and Ww/d%, =0 for
J > 2, by the compatibility conditions aaz/biJ = an/B'z'z.
The system

(1) —a-L=a » J = l’too’z; -éi— = 0' J= l+1,...,n;

%, 3
J J

i1s then equilvalent to the system

(2) '?"!é-d_)) = a "'&_' J = 1,...,2; a( -(D) = o’ J =l+1,...,n;

3, %, ’ 37,
but since aw/azz = a,, (2) is actually

(21) a—(i’i"—) = 2 S e1,ee1; 280) o g

L)

J bZJ sz
Now (aJ aw/bz ) e ¢® in N(sl,ﬁ ) and satisfies the
compatibility conditions since 9/dz (a11 &D/BEJ) =
baJ/bz - 3/dz (aw/azj) = bak/bz - b/bz (am/az ) =
b/az (a aw/az Hence, by our 1nduction hypothesis, (2')
has a c"’ solution and therefore (1) has a C® solution
in a neighborhood of DO'

2. Construct open polydiscs D,c. c DJ +1 whose union
is D. By 1., there exist functions ¢1,¢>2,... such that
«bj e ¢® on DJ and 9¢ /azk— a, for k=1,...,n and
(zl,...,z ) ¢ D,. Choose e, >0 such that > ey < .
If the ¢J satisfied |¢ 341 bjl < ey in DJ then

1im ¢ = ¢ would exist uniformly on compact subsets of D,
J=>00 ©
8ince |¢+-¢JI <eJ+sJ+1+...+e

J4p % g, in D 3
and for J sufficlently large S €y 18 the tall end of a
convergent series. Moreover, " for k fixed, (¢ -é ) 1s
holomorphic on D, for J > k since d/dz (¢J =0 on
D, 1=1,...,n. Therefore since the sequence {(¢J-¢k)}



68

J > k would converge uniformly to (¢~ ¢k), all derivatives
would also converge, so that ¢ would be c¢® and would
satlsfy the differential equations aé/bzk = ay A}n D.
So the next step is to construction new g,'s, ¢ » which
are also solutions of the differential equations and satisfy
|¢J+1 ¢ | < ey on Dy. Let ¢1 = ¢;. Let ¢ = ¢ - h),
where h1 is a polynomial. hy must satisfy |(¢2-¢1) -h I<el
on D;. But on D1 , ¢2-¢1 is holomorphic and hence has a
power series representation which san be approximated as closely
as desired by a polynomial. Let ¢§ ¢ -h o) etc. Since the
polynomials are holomorphic, a¢J/a = 8¢J/bz = ay,
=1,...,n, on DJ, and |¢J+ -¢ | ey on DJ by

construction. Hence 1lim ¢J 1s a C® solution of
3%/3%, = a, t Dp. I

Note. If X and Y are homeomorphic manifolds and
the Cousin Problem is solvable in X then it 1is solvable
in Y. Thus by the previous theorem, the Cousin Problem
is solvable in any domain which is the product of simply
connected domains in 8.
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Chapter 6. Cohomology

§1. Cohomology of a complex manifold with
holomorphic functions as coefficients

Let X be a complex manifold and U = {uig, 1elI,
be a fixed open covering of X. (We always assume that
# uy for 1# 3.) '
A. Definition 32. An r-cochain fﬁ on U 1is a rule which
assigns to every ordered intersection of (r+l) sets,
ug N...Nuy , a holomorphic funetion fio ...1r(z)
defined in this intersection such that
1. (a) when the iJ are distinct and f\ui # 0,
fiooooir(z) is a function holomorphic in /\uij.
(b) when the 1, are either nondistinct or
Nugy =6, 3 4 (2) =
Ja g (odd permutation of (Ljevl))= = $(1,.001,)
§ (even permutation of (1o°°'1r))= §'(10...1r).
Exanples.
1. A O-cochain is a rule § which assigns to every
u; € U a holomorphic function §,(z) defined in u,.
2. A l-cochain is a rule f which assigns to every
ordered intersection u (\113, a holomorphic function
J(z) defined in u, n uy such that fij(z) =0 1if
1=3 or u n uy = ¢, f1J = - fJi'
COchains of the same dimension form an Abelian group
under addition, cf = Cr(X,U,(Q), where () refers to
holomorphic functions. This group 1s also a vector space
over € and a module over holomorphic functions on X.
Definition 33. The coboundary operator, 6, 1s a
linear mapping of ¢’ 1into Cr+1 (and therefore a homomorphism
of the group CT) glven by

r+l ~
(65 (1geetyy) = 3 (-1)9 F(1g.001p00 1, 0) for fe

where i} denotes the deletion of 1J.
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6f is called an (r+l)-coboundary. There are no
O-dimensional coboundaries. The coboundaries form an
Abelien group under addition, BF = BY(X,U,®). This
group 1is also a vector space and a module, as above.

Definition 34. A cochain 1is called a cocyclev when
its coboundary is 0, 1.e. 6f=.0.

Since & 1s a linear map, the sum and difference of two
cocycles is a cocycle, and the cocycles form an Abelian group
ZF = Zr(X,U,G), a vector space, and a module.

Examples,

1. z°-= {holomorphic functions on )? For 0 = (6f) (13) =
§(3) - 5(1) 1mplies that f,(z) = £,(z) on u; N uy, and
hence that the fk are restrictions of holomorphic functions
on X.

2. 7! = {cousin data]. For (6f)(1fk) = H JK)-H1k)+§1])
= 0 implies, since f(1J) = - $(J1), that $(13)+ S(Jk)+§(k1)
= 0, Therefore we have fiJ(z) defined in uy Nu, satisfy-
ing rid(z) + ka(;) +f,(z) =0 and fij(z) = - fji(z).

Corollary. 6% = O.

Proof. A typical term of (669 (1,...1,.,) is
a -}(10...1J...1k...1r+1). We must show that this term
appears with zero coefficient. If we first delete k and
then J, the coefficient of a 1s (--l)k(-l)J , But this
term is also obtained by first deleting Jj and then k,
in which case the coefficient of & is (-l)J(-l)k'l (since
J < k). Hence the coefficient of o in 665 1s (-1)¥(-1)J +
(-1)3(-1)%1 - 0.

By the corollary, every coboundary is a cocycle. Hence
BT ¢ 7F¥ c cF. Zr/Br is called the r th cohomology group
= Hr(X,U,(D). H® 1s also a vector space over # and a
module over holomorphic functions on X.

HO = 2° = {holomorphic functions on X}.

If H]' = 0, then every cocycle is a coboundary which
means that for every fiJ(Z) holomorphic in uy Nu 3’
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fij(z) = - f.i(z) and I‘i (z) + fjk(z) + fki(z) = 0, there

" exist functions fi(z) and f,(z), holomorphic in uy and

u‘j respectivelg, such that fij(z) = fj(z) - fi(z). In

other words, H” = O implies that every Cousin Problem is

solvable (for the covering U).

B, Let V= { v JS », J e J, be a refinement of the covering

U. Then everz v, 1s contained in some ui eU, i1e¢1I.

Let ¢ (j) = J be an affinity function which assigns to

each vJ. one u, which we call u r_such that VJC uz .
We assign to every r-cochain "4-in U an r-cochaln

$ 4in V as follows: (Call this mapping 0”*).
Corresponding to every non-empty ordered intersection

of (r+l) sets, 1[.=0 in’ there is an ordefed intersection

of sets, [ u‘J'i, and hence an r-cochain -+, defined on
f)uj’i . Assign to 9‘- its restriction on /)in, and call

it f. Then the holomorphic function which_ + assigns to
ﬂ vJ is the holomorphic function which J" assigns to
Nu= 1 restricted to v, .

Iy I3

O'* : Cr(x,U,()) -> Cr(x’v’ O) .

Properties.

1. o 1s a homomorphism of the group cf(x,u,0).

2, 86 = o 6. For if 5 e C(X,U,0) then

- 3 r+l K - A
(86 5)(3geeedpyy) = (85)(3geeedpyy) =§5 (=1)" S(Jgeedymedngy)
and '

* = . w Il ' Kk - ~
(6" 00) (re-dpun) = & 0 Z (DF Flhgee T ndy)

1 -
e I (K 0" (Ggere R edpyy) (Y 1)
=0 r
r+l

"

2 (D e Tt -
*

2o (a) o :27(xU,0) > 2 (x,V,0). Forif
e Z°(X,U,0) then 5f=0 implies that 0 = o= 3 §=60" {=b%.
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() o : B0, ) - B°(x,v,0). For if
feB (X,U,0) then ¥=6F dimplies that o f=o" 6F = OF;
Note. ot depends on the choice of the affinity function o
Lema. If o and T are two affinity functions and o=
and :x_—;fe their corresponding mappings of cf(x,u, O) ->
cf (X WV, ), respectively, then there exists a linear mapping,
¢*(x,0,0) - ™ 1(x,v,8), such that for f e C"(x,U,0),
™ § o F= 06f + oef,

Proof. Define © as follows:

§ r-1 Kk L
(05) (15008, 3) = 57 (1) o (1)) .0 (4, )0 (1)7(1))

cet(i, ;)
Now

r -
6(95) (1000011.) =§ (-l)k (ef) (10...?1{...11')
r k-1 _
- > ('l)k{i?zs (-1 £(o (1) 0000 (1))7(1,) . 78 on(2))
r-1 ) - A
+§; (-1) f(o’(10)...0-(1k)...o'(1H1)r(1“1)...r(1r))}
r ka1 K+ %
g;:—j (-1) flo (1 Yoo 0’(1 )1‘(1 ). 'r(ik) 1‘(1 ))

- g g___—m(-l)m' Flor(1,). .a(ik) co6(1,)7(L,,) (1))

and

065 (1501) = 3= (-1P(S (1) 011 )e(1,) en(a))
° r = o 2 ) T
. r ° z - o
-2 (-1)!3{% (-1)¥ 5'(0"(10)...0’(11()..0'(12)1(13)..1(11‘-).)}
r+l -
k
+k=z;1:-1) $(o (1) 000 (1,)2(1,) .28, 1) .en(1))
= %{EE‘G (-1 (o (10)..9(11{)..0' (1,)7(1,)..7(1,))

r r -
-E%;z(_l)k'# &(c(10)...0—-(13)1(13)...?(11{,)..,T(ir,,
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r 4-1 -
=§§; (-1)k+ f(d’(io)...o':(1k)...0"(1£)1'(1 )eeat(1))

g 5:1,' (-15"* Lo (1 oo (2 )‘r(iz)...'r(ik,),..‘r(i )) +A
vwhere

- ,g Ho(15)0 00 (1, 1)7(1,) 0 0un(1,))

r -
- 3 Ho )0 ()50 ) nl2))

Se(1)eeen(1)) - Flo (1) 00u0m (1))

11 -0t B,

and it 1s clear that ﬁhf remaining terms cancel, when one
writes the sums $— %% for example, as 5

* k,72=0; £<k

Hence, T =~ o’ 96 + 66, as clalmed.

Sorollary. 1f 8§ =0, §ec"(x,0,0), then
TF-0"F= 60f Hence if f is a coeyele on U then
*; and & 5 are cohomologous cocycles on V.

Definition 35. If U and U2 are open coverings of

X, and if §+ ¢ B (x,01,0), ( 1.e. §1 1s a cohomology class

af r-cocycles) and §2 ¢ H'(X,U%,0) then 51 and fz
equivalent if they induce the same cohomology class of r-cocycles
on some common refinement of Ul and Ua.

Let [51] denote the equivalence class of fl. ;‘1
a representative of [51] . Define addition of equivalence
classes as follows: . )
[i’ll + [52] = [81 + 82]
where 51 induces 8y and 5-2 induces 8o in some common
refinement of Ul and Ua. It must be checked that this
definition is independent of the choice of representatives
chosen. (Exercise for the reader). Then these equivalence
classes of cohomology classes of r-cocycles from an Abelian
group under addition, H'(X,d), called the r th cohomology
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group of the manifold X. (Hr(x, 0) is independent of the
choice of covering of X). H (X,©) = lim Hr(X,U,(9)‘.

An element of Hr(X,(Q) can be represengzd by an r-cocycle
on a covering of X. H“(x,O) = 0 means that any r-cocycle
on a covering U of X induces a coboundary on some refine-
ment of U, Note that § -> [ £] 1s a homomorphism of

B (x,0,0) into F(x,0).

o(x,0) = { holomorphic functions on X}.

-If Hl(X,O) = 0 then every Cousin Problem is solvable
(cf. 2nd reformulation of Cousin Problem).

Holomorphically equivalent manifolds have the same
cohomology groups.

§2. Applications

Theorem 20. Let X be a complex manifold and Y a
globally presented, regularly imbedded hypersurface,

Y= {(zl,,..,zn) | ¢I>(z1,...,zn) = Oj where ¢ 1s a holomorphic
function on X. If for some r > O, H"*’l(x,(')) = 15(x,0) = 0,
then H(Y,0) = 0.

Proof. We say that a covering U' =3uj§ of X 1s
sufficiently fine if for every ( firlllte uj'_) N Y a function
holomorphic in this intersection can be continued to
the oyfhe uge

Lemma. There exists a covering U, of X such that
every refinement of Uo is sufficiently fine.

Proof. Let y e Y, then in some neighborhood of y,
N(y), there are local coordinates cl"" ’cn such that Y
is given by £, = 0. Any function holomorphic in Ny)NY
is a function of Cv'" ’Cn-l and hence 1is holomorphic as
a function of Cl,...,tn, i.e. in N(y). Clearly if N1
is any open set contained in N(y) any function holomorphic
in Nln Y can be holomorphically continued to Nl‘ Take
this neighborhood system and add open sets not intersecting Y
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to form an open covering of X. This covering has the desired
property, i.e. is Uo.

From now on we consider ohly such coverings. Now take
such a covering U = {uig of X. We must show that every
r-cocycle on Y induces an r-coboundary on some refinement
of U, Lgt fy be an r-cocycle on Y, then §y assignd to
every | ;]QO u, YNY a holomorphic function fio.-.ir(z) defined
in this intersection. Since U 1s sufficiently fine,
fio--ir(z) can be continued to fr\o u, - Define ¥ =0 1n

Auy  when (Nuy )OY = §. Thgreforg, there is an r-cochain
§x Jon X such that §¥= $Y on Y. Then 6% =0 on ¥
which means that 6$* = ¢g where g 1s an (r+l)-cochain on X,
But O = 66%% = $6g and hence 6g = 0; g 1s a cocycle on X.
Since HH']'(X,O) = 0, g must induce an (r+l)-coboundary on
some refinement Ul of U. So consider everything above in this
refinement Ul. Then g = 6h where h is an r-cochain on X.
Therefore 6(§*-ph) = 65%-p6h = 65 -dg = 0, and hence §¥-¢h
is an r-cocycle. Since HP(X,(Q) =0, 5—"-4)11 induces an
r-coboundary on some refinement 02 of U”. Considering the
above in this refinement U2, {(*_bh = 6F where F 1s an
(r-lpcochain on X. Hence on Y, §%-¢nh= = £Y = 6F,

and since F 1s an (r-l)-cochain on X, 1t is an (r-1)-cochain
on Y.

Note. The following theorem gives sufficient conditions
for a domain to be a domain of holomorphy. Later on we will
prove that these conditions are also necessary.

Theorem 21. Let DP®< ¢, n»>2. 1f H'(D,0) =0
for 1 <r <n-l, then D 1is a region of holomorphy.

Proof. Use induction on n. The case n =2 follows
from Theorem 18. Assume that every open set in cn-l for which
i = 0, 1 <r <n-2, 1s a region of holomorphy. Rather than
working with a component of D, assume that D is a domain. Then let
Ddomc. ¢ and let b ¢ boundary of D. Pass a hyperplane P through b
and an interior point of D and set PAD = Y, By Theorem 20, all the
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1 n-2

cohomology groups of Y from H™ to H are O. By our
induection hypothesis then, Y 1s a domain of holomorphy.
Hence there 1s a function g holomorphic on Y and singular
at b. Since Hl(D,é;) =.0, the Cousin Problem is solvable
in D, and hence g can be continued ho¥omorphically to D,
and the extended function will be singular at b.

§3. Other Cohomologies

A. 1. Had we defined an r-cochain to assign a COD function,
instead of a holomorphic function, to intersections, then

we would have gotten Hr(x,coo), where X could be a real
manifold.

2. Had we defined an r-cochain to assign a constant
function, i.e. complex number, to intersections, then we would
have gotten Hr(x,c). Here X 1s any topological space.

3. Had we defined an r-cochain to assign an integer to
intersections, we would have gotten H'(X,Z), the Integral
Cohomology group of the topological space X.

4, In fact, given any Abelian group [ , we could have
defined an r-cochain to assign an element of [, 1in which
case we would get HE(X,[7).

B. Definition 36. Let S be a topological space, X a
Hausdorff space, and p a mapping of S onto X (called the
projection mapping). Denote p'l(x) by S,, called a stalk,
and note that S < S , xex Sx = S+ The triple (p,S,X)

i1s called a sheaf of Abelian groups over X 1if

a) p 1s continuous, and for each x ¢ X and each
S € Sx’ p 1s a homeomorphism of a neighborhood of s 1in S
onto a neighborhood of x.

b) Each stalk Sx is an Abelian group such that:

8 -> -8 is a continuous mapping of S into S; and
(s,t) => s+t , defined on the set R of pairs (s,t)
such that s,t belong to the same stalk, is a continuous
mapping of the subset R of S » S into S.
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For simplicity, we call S the sheaf.

Definition 37. Let U%P®"« x, A section (or cross
section) of S over U 1s a continuous map jf of U into
S such that p-f 1s the.identity mapping. Denote by T (U)
the additive group of all sections of S over U.

Examples.

1, Let X be arbltrary, and let Sx = Z for all
xe X. Let S=UJS_ have the discrete topology. Then a
section of S over Uopenc X assigns some integer to U.

2, Let X be arbitrary, and let S, = G, any Abelian
group, for all x e X. Let S = (US_ have the discrete
topology. A section of yopPen, C X 1s an assignment of an
element of G to U,

As in example 1, all stalks are isomorphic. Such sheaves
are called constant sheaves.

3. Let X be a complex manifold, and Sx = &x’ the
set of germs of holomorphic functions.

Definition 38, Let x ¢ X, a complex manifold, and
consider holomorphic functions at x, each defined in some
neighborhood of x. We say that two such functions are
equivalent if they coincide on some sufficiently small
neighborhood of x. This 1s clearly an equivalence relation.
The set of all holomorphic functions as above, modulo this
equivalence relation, 1s called the set of germs of holo-
morphic functions at x; which we have denoted by &x.
The set of all germs form a group over each point x.

Introduce a tcpology in the set of all germs S = st
as follows: Take any element e S; then 5' € Sx , and
is an equivalence class of functions defined in a neighbor-
hood of X, € X. Take a representative ge Sy ; g 1s
defined In Ny , a neighborhood of X, € X. en for
each ye Ny , assign that class in S_ containing the
direct analygic continuation of g, say {g S Then

{gy?S is, by definition, an open set; and these are
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to form a basis for the topology of S. Each section over U
is a holomorphic function defined in U. This sheaf 1s called
the sheaf of germs of holomorphic functions.

4, Let X be a differentiable manifold and. Sx = C;?,
where Cg’ denotes the set of germs of c® functions at X,

" defined similarly to (9 . Then §= UcD is made into
a sheaf as 1n example 3 above.

With the aid of the concept of a sheaf, we may now define
the cohomology groups in a more general setting.

Let X be a paracompact space with a sheaf S over 1it,
and U = Euig » 1¢ I, an open covering of X. Define the
cochains CF(X,U,8) on X associated with the covering U,
with coefficients in S, as follows: ¥ e C'(X,U,S) assigns
to each ordered intersection, uy; /N ... Nu; , a section
of S over this intersection so that § 1s antisymmetric
in the indices. Note that we can add cochains, and talk of
antisymmetry conditions, for we can add thelr values using
the group structure of I"'(uo 4] uy n... nur).

Continuing the construction as before, we obtain
H'(X,U,S), and then form the projective (direct) limit,
H'(X,S).

Theorem 22. HY(X,0®) =0 for all r > O and any
differentiable manifold X. 1In fact Hr(X,U,Coo), r>0
1s already trivial, for every locally finite covering U.

Proof. We define a homomorphism © : cf(x,0,c®) ->
¢ 1(x,u,c®) r >0, so that § = o5f+60f, and this
is sufficient.

Let %aﬁ} be a partition of unity subordinate to U
(see Definition 31 and Proposition 3, 3, Chapter V). Define

051 .01 y) = ST o 811 e ),

where this sum is understood as follows: m1§-= 0 1if § =0

or if Wy = 0. Note that the local finiteness of U 1nsures
that almost all terms of this sum vanish at any point of X.

Now
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- (06§ +ao})(1 eel) = Zm af(u eoed )4%'(-1)“05(1 ...?k...i )
- 1{%—6 (0 g1 LT ) +§(1 13

+§ (-1)k Z:__m (11 ...1k...1 )
= S(1..1 ); ;g (-1 o, 50 1, ...1 i)
+§:§ (-1)K mii(no...ik...ir)

5,(10...11,) .

Note that this proof hinges upon the fact that
cf(x,u, c°°) 1s a module over globally defined C®° functions.
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Chapter 7. Differential Forms

81. Ring of differential forms in a domain

A. Definition 39, Let D C Rn, D open. A differential
form in D is a formula sum ay 4 Oxy Aees
r=0 1y<ip<u.<lp 1**"r "1
Adx; (the symbol " A" 1s read as "wedge"), where the
ail'"ir are functions defined in D, possibly zero (in which
case the term dxy A ... Adx; may be omitted from the sum).
Identify ledxy Ao..Adxy  Bnd dxg A Adxg

Note that the collectioﬁ of differential forms En_ D
constitute a module (Abelian group written additively),
closed under multiplication by functions in D, of dimension
2", The addition is the natural one. We denote this module
by RD.

We shall say that a monomial ail...ir dxil/\ .../\dxir
i1s of degree r of r-dimensional if it is the sum of monomials
of degree at most r, and pure r-dimensional if 1t 1s a sum
of monomials of degree precisely r. Observe that any form
in D may be written uniquely as a sum of pure r-dimensional
forms, O <r <n. We now introduce a multiplication "#"
in RD’ giving RD a ring structure, as follows:

Define (ay .1 dxy N... /\dxir)*(bdlmJk deI/\.../\de)

o 1if 1K = JL for some K,L

€21, el le”'Jk dxq, Aeee Adqu+r otherwise

1
where each Qe is an 1K or a JL; Qe < Qe and e 1is

the sign of the permutation = : (11...1r Jl...Jk)->(ql...qk+r).
Define "#" on all R, by postulating that the distributive

law holds. The multiplication "*" is clearly associatlve;
hence RD is a ring. We now denote this multiplication by
"A", for obvious reasons. (R, 1s also called the ring of
exterior differential forms).



81

We note that RD may also be defined as follows: RD
1s a ring with operators {ﬁmctions defined in D}
‘generated by the symbols dxl,...,dxn, where
1-dx1 = dxi
dx, A de = - de /\dx1 .

L)

We remark that, if a,R are pure dimensional

GAB - (_l)deg a°*degBf B Aa .

Remark. It 1s to be understood in the sequel that
all functions are €%
B. We now introduce a cohomology structure to RD' called
the d-cohomology, or de Rham cohomology.

Define the ring homomorphism d:RD ~> RD as follows:

On zero forms, i.e., on functions defined in D, set

of

ar = ax,
J?’—EJ

and on monomials:
dladx, A ... Adx, ) = (da) A(ax, A ...Aax,) .
J1 Jr' J1 Jr-
Extend d to RD linearly. Note that d 1s not an
operator-homomorphism, i.e. d(fo) # fdo , where f 1s
a function on D and a € RD;
Example {1). Let D<C R“, and observe that da on
a zero form acts like a "gradient," on a pure l-form like
"eurl," and on a pure 2-form like "divergence."
Lemma 1. 1) daa =0 for every a ¢ RD
11) dla AB) = da A 8+ (-1)F aAds, for
every pure r-dimensional form a. .
Proof of this lemma is left as an exercise. Hint: 1t
suffices to consider only monomials o,8.
Definition 40. A form ¢ ¢ Ry 1s sald to be closed
if da = 0.
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A form ae Ry 1s sald to be exact if a = dB for some
B € Rp. o
It 1s clear that the closed forms form a subgroup RD of RD’ '
and that the exact forms are a subgroup Rg of RD' Hence, we form
the d-cohomology group Rg / Rg = closed forms / exact forms.
Lemma 2. The closed forms form a subring of R, ~ in
which the exact forms are a two-sided ideal.
(1.e. 1) closed A closed = closed
11) closed A exact = exact
111) exact /A closed = exact)
Proof. We may assume that a,f are monomials.
1) If da=dB =0, then d(aAB) = daAB + (-1)98% A®
= 0.
do Ay+ (-1)9%8 %o Agy
[(-1)9e8%q) A g,
1.e. aAB = a(-1)9%8%apy) ,

and similarly for 1i1), (BA a) = d(y A a).

Hence, the de Rham group is a ring, (the de Rham
cohomology ring).
C. Nowassume D C €. We identify ¢" with R 1n
the usual way, and observe that

z, = X, + 1y
K J J_i J=1,...,n

D

i1) If B =dy, da =0, dlaAy)

|

zJ = xJ - iyJ
are functions of Xy and ¥ys hence we may apply "d",
obtaining ’
dz, = dx, + idy
d_J dj 1dJ J= 1,...,1‘1 .
2y = Ty

But the de,dyJ generate the ring of differential forms on
D; and the above equations are solvable for dx,,dy, in
terms of dzJ and dEJ. Hence the dz, and dzJ also
generate the ring of forms, so that for any form a e RD:
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= s A... Naz, Adz, A..N
a= a b T dz eeo N\dz dz .. Nz
;;; pomr My ipdyedg Py 1, N 1q
i1<'“<1p .
3’1<...<3q
Now any element may be written uniquely as a sum of pure
dimensional forms; and any pure dimensional form of degree r
may be written uniquely as'a sum of monomials of "bi-degree"
(p,r-p) , p=0,...,r wuhere
Definition 41. We say the monomial
1 ...ij .“- /\.../\dzip/\dz /\.../\dqu is of type
or bidegree (p,q), we denote” dz, /\.../\dz /\dz A Adz

J
by upq. Hence any form in RD may be writ’t):en uni&uely as q
a sum of monomials of distinct bidegrees (p,q):
2n S—
a = Qa. .
Z;; g;a;r 11...1p31...3q %q
Hence, the a q form a basis for the module RD. Let APY
denote the subset of forms of bidegree (p,q) and note that
1! 1 !
APT A pP7Q7 _ pPHPT,AHT e oy introduce homomorphisms
3 : APT _, pP*La and 3 : AP? o> AP2*l a5 pollows:
- da
ba = J WJ dZJ s’
ga = aa dz J 3
J= BzJ
where a 1s a gero form, and extend d, 9 to RD as before.
Now d =0 + 9, as can easily be verified. Hence d2 =0

= (340)° = 32 + 3° + (30433). Note that
(3+40)2 AP = 32 APY 4 32 AP9 4 (33433) APY
AP+2,Q | aPya+2 | 5,p¥1,a4l

so that d° ¥ =0 and_ 0D = - .
We now deﬁne d-closed, b-closed, Jd-exact, and a-exact
forms, and form the assoclated cohomology groups:



d-closed forms
o-exact forms

and
d~closed forms
o-exact forms

We may again verify that these groups are in fact
cohomology rings.

Observe that, if we restrict the coefficients to be
holomorphic functions in D, 9 becomes trivial and d = 9.
Hence, we can also form the cohomology ring:

closed holomorphic forms
exact holomorphic forms

where we define a holomorphic form as follows:
Definition 42. The form > a11°-~1p31~-3q dzil
/\dzi A dEJ AL A dZJ is said to be holomorphic if q = 0
1

Ao

q
g are holomorphic functions.
ltitp

P
and the oy

g2. Difrferential forms on manifolds

Let D and A be domains in R" and R™ respectively,
and let f be a diffeomorphism from D onto A . Denote
a point of D by x = (xl,...,xn) and a point of A by
€= (Eys-.00€ ). Then f(x)=€ , or eJ = fJ(xl,...,x )
J=1,...,m. There i1s an induced mapping £*" associated
with f which maps differential forms in A into differential
forms in D; if =}'_‘_‘ I (&) ng /[dﬁjr, then

fa—'<— aJl"'J (£(x)) dfj /\...Ade and
r

1. f* preserves degrees
2, r*(a+e) r*a + ¥ 8
3. f(aAB)— faA fe
b, dfa = fdo .

Let D,A be domains in €", and let f be a holomorphic
mapping from D to A. Let (Z1’°"’zn) denote a point of D
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and (61,...,€n) denote a point of A, The induced mapping
t* (as above) has the properties
1. £ preserves bidegrees
* * *
2. f(a+B)=Ffa+f.p
* *
3, £ (aAB)=faAfB
* * * *
4, f a=fda and O g=f da .

For the case of holomorphic forms, since f 1s holomorphic
and a holomorphic function of a holomorphic function is
holomorphic, f* takes holomorphic forms into holomorphic
forms.

Let X be a differentiable manifold of dimension n.
We define a differential form on X as follows:

Definition 43. A differential form on X 1s a rule
which defines a differential form in every ocoordinate patch.
Each coordinate patch Pa is diffeomorphic to a domain D

in R" (by definition). A differential form on X assoclates

with every coordinate patech P, a differential form a in
D, such that if Py N B, # ¢ then the images of this
intersection in D, = and L, are diffeomorphic and the
induced map on forms takes a:el into P

§3. Poincaré Lemmas

The Poincaré Lemmas state that in sufficiently "nice"
domains any closed form not containing a O-form 1is exact.
More precisely,

Theorem 23. :

(Ta) Let D= {(xl,...,xn) | Ixil <Ry < CD}C R",
and let o be a pure r-dimensional form, r > O, in D.
If da =0 then a = d8 for some B .

(To) Let D=%(z),..0,2,) | |zJ| <R, < ofC €7,
and let @ be a pure r-dimensional holomorphic differential
form, r>0, in D. If da=0 then o =df for some
holomorphic form B .
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(Pc) Let D be the domain in (Tb), and let o be a
(p,q)-form in D, q > 1. If 3% =0 then @ =3f for

some (p,q-1)-form B .
Proof.
Lemma. Let 1,j be fixed

numbers, 1+£ J, 1,j=1,2,...,n.

(La) Let D be the domain in (Ta). If ¢ isa C®°
function in D, then there is a c® function ¢ in D
such that ¢ = oy/dx; and if 8¢/be = 0 then 81]//be = 0.

Proof. Define P(Xj,...,x,) =

¥1
OXy,eeesXy_158,%y 950005%) dt.

(Lb) Let D be the domain in (T). If ¢ 1is a
holomorphic function in D, then there is a holomorphic
function ¥ in D such that ¢ = 3y/dz; and if a¢/azJ =0

then bw/sz =0,
Proof. Since ¢ is holomo

é = % (zl""’zié'Z”z )zi,\

rphic in D,

Define kil

1,...,21,...,zn zy

Wy eenzy) =5 -

(Le) Let Dl-{(z sevesZ
It ¢ 1sa C® function in a

)||z|<rJ<cn;CG!.
neighborhood of Dl , then

there 1s a C® function ¥ in perhaps a smaller neighborhood

of ]-)1 such that ¢ = Y/3Z, a
z j then so is .
Proof. Define

nd if ¢ 1s holomorphic in

7 )
..,Zi,...,zn

r é(z X
U(zgy000,2,) = -2 f_/ 1

™
1Ll +e

a dy .
C'zi

- (a) (Proof of Ta)). Use induction on k where

o = a dxy ...4x co
> J1"'31' 1 Ip
dxk+1’dxl(+2’ ooo,dxno FOI' k = 1
means that aal/axi =0, 1> 2.

ntains no terms with
,a=a1dx1 and da =0
By (La) there is a b,

with abl/axi =0, 1>2 and o= Bbl/axl dx,. Take = b;.

Assume the theorem to be true fo

r some k-1, and let @ be
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a pure r-form with no terms involving dxk+1,...,dxn.

Then o = (-l)r'l(dxk/\ p) + 6 where p and ¢ are pure
differential forms of dimension (r-l1) and r respectively
and p and o do not involve dx, with J > k. Then
0O=da-= (—l)r(dxk/\dp) + d6"., Since o contains no terms
with dxk’dxkﬂ""’dxn; do” cohtains only terms with either
de, J <k or involving dxl"”’dxk—l’dxkﬂ’“"dxn‘

Hence do~ has no terms with both dxk and de, J > k. Thus
dp contains no terms with dx,, J > k, which means that the
,c\oefficients of p do not depend on Xpeg1r e oo Xy Now, define
p as follows: Replace each coefficient of p by a function
whose derivative with respect to Xy is this coefficient;
call this new form f)‘ The coefficients of 6\ do not depend
on Kpeg12 oo 00Xy (The existence of 3 and iti independence
of Xy, 15ee0,%X, 1s given by (La),) Hence dp = (&ixkA/\ p) +
terms involving dx,, J < k. Therefore a - (-1)7"* a5 does
not contain dxk,dxk+1,...,dxn. But d(a -(--1)]:":l dg;‘) =da=0
(and (c -(-l)r'ld[a‘ ) 1is a pure r-form. By the induction
hypothesis, then a --(-l)r"":L d§\= dy which means that
a=a((-1)"1 f +9).

(b) (Proof of (Tb)). The proof is identical with that
of (Ta) with the x's replaced by z's and o a holomorphic
form. (Lb) gilves the existence of a holomorphic form /p\ and
its independence of U ERTEFE A

(¢) (Proof of (Te)). 1. Let D, be an open polygisc,
Docc D. Then o is defined in a neighborhood N of D0
and satisfies 00 = 0 in N. We claim that there is a form
B, 1n perhaps a smaller neighborhood of ]3 , such that
@ =9 B, For the proof, use induction on dEk anu an
argument analogous to that in (a}.

2. Construct open polydiscs DJCC Dj_'_1
is D. By-l., for each D'j there ex.j:sts a form B j such
that a = BBJ in a neighborhood of D,.

(1) Assume that o has bidegree (p,1), then BJ has

bidegree (p,0); 1i.e. BJ’_‘Zb:{ dzil...dzi, and
P

whose union

10..1p
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BBJ =a in BJ' For fixed k and J > k, (6J-8k) is a
holomorphic form on D, since 8(6 -Bk) =0 on D.
Therefore the coefficients of (BJ-B )} can be approximated

as closely as desired by polynomials, and hence the form
(BJ-ﬁk) can be approximated, by a form P X whose~ coefficlents
are these polynomials. Choose e, > O such that > ey < ®,

and define IB B =>" Ibrl...i - b‘,f m,‘pl. Construct
BJ. as follows By = By 32 = B, - iel where

IEZ-EII = I(Bz-’é )-P 1' <e, on Dy, 83 = Lf-z ,2 where
|Bg-52| = |(B3-f32 'Q"2| <&, on D, and Qg = Qy + Py, ete.

BJ 3B, = @ on DJ. Since laj'a,jﬂ' <ey; on DJ,

J
1im ‘3J B exists uniformly on compact subsets of D, the
~>0 -
goefficients of B are C® functions and o8 = a in D.

(Cf. Part 2 of the proof of Theorem 19.)

(i1) If o has bidegree (p,q), q > 2 then each
B 3 has bidegree (p,a-1). (B By +l-f3 ) = 0 1in a neighborhood
of DJ. Therefore BJ+1 B, =9 for some form 7y,, ina
neighborhood N, of Dj' by l._of (c). Let wy be a
real valued C® function = 1 on DJ and = 0 outside a
neighborhood M, of D , M.ccN,. Set / = o,y

A J J J J J J Joa
'Ilhen 7y ,.’Ls defined in DJ 4 _and BJ+1 aJ Byd on
AJ Let '1-6 By = B, Byl,..., and in general
Py= Py - a(/1+°/2+...+7J l) Then BJ+1 BJ = (BJ+1 By) -
6(71+...+fvj) + b()'l+...+'yJ )= (BJ+1 ,BJ) - cryJ = 0, and

B)J BBJ = q on D‘j Letting J -> ® we obtain the
desired B.
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Chapter 8. Canonical Isomorphisms

§1. De Rham's Theorem

A. Definition 4%a. Let X be a differentiable manifold
with covering U. We say U 1s simple with respect to
differential forms, or d-simple, if it is open, locally finite,
and, for the Intersection of any finite number of sets of the
cover u, N,.. l’\ur, the Poincaré lemma for "d" holds.

Theorem 2%a. Let X be a differentiable manifold.

Then there exist arbitrarily fine d-simple coverings (i.e.
every covering of X has a d-simple refinement).

Proof. We shall first prove this theorem assuming XCR",
X open. The case of an arbitrary manifold X 1is treated at
the end of this sectilon.

Assume XC ®". Note that in any box {lx -ail <r
i=1, ...,n? Poincaré's lemma holds by Theorem 23.
Furthermore, the intersection of any finite number of boxes
i1s again a box; so it suffices to refine any covering U
to a locally finite covering by boxes and this 1s easily done.

Lemma la. HY(X,U,cP)=0; r>o0, p > 0, where P
denotes the sheaf of germs of p-forms, and U is locally finite.

Proof. The sections of ® over U are ¢% functions,
so K (x,u,00) = H'(X,U,c®) = 0, r >0, by Theorem 22.

Since any element of oP , when multiplied by a c® function,
remains in Op, we may establish this lemma by constructing a
homomorphism © : et (x,u,0°) -> Cr'l(X,U,Qp), r>0, so
that 1f £ e CT(x,U,0P), then f = ©6f + 66f precisely

as before. Hence every cocycle is a coboundary.

Corollary. HY(X,0P) =0; r >0, p >0, P as above.

Theorem 25a. Let X be a differentliable manifold, U
a d-simple covering. Then the following groups are canonically
isomorphic, where P denotes the sheaf of germs of closed
p-forms in X:

1’
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1 i closed p+l-forms
(1) = (X’U'ap-"-' exact p+l-forms ° px0.

(1) ®x,u,P) ~ BX,U,PY) ,r>0, p>o.

(111) B(X,U,0) o GOSedr-forms ., o

Before proving this theorem (following A. Weil), we ¥
introduce the notion of coelements.

B. Definition 45. A coelement P or bidegree (r,p)
18 an r-cochain on a (fixed) covering with coefficients
which are pure dimensional differential forms of degree p,
il.e. 1if ujo,...,uJ are distinct sets of the covering
with nonempty 1nters£ction, then frp(Jo...Jr) assigns to
this iIntersection a pure differential form of degree p
defined there.

The coelements form a vector space over €,

Define af'P = gr,p+1’ where g assigns to each inter-
section "d" of the form which f assigns; d2f = 0,

Define &fP = hr+1,p in the usual way; 62 = 0.
Clearly dd = 8d (for 6 "adjusts" the domain, and d
the range, of the coelements).

Coelements f for which df
forms as coefficients, and if df
are cocycles with closed forms as coefficients.

If U 1s a d-simple covering, P coelement, p > O,
then &r'P = 0 4implies f =dg. If r>0 and 80P =0,
then f = 5g by Lemma la.

We say that coelements fr+1,p and }r,p+1 are
assoclated 1f there 1s a coelement grp such that f = bg
and f = dg.

C. Proof of Theorem 25a.
Note first that (i) and (11) imply (iii), for

closed (p+l)-forms 1 = 1+s -3
umt@ﬂ%hmsﬁH(Lm&)Z“'ﬁH “m@p)ﬁ'"

~BPxu,e®),  p2o,

0 are cochains with closed
6f = 0, the coelements

and 0% =¢ .
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Note also that
o g o
U - 1 larP-orP-0 §
§ 6T~ oP | gn” "t P=of
(1) We associate a closed (p+l)=-form on X (or,
~
equivalently, a coelement 0P+l op bidegree (0,p+l))
to each cocycle class in :Hl(X,U,ﬁp) as follows: Let
flp be any cocycle; df = 6f = O, Using Lemma la, there
op FO,p+L _
exists a g such that 6g = f. Set f = dg, and
~
note that df = 0; hegce, we have assigned a closed
(p+l)-form. (Also, 6&f =(6dg)= dég = df = 0.) Denote by
- closed (p+l)-forms
$ff the class in Z—=s (pil]-Torms~ Containing f. We
make the following assertions:
~
a) 1 fg does not depend on the choice of g.
N i ~
B)3ry5=3r% 1 {rd = ¢£,, l.e. 1f fy-f, = 6h, dh=0.
y) The class mapping (fi->{ff 1s an isomorphism.
Proof of @) Assume f = Ggl = bg,, and set fl = dgl;
~ Y 8 Op
f2 = dgz. a) asserts that fl-f2 dh’P?  ywhere b is
globally defined on X; i.e. Bh=0. But T,-f, = dlg;-g,)
and 6(g,-g,) = O.
12 1p 1p Op
Proof of 8) Suppose fl - f2 = Oh™", where bf) = 6f2
dfl = df2 =0 ang dh = 0, Now f2 = 552, fl = Ggl = 6g2+6h
6£g2+h). Hence f, = dg, = dg, +dh, f, = dg,, and
1-f2 = dh = 0.
- Progf of y) It 1is clear that the association map
if} ->f ff is a homomorphism. It 1s one-to-one for, assume
fo ->0; i.,e. f = bg, and dpop = 0. Now, dg0p =0
means %P = an®P1 o that f = 5g = 6dh: hence $£f = 0.
Furthermore, it is onto, for, assume f 1s any closed (p+l)-
~ ~ )
form. Then df =0, so f = dg by d-simplicity of U.
Define f = 6g. Then df = dbg = 6bdg = 6F = 0, as f is
globally defined, and 6f = 6% = O.
(11) Tre proof in this case is essentially the same;
let 7P gapisry dar TP o 5e5+P - 0. Then there

~,
exists a grp such that 6g = f. Set fr’p+1 = dg, and

; r>0.,

~
£

[]
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observe d? = 6? = 0, With a similar notation, we prove
a), B), and 7).
a) Assume f =0 = 6g ; then {dgi = 0, for
56" = 0 1implies g = 6h" 1P, and dg = d6h*"1*P = &an,
< ! ~p+l
Now dh is closed, so,.{d%} = {5(dh[5}= 0 in H(x,U,0°%).
8) P _ 5h™P implies {anPf =0, as dn™® = 0.
y) We again have a homomorphism {rr+1,9§ _>i}r,p+{§ .
It is one-to-one for, if f = Ggrp and dgrp = 0, then
g = dhr’p'1,~ and f=6g=6dh , 80 §rf = 0. 1t _1s onto,
for assume 1 ’P*l gsatisfies df = 6f = 0. Then f = ag'P
by simplicity of U. Set f = Ggrp. Then df = dbg = b6dg
=6F=0 and 6f=0. Clearly {r§->}¥{.
D. Lemma 2a. Let X be a differentiable manifold; U,V
d-simple coverings and V a refinement of U. Then the
following diagrams commute, where P denotes the sheaf
of germs of d-closed p-forms

1) Bx,u,P) —> BO(X,U,5PH

B (x,v,P) —> B (x,V,0PH)

1 -
11) BT (X,U,0P)
" T~ d-closed {(p+l)-forms

- - d-exact (p+l)-forms
m (x,v,0P) —

11i) ®(X,U,t)

>  §-closed r-forms
//,/? d-exact r-forms

H(X,V,¢)

where r >0 and p > 0.

Proof. For 1), this lemma states that one obtains the
same result by first mapping a coelement to any assoclate
and then restricting the domain of definition; or by first
restricting the domain and then associating it. The other
commutativity claims are disposed of as easily.
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Theorem 26a. Let X be a differentiable manifold for
which there exist arbitrarily fine d-simple coverings. Then
the following groups are canonically isomorphic:

S d-closed r-forms
(I) (de Rham): B (X,€) ~ et voforms * T ~ ©

(II) (Leray): H'(X,U,e) ~H'(X,6) , r>0,

for any d-simple covering U.

Proof. Hr(x,e) is a direct limit of groups H'(X,U,€);
U any covering of X, where the class of all coverings is
directed by "is a refinement of." By Theorem 24a, the
d-simple coverings are cofinal, hence it suffices to consider
only d-simple coverings in the direct 1imit. By (iii) of
Theorem 25a, HT(X,U,€) ~ g::igzgdrf}ggggs for any d-simple
U; hence I and 1II.

We now complete Theorem 24a. Note that Theorem 25a does
not require the existence of arbitrarily fine d-simple
coverings. Now let U be any covering of X. Let V be
a locally finite refinement of U such that each v e V
lies entirely in a coordinate patch and the intersection of
any finite number of v's is contractible to a point. (Such
a covering can be constructed using Whitney's imbedding
theorem.) Since every finite intersection of sets of V
is diffeomorphic to an open set in an, the de Rham theorem
applies. If the »r th cohomology group of such an open set
in R® with complex coefficients is trivial, then every
closed r-form is exact: that this cohomology is trivial is
a known result.

82, Dolbeault's Theorem

This section }s Section 1 applied to complex manifolds ~
and the operator 0.
A. Definition 44b. Given a complex manifold X and covering
U, we say that U 1is simple w;gg respect to (p,q)
differential forms, q > 1, or Jd-simple if it is open,
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locally finite, and, for the intersection of any finite number
of sets of the covering, the Poincare/ lemma for 5 holds.,

Theorem 24b, Let X be a complex manifold. Then there
exist arbitrarily fine §-simp1e coverings.

Proof. As before, assume Xc.(:n, open. Once again
use Theorem 2%, which establishes the Poincaré lemma for S,
for coverings by polydiscs {Izj- ch| < Rﬁ .

The completion of this theorem for a manifold is
remarked on at the end of this section.

Lemma 1b. E'(X,U,0P) =0, r > 0; where OF now denotes
the sheaf of germs of forms of type (O,p), and U 1is locally
finite.

Proof. Ve may agaln use a partition of unity argument
as in Lemma 1la.

Theorem 25b. Let X be a complex manifold, U a
S-simple covering. Then, if P denotes the sheaf of germs
of d-closed forms of type (0,p), there exist canonical
isomorphisms between the followlng groups:

1) Hl(x,U,F)p) . §-closed forms of type (0,p+l) ,

~ Jd-exact forms of type (0,p+l)
1) 5, ~ B(x,U,0P

111) Hr(X,U,(,O) . é-closed forms of type (O,r)
~ Q-exact forms of type (O,r)

where r >0, p > O.

Proof. 1) and ii) proceed precisely as in Theorem 25a.
111) is implied by 1) and i1), also as before, when one notes
that a S-closed form of type (0,0) 1is a holomorphic function,
and conversely; i.e. ° = (.

Lemma 2b. Let X be a complex manifold; U,V
S—simple coverings where V 1s a refinement of U, Then the
following diagrams commute, where (P denotes the sheaf of
germs of 3-closed forms of type (O,p), and r >0, p > O:
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1) Ex,u,P) —> B(x,u,PH) )
v, P) —> B (x,v,0PH
11)  wY(x,U,0P)

i/ ™\ 3-closed forms of type (0,p+1)
. d-exact forms of type (0,p+l)
2 (x,v,0P) — ’

111) H (XU,
Y

K (X,V,9)

Theorem 26b. Let X be a complex manifold for which

there exist arbitrarily fine 5-simp1e coverings. Then there
exlst canonlcal isomorphisms between

I. (Dolbeault) H'(X,0) d-closed forms of type (0,r)

~ Jd-exact forms of type (O,r)
r>0.

II. (Leray) EY(X,U,D) ~ H'(X, ) , r>0.

Corollary. If D ¢. ¢, D a polydisc, then H (D,J) = 0
for all r > O.

We shall eventually use this corollary to establish the
result for any region of holomorphy.

Remark. The general Dolbeault theorem reads as follows:
Hr(x,sheaf of germs of holomorphic forms of degree s) ~
b-closed forms of type (s, r)

d-exact forms of type (s,r) :
However, we shall require only the restricted result

of 26b, I.

B. In order to complete Theorem 24b, we require the result
that in domains of holomorphy all the above cohomology groups
are trivial (proof in Chap.ll). Assuming this result, we have
the Poincaré lemma with respect to 5 for holomorphy domains,
so Ehat any locally finite covering by domains of holomorphy
is d-simple. Hence 1t’suffices to establish that arbitrarily
fine coverings by domains of holomorphy exist.

\\jg é;plosed forms of type (O,r)
A d-exact forms of type (O,r)
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8z, Complex de Rham theorem

Once again, we attempt tb repeat 1 for complex manifolds
X, holomorphic forms, and the operator d.

Definition 44c. Given a complex manifold X <and cover-
ing U, we say that U 1is o-simple or simple with respect
to holomorphic'forms, if it is open, locally finite, and, for
the intersection of any finite number of sets of the covering,
the Poincaré lemma for d holds. (Recall that o = d on
holomorphic forms.)

Theorem 24c. Let X be a complex manifold. Then there
exist arbitrarily fine J-simple coverings.

Proof. For X< ¢", open, the proof is again immediate
and proceeds as before.

At this point, however, we find that no Lemma lc exists.
Hence, we must modify Theorem 25¢ as follows:

Theorem 25¢. Let X be a complex manifold, U a
d-simple covering, for which H'(X,U,cP) = 0, r > O, where
P denotes the sheaf of germs of holomorphic p-forms.
Let (P denote the sheaf of germs of closed holomorphic
p-forms. Then the following groups are canonically isomorphic:

.1 o closed holomorphic (p+l1}-forms
1) B (XU,0P) » G2t ToTonorphTc o Fl)—Torms

1) (x,0, P HO(X,U,0PH)

r closed holomorphic r-forms
H1) HA(X,0,6) » exact holomorphic r-forms

where p >0, r > O. _ _

Proof. As before, under the remark that o =e.
Lemma 2c. We state here merely that the analogous
commutativity lemma is valid, assuming the missing Lemma lc

for all manifolds and coverings used.

Theorem 26c. (Complex de Rham). Let X be a complex
manifold for which there exist arbitrarily fine J-simple
coverings and such that Hr(x,U,OP) =0, Sr > 0, for all
o-simple coverings U. Then, there exists a canonical
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. r closed holomorphic r-forms
1somorphism between: H (X,8) ~ Z=== Tolomorphic T-Torms *1 0

(We shall not need the complex Leray theorem.)

Let us assume that we have already proven that in a
domain of holomorphy the cohomology with holomorphic coefficients
is trivial (ggg closed forms). Then the hypothesized Lemma lc
holds, so that the theorems of this section hold for domains

of holomorphy.

closed holomorphic p-forms
We remark that the group exact Folomorphlc r~Torms is

clearly trivial for r > n, where n 1s the dimension of

the manifold. Hence

Theorem 27. Let X be a complex manifold of dimenslon
n, such that H (X,U,0°) =0, r >0 for all d-simple
coverings U. Then Hr(x,c) =0, r>n.

This theorem glves a topologically necessary condition
for a differentiable manifold X of real dimension 2n to
be a complex manifold.




98

Chapter 9. The Multiplicative Cousin Problem

81. The Multiplicative Problem, formulated

A. This second Cousin problem is a generalization of the
Welerstrass problem in one complex variable:

Given a domain D < ¢, a discrete set’of points,

a,» bv and positive integers n,, m, find a

function £, meromorphic in D, with zeroes at a

of order n, and poles at bv of order m, .

We now formulate the multiplicative problem, referred
to as C.II in the sequel:

Multiplicative Cousin Problem. Let X be a complex
manifold U = iuig, 1 ¢ I, an open covering, and let
functions F1 be defined and meromorphic in Uy, such that
Fi/FJ 1s holomorphic in u, N uy. Does there exist a function
F# 0, defined and meromorphic in X, such that F/Fi is
holomorphic in u1°

Note. C.II 1is precisely C.I, written multiplicatively.

As in the Welerstrass problem, where it is sufficient to find

a function with given zeroes of given order, we shall find

we need only consider holomorphic functions Fi' We shall

also show that C.II is not always solvable. As before, we shall
formulate C.II using sheaves and cohomology groups.

B, Definition 46. Let X be a complex manifold, and let
)ﬁ.denote the sheaf, over X, of germs of meromorphic
functions under multiplication, where Zﬂ k/ x’
A@K consists of the germs of meromorphic functions at x,

and 1s a multiplicative group.

We topologize )71 as we did CQ by defining a subbasis
for the topology utilizing the topology of X, as follows:
Let me ﬁQ ; then me )77 and ge m 1s defined in a
neighborhood N of x. For each yeN, let 3g{e /77 be
the equivalent class of meromorphic functions in V4
containing g. Then the sets N, =izg§ e My | v e NE for

v

and
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each choice of g e m, and for each m e M , form the
subbasis of M .

Let jt " denote the subsheaf of invertible holomorphic
elements of )7?,; such that F< M and :?'LXC )?Zx for
each x e X. Form the quotient groups 77(x / jf:’ and set
NF = uxeX / %x/;x with the quotient topology.

The sheaf of germs of divisors of X 1s the quotient
sheat A/ F.

Note that elements of 77[/ 5‘ are equivalence classes
of germs of meromorphic functions, where germs represented
by two functions F,, F, are equivalent (at x) if Fl/F2
is a local unit, i.e, if Fl/F2 is holomorphic and non-
vanishing in a neighborhood of x.

We note also that a set of Cousin data assoclated with
the covering U may be regarded as a section of %/JL
over X, ’

Definition 47. A divisor on X i1s a section over X
of )l/g‘i » 1.e. 1s an equivalence class of sets of Cousin
data, in the sense that two sets of Cousin data are equivalent
if their "mesh" is a set of Cousin data. A divisor on X
1s integral (positive) if all germs are germs of holomorphic
functions.

Definition 48. A divisor o on X 1s principal if
there exists a meromorphic function F defined in X such
thatthe divisor it defines (F) = q.

Hence, w'e may state C.II in the following equivalent
way: gilven a divisor on X, 1s it principal?

Lemra 1. If bevery integral divisor of the complex
manifold X is prinecipal, then every C.II 1is solvable.

Proof. It 1s enough to show that every divisor is a
quotient of integral divisors. Let p e X, and let Fp be
a meromorphic function defined in a neighborhood N_ of p
such that (Fp) is the restriction of a to Np. Fp = ¢p/¢p,
where ¢p and wp are holomorphic functions defined in Np
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and coprime at p, and hence in a neighborhood of p, say
No- Let qe N, and F = bq/wq the corresponding function
at q, defined in N, . e shall be done if d>p~ ¢q and
wb ~ ¢q’ where defined, where "" means équivaleqce modulo
F. Now F, ~ Fy» hence ¢p/¢p ~ ¢q/¢q, so ¢p¢q ~ wpéq’
at q. But ¢pwq and wp¢q are holomorphic, and are
equivalent in a neighborhood of q. We may choose this
neighborhood so that ¢q’ Y. are coprime. But ¢ divides
wp¢ ; hence ¢p divides 3q’ Similarly, ¢  divides ¢p’
as ¢_, ¥_ were coprime in N_. Therefore ¢p/¢q is a
unit, i.e. ¢_~ ¢, and similarly 9 ~ ¥q+ Thus
(¢p | peX) and (wb | p e X) are integral divisors.
C. Theorem 28. Let X be a complex manifold such that
C.II 1s always solvable. Then so is the strong Poincaré
problem, i.e. every globally defined meromorphic function is
the ratio of two holomorphic functions, coprime at every point
of X.

Proof. Let F be the global meromorphic function. Then
(F) = o/p , where o and B are principal integral divisors;
for as was shown in the proof of Lemma 1, on any complex manifold
X every divisor is a quotient of integral diviéors, and
since C.II 1s solvable every integral divisor is principal;
hence F/f/g = wl/'m2 is a local unit. Therefore F/f/g
is holomorphic and equivalent to 1 at each point of X; so
F/f/e 1s a global unit, say G. Thus F = £G/g, where fG
and g are coprime at each point of X.

Theorem 29. Let X be a complex manifold such that
C.II is always solvable, and Y a regularly imbedded analytic
hypersurface. Then Y may be globally presented.

Proof. Exercise for the reader.

82, The Multiplicative Cousin Problem is not always solvable
The following example is due to Oka.
Let X< 6° be defined as follows:
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X = {(zl,za) | 3/4 < lzjl <5/4, §=1,2f. Note that X,
as a product domain, is a domain of holomorphy. This shows,
incidentally, that "C.I implies C.II" is false. :

Set Y ={z-z,-1 = 03N X, and note that Y 1is a
closed subset of X consisting of two distinct components,
for (zl,zg) = (x1-+iy1, x2-+iy2) e Y implies 0 <xy <1,
where xl-l = X5e Hence W=y #0; dut Y 1s nonempty
and (zl,zz) € Y implies (21,22) e Y. FKHence, we see also
that the components of Y 1lie in (Im zy > 0, Im z, > 0)
and (Im zy < 0, Im z, < 0).

Now define the divisor y of X as follows:

-
, - i~(zl~ze-l), for (Im z, > 0, Im z, > 0)

1 outside the upper component of Y

This clearly defines a set of Cousin data, for which, we claim,
the Cousin problem has no solution. For, assume there exists
a solution F(zl,zz), and consider its restriction to

{lz) = 1, lzyl =25
gla,8) = F(el%, o) .

Now g(a,8) 1is a continuous, periodic function of both

a and B . Furthermore, g has precisely one zero, for

the upper component of Y /\§|21(=1,|22|=1} ={teiﬂ/3,e12"/3)§,

and g~ 1 elsewhere. Now consider the edge curve f'l

in the o,3 plane as indicated in the figure, and the edge

curve r‘e about (w/3,21/3) within f'l and oriented

AB similarly.

QW"___<L__““-§(2W’2W) Since g 1is periodic in a

| and B 1t is clear that arg g(a,B)
can be defined as a single-valued

Y ] r-e T-1 function along T ;. Furthermore

1° ’

by connecting the two curves as

in the second figure, we obtain

the following:

=
>

Qv



Iv N II
III

\I/ fd*logg=fdlosgi
r n

>

i.e. arg g(a,B) 1s also single-valued along |—2.

Now F(zl,za) = h(zl,za)'(zl-za-l), where h(zl,ze) is
a unit. In the region enclosed by |"'2, we may define a
single-valued branch of the log; so

f dlog g = f d log [--e16 + el -1] .
2

We may calculate this latter integral explicitly. Set

= p'+ 2T
SB f +3—
= a! +_13|' H

obtain
\ 18 1a 1&' +i§—1r 10,!!-%1[
j dlog (-e" + e~ =1) = f d log (-e “+ e -1),
1
T 2
where Ta now encircles the origin in the (a',p!)plane,

and -eB'¥21Y/3 L 1atmi/3 ) pag o zero at (0,0). Set

l
+21ri/3 + eia"‘"”i// -1=u+1iv. Now

a5 - sin (pr-atr/3) .

Hence, 1if T_e was chosen small enough, d?f‘;bg) <0 in
the region enclosed by T'2. So RS

fd log (u+iv) = f d log (at+ i81) # 0,
!

) s

and this contradition establishes our claim.
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§3. The solution of the Multiplicative Cousin Problem for
polydiscs _
Theorem 30 (Cousin). Let DC €% be a polydisc. Then
C.II is always solvable. )
We prove this theorem twice; the first proof, given in
this section, 18 due to Cousin. The second is given in 84,
and gives more.

Lemma 2. Let Al,A2 be box domains in Gn defined as
follows:

t
Af={(zl""’zn)Ialfxlfaa’blfylfb2‘ajijfaj’ﬁjfyj-sj’ J-Q,...,n}

A2=§(zl,n.,zn)Iaajxlja3,bl§yl:b2;ajngfas,ajjngej, =2, +.0,n{
Let G,, G, be open sets (in ¢") containing &, A
respectively, and F), F, meromorphic (holomorphic) functions
in G,,G,, respectively, such that Fl/FQ ~1 in G /362.

Then there exists a domain G such that 4, \) 8,C G CL(GlL!Ge),
and a function F, meromorphic (holomorphic) and defined in

G such that F,/F~1 in G, NG, 1=1,2.

In other words, if C.II is solvable for neighborhoods
of Al and A2, it 1is solvable for a neighborhood of Al\J A2.

Proof. It is easily seen that G, flcz contains a
neighborhood G, of A1 f\Aa, and that we may choose this
neighborhood to be simply connected, for 4, 4 8, 1s.

Now, in a simply connected domain every nonvanishing
holomorphic funstion F may be written as ef, where f 1s
holomorphic, for f 1s the solution of the following set of
equations:

of _ 1 09F

9z, = F 9z,

. J J
= 0 .,

&

Hence, Fl/F2 =ef 1n Gy. Define

fl(z,zz,...,zn) = = 1=z
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Z, ...,zn)

(e,

1

fe(z,ze’ooo’zn) = -m\/; C-z dc ’
2

where 7y and Y, are curves in the projection of Go on
the zl-plane defined as follows: Let C be a simple closed
curve in the zl-plane lying in the projection of Go on
that plane, positively oriented, and containing the line

{aa = X, bl 2y = ba} in its interior. Set

{zlzec, Rezl_:aef

Yy = {zlzsc, Rezljaag
The situation is indicated in the figure.

ym Now £, is holomorphic in a
/1\\ neighborhood G of &, and f, is
1 A2 holomorphic in a neighborhood (}2
S 142 7&% of Aa. Take G to be a domain
a f\ y > satisfying (8, (JA )c6 C
3 Z\ aaj)} 3% f(6r N G,) U(Gef\e o) .+ For
" z; € interior (71+72), £ = f)-fp;
7\\/(;0 and hence f = f,-f, wherever

everything is defined so that

Fl/li'2 = ef = ef17T2  there.
Now define 'fl 1

(rre ! 1 6'Ng
Fo iFeefe i 6°Na, .
F 1is meromorphic ( holomorphic) in each neighborhood and
has the same values in (G AN ) N (G N 62) by construction.
Lemma 3. Let A = )(zl,...,z ) | oy <x, < aJ,

Py ¥y =By J= 1,...,n} be a bounded box, AcCG, a
domain in OB. Let a be a divisor in G. Then there exists
a neighborhood Gl of A iIn G, and a function F defined
and meromorphic in Gl such that (F) = a on Gl; i.e.
given C.IT for G D> A, C.II is solvable in a neighborhood of A.
Proof. We cover G by boxes whose edges are parallel to



105

the axes as follows: For each point z g @, there exists a
closed box A:, containing 2z and contained in some set
asgsoclated with the divisor o (i.e. contained in somé set

u in which the restriction of a to u 1is principal).

Let As be an open box containing 2z and such that AiZLA;.
:Now A 1s compact; hence A 1is contained in the union of

a finite number of open boxeﬁ A%,...,Aﬁ. Hence

Acigll A €@, and 6y = % 8} 1s a closed netghborhood

of "D as 1t contalns \J AF, which is open. We claim that
the restriction of a to Gl is principal; we prove this
1r21dirgctly. Let Al ='§(z1,...,zn) ] x < a;_- 01)/2f,

8% = $(z,00052,) | (0y=y)/2 < x)§. Then Aifl\AJ 18 a

box, for2 i= %,2; J=1,...,N. Set Gy = f? N glz’

G, = ZA N Gy§. Then G,, 1s covered by {A N AJ|J=1,...,N},
1 = 1,2 and we have "halved" the problem with respect to

Xy Note that GllUGl2 = Gl’ Now, if o is principal in
G11 and in 612’ it is principal in Gl; since

(F;) on Gy

(F) = is a divisor in G, by lemma 2. Hence,
(F.) on G o 1

assume C.]? is no% solvable in Gl' Then 1t is not solvable

in either G11 or 612; choose one such, and call it 02.
Proceed by halving 62 with respect to T obtaining GB<:'62’
and so on, each time halving G, with respect to the "next"
coordinate, where "next" is with respect to the following
Sequence:  Xy,¥y,XpsecesX sV sXgsVqsees o Now the diameters
of the closed nested sets Gm form a null sequenge, and so
contain a point which is contained in some set Ai' Hence,

for some integer M, G, << Al. But C.II is therefore

M 1
solvable in @, as A% is contained in a set assoclated

-with a ; and fhis contradiction establishes the lemma.
Remark. We could also prove this lemma directly by
forming a neighborhood of A with a mesh fine enough so that
a restricted to each box of the mesh is principal. Construct

F by "pasting" the boxes of the mesh following Lemma 2.
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B. Proof of Theorem 30. It 1is clear that it suffices to
prove this theorem for box domains A. Let A1 be a sequence
of closed boxes such that Ui Ay =08 and A1CCA1+1CC a.
By the above, there exists an F1 meromorphic in a neighborhood
of 4, such that (Fi) = o there. Hence Fi+1/Fi is a
unit in A1 for each 1. Clearly, we would be done if the
infinite product Fi(Fa/leF5/F2)"’ converged normally in A
to a function F; for at each point z ¢ A, z ¢ An for some
n and there exists an N such that (FN+1/FN)(FN+2/FN+1)"’
converges uniformly to a unit in A . Hence (Fl/F) (F2/F1)...
(FN/FN-I) = FN/F ~1l in An. Generally, the product will not
converge. However, our fung?ions aﬁe only defined up to units,
and so we replace F1 by F1 = Fie 1 ,/\u1 a polynomial,
so that the product formed from these Fi does converge
normally, precisely as in the proof of the Weierstrass theorem
in one complex variable.

Corollary. C.II is solvable in any domain which 1s the
product of simply connected domains in @.

Exercise. Use the method of the above theorem to solve
C.I for a polydisc.

84. Characteristic classes (From C.II to C.I)

A. In the following, we consider only coverings U such
that u, and uy n uy are simply connected; call such
coverings distinguished.

We now assoclate a cohomoldgy group to C.II, as we did
for C.I. However, our coefficients are now 4% » 80 that
our cocycles will be multiplicative.
’ C.JII'. Let X be a complex manifold, and U any cover-
ing of X with meromorphic functions F1 defined in uy such
that Fi/FJ is a unit in uif\ uy. Set

FiJ = Fi/FJ .
Now F1J is a 1-cochain, for FiJFji =1 1in uilq uJ.

It 1s also a cocycle, for FiJFJkai =1 in u1{1 uJ N uye.
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The Cousin problem is now: Given a cocycle FiJ’ is it a
coboundary; i.e. i1s the class of F1 the unit in the
(multiplicative) cohomology group Hi(x,U,j?)? It is clear
that C.II' implies C.II.
Now assume that the covering is distinguished. We may
thus define 2
Fyy = e ., 1<y
and 211(-f13)
F31=e 11=0.
Now observe that f1J = - fJi‘ il.e. %fijs is an additive
l-cochain, with holomorphic coefficients. However, this is
not necessarily a cocycle, for '

, with f

Pyy* Pyt By = -2%11og1 = Mg
an integer. But imijk§ is a 2-cocycle (with integral
coefficients); the antisymmetry condition is easily verified,
and Bmijk =0 for mijk is a coboundary of a l-cochain.
Note that miJk is not uniquely determined by the Cousin
problem, for the f1j are only determined up to an additive
integer. EHowever, let fi. be replaced by fi + niJ'
Then mijk is replaced b% miJk + (nij'bnjk*'nki)’ and so
the class of my 5% in H"(X,U,Z) 1is unchanged. We are
thus led to:

Definition 49. The cohomology class of miJk in
HQ(X,U,Z), for distinguished covers U, 1s called the
characteristic class of the Cousin problem.

B. The above procedure gives us a mapping of the group of
divisors into the group of characteristic classes, for which
a commutative lemma holds.

This map is clearly homomorphic.. We may regard it as
a map of Hl(X,U,g) -> H2(X,U,z), for distinguished covers
U, for,suppose the cocycle Fi of C.II' is a coboundary;
i.e. FiJ = Fi/F . Then fiJ = fi-fJ and my gy = 0, 1i.e.
the map F,, -> %hijkg is a map of classes {Fy,g '>Z'“1Jﬁ§'
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There is a commutativity lemma in this case which we also
shall not state explicitly. Furthermore, distinguished
coverings are cofinal in the set of all coverings (easily
seen for domains in space) so that we summarize in the
following theorem, which makes no reference to particular
coverings:

Theorem 31. (Oka-Serre). There exists a canonical homo-
morphism of the group of divisors of X into Ha(x,ﬂn, with
the following properties, where a denotes a divisor and
c(a) its class:

1) If o 1is principal then c(a) =

11) I HYX,(?) =0 and ¢ (a) =0, then a 1is
principal.

Proof. Note that 1) states that C.II solvable implies

2(x U,Z) = 0, and i1) states that if C.I is solvable, then
this condition is sufficient. We remark also that i) implies
that if two divisors differ by a principal divisor, they
have the same class. It 1s clear that the map 1s homomorphic,
for a multiplication of divisors (on a fixed U) induces an
addition of the associated l-cochains and hence also of the
miJk‘

1) Now let a = (F). Then Fy ~F on u, for each
i, so that F1J = Fi/FJ ~ 1. FHence we may choose f1J =0
for every 14,)J.

11) ec(a) = 0O implies my gy = ny + an +n,,, where
gpe n1J are integral. Now redef}.m;21r fij b¥13§%§1ng
fiJ = fi;]; nij‘ Note that Fi,j e But
now the fiJ is a cocycle, for

A ~ A

fig " It B = Mg m (gt
Hence the fiJ are also coboundaries as HL(X
fiJ = f -fJ, and ngije are_ggggi for FiJ

i/FJ’ 80, FJe = Fye . Hence the function
F= i in uy is globally defined, and clearly
solves C.II.

m +n,, +n 1)-- 0.

éﬂi%i- 0 1fJ
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Corollary 1. Let X be a complex manifold. If
H2(X,2) = H(X,®) = 0, then C,II is solvable.
Corollary 2. Cousin II is solvable in any polydise X.
Proof. We have shown C.I is solvable in any polydise,
i.e. that HY(X,d) = 0; H?(X,Z) = 0 1s a well-known
topological result.
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Chapter 10. Runge Regions

Runge regions are regions in which Runge's theorem can
be generalized: the theorem states that in a simply connected
domain in the finite plane a holomorphic function can be
expressed as a normally convergent series of polynomials.

In other words, given an e > 0, a compact subset K of

a simply connected domain D, and a holomorphic function

f in D, there is a polynomial p such that |£-p| <&

on K. Note that in a multiply connected domain it may be
impossible to represent a holomorphic function by an infinite
sum of polynomials.

81. Preliminaries

Let X and Y be complex manifolds of the same
dimension with YP®"c< x,

Definition 50. Y has the Runge property relative to
X 1if every holomorphic function in Y can be represented
as a series of functions holomorphic in X converging
normally in Y, i.e. given Kcompactc Y, and € >0,
for every holomorphic function f in Y there is a
holomorphic function g in X such that |f-g|] < e on K.

Lemma a. Let X be a complex manifold of dimension
n and HY(X,d) = 0 for all q > O. Let fi5000,f, be
holomorphic functions in X such that if, at p e X, f;
f2= ese = fk= 0O for k fixed, k=1,...,r, then the
rank of the matrix (Bfi/bzz) is min (k,n), where
i=1,...,k; £ =1,...,n; and z, are sultable local
parameters. Let Y, ={p e X | fJ(p) = 0f. Then
(1) 2= Y1/\Y2/\ ...ﬂYr is a regularly imbedded manifold
of dimension n-r and H(z, ¥) = 0 for all q > O.
(2) Every holomorphic function on Z 1is the restriction
of a function holomorphic in X.

Proof. (1) Define Zo = X; Zl =Yy5 Zp = Ylf\ Y55
oo} Zr = 2, ZJ + is a globally presented, regularly
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imbedded, analytic hypersurface in ZJ. By Theorem 20
(p. 73), and since Z0 has trivial cohomology groups of
all positive dimensions, so has Zl' But then so has 22’
etc. Hence Hq(z,(9) =0 for q> O.

(2) Since Hl(Zr_l,a ) = 0, the first Cousin problem
is solvable in zr_l. Since 2 = Zr is a globally
presented regularly imbedded analytic hypersurface in Zr-l’
by the extension theorem, (Theorem 17, p. 59), every holomorphic
function in Zr can be continued holomorphically to Zr-l'
Similarly, every holomorphic function in Zr-l can be continued
holomorphically to Zr-2’ and so on, down to Z, = X,

Lemma B. Let XOPenc ¢ and let xgpeng X, Xjcex
X=UXy, H“(xJ,O) =0 forall q>0, andlet X, have
the Runge property with respect to xJ a° Then

(1) Every X, has the Runge property with respect to X.

(2) HYX,®)=0 for q > O.

Proof. (1) Fix J. Let K§°"‘pa°"c Xy € >0 be
given, and let f be any function holomorphic in X,.
Choose fe,§ with 3 e, =e. Let }K,§ 1> bea
sequence of compact sets Kicc K1+1’ Kic; x1+1’ U Ki = X,
and Ki is the given set KJ for 1= j. By hypothesis,
there 1s a function g, holomorphic in )(:l 41 With |f-g1|<el

compact

on KJ. Similarly, for KJ+1 (@ xJ+1, since XJ+1 has
the Runge property with respect to XJ 0! there is a 8o
holomorphic in Xy40 with lga-gll <ep on Ky, ete.
Since g4 <@, IJE-I'rmoo g = 8 exists unifomy on
compact subsets K of X, because every KcKz for some £.
g 1s therefore holomorphic in X and satisfies |f-g| <
If-gzl + lgz-gz_‘_ll toee<ggte 0+ e on Ky

(2) By Dolbeault's theorem, H3(X,©) =0 for q>0
if and only 11’%"%%%2«(%%%1»:%3 =0 forq>0, i.e.,
if and only if for a differential form o in X of type
(0,a) with da =0 there is a B of type (0,q-1) such
that o= OB .

J+1?
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(a) Let q=1, and let a, defined in X, be a (0,1)
form with da = 0. By Dolbeault's. theorem for XJ, there are
differentiable functions 61,62,... defined in xl,xa,...
respectively, such that BB = ain X,, Consider the sum:

By + (By=By) + (B3=By) + .» . In X, and X, 6(32-63) = Q
and hence 62-63 being holomorphic can be approximated on
any compact g}Pset of f2 by a holomorphic function P23

on X, Set 62 = 62, 63 = 53 - P23, etc., using the Runge
trick as before (cf. proof of Theorem 23, p. 88).

(b) Let q>1, and let a , defined in X, be of
type (0,q) with da = 0. Again, there are By in X,
such that 98, = a 1in XJ, where B, has type (0,q-1).
Since 8(63-62) =0 in X,, (63-32) = 672 in X2 Let
63 = Py - '372, etec. (ef. p. 88).

82. Polynomial Polyhedra

Definition 51, Let PyseeesPy, be polynomials in
Zyseeesz . Let A= fé | lpJ(z)l <1 for j= 1,...,rz
A 1is an open set. If Acc€®, then A 1s called a
polynomial polyhedron (of dimension n).

Note that a polynomial polyhedron is a region of holomorphy.

Theorem 32. (Oka-Weil). Let X be a polynomial poly-
hedron of dimension n, then

(1) HYx,?) =0 forall q>0

(2) If f(z) 1s holomorphic in X then f=3" q,
where the qJ are polynomials in ZyseesZ, and the Py
used to define X, and the sum converges normally in X.

Proof. (1) X 1s a bounded set and therefore lies in
a polydisc; assume X 1lies in the unit polydise, 1.e.
X (lzJI <1, §=1,...,n). Consider ¢"** yhere r is
the number of polynomials defining X. 1In ¢ consider
Z = (Zl’~'-:zn:cli°-ucr) I IZJI: 1, J=1,.e0,n,
g = pi(z), 1= 1,...,2?. 2 1s closed. Define §::° =
> n(lzJ| <1, |C1| <1). F— 1s closed in the open




113

polydisc. Consider the analytic hypersurfaces
0= fi(zl”"’zn’cl"“’cr) = - pi(zl,...,zn). The fy
are defined everywhere and are clearly holomorphic functions
in ¢, witn (IzJI <1, 'C1| < 1) as the complex manifold
X in lemma o and noting that the Jacobian of the f1 has
maximal rank everywhere because afi/a;k = 6,,° the
hypothesis of lemma o 1s satisfied and since Z = Zo’
Y 2 o ®) =0, for all q >0 and every holomorphic
function on Zo is a restriction of a holomorphic funotion
in the open polydisc (IzJI <1, |c1|‘< 1). But a
holomorphic function in the open polydisc can be written
as a power series. Hence every holomorphic function on
Zo is the restrict‘q]gn of 3nse£%es, 1,
> ay e et 2y eee 2 Cy7.el ,  converging
normally in b

We claim that Zo is holomorphically equivalent to
X. For, define the mapping (Zl’“"zn) -> (zl,...,zn,
pl(z),...,pn(z)). It is of rank n and one-to-one. The
preimage of Zo is X. Hence HY(x,d) = 8Y( ZO,Q) =0
for all q > O.

(2) We have already obtained that every holomorphic
function on Zo 1s a restriction of a series

J i
S a31~~1r zll...l;rr converging normally in Zo.

But on” >, ¢, = p,(z) and thus the above series is a
series in only the =z 3’ converging normally in X.

§3 . Runge domains

Definition 52. Let K Cc ¢, The polynomial hull of K,
K = {zo | for every polynomial p with |p(z)| <-1 on K,
Ip(zg) | < 3f .

open n

Definition 5%. X C ¢ 1is polynomially convex if
KceX 1implies that K*cc X.

Definition 54. A Runge region is a region of holomorphy
in which every holomorphic function can be expanded in a
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normally convergent series of polynomials.

Theorem 33. Let xPeN  ¢f, The following statements
are equivalent:

(1) X is polynomially convex.

(2) xX= ijJ , where the XJ are polynomial polyhedra,
XJCCX a1

(3? X 1s a Runge reglon.

Proof. (1) implies (2). Since X 1is polynomially convex,
X 1s holomorphically convex. By the Cartan-Thullen theorem,

X 1s a reglon of holomorphy. Continue the proof by adapting
the proof for analytic polyhedra, Theorem 7 and its corollary,
(p.25).

(2) implies (3). By the Oka-Weil Theorem, Theorem 32,
each polynomial polyhedron is Runge in the next one, and
Hq(xd,(9) =0 forall q <O. Apply lemma B. HY(X, (D) =
for q > 0. Hence by Theorem 21 (p. 75), X 1s a region
of holomorphy. Let f be holomorphic in X and K°OMPact
Then Kc XJ, for some J, and by the Oka-Well Theorem,
f can be approximated as closely as desired by a polynomial
in K. Hence X 1s a Runge region.

(3) implies (1). Since X 1s a Runge region it 1is a
region of holomorphy andAtherefore is hg\lomorphically convex,
l.e. 1If KCcX, then KccX where K 1s the hull of K
w:lth respect to holomorphic functions on X. We claim that
K = K* and hence K cc X. Indeed, K < K* since the
family of all holomorphic functions on X 1is larger than the
family of polynomials. It remains to show that K st K.

Let Zy € K* and let f be a holomorphic function in X
such that |[f(z)| <1 for z e K. For every e > O, there
1s a polynomial p(z) satisfying |p(z)-f(z)| <€ on

KU {zoi , since X 1s a Runge region. But then

Ip(z)| <1 +eon K, and since zje K, Ip(zo)l <1 +e.
Hence If(zo)l <1+ 2, Aand because € 1is arbitrary,
If(zo)l <1, il.e. zyeK.

<X
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Chapter 11. Cohomology of Domains of Holomorphy

81. Fundamental Lemma, stated

(1) Let x°°mpa°'°c ¢®. Let K denote the polynomial
hull of X; = [z | 1B(z)] < max |P(2)] for every polynomial
P). Note that K' 1is bounded and compact and that

=/1§D | D is a polynomial polyhedron, Kc Df '

(Proof easy).

(2) Recall that an analytic polyheﬁron Dc (I!n was .
defined as follows: there exlists an open set G c ¢" and
functions fl,...,f holomorphic in G such that Dcc G
and Dc;z | zea, If (z)] <1, J=1,000,v§, Since
D< .G, hence bounded, we shall assume that Gci llz]l < 1J,
the unit polydisc.

(%) Let D be an analytic polyhedron. Then >, the
Oka image of the closure of D, is defined as follows

:E:: = E(ZJC) | lzil: |CJ|~: l, z¢e G, cj=fj(zl""'zn) H

1 = 1,...,1’13 J = 1,...,\1]/.

S”c¢™, and 1s closed.

We now stcte the fundamental lemma.

Fundamental Lemma (Oka). Let 55 be as above. Then
S =3,
Cmaanas [ A

We shall prove the lemma in this chapter; the proof of
a more general form of the lemma will come later (p. 196).

82, Anplications of the Fundamental Lemma

A. Let D.—gocn et ¢” be an analytic polyhedron.
Observe that the Oka mapping of ¢l D -> > < ¢

(zl’°"’z ) - (Zl»~--»zn»C1;---,C )

glven by: z; = zy, C =f (zl,...,z ); 1s defined on all
of G: call the 1mage of G under this mapping " 2 ", Note
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that 3~ 1s closed and < > _,. Hence there exists an e > 0
such that 1f dist [(zy,.00,2,85,00058,), 2 1 <&, mthen
(zl,...,zn) e G; where the distance of a point p e ¢ from

m
aset S< ¢ 1is defined as 1nfsssllp-sll = MfseS‘i“lax Ipi-silg

9 ooeplll

Let > _° denote th® e-neighborhood of S, defined by
Ze' = {w | aist (w, 5_) < ef.

Applying the fundamental lemma, there exists a polynomial
polyhedron A c €™, such that STcc &) < 3T°. Let
=2, 1% lz,]<1, eyl < 1{, and note that A 1s also a
polynomial polyhedron. We now claim that 3 = Zn{ | zi|<1,
|§J|<1f, the Oka image of D, 1s the intersection of globally
presented, regularly imbedded hypersurfaces of A, satisfy-
ing the maximal rank condition of lemma o, (p. 110). Indeed,
the hypersurfaces of A’v YJ = §§J-fj(z1,...,zn) = 0;,
J=1,ee,v satisfy /)y, Yy= 3 and also the maximal

) = ,a(gj'fj(zl’”"zn)))

B =0 3T,
is of maximal rank. Hence lemma o applies.

Since Zo is holomorphically equivalent to D, we
have established:

Theorem 24, If D 1s an analytic polyhedron, then
1, 9) =0, q>o0.
B. Using the Oka mapping, we may consider any function f,
holomorphic in D, as a holomorphic function on }_—_o. By
the above argument and lemma a, f 1is the restriction of a
function g holomorphic on A, Now by Theorem %2 (p. 112),
g=>_ wj(zl,...,zn,tl,...,c.v), normally convergent on A,
where the #3 are polynomlals. This series therefore converges
normally on Zo’ hence on D: f(zl,...,zn) =
> wj(zl,...,zn,fl,...,fv), and we have also established
the following:

Theorem 35 (Oka-Weil Approximation Theorem). Let D
be an analytic polyhedron in G defined by I‘l,...,fv;
and let f be holomorphic in D, Then

£ o= > ""J(zl’“"zn’fl""’fv)

where the 1[/‘1 are polynomials and the series converges normally.

rank condition, for the matrix (©
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Corollary. If D 1s an analytic polyhedron in G, then
any function holomorphic in D may be represented by a sequence
of holomorphic functions defined in G and normally convergent
in D, 1i.e. D has the Runge property relative to G.

Theorem 36 (Oka). If D is a region of holomorphy, then
#(p,9) =0, q>o0.

Corollary. C.I 1s solvable in every region of holomorphy.

Remark. Note that this theorem completes the proof of
the de Rham theorems of Chapter 8.

Proof (of Theorem 36). Note that every analytic polyhedron
is a region of holomorphy. Exhaust D by a sequence of
analytic polyhedra DJ cc Ddfge <. D, 321 DJ = D; compare
corollary to Theorem 7, p. 25. Now, by Theorem 34, Hq(DJ,O)
=0, >0, Jj=1,2,...; and by the Corollary to Theorem 35,
DJ has the Runge property relative to D Hence we may
apply lemma B.

JH1°

§3. Preparation for the proof of the fundamental lemma

A. Proposition. Let Kcompactc_ mn, and let K* denote
1ts polynomial hull. Let GP®P ¢, and [a<t<b]C TP®cc 6.
Let F(z,t) be holomorphic in G % T, continuous in G x T,
and such that {z | z e bdry G, F(z,t) =0, te TyAK = b,
and F(z,t) £ 0 on (K NG)xT. Then elther, for each
t € [a,b] there exists zeK NG such that F(z,t) = 0; or
F(z,t) £ 0 on (K n G) x [a,b].

_Proof. We may assume T to be a polynomial polyhedron.
Let U be an open neighborhood of K , which we may also take
to be a polynomial polyhedron, for (K*)* = K*. Further, since
F(z,t) £ 0 in (K*hbdry G)x T, we may choose U such that
F(z,t) # 0 in (U/bdry G)x T. Therefore there is an open
set HccG such that F(z,t) #0 in U N (G-cl H)XT.

Now UxT 1is a polynomial polyhedron, hence C.I is
solvable (cf. Theorem 32). We are able to find a meromorphilc
function G(z,t) in UxT with poles at the zeroes of F(z,t).
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To this end, we pose the following problem: In (U/G)x T, set
£, = R(z,t); in (U N (C"-cl H)) T, set f,=1. This 1s
a well-posed problem, for F(z,t) # 0 in (UN(G-cl H))xT.
Let G(z,t) be the solution of this problem. Set

fz | z e UNG; F(z, t) } Assume the Pnpposition
is false, i.e. that YtO”K # ¢ for some t, e [a,Db];
Y¢ NK* = ¢ for some t, € [a,p]. Now ftIYt/}K #651s
cl%sed, hence there exlst numbers b ,bl € [a b] such that
for b° <t<b1, Y AK = and Y /lK £ b.
Choose t ¢ (b »b ) Then there exisgs an open neighborhood
V of X such that KCVCU, and Y AV = é. We may
assume V 1s a polynomlal polyhedron, as any smaller neighbor-
hood has the same property of non-intersection. Consider G(z,t)
for this fixed t; 1t is holomorphic in V, and can therefore
be expanded in a normally convergent series of polynomials in
V (Theorem 32). Now G(z,t), for a <t <b, 1s continuous

in K; so |G| has a maximum here: &G(z,t)l <A. But
zeK; a<t<b
8(z,t) = 1im PJ(z), normally in V. "Lt € > 0 be given,

and let N be sufficiently large so that j > N 1mplies
IG-PJI <e on K. Hence |P,(z)] <A +¢€¢ on K for every
J>N, so |1> | <A +eon K* implying IG(z,t)l <A+ 2
for z ¢ K*. But there exists a £ ¢ Yb N K and
limubolG(C,t)I <A+ 2, although G has a pole at (£,b°);
and this contradiction establishes the proposition.
B. We now establish some properties of subharmonic functions;
their definition may be restated as follows:

Let D°P®" ¢, Then &(z) 1s subharmonic in D if:

(1) -® <¢(z) <o

(11) ¢ 1s upper semicontinuous; i.e. zT_Tir;ll; $(z ) < b(b)

(111) for every z e D, and each disc
TZ6) = {¢ | Ie-z| < pf<,

o) = g [ b0 ar .
|g-z|=p
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Note. (1) and (11) imply ¢ 1s measurable, for ¢
may be-approximated from above by continuous functions.

Proposition 1. Assume ¢ to be subharmonic in D;
then ¢ possesses the following properties: A

(1) ¢ 1s bounded from above on compact sets

(2) If ¢ =~ © 4in a neighborhood of some point z
of D, then ¢ = - c© on the component of D containing z.

(3) (Maximum principle). Let KoOmPact— p - mpen
$(z) <A on bdry K implies ¢(z) <A 1in K,

(4) Let ']_)Tz;,_ﬂ< D, and assume ¢ = constant in
D(zy,r). Then ¢ = constant on "D-('é'g,—rf.

Proof. (1) follows from (ii) and (2), (3) from (1ii).
We prove (4): We may assume z, =0, r=1, and ¢ =0 on
D(0,1) = {lzl <1§. Then ¢ >0 on {Izl = 1} , using (11).
Assume, e.g. ¢(1) > 0; and let 1>¢€e >0, R>1 such that
D(o,1-e)§ D(0,1) § D(O,R) CD. Then ¢ <A 1in D(O,R).
Define

log |z| - log |1-¢|
log R - log |1-€|

Then u 1s harmonic in D(O,R) - D(0,1-€), ¢ <u and u =0
for |z| =1 -¢€. Hence, ¢(1) < A 1°3I'.]..'§/1°g'1§_a ;
letting e ¢ 0, we obtain (1) = 0.

Proposition 2. If ¢ >0 and log ¢ 1s subharmonic,
then ¢ 1s subharmonic.

Proof. (1) and (1i) follow from the monotonicity of
"log", and (111) from the inequality:

log lpgs [ #0) Al > o [ log b(e) at .
IC‘Z()':I' 'C"zol"‘r
Progositi&n 3. Let ¢(z) > 0 be defined and upper
semicontinuous in DC@ such that log ¢ 1s not subharmonic
at zy e D, and ¢(zo) # 0. Then there exists a disc
Dlz,,r]C D and a function ¥ holomorphic in D(z,,r) D,
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and continuous in Dlzo,rs, such that ¢Jy] <1 on
$lz-zgl=r} and &(z,) | ¥lz)| = 1.

Proof. We may assume 2g = O, Let r > 0 be chosen
such that D(0,r) <D and

10g4(0) > z= [ log blz) dz .
lz|=r

Using upper semicontinuity, let *’n be continuously
differentiable in D, ¢ ¢ b. Let h (z) be the harmonic
function for which log ¢ (z) = h (z) on |z|=r. Tet h
be the conjJygate harmonic function, and set

=h _~ih
v, = e n™n

Now on §|z|=r§’ , log blwnl = (log ¢) - h = log b =
log ¢, <0, l.e. dly | <1.

Ir $(0) |y (0)] =K =1, then g ly | <blyl, so
]% Iwn(z)l is the required function.

Ir $(0) |y, (0)] <1, then 1n ¢(0) + 1n |y (0)| <O,
t.e. 1n $(0) <h (0) == [ b (z) dz = -élﬁf 1n § (z) dz,

z|=r |z]=r
therefore 1n $(0) < n}-;'% 1/2111'[ 1n ¢n(z) dz, so
|z|=r
1n $(0) _5-51]1'—1-;[ 1n ¢(z) dz, contradicting choice of disc.
lz]=

84, Proof of the fundamental lemma

Statement. Let GopenCC en and assume (for the sake
of simplicity) that G cc(lzjl<1).
Let fl(zl"“’zn)""’fv(zl’""Zn) be holomorphic in G
and continuous on the closure of G. Denote by
ﬁ = {(Zl,ooo,zn) ' (Zl,ooo,zn) e G and lfi(zl,...,zn)l : 1l
for 1= 1“”;1:-'5: D 1s compact. Let > =§(z1,...,zn,
Clu--,Cv) e € l IZJI: 1, |C1| <1, (zl”"’zn) e G
and tji = fi(zl”“’zn)* for 1= 1,...,v}, the Oka 1mage
of D. Then >_=3>_ .

Proof. Let (zp,...,2z,) = Z, (cl,...,cv) = { and hence
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(21'22“"'%'@1'""@ ) = (zl,z £). Let > (z) mean
Zn[z =z] and Z (z) mean Z n[z =z]. Denote by
s=§z | there 1s a (2,) for which (z,Z c) eS—"{: s 1s
a closed bounded set. Let 0 = {z | there 1s a (2,L) for
which (z,2,t) € Z* and (z,2) £ G}: 0, 1s a closed
set € S. Call the complement of Qo, 0: Q %s an open
unbounded get. _

1) For ze O and J=1,...,v, set

(o 1t z ¢S

R,(z) =
3 max ICJ-fg(z,Z)l over all

(z,2,8) eSS~ 1rzes.
If, for fixed 7 and all § = ey, RJ(Q) 0, then

Z(’z‘) -Z?('z\) Proof: If 2 £ S, then z (z\ )
and, since ZC.Z and hence Z(Z)CZ (2),
Z'_'_(z) b, If Z¢ S, then for all §=1,...,v, U=
A A

fJ(z Z) for every (2,2Z,L) € 5_: Since € 0, z¢0.,
and so (z,Z) e G for every (2,2 C) € >__ . Hence for
every (z YA C) € Z (z), CJ = fJ(z z) and (2,Z) € G.
Therefore (z Z,L) € T(z)

2) 1log RJ(z) is subharmonic for each J = 1,...,v.
Proof: It 1s enough to consider Rl' Rl > 0 and 1s upper

semicontinuous, i.e. 1lim R (z ) <R,(2). For, if z ¢ S
7 .->2 1l 1

then Rl(z) 0. If ze S and z:l ~> z, then for large J,
elther zJ ¢ S and then }:hnR (z =0 <Rl(z), or zdes

and then Rl(z ) = max lcl-fll = |l;1-f (z ,ZJ)I for some
(z ZJ N4 ) 3 Z*. By the compactness of Z , there 15
a subsequence {(z ,ZJ I;J)I converging to a point (z, z l;)s S
and 1in R, (29) = 163-1, (2, 2)| < nax |6y-ry(2,2)1 = B (2).

->7
Hence Rl i1s upper semicontinuous.

Now, assume that 1log Rl i1s not subharmonic at some
Zy € ), then there 1s a closed disc in O, le-zol b p},
and a function %(z) holomorphic in the open disc and

*
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continuous on its closure, such that Rl(z) lw(z)] <1 on
Iz-zol = p, .and therefore <1 - 2¢ for some 1/4% > ¢ >0,
and Rl(zg) lwp(zo)l = 1. Define F(z,2,0,t) = (8y-f;(2,2))¥(z)
- (14t)el® for a1l ¢, (2,2) ¢ @, |z-z,] <p, and teTs=
{t e €| It-t | <€ and ty € [0, a]} where, a and a are
fixed real numbers to be determined later. We claim that this
F satisfles the hypothesis of the proposition with
=> < e, K" = Z*, T=T and G in the proposition,

call it Gps =G N(lz-z45] <p) and all { . Indeed:

a) P 1is holomorphic in GPXT and continuous in
cl G XeclT,

b) Ir [ = 2 | z € bdry (G ﬂ(lz-zo|<p)), F(z,2,L,t)=0
for some teclT§, then NS = 4.
Proof: Bdry (& N(]|z-zyl<p)) = ((Iz-zol_fp)/\aG) U(lz-zol=p)ﬂG).

(1) If (z,Z) € bdry G and lz-zol < p, then, since
(Iz-zol <plC = (c-ool and (z,2) ¢ G, there is no ¢{
for which (z,2, t) € >__ . Therefore, for these boundary
points, "N S = $.

(11) If (2,2) & ((|z-z5l=p)NC) and N3 #
then there is a 2 € (T N'S) and hence for this z,
Ry (2)= max |g)-1,(2,2)]. Stnce |Z-zpl = p , Ry(Z) [¥(2)] <
1-2¢ . But then 1-2¢ > (max IC -f) (z z)]) [9(®)] >
lg,-£,(%,2)| |9(2)] while |11-t| le 10| . 1-¢ and thus
F(%,2,t,t) #0, 1.e. Z¢ [ ; a contradiction. Hence
s -

c) F(z,z,L,t) #0 for (z,2,L) e>_ and teclT
because on >, ¢, = f; and therefore IF| = (1+t) > O.

However, the conclusion of the proposition is violated.
For, by choosing a sufficiently large, |(14a)| can be made
greater than I(t,'l-fl)ﬂ, since the latter 1s bounded, so that
F£0 at t=a. But for t=0, F= (cl-fl)w-e =0
at a point of Z*/\ G: for at zj, thl'| =1 implies
that R, (z Y#£0 and hence z, € S and R (zo)
max ll,'l-fl(zo,z)l = |C1"f (zo,Z)l for some (zo,Z E) e:
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Thus |€1-f1.(zo,'2‘” H’(zo)l =1 or (E‘l‘fi(zoolz\)) W(zo) = 31‘0
Choose o = 6. Hence 1log Rl(z) is subharmonic, and R, 1is
then subharmonic by Proposition 2.

Let 0, be an unbounded compenent of Q. (01 £d
exists because () contains the complement of S, a compact
set in 6.)

3) “3(z) =3 (2) for zeq.

Proof: Firstly, there is a z e 0;, for which RJ(z) =0
for all j=1,...,v. For, since 01 is unbounded and S
is bounded, (01/\ (6-S)) # . Therefore there is a z ¢ 0
and z ¢ S and for this z, RJ(z) =0 for all J. Secondly,
since (01 N (¢-S)) 1s an open set, there is a neighborhood
of this z contained in (0, /1 (€-5)) 1n which Ry=0 for
all Jj. By 2), since RJ vanishes in a neighborhood of 3z,
it vanishes in the largest component containing z, 1i.e. in
0. By 1), then, 2 (z) =Z‘(z) for z e 0.

If we can prove that 01 = €, then we are done. So,
assume 0, # €, then 0, has a boundary point ¢. ¢ 1is
also a boundary point of OO' and since Oo is closed,

g € 0y

b) >(e) # 4.

Proof: Since ¢ € OOC S, either ¢ € int S or
€ € bdry S.

a) If ¢ e int S, then there 1B a sequence of points
QJ -t , E" € (Sf\nl). Since g" e S, there are points
(¢9,29,60) e =", anavy3), (e,20,¢9) e ST, By the
compactness of F-, there is a convergent subsequence
€,2d,eh), ¢3¢, 2>z, ot oana (6,20 e T

b) If € ebdry S and S _(¢) = ¢, then for every
point (£,2,f) with first coordinate sufficiently close
to ¢, Z(g) = ¢, by coxnpactnesa, 1. e. there is ane > 0
such that if le-gl < ¢ then Z(g) = . Since ¢ ¢ bdry S,
there 1s a point €; with |€1-€| <e and €, ¢ S. Consider
the function F(z,2,L,t) = z - ((1-t)é+ tel) for
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teT=fte€| [taty] <€), and tye [0,1]f, where ¢,
is chosen such that (1-t)g+ tgl for teT 1s contained
in (Ig-g|<e) F is holomorphic for all (z,Z,f,t). F#0
forze ) _ and te T because z = (l-t)¢ + t6, 1lles
in the disc of radius € about ¢ and by assumption, then,
Z(z) = ¢. Hence, F satisfles the hypothesls of the
proposition. However, for t = 0, F= z - €, and since
tes, [FOINS =[21NS"" =35""(t) # & while
for t=1 §= z -el and since 51;!8, [F=0] {]Z
(z=£,) N> = Z (€,) = $, contradicting the conclusion
of the proposition, Thus S(E) # 4

5) S—(2)° = 3T(2).

Proof: Use induction on n. Either n=1, or n= k+l
and the fundamental lemma holds for n < k. If n =1, then
>_(z) 1is a point, namely the point (z,fl(z),...,fv(z)),
and a point 1s its own polynomial hull. If n = k+l, then
Z(z) = {(Zl:nuzkﬂ:tlu-ut ) I IZJ' <1, |C1| <1,
(zl,z) e G N[z 1=2] and Ly ="t (z Z) for 1=1,...,vf and
therefore is the Oka image of an analytic polyhedron in c .
By the induction hypothesis, then, > (z) = Z(z) .

6) There 1s an ¢ >0, a number b, O <b <1, and
N polynomials P,(Z,) such that

a) 1if Iz-ef < ¢ and for all J, IPJ(Z,C)I <1,
then (z,2Z) ¢ G and

b) if |z-¢| <e and (z,Z,f) € J_ then for all J,
I2,(z,8)} <v.

Proof. a) If (¢,Z,0) e S then (¢£,2) € G, and
there 1s a point (¢,2,f) € > by 4). Since G 1s open,
there 1s a neighborhood of (£,Z,{) such that every point
in this neighborhood has 1ts first n-coordinates in G; 1.e.
there 1s a 6 > 0 such that if the distance from (2z,Z,t) to
> () 1s less than 6, then (z,Z) € G. But since
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> (%) = Z(&)*, any neighborhood of > (&) contains a
smaller neighborhood which is a polynomial polyhedron. Hence
we can find an €1 and polynomials PJ with the required
property a).

b) At every point £,2,0) € Z: IPJ(Z)C)l <1,
J=1,4s.,N. We claim that for z sufficiently close to ¢,
and (z,2,0) ¢ >, IP (Z,e)] <1 for all J. Suppose not,
then there is a sequence ek -> ¢, and Zk, " such that
(ﬁk Zk,tk) e > and max [P (ﬁk,zk,c )>1 for each k.
Since :E: is compact here is a subsequence (s Y ,C )
which converges to a point (¢, Z C) € EE:. Fence in the
limit we obtain a point ¢ :Z:(ﬁ) where at least one of the
polynomials PJ has absolute value > 1; a contradiction.
Therefore there is an € neighborhood N of 5, sucy that
IPJ(Z,C)I <1 forall j and (z,Z,0) e (j::niz € N}).
Choose & = min (ej,e,). Then if lz-¢| <e and (z,2,0) e >,
|PJ(Z,§)| 1 for all J, and since |P,| 1s continuous,
there 1s a number 0 <b <1 for which fPJ(Z,c)l <b.

7) For |z-t| <e, set

(b if z ¢S
b(z) =

A

max (b,lPJ(Z,t)l) over (z,2,0) e >_
and j=1,...,N if z ¢ S,
log $(z) is subharmonic.

Proof: b(z).: b > 0 and is upper semicontinuous. (The
proof is similar to that of part 2).) Assume that log ¢(z) is
not subharmonic. Then there is a disc, C = (|z-£]=<n),
C(|z-t|<e) and 9(z) holomorphic in int ,C and continuous
on C satisfying &(z) |w(z)]| < 1, 0n Iz-el = p, and thus
is < 1-2¢ for some ¢ > O, and ¢(e) lw(g)l = 1, By definition,
¢(z) > b. Therefore on Iz-&l =p, ly(z)l < 1/b.

Since ¢ is holomorphic in int C, l¥(€)) < 1/b and hence
¢(§) > b. This means that g €S and ¢(¢) = max IP |.

Pick out one polynomial assuming the maximum value, say P1°
bE) = e, (2,81, (e Z,t) e > . Let F(z,2,L,t) =

P,(2,¢) y(z) - e1%1+t) for all z, ¢, |z-£| < o, and
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teTs= ite ¢ | |t-t0| <e and t,e [O,a]} where a
and a will be determined later. F satisfles the hypothesis
of the proposition. N .

d) If ze (|z-£|=p) and (2,Z,) ¢ >_ then F#£O
since then z e S and ¢ = max (b,|P,|) and satisfies
dlyl <1 or |yl <1-2. But all -fp | <¢ dimplies that
IPy] 19l <1 - 2¢ on |z-£] = p. But jel®| |14t] > 1-e.

b) If (z,2,0) e (S /)(lz-g|<p)), then F £0,
for |z-¢| < e implies by 6b), that |PJ| <b <1 for all j.
But |¢(z)| < 1/b here too and therefore |P1¢/| <1 and
thus < 1-2%, while |14t| > l-e. However, F contradicts
the conclusion of the proposition. For Z C (Iz <1,
|§1|< 1) means that P, 1s bounded on Z , and for
Iz-g| <p, ¥ 1is bounded, hence for a large enough choice of
a, |14a] can be made »> |P1| lwl so that F(z,Z t,a) # 0
for (z,2,¢) SZ* . For t =0, Q(&) (€] =
By (z g)l Iw(e)l Hence at the point (¢,2,8), there is
a, g such that Py = e’ . Take a=0. Then F =0 at
(F,ZCO) and (QZC)SZ-

8) Consider only z e (|z-t|<e). Since £ € 0., there
1s a point with first coordinate ¢ belonging to (S -5),
since there is a point ¢ Z*(E,) with (z,2) ¢ G. At this
point ¢ = max (b,|P,|) and at least one polynomial is > 1,
i.e. ¢(¢) > 1, for if not, then (z,Z) ¢ G by 6a). Now
€ € boundary 0, means that in (|z-¢l<e), there 1is an
ne 01 with ‘NTI) b. For

a) If n ¢S, )=

b) If n e S, consider any (n,Z,L) ez*. Since
ne 01, (n,2,8) € Z by 3). By 6b), |PJ(Z:C)I <b for
all j at (n,2,t) , and hence &(n) = b.

Next, consider the set of points (in (|z-£| <¢€)) where
) > 1. This set 1s closed because ¢ 1s upper semicontinuous,
and at n, ¢ <1. This means that there is a closed set with
C” boundary A C(|z-t|<e), containing 7, such that ¢ <1
in Int A and ¢ > 1 at some boundary point of A. Now in
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int 4, d>(z) < 1. Therefore either z ¢ S and hence

z £ 0y, asubset of S, orzeS. If zeS, then since .
$(z) <1, |P,(2,L)] <1 for all J and all (2,2,0) e3>,
and by 6a), iz,z) € G. Therefore z ¢ (- Hence all points
in int Ae (c-oo). But int A 1is connected and therefore
lies in a component of c-oo. But n € 01. Thus int AC 01'.
Then by 3), in int A, ¢ =b. Let S be a closed disc < A
and tangent to 3A at a point p where ¢ > 1. Then ¢ = b
in int S and ¢(p) > 1. But a subharmonic function which
1s b in an open disc 1s = b on the boundary of the disec
(by property(4) of subharmonic functions, p. 119). But ¢ > 1
at a boundary point of A; a contradictlion. Hence ()1 =0
and by 3), then, > (z) = Z*(z) for all z e @, 1.e,

=3
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Chapter 12. Some Consequences of the Approximation Theorem

§l . Relative convexity

Definition 55. Let Dy <D, both open in e”. We say
that = D, 1s D-convex if, for every K<cCDy, X,<c Dy,

where K, denotes the hull of K with respect to D, 1i.e.
K, = izo e Dy | |f‘(z0)| <sup |[f(z)!, zeKk,
for every f holomorphic in D} .

Note that K, DK, the hull of K with respect to
functions holomorphic in . D..

Theorem 37. Let DOC. D, both open in mn. Then the
following statements are equivalent:

1) D, 1s D-convex.

2) There exists a sequence PJCCPJH, UPJ = DO’
where each P j is an analytic polyhedron in D.'j

3) Dy 1s a region of holomorphy and (DO,D) is a
Runge pair.

Note. This is in some sense an extension of Theorem 33
of Chapter 10, §3; where D = ¢".

Proof. 1) implies 2): Let KcCD, . There exists
an open set D1 C.CDO such that ch.,c.Dl. Now, for every
€ e bdry D; there exists a function f’£ such that If’el <1
on K, and |f€(€)| > 1, where fﬁ is holomorphic in D.
Hence, there exists a neighborbpod Nﬁ D of &, such that
Ifgi >1 on Nﬁ' But D;<&Dy; hence bdry D; 1s compact
and a finite number of neighborhoods Nl’ “"Nr suffice.
Let P={z|zeD, IfJ(z)| <1, 3= 1,...,r}. Now P
is an analytic polyhedron in D, with P <cC Dl’ and
KCKIC <P ; hence every compact subset of D0 may be
¢nclosed in an analytic polyhedron in D.

So, let Ka (- Ka <T Ll DO be a sequence of compact
sets such that Lf K, = Dy. As above, there exists an

analytic polyhedron 1nt D, P, DK, . Now, clP UK is
o 1 oy
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compact; so there exists an analytic polyhedron in D,
P29c1 Plu K, , and so on,

2) implies 3). Each P'j is Runge in PJ+1. Hence
lemma 8 (p. 111) is applicable. Thprefore D0 is a region
of holomorphy (by Theorem 21, p. 75) and (Dy,D) 1s a
Runge pair.

3) implies 1). Let KcaDy, ang let K, K, beas .
in definition 55; KC K. Ve claim K = K). Assume q £ K;
we must show q ¢ Kl' Now q ¢ K implies that there exists
a function f(z), holomorphic in D,, such that |[f(z)| <1
on K and |f(q)] » 1; 1in fact, there exists an € > O
such that |f(z)|] <1 -2 on K, and |f(q)] > 1 + 2¢.
Since (DO,D) is a Runge pair, there exists a function g,
holomorphic in D, such that |g-f| <€ on the compact set
K Ufaf . But lglz)| = lglz)-£(z)+(z)| <lg(z)-£(z) |+
I£(z)| <1-e on K; and lg(q)| > |£(a)]|-lg(a)-f(a)] > l4e;
so q ¢ K.

§2. Unbounded regions of holomorphy
open

Lemma y. Let X < cn; let ch: XJ¥1 be such that
Y XJ = X, where XJ i1s a region of holomorphy and (XJ,X
8 a Runge pair. Then X 1s a region of holomorphy.
Proof. As indicated by the proof of lemma £ (Chapter 10,
§1), we may assume X, 1s Runge in X. Recall that, for
every KccXc €, A(K) = A(K) 1if and only if X 1s a
region of holomorphy (Theorem 5, Chapter 2, 82). Hence,
assume there exists a K<cX for which A(l?) < A(K), wh;e\re
A 1s taken in the maximum norm; i.e. there existsa qe K - K
such that A(q) < A(K). For J sufficiently large,
X, > KU $qf. Now for every f holomorphic on Xy If] <1
on K dimplies |f(q)| <1, 1.e. q € [Hull of K with respect
to functions holomorphic in X,]. But X, 1is a region of
holomorphy, so dist (q, bdry X,) > dist (K, bdry XJ); i.e.
letting J -> o, A(q) > A(K), which 1s a contradiction.

J+1)
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Note. One obtains another proof by constructing a
sequence x‘;gcx; 41 such that \,fo; = X, using analytic
polyhedra as in "1 implies 2" of Theorem 37.

Remark. (Oka) Let X< ¢"; we assume O ¢ X for
simplicity. Let X, = X/§llz] < v, #¢ by assumption.
Then X 1s a region of holomorphy if and only if Xr is
a reglon of holomorphy for every r > O.

Proof. Assume xr is a region of holomorphy for every
r >0, If xr is Runge in XR for r <R, we are done
by lemma . Using the preceding theorem, it suffices to
show xr is xR-convex. Let chxr; let Kl be the
XR hull of K. K1<CXR as XR is a domain of holomorphy.
But, for every z e K, ||z]] <r - €. Hence, in K,
lzll < - € ; where the norm is the maximum norm. Hence,
chc. xr.

The reverse implication is clear.

83. The Behnke-Stein Theorem

Theorem 38. (Behnke-Stein). If X;CX;,C e,
and X‘1 i1s a region of holomorphy, then X = lexJ is a
region of holomorphy.

We first require a lemma:

Lemma 8. Let D)<cCDyCCDycC ¢™ be regions, D; a
region of holomorphy, such that
min I 21-23” > max

z,€ bdry Dl

235 bdry D3 .
(This means that any subset of D3 whose distance to BD3
is > the distance of ¢l D; to BD3 “lies in int D,.)
Then there exists an analytic polyhedron P in D3 such
that D,cc Pcc D,.

1 2
Proof. Let K = cl Dl’ and let Kl denote the D3-hu11
of K. Then &, (x) = by (Kl), so K<< D,. But now there
exists an analytzc polyhearon P such that Kl < P<cC D2,

as in "1 implies 2" of Theorem 37.

dist (ze-bdry D3).
Z,€ bdry D2
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Proof of Theorem 38. Utilizing Oka's remark, we may
assume X<C @n. We may also assume XJ chjﬂ as every
region of holomorphy can be written as a strictly increasing
(1.e. relatively compact) sequence of analytic polyhedra
(see corollary to theorem 7, Chapter 2, 85). Define:

My = max min ||z=]|
z € bdry XJ f ebdry X

M ; = max min [lz-Cll
123033195 zebdry X, Cebdry X,
1 2

my = W, ey x 3 minc € bdry X" z-t |l

= min

m . min llz-¢ll .
310303 97<35 z e bdry le ¢ e bdry x‘12

We select a sequence VysVosees of subscripts as
follows:

Set v, = 1. Choose Vo such that Mv2 < m"l’ possible
as Mv2’>° as v, => ®.

Select v, > v, such that M, <
3 2 2:V3 Vl,V3
Mv <m , possible as 1lim M va = M, m, m,_
3 Ve vz=>® VaoVz V2 Vg V3 Vv
and Mvg -> 0 as v3 -> ® ., Continuing, select vJ > vJ-l
such that M <m and M <m ; Dpossible
Vy_1sV Vo,V v Vi
as before. -1 =273 J J-1
Consider now the subsequence x any three successive
terms X cc x cc X satisfy the conditions of
Va+l Va+2
lemma 5 fo
min oy lz=tll = > M
z € bdry qu ,vq+2 vq+1,VQ+2
f € bdry Xv
q+2

MaX; cbdry X, "L ebdry X, lz-tll.
q+l q+2
Hence, there exists a sequence {P Ji of analytic polyhedra
such that X 6 < cP,ccX , where P, 1s an analytic
v J Vil J

olyhedron in X and hence in P <X .
poty Ve T Ty
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Appealing to the Oka-Well theorem (theorem 35), (PJ,PJ+1)
is a Runge pair. Now use lemma y (or B) to obtain the

desired result.

84, Applications to the Levi problem

We recall the

Levi problem: 1Is every pseudoconvex domain a domain of
holomorphy?

We shall reduce this problem to the consideration of
"strictly pseudoconvex" domains, defined as follows:

Definition 56. Let G°P®"c ¢, and let &(z) be a
real valued, C® function on G. Let ¢ be strongly
plurisubharmonic i.e., (62¢/ BziBEJ ) >0 for every z e G;
assume also that ¢ > O near the boundary of G and ¢ <O
somewhere in G; more precisely, there exists an € > 0
such that for every z e 3z | dist (z, bdry G) <€, z ¢ G},
é(z) > 0 and there exists a 2y € G such that ¢(zo) <0,

Now consider the open (nonempty) set G.= {z lzeq,
¢(z) < 0; 1t 1is called strictly pseudoconvex; any region
D for which there exlsts a Gopenc: ¢" and strongly
plurisubharmonic (real-valued, C® ) function ¢ for which
D=G_ 1s called a strictly pseudoconvex region.

We remark that a strictly pseudoconvex region is
pseudoconvex; consider log (-1/4). The strict pseudo-
convexity 1s essentially a "smooth boundary" condition.

Exampie. The unit ball 1s strictly pseudoconvex: set
¢ = szJ -1, The unit polydisc is not, and analytic
polyhedra are generally not, strictly pseudoconvex.

Theorem 39. Every pseudoconvex region is the 1limit
of an increasing sequence of strictly pseudoconvex regions.

Proof. Let D be pseudoconvex; 1.e. there exists a
real-valued, continuous, plurisubharmonic function % in D
such that ¢ -> + ® on the boundary of D. We claim that
for every compact subset K of D there 1s a strictly
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pseudoconvex region D0 satisfying K< Docc. D. To prove
this, notice first that since ¥ -> +00 on JD, there is

a positive integer N s0 large that K< Sc TC peompact - D,
where S =5z e D | y(z) <N}, T=$zeD| ylz) < Nf

and L 1s any compact subset of D containing T. Give

€ >0 small., By Proposition 2, p. 28, there exists a C®
plurisubharmonic function ¥, on L such that h’/(z)-wo(z)|< €

on L. Drelfine Xz) = Volz) +e/M - ziii;
M = z . & -
max % 2,Z,. Then X(z) 1is C%® and strongly pluri

subharmo! on L, For ze S, X(z) <N+ 2¢; for
ze (L-cl1 T), X(z) » N+ l-e. Therefore if we set
Dp =%z € int LIY(z) <N #1/2§, then Dy 1s strictly
pseudoconvex and K c D0 < L, as claimed. Let K, be an
increasing sequence of compact subsets of D such that
BJKJ = D, For each jJ, 1let DJ be a strictly pseudoconvex
region, KJC D,<cD. We choose a sequence v j of subscripts
as follows: Set vy = 1; D1C KJ for some ,jl; hence
Dj~cK, . Set v,=J;; andso %n. Note that K,cD, <D, s>

1 2 7V Vil
so that D, €c D and YD, & =D,

vy Vil v

Proposition. The Levi problgm 1s reduced to the
following: 1Is every strictly pseudoconvex region
with compact closure a region of holomorphy?

Proof. Use the precedlng theorem together with the
Behnke~-Stein theorem.
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Chapter 1%, Solution of the Levi Problem

The object of this chapter is to prove the following theorem.

Theorem 40, If DOPER C;Gn is pseudoconvex, it is a
region of holomorphy.

Since every pseudoconvex region is the union of an
increasing sequence of strictly pseudoconvex regions (Theorem 39),
and the union of an inbreasing sequence of regions of holomorphy
is a reglon of holomorphy (Theorem 38), it suffices to prove

Theorem 40!, If DOPL-c ¢ is strictly pseudoconvex,
it is a region of holomorphy.

The Levi problem has been solved first by Oka (for n = 2),
then by Bremermann, Norguet and Oka for any n. There exist today
many proofs of this theorem using either Oka's original method,
or functional analysis methods (Ehrenpreis, Grauert, Narasimhan,
Andreotti-Grauert, etc.), or partial differential equations
(J. J. Kohn). The proof given here follows mainly Grauert
and Narasimhan. The idea of using an "Extension Lemma" plus
a result by L. Schwartz to establish finiteness of cohomology
groups is due to Cartanand Serre.

81. Reduction to a finiteness statement

Proposition 1. If DOPeE;Q ¢ 1s strictly pseudoconvex,
then dim HI(D, 9) <.

Let U = fuii be a fixed, locally finite covering. The
dim Hl(D,f)) =m < o means that given (m+l) cocycles on U,

a nontrivial linear combination of them 1s a coboundary on a
refinement of U. But a cocycle on U 1s a set of Cousin I data,
and a cog¢ycle induces a coboundary when the induced Cousin I 1is
solvable. Since we can add Cousin data and multiply by constants,
dim Hl(D,C)) =m < 00 means that a nontrivial linear
combination of (m+l) CI data is solvable.

Proposition 1 implies Theorem 40!'.

Proof: Recall that DPER . ¢" is strictly pseudoconvex if
there is an open set G;;Gn such that D= G and in G there is a
real-valued C° function ¢ which is strongly plurisubharmonic
and D = [$<0].

A. Lemma 1. Let D%®cc ¢" vpea strictly pseudoconvex
region. There is an € > 0O such that if o 1s a real-valued
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¢® function in G and if |o|, |am/az Iy |a w/dz azkl
are all <e, D, = [$40<0] 1s strictly pseudoconvex and
1<J: ",

Proof. D,<cG since o 1s small and ¢+w 1s a
real-valued C&’ function in G. ¢+4w 1is strongly pluri-
subharmonic since the sum of a small quadratic form and positive
definite quadratic form is a positive definite quadratic form.

Lemma 2. Let D°pen - ¢" bea strictly pseudoconvex
region., There is an € > 0 such that if q € bdry D and B is
the polydisc of radius € about g, there is a quadratic
polynomial Q, 1in zy,...,2 with Q(q) = 0 and Q(z) £0
in D NB.

Proof. Since ¢ e ¢® in G and is real-valued, by
Taylor's theogem,

¢(Z) = %:I [AJ(ZJ'QJ) +IJ(2J-5J)] +

n ’

[A J(zi qi)(z _qJ) + AiJ(Z 'qi)(z qJ)] +

1 ‘J‘I
1,§ HiJ(Zi-qi) (EJ'aJ) + R

where H = (Hij) =H and R 1involves third order terms.
So,
*
d(z) = 2Re Q(z) + (z-q) H (z-q) +R

n
where Q,(Z) =§ AJ(ZJ"QJ) +1§1 AiJ(Zi-qi)(zJ-qJ) .

Now;since the hessian of ¢ 1s positive definite, H is a
positive definite hermitian matrix of second order derivatives
of ¢ at q. Since H varies continuously with q, and at
each boundary point q of D it has a positive smallest eigen-
value, the minimum eigenvalue of H over D, call it a,

1s positive. Hence (z-q)'H (z-q) > allz-q|P. Similarly by
estimating third order derivatives of ¢ over 0JD, we can
find an M> 0, independent of q, such that - Mllz-qll3

R < Mlg-qlP. Hence (z-a)'H (z-q) +R > (a-M”Z-QH)"Z-qu

Take € = o/M; then for |[z-q| <€, (z-q) H(z-q)+R >0
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except at q where it vanishes. But in DN B ¢ < 0;
therefore Q # O.

Lemma 3. Let pPeL L ¢ bpea strictly pseudoconvex
region. There 1s an e > O such that 1f q € bdry D and
B 1s the polydisc of radius <e about q, then BAD 1is -
a region of holomorphy.

Proof: We will show that every boundary point is
essential., Take € = 1/2 €y the e of lemma 2.
Bdry (BND) = ((bdry B)ND) V(B ANbdry D) U(bdry B lbdry D).

If y € bdry B, then since B is a domain of
holomorphy, there is a function holomorphic in B and
singular at v.

If 7 ¢ (bdry D)A B, then the polynomial Q, of
lemma 2, corresonding to 7y, is holomorphic, Q(y) = O,
and Q(z) # 0 in DN B. Hence 1/Q is holomorphic in
D N B and singular at vy.
B. Assuming proposition 1, we will show that every boundary
point of a strictly pseudoconvex D is essential., Let
q e bdry D. Let B be the polydisc of lemma 2 and Q(z) the
quadratic polynomial, Let w >0 be a ¢® function whose
support lies in the interior of B and w(q) > O. Consider
¢ - tw, where t > O 1s small. By lemma 1, if t is
small enough, Dl = [$ - tw < 0] 1s strictly pseudoconvex.
Dc Dl <c a:n, qe Dl-D, and since supp w < B, Dl-Dc B,
Since Dl is strictly pseudoconvex, by hypothesis
dim Hl(Dl,fﬁ) =m< o. Construct (m+l) sets of Cousin I
data as follows. Take U1 =B /\Dl, U2 = D, as an open
covering of Dl‘ For each k =1,2,.,.,.,m+l, consider
F, = 1/Qk, F, = 0. F,, F, are meromorphic functions and
because (U3 NU,)< (DNB) and Q#0 in DANB,
Fl--F2 = l/Qk is holomorphic in U1’\U2' A linear combination
of these data 1s solvable. Therefore there are complex
constants OpsesesOpyy not all zero, agg a function F(z)
meromorphic in D, such that F(z) -% oy Q(z)"'j is
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holomorphic in U, and F(z) - 0 = F(z) 1s holomorphic-in D.
This function F(z) 1s holomorphic in D and has a pole at q.

§2. Reduction to an extension property

Proposition 2. Let DP®Tcc  ¢M be strictly pseudoconvex.
There 1s another strictly pseudoconvex region Do with
Dchocc,d! such that 1f a= 3 a dzJ is a c®
differential form of type (0,1) in D and da = 0, then
there exists a C® form p=3_ b, dZ, in Dy with 3 =0
in D, anda C® function )X 4in D, such that a - B =3X
in D.

2 means that every closed (0,1) form in D 1is
cohomologous in D to a (0,1) form defined and closed in a
larger region.

2 implies 1.

Proof: By Leray's theorem, the cohomology groups of D,
H'(D,() are isomorphic to the cohomology groups H™(D,U,(?)
of D with respect to any simple covering of D. Hence we
need only consider cohomology with respect to a simple covering
in order to prove 1. Let €12€5 be the e's glven by Lemma 3
for D and Dy, respectively. Take € = 1/2 min (el,ez) .
Cover BDO by finitely many open_polydiscs of radius € such
that (*) the closures of the polydiscs are disjoint when their
interiors are disJoint. Complete this covering to a finite
covering V Lv i of D0 by adding open polydiscs of
radius € satisfying (*) and whose closures do not intersect .
bDO. About each v take a slightly larger open polydisc vJ
such that v, ec v, s Af elv /laD = ¢ then cl vy N 3Dy = ¢,
if vj N vi = ¢ then vJ /\v ¢, and such that fo€ each'

i, N Do 1s still a region of holomorphy. Set U = {uJ =
v /\Di and U = Luy = vJ D ﬁ Then U' and U are
b-simple coverings of D and DO’ respectively, since they
are finite coverings by regions of holomorphy.

With each covering we have the groups of cochains,
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¢t (p,ur, ), ¢ r(Do, U", @), and the groups of cocycles
Z°(D,U', (/) and Zr( U, ). As we have already noted,
these groups are also linear vector spaces. With the
following notion of convergence, it can be shown that cr,
and hence 2Z¥ » 1s a topological vector space: a sequence
of elements of Cr(D,U,@) converges 1f in each ulfl ces /)ur_*_l#
the sequence of holomorphic functionsassigned there converges
normally. In fact, these spaces are Frechet spaces, 1i.e.
Hausdorff, locally convex, metrizable and complete under the
metric.
Define the mappings

6: ¢ (0,u',() - z'(D,ur,0)
to be the coboundary operator and

r : zHp,,u",0) - z'(0,u1,0)

to be the restriction map; l.e. 1f z e Z'(Dy,U",&) then
r(z) 1s the restriction of z to the covering U~, & 1is
a continuous linear map and r 1s a completely continuous
(1.e. compact) linear map. To show that r 1is indeed compact,
we must show that there is a neighborhood of the origin which
1s mapped into a relatively compact set. A neighborhood of
the origin is the set of all l-cocycles on U" which assign
holomorphic functions fy, to ui/\u'j # ¢ with Ifi | <e.
Consider one intersection u /'luJ # ¢ and the holomorphic
functions fiJ assigned there with ! | <e. The image
cocycles, under r, assign to u /IuJ the holomorphic
functions f,,, If1 I < e. Take any sequence 21’135 of
these functions, |f K| <¢, and a compact set XK <D,

(u /\u )‘>DK /D(u /\u 'Y. Since the derivatives of the

flij are uniformly bounded on K, ifi;j; is equicontinuous
and uniformly bounded on K, and hence contains a normally
convergent subsequence. This shows sequential compactness
of the image, but in a metric space sequential compactness
implies compactness.
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Now, consider the following two maps of the direct sum
of ¢°(p,u',0) and z'(p,,u", ) nto Azl(D,U',O),
¢°(0,01,(0) DDLU, ) ==5 z}(p,u1,0)
-r=B
where 6 (B r means that & operates on c° and r on Zl and -r
is just the map -r operating on Zl. Both maps are
continuous and linear. B 1s compact, and we claim that
A 1s onto (see below).

Theorem, (L. Schwartz). Let E, F be Frechet spaces
and A, B: E -> F be continuous linear maps from E into F.
If A 1is onto and B 1s compact then the range of A + B
has finite codimension, i.e. dim F(A+B)E < . (The proof
is given in the appendix.)

Hence if A 1s onto, since A + B = 6, this theorem
implies that the space of cocycles on U! modulo coboundaries
is finite dimensional.

It remains to show that A 1s onto.

Proof. A onto means that a cocycle in U' 1is
cohomologous to the restriction of a cocycle in U", Let
fiJ be a cocycle 1n U' and 1"1J the holomorphic function
assigned to u N uJ # ¢ fy5= 8-€; where gy, g; are
c® functions on ui, u' respectively, sin?e the Intermediate
Cousin I problem is always solvable. In Uy, bgi =a, a
closed form independent of 1 because on u1 l.uJ , agi = ng.
By proposition 2, there is a closed (0,1) form 8 defined over
D, and a c® function x 1n D such that a=p + SI- in D.
In u;, N B bh “hy € c , because u" is OJ-simple.

Let f}j = hi - hJ 1J ig defined and holomorphic

in u /1 u,. Hence a cocycle 5'1J is defined on the larger
covering u" « If we restrict this cocycle to U' we get

a cocycle cohomologous to 3”1 + Indeed, in uy /7 u;,

fij - f1J "(gi gJ (h hJ) = (81"1’11 X) (gj-h,]' 3- and
S(g1 - N =a=-5- b)ﬁ 0 and therefore jiJ 73y 1s
a coboundary on U!'.
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§3. Proof of Proposition 2

We will prove a proposition 2! and then show that 2!
implies 2.

Proposition 2'. Let D°P®T-c €" be strictly pseudoconvex.
Let q € bdry D. Take € to be the ¢ of lemma 3. Let B, be
the polydisc about q of radius e/2, and let o >0 be
a €° function with support in B, and w(q) > 0 so that
D, = [$=tw<0] for t > O small is strictly pseudoconvex.
Then every closed (0,1) form in D 1s cohomologous in D
toa (0,1) form defined and closed in Dl' (We will say
that D1 satisfies 2' with respect to D.)

Proof. Let B be the polydisc about q of radius e.
Note that D<¢D1 cce? and Dl-Dc Bl‘ Let 0" be a c® function,
=1 in B, and o= 0 outside B. Let « be a closed
(0,1) form in D. Since DNB 1is a region of holomorphy
and a is closed in D_ﬂB, there 1s a €% function 7( in
DNB such that o = dX. The function Xo 1s C® inD
and X o= X in Blf\D. Thus B = a - 5(}10") 1s a closed
form in D cohomologous to o . In BI/\D, B=a=9r=0
and therefore can be continued as O to all of D1 - D.

2' implies 2.

Proof. Let DPicc¢™ be strictly pseudoconvex.

Since Dc.c_GODen, by definition, there are open sets E, F
such that DcCECcCF ¢” and the distance from D to E

is greater than €. Cover E by a finite number of polydiscs,
Bl""’BN’ of radius e/2 such that every polydisc containing
a boundary point of D 1s centered about a boundary point of
D. Let Wy s e e sy be a partition of unity subordinated to

the covering: a)J >0 and ¢® 1in E with support in BJ
and _ wJ =1 at each point og E. For £ =1,...,N

1

consider the regions D, = [$- tJ wy < 0], where the 1:J

are positive numbers so small t at each DB is strictly pseudo-

convex and Dz<c ¢". Since ?I wJ =1 at every boundary
h

I
point of D, t,w; >0 ere. Hence D<cD,. Also,
- J J N



1

D1 satisfies 2! with respect to D and Dz satisfies 2!
with respect to qul’ 4 =2,...,N. Eence every closed (0,1)
form in D 1s cohomologous in D to a closed (0,1) form in
D1 which in turn 1s cohomologous in D1 (and hence D) to
a closed (0,1) form in D2’ etc, up to D,. Take for D,,

N 0
in 2, the set DN'
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Chapter 14. Sheaves

81. Exact sequences

In the following, all groups are Abelian and -all maps are
homomorphisms.
A. Definition 57. A sequence is a collection of groups AJ
and maps ¢ : AJ -> A4, vwritten fhj,¢ j

2 by
> AJ—l J AJ J AJ+1

LN > see o

The sequence 1s said to be exact at AJ if im ¢ .poker b ,
where im ¢J 1= {éla € AJ , there exists b e A -1 such that

by.qb = af
ker ¢J =3 falae AJ' ¢ja = Qf .
The sequence {.AJ’¢J§ is called exact if it 1s exact at

AJ, for every J.

Definition 58. A collection of maps and groups 1s said
to form a commutative diagram if all compositions of maps
leading from a group A to a group B 1in the collection give
the same result: e.g. the diagram

A -Jt———> B
14

(]
commutes if ¢d(a) = e(a) for every a e A.
Remarks. 1) Clearly, O -> A -> O 1s exact if and only
if A =0,
2) 0—> A—> B 18 exact if and only if ¢ 1is one-to-one.
In this case, we may regard A as a subgroup of B, for
= $(A)C B, and ¢ : A -> A1 is an isomorphism.

Hence the dlagram
0—> A —->

L4> Zid

0 —> AI——>
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is commutative (i will always denote the inclusion map and
1d the identity map).
3) AX>B—>0 1s exact if and only if ¢ 1is onto.
Here,. the homomorphism theorem of group theory implies
B~ A/ker § (~ denotes "is isomorphic to"). Hence, we may
"factor" ¢ as follows:
¢

A——>B

INY &

A/ker ¢

This diagram commutes, where here Jj (as always) denotes the
canonical projection and is onto; and ¢1, the map induced
by ¢, 1s an isomorphism.

4) Combining 2) and 3), 0 —> AS>BY>c—>0 is
called a short exact sequence if and only if ¢ is 1-1, y is
onto and im ¢ = ker ¥.

Remark. Utilizing the above remarks, the following -
dilagram commutes and both horizontal sequences are exact:

0 —> A —> B-——> C—>0

7

0—> A—> B -—J:>B/A1—> 0.

Note that ¢ : A—> A;, 1d : B—> B and y;l: C—> B/A
are all isomorphisms.

Isomorphic groups may be 1ldentified; hence short exact
sequences should be thought of as being in the form:

0o—>at>BdsBn—o0.

B. Proposition 1. Let I =% a,B,7,...f be directed by
" > ", and let there be given sequences LA?,& § , exact
for each a, such that, for a <8 the following dilagram
exists and 1s commutative:
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(o3
c0e —> Ag'-1> AJ+1 —>> ese
2P l,J+1
0oe ——> Ag _E> AJ+1 —_—> aee
%

;ﬁ satisfy the following compatibility condition:

@ <P <y implies agy = a§7 agﬁ .

Then the 1imit sequence EAJ = lim Aj , ¢J = lim ¢§ } is

exact and the following diagram commutes:
a

cee > A°‘ —-J-> AJ+1 —> .es

lli

oo —> A —_—> see e
j J+l
Remark, The A, are defined as follows:
Set SJ —l} AJ' gefine an eguivalence relation "" on
SJ as follows S, € AJI, S, € AJ2 are equivalent, 8) ~ 8,5,
if there exists a B such that o < B, ay< B and

K °F h truct
3y (sl)— ay (32)‘ Then AJ = SJ/~, and the group structure

is canonical,

Alternatively, define a thread to be a set of elements
{5a§ such that for every a ¢ I, 8y € AJ, and for every
pair a,8 ¢ I suchthat a<B, gg=a ﬁ(g o+ The group
structure is again the obvious one, and the group formed by
~ the threads is denoted A,.

The homomorphisms ¢j are defined in the obvious way,
utilizing the ¢g and the compatibility condition. The proof
of the proposition then follows from the directedness of the
set I.

where the a

82, Differential operators
A. Definition 60. Let A be an abelian group. A
homomorphism 4 : A -> A satisfying d2 =0 1s called a
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differential operator.

The sequence A‘9—> A-g—> A 1s not necessarily exact,

but ker d >im 4 as 62 = 0. Hence ve may define:

H(A) ker d/im 4,

the der}ved group of A. H(A) 1s a measure of the deviation
from exactness of the above sequence, in the sense that H(A) = 0
1f and only if the sequence 1s exact.

We say xe A 1s closed 1f dx =0 ;

x e A 1s exact 1f there exlsts a y € A such that
x = dy.

Denote the homology class in H(A) of an element x e A
by [x].

Definition 61. If A,B are groups with differential
operators, we say that f : A —> B 1s an allowable homomorphism
ir fdl = d,f; 1l.e. if thedfollowing diagram commutes:

2
A 1., A

B —-15§—> B

Examples. The group of cochains on a space, with boundary
operator; continuous maps are allowable.

The additive group of differentlal forms, d the
differential; differential maps are allowable.

Chains on a simplex, boundary operator; simplicial maps
are allowable. .

Proposition 2. An allowable map f : A —> B 1nduces
a homomorphism

) £ : H(A) —> H(B) ,

such that 1f g : B—> C allowable, then:
* *
(ef) = gf
and
) = 14
(1dy)° = ddy(yy -
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Proof. Define f'[x] = [fx] , xe& A. Then f 1isa
mapping of H(A) —> H(B) , for :
dx = O implies d(fx) = f(dx) = O
and

X dy implies fx = f£(dy) = d(fy) .

B. Proposition 3. Let A,B,C be groups with differential
operators, and let the following be a short exact sequence
of allowable maps:

0—>Af>BEsc—>0.

Then there exists a canonical homomorphism D such that the
following diagram is exact (viewed as an infinite, repeated
sequence)

H(A)

D £
H(K«—*}zB)
g

Proof. (Recall the Well proof of de Rham's theorem!)

Exactness at H(B): (Does not need D)

1) Let o € H(A); we must show g*f*(a) = 0., But, let
XEa; g*f*(a) = [gf(x)] =0 as gf = 0.

11) Let ye B, dy =0, such that g [y] = 0. We
wish to find x € A, dx = 0, such that f [x] = [y]. Now
g*[y] = [gy] = 0, implies gy =dz, z e C. But g 1s onto;
hence there exlsts a vy € B such that 8y = 2, which
implies gy = dz = dgy, = g(dyl). Hence y-dy, € ker g, 8o
there exists an x € A "such that fx = y-dyl, and x 1s
closed for dfx = f(dx) = dy = 0, and f 1s one-to-one.
But f*[x] = [y-dyll = [y], as required.

Construction of D:

Let ze C, dz =0. Now g 1s onto, so there exists
ayeB such that z = gy. But O = dz = dgy = gl(dy), so
dy € ker g implies that there exists an x € A such that
fx = dy, and x 1s closed as before. Note that x 1s unique
once y has been chosen. Set D[z] = [x]; D 1is well defined
if [x] 1s independent of y. Eence, let y € B such that O=gy.
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Then y e ker g, 8o there exists a unique x € A such that
¥y = fXx. Therefore dy = f dx, so D[0} = [dx] = 0. D is
¢learly homomorphic.

Exactness at H(C):

1) Let ye B, dy=0. Then Dg [y] = Dlgy] = [x],
where fx = dy. But f 1is one-to-one, so dy = O implies
x = 0.

11) Let z e G, dz =0 such that D[z] = 0; 1.e.
there exists a y € B such that z =gy; dy = fx and
D[z] = [x] = 0. Hence, x = dx). Set y, = y-fx;. Then
y; 1s closed, for dy, = dy - dfx; = fx - f(dx ) = f(x-dx1)=0.
Furthermore, g [yll ley-gfx,] = [gy] = [2], as gf =0.

Exactness at H(A):

1) Let z e C, dz =0. Then f*D[z] = [fx], where

=gy and dy = fx. But then f*D[z] = [dy] = O.

11) Let xe A, dx=0 such that f [x] =0; di.e.,
fx = dy. Set 2z =gy. Then z 1s closed, for dz = dgy =
gdy = gfx = 0; and D[z] = [x].

§3. Graded groups

Definition 62. A group A 1s called graded if, for
every integral j, there exists a subgroup AJ such that
x € A 1implies x = le+ eee + xJ 5 xji € AJi’ k <o
and the representation 1s unique.

Note that this uniqueness implies AJ flA =0, J#k.

An element Xy € AJ is called pure (Jj- )dimensional

Examples. Chains and cochains on a simplicial complex
are graded by their dimension.

Differentlal forms are graded by their degrees.

In both these cases, A, =0 for j <O.

Definition 63. A differential operator d on a graded
group A 1s saild to respect the grading if there exists an
integer r, called the shift of d, such that 4 AJC: AJ+r
for every J. (In practice, r 1s almost always + 1.)
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Amap f : A ->B of graded groups with differential
operators 1s called allowable if the differential operators
have the same shift and f preserves dimension.

Corollary. If A 1is a graded group with differential
operator which respects the grading, then thé derived group
H(A) 1is graded; and
Zx € AJ’ dx;Qi

R

Corollary. An allowable map f : A -> B of graded

groups induces homomorphisms

ml(a) =

£ ud(a) - wm) .

Proposition 4. Let O—> aL> BB c—> 0 be a short
exact sequence of graded groups and allowable homomorphisms.
Then there exist maps d such that the following sequence
is exact:

* . *
. — wd(a) L5 wi(m) &> nd(c) &> wItT(a) —> ...

where r 1s the shift of the differential operators.

Note: There are |r| distinct sequences.

Proof. Utllizing proposition 3, there exists a
D : H(C) -» H(A). As a map of graded groups, D : HI(C)->hI*T(a),.
for: suppose z ¢ C 1s pure j-dimensional, dz = O, Then
there exists a y such that gy =2, and dim y = j. There
exists an x such that dy = fx and dim (dy) = j+r = dim x.
But D[z] = [x], so shift D= r = shift d4; rename D "g@";
then the exactness result of proposition 3 and the above
corollaries conclude the proof.

Example. Let X be a topologlcal space; AC X a
subspace. Let C(Z) denote the graded group of chains over
Z, with standard boundary operator, J. Then

0 —> C¢(a) -1-> c(x) -j-> c(x)/c(a)

C(X,A) —> 0

is an allowable short exact sequence of graded groups, and
proposition 4 implies the exactness of the sequence

1 j
e —> w(a) 2> wIx) 2> wx,a) &> wITl(a) — ...
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84, Sheaves and pre-sheaves

A. Recall the definition of "sheaf" (Chapter 6, §3, Defn. 36);
we reprrase it as follows:

Definitioq_éﬂ. A sheaf of Abelian groups, S, 1s defined .
as follows: Let X, the base space, be a paracompact
Hausdorff space. For every x e X, let Sx be an associated
Abelian group called the stalk of the sheaf over x; and set
S = L&ax Sx’ whose topology is smallest such that

i) the projectionmap p : S -> X, defined by p(s) = x
if s ¢ Sx’ i1s continuous and a local homeomorphism,

1i) the group operations in the stalks are continuous;
i.e. 8 -> -8 18 a continuous map of S into S; and
(sl’sa)'>sl+52 , defined on the set R of pairs (31’32) such
that 8,85 belong to the same stalk, i1s a continuous map of
the subset R of S xS into S.

Ve remark that the stalks are discrete.

Let Y< X; then S(Y) = UxeY Sy» with the induced
topology, is called the induced sheaf of S over Y.

A section over X isamap t : X -> S, continuous,
such that p.t = 1dx. A section over Y« X 1s a section
of S(Y) over Y.

Remarks. Every sheaf has at least one section, the zero

section, given by t : x => 0 ¢ Sx.

If two sections coincide at a point, they coincide in a
neighborhood of this point.

Corollary. Let Y°P®™— X. Then t(Y) 4s open in S.
B. Definition 65. Let X be a paracompact Hausdorff space.
Let U = .{uii be an open covering of X such that u;,u, e U
implies u, / uy € U. Let r_(ui) be an Abelian group
associated to each uy € U, such that, if uy < u‘_j there
exists a homomorphism TR f—(uJ) -> f'(ui) satisfying
the compatibility condition:

Wy u; < dmplles  yyg vpg =Yy -

The collection (X’r—(ui)’7ij) is called a prehseaf.
Proposition 5. To each presheaf there may be assoclated
a sheaf, called the sheaf defined by the presheaf.
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Proof. Take X as the base space. For each x & X the
collection Zui | ui eU, xe ui} 1s directed; set Sx equal
to the direct limit of the groups I"(ui). Set S =stx Sy
with topology defined as/follows: s eSS impl%es -8 € Sx.
Now xe U, eU; then jsy | s, €85 Ve Uxf is an open
set and the collection of all such sets is a basis for the
topology of S.

Note that the l_(ui) form sections of the sheaf S
defined by the presheaf.

Proposition 6. Every sheaf is defined by some presheaf.

Proof. Take U={fu | u®inxf . Let [T(u) be the
sectlons over u; and define the 713 by restriction.

C. A subset T of a sheaf S 1s itself a sheaf 1f and
only if T 1is open and Tx =T /\Sx is a subgroup of Sx'
Then T is called a subsheaf of 8.

Example. S 1s the sheaf of germs of continuous functions
and T 1s that subset of S consisting of all the germs of
¢® functions.

B5. Exact sequences of sheaves and cohomology

Unless otherwise stated, all sheaves have the same fixed
base space X.

Definition 66. Let S, and S, be two sheaves. A
continuous map of S, into S, such that ¢(Sl,x) C_SQ’X
and ¢ | Sl,x is a group homomorphism, 1s called a homo-
morphism of the sheaf §,. into the sheaf S,.

The subset of _§1 mapped into the neutral elements
of S, §O £ ng, is called the kernel of ¢ ; denoted
ker 4). The ker ¢ i1s an open set, for the set of neutral
elements of S, 1s the image of the null section of S, over
X and this 1s open in S, (cf. corollary of 84, Chap. 14),
and since ¢ 1s continuous, the preimage of the set of
neutral elements of S, 1s open in §,. The ker ¢/\Sl’x
1s the kernel of the group homomorphism ¢ | sl,x and thus
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is a subgroup of S ,x° Therefore ker ¢ 1s a subsheaf of S

The image of ¢, b(s 1)C 8,5 denoted im ¢, is a
subsheaf of S, : that im ¢ 1s open follows from the
continuity of ¢, the commutivity of ¢ and the projection
map, i.e. p2¢ = p,, and the fact that p, and p, are
local homeomorphisms, and, as before, im ¢ /\Se’x is a
subgroup of S x* SO that 1im ¢ 1s a ‘subsheaf of 82.

Hence we can form the quotient sheaves Salim ¢ and
§1| ker ¢, the cokernel of ¢ and coimage of ¢, respectively.

Definition 67, The sequence of sheaves and sheaf
homomorphisms S, -3 841 dtls Si42 4’15’, calledbexact when,
for each x € X, the sequence SJ,x-——J> S 441, x-i—-> S
1s exact.

Example. Let T be a subsheaf of S, and let O denote
the null sheaf, 1.e. the sheaf whose stalks are the trivial
groups over each point. The sequence O -> T => S -> §/2 ->0
is exact by definition.

We have already defined the cohomology groups, Hq(x{§),

q > 0, of a paracompact space X with coefficients in a
sheaf S . For convenience, define Hq(X,§) =0 for q <O.
Note that H°(x{§) is the group of global sections of the sheaf.

Let S and T be two sheaves and let ¢ be a homomorphism
of S into T. We claim that for each q, ¢ induces a
homomorphism ¢* of Hq(x{§) into Hg(xgg). Consider any open
covering of X, U= §L5ﬁ . The group of cochains C(X,U,S)
is a graded group with differential operator (the coboundary)
which respects grading (the shift is +1). Hence the defived
group H(C(X,U,S)) 4is graded and its pure dimensional parts
are the cohomology groups of the covering with coefficients
in S. Similarly we have C(X,U,T) and H(C(X,U,T)). Now,
an element of C(X,U,S) 1s an assignment of sections of 8,
and ¢ maps S continuously into T, thus ¢ maps
C(X,U,8) into C(X,U,T). ¢ 4s in fact an allowable
homomorphism and hence induces a homomorphism of the derived

J+2,x
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groups H(C(X,U,S)) and H(C(X,U,T)). Taking the direct
limit, we obtain the desired homomorphism é

_Theorem 41. (Exact cohomology sequence). Let
O->A434+B ¥ C -> 0 be a short exact sequence of sheaves.
Then there exists, canonically, an exact sequence

0 — 1(x,8) &> 1o(x,8) ¥ 1O(x,0) —

5, .1 ¢ 1 oo
2> u'(x,A) 2> B (X,B) L> B (X,0) —

'§> He(x,é) — [N}
Assume the theorem for now. (It is proved in §7, p. 158.)
Definition 68. A sheaf S 1s fine if and only if,
for any locally finite open covering of X, U= §ui},
1 eI, there exist homomorphisms n4 of S into S
such that
1, ni(Sx) =0 for x ¢ u, and

;:; 1y = ldentity.
3

(The sum is finite at each point because U 1s locally
finite and n satisfies 1.)

Example. Let X be a paracompact differentiable
manifold, and let S be the sheaf of germs of differential
formg of degree p. Let U be a locally finite covering of
X and let iwi) be a partition of unity subordinate to U.
Define n, to be multiplication by w,. Then fnﬁ
homomorphisms of S into § satisfying 1. and 2. above,
so that S 1s a fine sheaf.

Theorem 42. If S 1is a fine sheaf, then HY(X,S) =
for all g > O.

Proof. The proof is the exact analogue of the ¢ case:
theorem 22, p. 78. Let q > 0 be fixed and let U = fu,§ be
a locally finite covering of X. Define the homomorphism
o: c¥(x,0,8) > c%}(x,U,5) by 0K1 .- 1)~ ;n Flitgmt ).

Verify that &= 063+ 66§ exactly as before. Eence if 6§ =0,
then § = 665, Thus HY(X,U,S) = O and then the direct limit
1(x,s) = o.

1
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Definition 69. A resolution of,a sheag S 1s an exact
sequence of sheaves 0 —> § ;1-:150 E> A 2L, ... such that
Hq(x,_AJ) =0 forall §>0 and q>O.

A resolution is called a fine resolution when all the
AJ are fine sheaves.

Examples.

1. Let X be a connected differentiable manifold and
let §=¢ (Sx = € and the topology is the discrete one).
Let A'j be the sheaf of germs ofidifferential forms of
degree Jj. The sequence 0 —> € => Ay => A; => ...
is a fine resolution of @.

Proof. Note that if X were not connected we would
have to take for S the sheaf of germs of functlons which
are constant on each component of X 1n order that the
sequence 0 —> § —> _1_\0 —> -el —-> ,+s be exact at AO. We
have already established that Hq(x,i\J) =0 forall J>0
and q > 0 (cf. corollary p. 89) and that the _‘L}J are
fine sheaves, The exactness of the sequence at € and at
i\o is immediate, and exactness at i\y J > 0, follows
from the Poincaré lemmas.

2, Let X be a complex manifold and let S be (9 and
AJ be the sheaf of germs of differential forms of type (0,J).
The sequence 0 —> 0-1-> _l_\o ~§> él => ... 1s a fine resolution
of (9 .

_15;139_5‘. As in example 1., the A, are fine sheaves, and
the exactness of the sequence at AJ, J > 0, follows from
the Poincaré lemmas.

Thsorgm 43.¢0(Abst$§ct de Rham). Let
0—>8—=> A)—> A; —=> ... be a resolution of a sheaf S.
Consider the ingduced cohomolggy sequence

*
0 —> KO(X,8) =% HO(X,Ay) => KO(X,A;) 2> ... . Then
* * p * *
im tbp_lC ker ‘t’p and H(X,8) ~ ker dsp/im ¢’p-1 for all p > O.

canon.
isom.
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Note. Applying this theorem to the above examples of
resolutions of sheaves, we obtain for 1.

P closed p-forms
BUX,C) ~ et p=forms °’

i.e. the de Rham Theorem (Theorem 26a, p. 93), and for 2.
Hp(x’&) . é—closed (0,p) forms ,
— oJ~exact (0,p) forms
i.e. the Dolbeault Theorem (Theorem 26b, p. 95).
Proof of Theorem 43. For j = 0,1,2,... , set
By = ker ¢J = im «b .1 since the resolution sequence 1s exact.
For each Jj, the sequence 0 —> ker ¢ i, AJ > 1m ¢J —> 0
is exact by consxruction, rewrite it as

p>0,

p>0,

0—>B i, A AR B Bin —> 0. By the exactness theorem
(Theorem 41), the sequence

H(X,8,) — 83X,y ) — 1 x,B,) — HLA)) 18
exact for q > 0 and J > O. By hypothesis, Hq(x A) =0
for q>0 and J> O. Hence Hq(XB )~H (x,B,)

for q>0 and J§ > o. Then HP(X,S) = Hp(x By) ~ HP- 1(x, B,)
~ BP2(X,B,) & ..u ~ HL(X, By)-

Now B_ = ker b 1sa subsheaf of A . We claim that
XO(X,§p) ~ ker cb; Indeed, the ker ¢ is the set of those
global sections of Ap that ¢ maps into the null section
of Bp4y, but, by the definition of ¢ , this set is
precisely the set of global sections of gp.

Consider, next, the exact sequence

0 —> H%(X,B) —> H(X,A;) — H(X,By,y) —

5., Hl(X,_QJ) —> Hl(x,:A_J) —> .., for j=p-1, p>0,
il.e. .
0 —> H°(x,_1§p_1) — H°(x,_4p_1) —> ker ¢; —

5 1
—> 1 (x,gp_l) —> 0 4ou .

Since 6 1is a homomorphlsm from ker ¢, onto H L(x, By 1)
1m¢ l-kerbC.kerdp and H(XB 1)~ker¢ / ker 6

= ker ¢ / im ¢ 1» by exactness.
Hence HP(X S) ~ ker ¢> / inm ¢
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86. Applications of the exact cohomology sequence theorem

I. Let X be a complex manifold. Let
Q_ : sheaf of germs of homomorphic functions
ﬁ sheaf of germs of meromorphic functions

We may view _.(2 as a subsheaf of M ; let1:{d - klx
be the inclusion. We form the exact sequence

o LM Ju/0 o
Recall that a section of ll’l// Q over X 1s an equivalence

class of sets of data for a C.I problem. Using the exact
cohomology sequence theorem, there exists an exact sequence

i .
105,01 = 12, 2 0 M) — 1k, D ...

Now Jjx sends a meromorphic function (a section of }_7_L) into
the Cousin I problem it solves, hence C.I 1is always solvable
if J, is "onto", 1i.e.

Theorem I. Hl(x,gg_) = 0 implies C.I always solvable
(cf. Chapter 6, 81).
ITI. Let X be a complex manifold, Y a globally defined
hypersurface:

Y = [f=0] ; f holomorphic in X.

Assume f has no critical points where it vanishes [1i.e.
maximal Jacobian rank on Y].

Consider _(2_ ,» the sheaf of germs of holomorphic functions
on X. Let QY denote the sheaf of germs of homomorphic
functions on X vanishing on Y. —(QY '1s clearly a subsheaf
of Q ; and we form (as before) the exact sequence:

9.—>_0_Y1‘>_(2JL>Q/QY_>_O. .
We claim that _’2 / QY i1s the induced sheaf of _&over Y.
For points off Y, the stalks are trivial, for any stalk of
-QY over points not iIn Y 1s identical with the corresponding
stalk of Q . For any point Yo € Y, two functions representing
elements of ( \’)/OY)YO are equivalent if and only if they
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coincide in a neighborhood of Yor (If they coincide in
a neighborhood in Y, they coincide in a slightly larger
neighborhood in X, as Y 4is closed); hence they represent
the same germ in the induced sheaf of ‘92 over Y.

Using the exact cohomology sequence theorem, we have
the following exact sequence for q > O :

cee  => Hq(X: Q) -> Hq(xy Q/_QY) ->
) K
Hq‘”l(x,;_/_y) - 1@, D) -~ L.

Note that KY(x, 2/ Jy) ~ ul(y, ) .
e now claim that:

Theoren I1. #4(x, ) = 0 = #3*(x, _2) for fixed
q >0 implies Hq(Y, él) =0, (Cf. Chapter 6, §2, Theorem 20,)
For, using exactness, we obtain immediately:

lx, /00 ~ ¥, D)),
so that it is enough to show Hq+1(X,;£ZY) = 0.
Let a be a cochain in HY*l(x, G). Then f+a
is a cochain with §2Y coefficients, as f 1s holomorphic
in X. Hence, multiplication by f induces a homomorphism
e w0(x, Q) - 18 (x, 5’_9_Y).
Clearly £* 1s onto and one-to-one; therefore an
isomorphism.
III. As a last application, we obtain another old result:
Let X be a complex manifold; and let (éz* denote the
sheaf of germs of invertible holomorphic functions under

multiplication., Note that the sections are the nowhere
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vanishing globally defined holomorphic functions. Let Z@*
denote the sheaf of germs of meromorphic functions under
multiplication. Then Q_ *C &* , and we obtain the exact
sequence: R
90— @ i L Y 0" o

The sections of an / éz* are divisors in X, 1i.e,
equivalence classes of sets of data for the C.II problem.

Using the exact cohomology sequence theorem, we obtain
the exact sequence: *

.“—uuxMM»hm%/ 5o wx, 0" — ...

Here J takes a meromorphic function into the C.II problem
it solves: therefore any C.II problem a can be solved if
6a = 0.

This, however, is not particularly illuminating for we
know little about Hl(X,_@_*); so, we imbed this group in
another exact sequence involving "simpler" coefficient groups.

We have an exact sequence:

02t 0 EO" g,

where here Z 1s viewed as a subsheaf of (_2, giving

exactness at 2; "exp" 1s the map: exp (s) = ™S ang ~

the exactness at Q is clear since ker exp i s . Qﬂs = 1};

and exactness at 0 follows from the fact that every

nonvanishing holomorphic function is locally an exponential.
Hence, we obtain thg exact sequence*

oo —> 0 (X,0 )-——>P Lx,0% 45 B2(X,2) —> .ot
but this gives rise to a (canonical) map:
¢ = a6 : HAXM/0") — WX, ;

assigning to each divisor D e HO(X, }' /(9 ) 1its Chern class
c(D) e H (X Z). Clearly, if D 1is principal, i.e. D e im J ,
¢(D) = 0 for 6(D) 0 by exactness.

Now assume H'(X,&)) = 0. Then a : HY(X,0%) - H2(X,2)
is one-to-one. Thus C(D) = O dimplies D 1is principal.
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So, we have re-established the Oka-Serre Theorem:

Theorem III. There exists a map C : HO(%,)n /07)->H%(X,2)
such that

1) D principal implies C(D) = 0O

2) u'(x,£) =0 and C(D) = O implies D' is principal.
(cf. Chapter 9, 84, Theorem 31.)

§7. Proof of the exact cohomoloﬁgy sequence theorem

We now restate and then prove the theoren:
Theorem 44, Let 0 -> A ->B =N C -> 0 be an exact
sequence of sheaves. Then there exists an exact sequence:

* *
oo — w1l (x,8) L> wd(x,B) &> w(x,0) &> vIt(x,0)->...

Proof. Let U = Euii be a covering of X; and
consider the sequence:

0 — ¢%(u,a) L c%(u,B) &> cY(u,¢)

where cq(U,_A_‘) denotes the group of g-cochains on the
covering U, and f and g denote the induced mappings.
We claim this sequence is exact.

At Cq(U,_.g) we must show ker f = 0; therefore assume
ae c4(U,A); f(a) = 0. Now f(a) =0 means
fray...1(x)=0¢eB, forall xe uioﬂ.../}uiq. By
exactness, f 1s one-to-one so oy LA (x) =0 ¢ Ax for
every xeu ...y ; l.e. a=0,.

At qu(U,g), we mist show im f = ker g. Let ac¢ Cq(U,A).

Then g -f(a)i y (x) = gfay ,, .4 (x) =0, since gf =0,
_oooo q 1o} q

q

for every x ¢ uion .../)uiq; hence g .f(2) =0 so
im £ < ker g.

Now let B ¢ ker g; i.e. g’Bio-o-i (x) = 0 for every
X € uioﬂ ...ﬂuiq. For each x ¢ uioﬂ ..._/‘.uiq there exists
an ay,...1(x) € Ay such that foy 4 (x) = Byt (x).
We claim that the assignment o defined by the oy 4 (x) is

a cochaln; i.e. that a4 "’iq is a sectlon over uio ,,,/}ui(,1
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Now «a (x) e A, so . a = 1d; .
10...1q X Peoy o+ elg /).../)u:l
To show continuity, let x, e S = ai vl (“1 /).../7u1 )
q
= Bi ool (ui 01 ...Nuy ), an open set for
q q

uy /).../Oui is open, 610“'1 is a section and f 1is

continuous. Let Ny= Dbe a neighborhood of X in Sq 3 then
o
a-1 a-1 -1 =1
[N] e e f(N, ) = (fra ) Te(N, )
1 00'1 o i oooiq xo 10.‘.1q xo
= Bi 1 f(Nx ) which is open for f 1s an open mapping.
L o

q
Hence, im £ = ker g.

We cannot complete thils sequence to a short exact
sequence, for g may not be onto [e.g. take sequence
c®(x,@) - c®(x,/n) - c°(x,21/9)1. So, define
Cg(U{g) = g[cq(U,g)], a subgroup of Cq(U,g) comprised of
"liftable" cochains. Hence, we now have the following short
exact sequence of groups and allowable maps:

0 — c%(u,a) £> cY(u,B) &> cd(u,c) —> 0 .
Hence, we obtaln the exact cohomology sequence:
oo — HY(U,8) — BYU,B) - vd(U,0) - K (U,8)->..

For refinements of U, we have the desired commutativity,
so that we may appeal to the proposition of Chapter 14, §1,
to obtain the exactness of the limit sequence

vo. — 19(x,8) > #9(x,B)8> HA(X,C) 3, yatl(x, A) —> ...
We shall therefore be done if we can show
Ha(X,0) ~ HUX,C)
(canonically!), and this shall be proven by showing that for
each cochain ¢ in -Cq(U,g) for a locally finite covering
U, there is a refinement V in which ¢ 1is liftable; then
the 1limit groups are isomorphic, since we have an injective
(one-to-one) map
1: cu,c) —> cY(u,c)
which commutes with the boundary operator and the'refinement"
maps of the direct limit procedure.
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(Since X 1is paracompact, we may restrict ourselves to
the locally finite coverings U.)

Let U= fu Z be a given locally finite covering. Let
W= iw be a new locally finite covering, refining U and
such that wicc. uy for each 1, possible since paracompact-
ness implies normality. -Let ¢ e Cq(U,_g). To each x ¢ X
we asslign an open vxc X such that

1) x¢ vy

i1) x ¢ wy implies vxC Wy

111) x e uJ implies vy C;uJ

iv) x £ u implies v, (\wJ = ¢

v) xeu N.../uy implies 4»1 i | vy e Cg(V,_C_).

o q o q

Observe that once we establlish the existence of V = {v}j )
the theorem is proved.

Let x ¢ X; using the local finiteness of U,W there

exist integers r,s < @ such that x ¢ wJ ,...,wJ H
r

i
ukl,...,uk and no other Wys Upe

Set ° v}]E = leﬁ.../inr/\uklf\...nuks; clearly vi is
an open neighborhood of x and satisfies 1), 1i), and 1ii).
Note that any smaller neighborhood of x will also satisfy
these.

For each k # kyseeerk; X ¢ u,, which implies
XE W Wyes SO there exists an open neiglnborhood Vk, of x
such that v, (\w = . Set vx= v f\guvk, 25,

k # kjyenenk s

an open neighborhood of x which now satisfies 1),...,1v).

To satisfy v), observe that x ¢ uy n...nui can only

o
2
happen 1f uy € Jup ,...,u and that vSCuy N...Nu, .
Now ¢io"’1 | vy 1s a section of C over v.. Hence

¢1 .,,1q(v§) is open in C, so g'l 4)1 miq(vi) is an open,
o )
non-empty subset of B (g is onto). There exists a
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b € g'l 01 vuul (vi) such that peb_ = x, and neighborhood
0 "Tq X
N, of b  in B such that p: N, -> p(Nx) is a homeo-
‘ _ -1 2
morphism. Let M, = N /g d)iduiq(vx), and set
v, =pog(M ) v2.
X -1
Now g | M, 1is one-to-one; and g 4)10".1 Py > M
is a section of B over Vy s mapped by g onto the section
¢1o"'iq v, = g(M,) of C.



162
Chapter 15, Coherent Analytic Sheaves

81. Definitions

Definition 71. An analytic sheaf é‘ is a .sheaf whose
base space X 1s a complex manifold (or subspace of one); and
such that each element of the sheaf can be multiplied by the
germ of a holomorphic function; more precisely, each stalk
5}% is an Cg;-module, and this multiplication is continuous.

We have the notions of subsheaf, sheaf homomorphism,
induced sheaf, factor sheaf, etc., as before.

Examples. Czr, the sheaf of germs of (r-dimensional)
vector-valued holomorphic functions is an analytic sheaf.

The sheaf of germs of continuous functions is an
analytic sheaf.

The sheaves QZf and Zﬁ? are not analytic, for there
is no distributive law for multiplication by germs of holomorphic
functions (recall that the operation in the stalks of these
sheaves is multiplication).

Definition 72. An analytic sheaf ;? is globally finitely
generated if there exlst a finite number of global sections
31,32,...,3k such that for every xe X, t ¢ d;x’

t = ¢1(sl)x + oo + ¢k(sk)x where ¢J € CQX.

Examples. The sheaf (J; section "1".

The sheaf ggf'; r sections (0,¢..,0,1,0,¢4.,0).

Definition 73. An analytic sheaf is locally finitely
generated if every point x € X has a neighborhood Nx such
that the induced sheaf ;t (Nx) over N, is globally
finitely generated.

Let ;Z}be an analytic sheaf, and Syseees8y sections -
of &(U), UPeN « X, Let x e U. If there exists a tuple
(byseresty) € 0K such that

the tuple (¢1,...,¢k) is called a relation between the
sections SysecssBy at x.
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Note that the collection of all such relations forms an
analytic "sheaf of relations" (between sl""’sk) contained
in Q_k (over the space U),

Definition 74. The analytic sheaf F is called a
coherent analytic sheaf if:

1) It is locally finitely generated.

2) For every oben UCX, the sheaf of relations of
any finite number of sections over U 1s also locally finitely
generated,

Note that the definition is local.

Remark. For convenience, we will call a cohérent analytic
sheaf, a coherent sheaf.

82, oOka's coherence theorem

The aim of this sectlon 1s the statement and two steps
of the proof of a three-step theorem due to Oka. The last
section of the proof will be postponed until two theorems
are established.

Theorem hg. (Oka) The sheaf of germs of vector-valued
holomorphic functions 1is coherent; i.e. (noting the local
character of coherence) let DOPeT— ¢", and let 7fa__l.j(z)}',
i=1,...;9, J=1,...,p be holomorphic functions defined in D.
Let x € D; then there exists an open D1<2 D, xe¢ Dl’ with
the following property:

For any ¢ e D; the holomorphic solutions (¢1,...,¢p) of

b
* : - aij(z) ¢J(Z) = O " 1 = l’o.o’q

defined in some neighborhood of £, may be written as:

L
‘bj(z) = v; ¢V(Z) ‘b;(z) ) J=1,004,p

where the ¢;; J=1,e.4,D0, v=1,...,L<@ are a fixed finite
set of solutions of *, holomorphic in a fixed nelghborhood
of €; and the wv arce defined and holomorphic in some
neighborhood of €.
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Note. The $] are sald to form a finite psuedo basis.
Proof. We proceed by a double induction on q = number
of equations and n = dimension of space. The three steps
of the proof are the following:
I. The theorem 1s true for n = 0.
II. If the theorem holds for a fixed n and <gq
equations, then it 1s true for q equations, where here q > 1.
III. If the theorem is true for some n and all q, then
it is true for n+l and q = 1.
It 1s clear that these steps complete the theorem; and that
I holds, since a holomorphic function of no variables is a
constant. We may assume x = 0 ¢ D, with no loss of
generality.
II. Let us first introduce the following abbreviations:

() = 2%]: aij(z) 4)3(2) = 0, i=1,...,q §
J=
B) = i% aij(z) bj(z) = 0, 1= 1,...,q-13
_ _ 7
() = g%aqj(z) b(2) = of
(4)3) = (‘bl"”"bp) .

By hypothesis, (y) has a finite pseudobasis (¢§), %=1,...,K<m .
Since any solution of (o) satisfies (y), the general solution
(bj) of (a) has the form:

=Y
i

= 1,ooo,po

;—ji- b
4)3 = AK;I 7I/K¢ ’
These ¢, must also satisfy (g), hence:
/ 14
= 2 xl ZJ aij'i’J)’/’K ’ 1

4
Set by = 2::5 3y ¢J ; these functions are known.
But the set of equations

1]

l,ooo,q-lo
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PINRITE " = 1,.00,0-1

has by hypothesis a finite pseudobasis (wﬁ), p=1,.00,Re

Hence: R
Ve = :EE o ¥,
p=1 P

'bJ:;z;w V’Kd)J s

and therefore the functions ( ;g; w ¢J form a finite

So:

pseudobasis for (a); proving step II.
We interrupt the proof to establish two needed theorems.

§3. Welerstrass preparation theorem, revisited

A. Theorem 46. (Welerstrass Preparation Theorem) Let f£(Z,z)
be holomorphic at the origin, f(0,z) # 0 [where (Z,z) =
(zl,zé.,z ), Z = (zl,...,zn 1) and z =z ], so that
f = i:; (Z) zJ , with ao(O) = vee = ag 1(0) = 0, while
as(o # 0. Then:

£(2,2) = h(z,2) [2° +b)(2)2%0 + ...+ (2)] ,

where h 1s a unit, i.e. h(0,0) #£ 0; and by,...,bg are
holomorphic in some neighborhood of the origin with b1(0) = aee
= b (0) = 0.

Remark. This representation 1is unique, but we shall not
prove or use this; In the Welerstrass preparation theorem
proved earlier (4, 81, Thm 12) we had also assumed that
ord f = s.

Proof. For s = 0, this thcorem is a triviality;
hence, take s > 1. Note that Agseeesdg g have no
congtant term.

Let s <N, an integer. Set zJ = c?’ J=1,000eyn=1;
and define:

o GlEy ety e2) = £(E)seent) 1u2)

Then G 1is a holomorphic function of its varlables in a
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neighborhood of the origin and of order s, so that
Theorem 12 applies, Hence:

G(CI’OOO:Cn_l,Z) = H(Cl,...,Qn_l,z)[zs+B1(C1,...,Qn_l)zs-1+

eoe +B(Ly500058, 1))

and the B1 vanish at the origin. It is now enough to show
that the ci occur only as c?n. Take © to be a primitive
N th root of unity; then:

1}

G(Lqseees®Cy,eeesly 152) = H(Cy,een,08 00,8 q2l2° +

By(Cysee 8Ly, eensly )25 0]

i}

G(t1:°°°:ci;~'~ttn_1’z)
But the expansion of the Welerstrass Theorem 12 1is unique.

Corollary. Let P(Z,z) = z5 + al(z)zs"1 + oee + as(z),
where the a, are holomorphic in a neighborhood D of the
origin. Let (C,c) ¢ €%, C e D. Then

P(z,2) = PY(z,z) P*L(z,2)
where PI(Z,z) = zZ5+ otl(Z)zr"1 Foeee + ar(Z)
P(z,2) = 2% +p (225 4 L+ (2)
with Bi’ a, holomorphic in a neighborhood of C, such
that PI(C,z)°= (z-¢)T anda PII(C,c) # O.

Proof, Changing variables, set:

z' = 2 -C z' = Z=-2C

and define: Q(z',2')" = P(2'4C,z'+c).
Then Q(z',z') = Q¥(z',2")Q¥Y(z",2'); where QI 1is a unit
and QI(Z',z') =z 4 al(Z')z'r"1 + .00 + ar(Z').
Set:
PI(Z,z) = QI(Z-C,z-c)

Pl(z,2) = ol(z-C,z-c) .

Then PTL(C,c) # 0 and PY(C,z) = QT(0,z-c) = (z-c)¥.
It is clear that Pl 1s a monic polynomial.
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B. Theorem 47. (Division Theorem) - Let there be given
a polynomial P = z° + al(z)zs"’l + oeee + aS(Z) with the a
holomorphic in a.neighborhood of the origin, and a J(0) =

Let f(Z,z) be holomorphic near the origin. Then:
f(z’z) = Q(Z,Z) P(Z,Z) 'l'R(Z,Z)

where R 1s a polynomlal in 2z of degree < s, with
coefficients holomorphic in a neighborhood of the origin,
and q 1s a holomorphic function in a nelghborhood of the
origin. Furthermore, this representation is unique.
Proof. We first establish unlqueness. Suppose

0

qP + R
o]
( % qJ(Z)zJ)P +R .

Let v > 1; we equate the coefficients of zs-l-v’ obtaining

I}

0 = q, +q,43; + .0 + 0

V-I'S S

But ai(O) = 0, hence qv(O) =0, Bu’c then aqv/az
J=1,...,n=1. Similarly, one finds M q /B
hence q 0., But then R = 0,

We now assume f = g.'i_' f (Z)z . This 1s no loss of
generallity, since the te of order < s in z may be included
in R.

Assume aJ(z) =NO (IIZHJ); this may be achieved by
replacing zy by ti’ N>J,1=1,40eyn=1 in f and P,
since a (O) = 0., The transformation back to the 2y is
achieved as in 'I'heor'em 46 since we have already established
uniqueness.

Now

J -’
a‘% 1 10,

s _ 8-1
z° = AP +asl(Z)z + ... +ass(Z)

where As =1 and Qgy = =8y Hence, multiplylng successively
by zm, m=1,2,... and substituting appropriately glves:

s+m _ 8-1
z = As-l-m(Z’Z)P +as+m,1(z)z + ee +°‘s+m s‘(Z)
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where in fact: As+m+l = ZAs+m +.Asas+m,1
Osmtl,p - Os+m,1 Osp T Osem,p+1’ O<p<s
and as+m+1,s = as*m,l %s °

m+l J
sHm+l % %s4m-j,1 2% 9%-1,1
neighborhood of the origin since Iaspl [dlzI1® implies
las+m,p| < (C“ZH)m+p, (which is easily established by an
induction over m). But this means that all series in the
following expression for f(Z,z), obtained by substitution

for zs+m, converge in a neighborhood of the origin.

£(2Z X s~1 mf )
(z,z) = P(2Z,2) * (%fJAJ)+z (% 3 %51

@™
+."+(‘j§f3a33) .

This 1s the required representation of f.

Hence A 1 1s bounded in a

A

§4. The third step

Recall the statement of the missing step in the proof
of Theorem 45:

III. If Theorem 45 is true for some n and all q,
then it is true for n+l and q = 1.

Proof. Consider the equation:

'f_"___'I ai(zl,...,zn_l_l) fi(zl,...,zn+1) = 0 .

We may assume that not all ay = 0., Write ay hiPi’

valid in some neighborhood of the origin, using a linear
change of variable§ if necessary ( 4, S1, Property 2), where
h1 is a unit and Pi is a polynomial in z It suffices

to consider the equation

;i; P1 ey = o ,

where, by renumbering if necessary, we may assume

[t}

n+l°’

o = deg Pp > deg PJ’
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We first show that there exists a neighborhood of the
origin in which every solution may be represented as a linear
combination, with holomorphic coefficients, of polynomials

in Z,, Of bounded degrees!
Let (C,c) be any point at which the P, are analytic.
write: P, = pl pII

where PII(C,c) # 0 and PI(c,z) = (z-c)¥, where PI, plL

are polynomials in z = zn+1, of degree < a.

Let (ci) be a holomorphic solution of: %E; Pye, =0,
in a neighborhood of (C,c). Using the division theorem:

I A
C-1 = Wy PT + C1 ’ i=1,...,p-1;

where 6; is a polynomial in 2z with coefficients
holomorphic in a neighborhood of C and deg C < deg PI <a,.
Consider:

\
¢ P 0\ 0 ¢,ptt ‘\
o p e
P 2P
0
3 W N I B IS D o | R (R N -
P e |
| A II
G ) | 0| 0 P, ip'lp
c \-p]/ \-p - § pII
p/ 3 p-;j P

where 6 is chosen so that this equation holds identically.
Each of the column vectors, except perhaps the laSt, is a
solution, so the last 1s also. Furthermore, we will have
expressed (c ) as a sum of polynomial solutions if we can
show that CpPII is a polynomial in z. Note also that all
entries of these polynomial solutions (except perhaps CpPII)
are bounded in degree by 2a. Now Cp is defined by the
equation:
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A u‘]_P 13 P

= p-1 Dp-1
Cp = C +——TI+..o+———P-Ir—

-1
ITI »n _ LI g;
P Cp = P Cp + 3 By Py
and 1s holomorphic. But
-1
IA I 1 5:; I
PCp Pcp‘l";I(:LliP Pi)

Pl ¢ 1(-1(C€)P)
p ¥oIr {2y CaCy) By

-1
"—%I(gf;aipi) .

Using the division theorem,

p-l A I
- ; (Pi Ci) = q P™ +R »

where q, R are polynomials and deg R < deg PI. Hence

SO

]

II & _ R
P Cp = q +;I .
A
But PII C_ 1s holomorphic, so R vanishes of order
(deg PI) > deg R; hence R = 0. Thus:
PII Py

cp = q , p-l - R
A IT E 1%
a polynomial. Furthermore, deg (Cp P™") = deg =
-1
deg (§"-‘I ) ~ deg (p1) < 2a . Hence we are only
interested in solutlons (C ) of the form:
Ci(zyz) = % giJ(Z)Z ’ i=1,...,p,
But P,(2,2) = % Z(Z)z s 1=1,...,0;

p

o 2% g4
%%%z 855 My
% 5 zj(%igij 1)

Hence > Py €y =0 if and only if
i

S0 Zi: Pic1
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;4’—_ ?;XL 8y4(2) my,4(2) = 0 s =0,0.0,30 ,
=8 1=

where the Tyy are known functions; and this system of
equations involves n variables. Hence the solutions have a
finite pseudobasis by the induction hypothesis, thus
completing the proof.

§5. Consequences of Oka's theorem
A. Remarks on coherent sheaves.

1. Coherence 1s a local property. A sheaf 1s coherent
if and only if every x & X has a neighborhood in which the
induced sheaf is coherent.

2. A subsheal” G of a coherent sheaf ;f_, is coherent
if and only if it is locally finitely generated. For, any
section of G 1s a section of 3/, since G is a subgroup
of *}Lx' Hence, the sheaf of relations R of any finite
number of sections of G 1s the sheaf of relations between
these sections, considered as sections of ~JZ Since ifi is
coherent, R 1s locally finitely generated.

B. Corollary. If 7L is coherent and Syseess8), are
sections of _, then the sheaf of relations ‘5(31,...,sk)
is coherent.

Proof. R 1s a subsheaf of Qg_k, a coherent sheaf,
and is locally finitely generated, by the definition of
coherence of 2{} )

Theorem 48. Let ~2i and G be coherent sheaves, G
a subsheaf of j&. Then the quotient sheaf c#?b is coherent.

Proof. For every x e X, “there is a neighborhood N
in which a finite number of sections s;,...,5, of dz(N )
generate the stalk at every y ¢ N « The images of sl,...,sk
under the natural homomorphism of u/ into 3¥/G are sections
of ;Z;(Nx)/g(Nx) generating the factor stalk at every y e N_.
Hence Eﬁ/g is globally finitely generated.

To show that the sheaf of relations of any finite
number of sections of éf/g is locally finitely generated,
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cqnsider an open set V<X, sections tl,...,'ck of
j—(v)/_g(v), a point x eV, and a neighborhood N  of x
in V. Construct sections SpseeesSy of _:Z‘ as follows:

For each fixed J, (tJ)x € 5"x/cx is the image of an

fJ € }x under the natural homomorphism h of j‘ into
Z/G. } 1s coherent; thus in perhaps a smaller neighborhood
of x,' there exists a section s, of :_‘1_‘ with (s )x = fJ.
Let tJ be the %mage of SJ under h. Then (t‘;)x = (tj)x’
Implying that ¢t ] = tJ near X. Therefore, there is a
neighborhood U of x in which we may assume that ¢t ] is
the image of sJ, J=1,.0.,k, and since G 1s coherent,
that r'l,...,rp are sections of _q(U) generating the stalk

at every y ¢ U. Now, consider any element of (B(tl’“"tk))x:

k
it is a relation (bl,...,d>k) £ Ox with > «bJ(tJ)x = 0.
But > ‘I’,j(tj)x = 0 means that S_ ‘bj(s,j)x e G, which
means 3 4’j(sj)x = - 21':1 ﬂli(ri)x, so that

(¢1,...,¢k,1[/1,...,~¢/p) € @:"’p is a relation between the
sections sl,...,sk,rl...,rp of , a coherent sheaf.
Thus in some neighborhood NXC. U of x there are sections
_‘ﬂ,...,ﬂ,\t{,...,%, v=1,000,0 of R(s),...,r )(Ny)

over Nx such that

v
%) L
bl n  [§Y
wk'=v , ‘l’l‘f » ®, € &x'
1 = 1
. :v
'l’p YP

N
Hence 4’;] =Z'I'mv ;)x », J=1,...,k. Note that the

v=
vectors @",...,_‘d_i;), v=1,...,N are sections of _r_t(tl,...,
'ck)(Nx) over Nx since they are continuous maps of Nx
into (¢1,...,¢k) € {,9§ such that S ‘*’J ey +3 yyry = 0,
l.e. > d)J,sJ. € G, 1.e. > 4)3. tJ = 0.
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Theorem 49. Suppose A and B are coherent sheaves
and f : A ->B 1s a homomorphism of A into B. Then
im f, ker f, coker £ =B /im £, and coim f = A / ker f are
coberent sheaves.

Proof. It 1s sufficient to prove that im f and ker f
are coherent, as the coherencerof coker f and coim f 1is
then given by Theorem 43. To establish the coherence of
im £ = £(A) and ker f, we need only show that they are
locally finitely generated since we already know that im f
1s a subsheaf of B and ker f i1s a subsheaf of A (cf.
p. 151).

1, Since A 1s locally finitely generated, every x e X
has a neighborhood Nx in which a finite number of sections
Sy5e00,8, Of A(Nx) over N_ generate (A(Nx)) » YEN.
Their images under f generate ((im f)(Nx))y, y e Nx'

Thus im f 1s locally finitely generated.

2., For ker f, take x, Nx and Spseee,8, a8 above.
Since f(sl),...,f(sk) are sections of §(Nx) over N,
E(f(sl),...,f(sk)) is a coherent sheaf. Consider the

following mapping g : Ry -> Ay of R_ into A, ¥y e Nx :

y y
M
4') nig % ‘bi(si)y o

Since f( S ¢i(si)y) =>_ ¢i f(si)y =0, g 1isa
homomorphism of R into (ker f) | Nx' But every element

of ((ker f) | N ), 1is of the form > bi(si)y with

0 .
b ¢ &, and 5= ¢, f(si)y = 0. Hence g 1s onto.

Therefore ker f | Nx is the image under a homomorphism
of a coherent sheaf and thus 1is coherent, by part 1.

86. The sheaf of ideals of a variety

Definition 75. Let X be a complex manifold. An
analytic set V in X is a closed subset of X such that
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for every v € V there is a neighborhood N v of v and
functions ¢ ,...,¢ holomorphic in N such that V/)Nv =
fxex| 4>1(x) = be(x) == b0 = O,

Definition 76. For x e X and V an analytic set
in X, let &;’; be the subset of Ox of all the germs
of holomorphic functions vanishing on V. (If x £ V
then O = O ; if V=X then (J) 1is trivial.)

(9;'; is a subgroup of ﬂ and an ideal. ’J @v with
induced topology is a subsheaf of LQ called the sheaf of
germs of the ideals of the analytic set V, denoted dv(x).

Theorem 50. (Cartan) If V 1is an analytic set in a
complex manifold X then <7V(X) is coherent.

We will only prove a weaker form of this theorem.

Theorem 51. If V 1is a regularly imbedded, analytic
subvariety of codimension k in an n-dimensional complex
manifold X, then J (X) is coherent.

Proof. JV(X) is a subsheaf of (9 a coherent sheaf.
Hence it suffices to show that d (X) is locally finitely
generated. Let x e X. If x ¢ V then there 1is a neighborhood
N of x with N AV=¢. In N,Jyx) =D, andve
are done. If x € V, then by the definition of V we can
introduce lc¢cal coordinates ZyseeerZ, such that

V= i(zl,...,z Ye X | Z) = Zp= s = 2y = OJ , in some
neighborhood N, of x 1n X. Now, if fe (J ().,
then f 1s the germ of a f’unctiﬁn holomorphic in Nx and
~ vanishing on V, so that f = 04255 where the w; are
holomorphic in M . Since 3z ,.7.,z  are sections of ‘jv‘Nx)
over Nx and the wy € (/ x? the proof 1s complete.

Remarlk. ()(X)/wjv(}‘) is a coherent sheaf, by Theorem 48.
Its stalk over every point off of V is trivial. On V, since
7 y(V)), 1is trivial, its stalk is the stalk of (9 (v).
Hence, on V this sheaf can be identiried with the sheai (9 (V)
of germs of holomorphic functions on V. (_.2(A) /\‘/V(}‘) is
the trivial extension of (V) to X.
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Chapter 16. Fundamental Theorems (semi-local form)

81. Statement of the fundamental theorems for a box
(semi-local form)

Notation. By an open box in c , We mean a {(zl,...,z )
3 Gn | a g <%y < za.1 i for all 1i=1,...,n;
where zy = xy + :I.yi and ai,ai, i’bi are real numbers
or + oo} By a closed box we mean the closure of a finite
open box. '

Theorem 52A. Let X be an open box in cn, _:;_L_ a
coherent sheaf over X, and K<< X. Then there exists an
open box X, such that K<< Xycc X and \i(xo) is globally
finitely generated.

Theorem 52B. Under the same hypothesis as in Theorem 52A,
there exists an open box Xo such that Kc_‘c-xoc«, X and
i (XO’“‘ =0 for all q > O.

Note that these theorems hold for polydiscs as well as
for boxes.

Remark. Theorem 52\ implies the Fundamental Lemma (proof
later, p. 196).

and b <y1 <b

82. Pirst step of the proof

By a degenerate closed box we mean a closed box given by,
say a; < x4 < ai and by <y, < bi, i=1,...,n where some
of the ay = a{ and/or bi = bi, i.e. some of the intervals
degenerate into points. The number of non-degenerate intervals
is the (real) dimension of the box.

For r=0,1,...,2n we formulate

Theorem 52Ar’ Let X Dbe an open box in Gn, \_7_1__ a
coherent sheal ofer X, and Kc«. X a degenerate closed box
of dimension r. Then there exists an open box X such
that K C<Xjc.cX and \i(xo) is glovally finitely
generated.
and Theorem 5_?§r. Under the same hypothesis as in Theorem 52A,

0 such that K<< Xo ¢c X and

there exists an open box X
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Hq(XanZ) =0 for all q > O.

Theorems 52A2n and B2n.§£§ Theorems 52A and B.

Proof of Theorems 52A, and B, for r = 0,1,...,2n, The
proof consists of verifying the following three statements.

(1) Theorem 52h, 1s true.

(2) If Theorem 521 1is true for all J <, then
Theorem 52Br is true.

(%) If Theorems 52Ay and B, are true, then Theorem 52Ar+1
is true.

First we prove that if X 1is an open box in ¢" and ;Zj
is any sheaf, then Hq(x gﬁ) =0 for q > 2n. It is enough
to consider H%(X,U, 31) for U a locally finite covering
of X. Since if Xc E2n we can refine U to a covering
in which more than 2n+l sets always have an empty intersection,
we are done.

That (1) is true follows from the definition of a
coherent sheaf as belng locally finitely generated.

To prove (2), assume Theorem 52A4 for j < r. Let K be
the given degenerate box of dimension r and .J+ the coherent
sheaf over X. Then there is a box Xo with KcCc xoc.c X
and gf(x ) globally finitely generated; call the generating
sections sl,...,sm1 This means that there exists a
homomorphism £, of {7 1(x0 onto \Zi(x ). For, define

- /
O 1..> _"tx, xe Xy by(?l

my

- ¢1(si)x. It is

onto because the 8y generate ( ?(Xo))x at every x e X,.
Therefore, denoting ker fl by G,, we have the following
exact sequence 0 -> G1-1> d7 ]> J! -> 0 . By Theorem 4o,
G1 is coherent. Appl{ Theorem 52A to G1 over Xo We get
a new X, call it X, and Gl(xl) globally finitely
generated., Then there exist m, generating sections ... .
Denoting ker f2 by GE’ we get the exact sequence

0 - g —>(,/ 2> G1 —> 0. Again, G, is coherent and

we can continue this process, as far as we want, up to Uin,



177

Obtainiﬁg GZ’ Gu, ee o ’G,'l' and Xo 3 9X3 .))o o0 ))xgn 10
call xon'l X,. Then for X, and every £ =0,1,...,4n-1
the sequence 0 —> G,,, - Ki:! ->8,—>0 1is exact;

Eo = _\’é. Hence the cohomology sequence, ... hk(Xo,O
k k+l

B (Xs8y) > HHX0,04) = #0000 ",

exact for k> 1. But H''I(X),O R B¥(x,, (0 e

..;‘l’l) -

-> o0 18

because Hq(Xo;_Q) 0O for q > 0. Thus H (XO,G)~

et {som,
(XO,G,,+1) for k >1 and 4 =0,l,...,4n-1,

Iterating we get H (xo,c ) ~ H"“““”(x0 Gppg)s K= 1,000,205

0,1,...,2n, Let £ =2n, then HY(X,,G)) ~ K (x .6 1,
k=1,...,2n. Since 2k+en > 2n, HY(X),8,) = HS(X,:F) = 0

for all k > O.

It remains to prove (3).

b2

8%. Reduction of (%) to Cartan's theorem on holomorphic matrices

Lemma 1. Let K be an r+l-dimensional degenerate closed

box as in Theorem 52 A_,,,

N r+l .
By<Yy<ByS « Assume, e.g. that ai < ay (or similarly,

A o o

that < for some 1. H >vx = (04 405 )/2

Py < Ba)s = (o )/ 18

a 2n-l-dimensional hyperplane. Set K, =K f\{(ai 4«11 )/2<x125

~
glven by: Kf zai-fxi-f ays

< A
= an(c‘i +01 )/2 > xioi . Then, if Theorem A, , holds

for both Kl and K2, it holds for K.

Note. 1In view of the following claim, it is enough
to prove Lemma 1 using only Theorems 52, and B,,.

Claim, Lemma 1 implies (2).

Proof. Assume (3) is false. Order all the nondegenerate
dimensions cyclically. Cut K along a first nondegenerate
dimension as in Lemma 1. Then (%) is false for at least one
of the two resulting boxes; choose one and call it Kl'

Now cut Kl in the second nondegenerate dimension;
(%) is then false for a still smaller box. Call it Kye
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Proceed, halving each nondegenerate dimension successively,
obtaining a sequence K:J :)KJ 1 of closed, nested boxes
such that in no neighborhood of any box is the sheaf induced
by_\/J‘ globally finitely generated. But the KJ intersect
in a point, and a point surely has such a neighborhood; and
this contradiction e§tab}\18hes the claim.,

Lemma 2. Let K

follows: A A
A PplX 2o, B 2V 26
Ky

12 K2 be two closed boxes, given as

I A A
\ aj.ij.fa/{: ﬁj,ny‘BJ B J=2,e0e,n
2 )
z(al-s =x = al’Bl-: y; = 61

N -
where o = al-e. Let Jt be an analytic sheaf over a

A
K

neighborhood of K U K Let there be given sections
ayyee0,d, of 7’ over a neighborhood of K1 generating
the stalks of 7'(K ) at every point; and, similarly,
sections bl"“’bs of 57‘ over a neighborhood of K
Furthermore, assume that in some neighborhood of K N K

ay = > ‘bi,j bJ and bJ =>_ ;l/Jk ay ‘biJ’ wg‘k functions
holomorphic in this neighborhood.

Then there exist sections CyseeesCy over a neighborhood
of K U K such that, in a neighborhood of Kl a;= Zbiij;
and, 1n a neighborhood of K b, =2 4’13 5

Claim, Lemma 2 implies Lemma 1.

Let Kl, K2 be as in Lemma 1, where we take 10 =1,
We first show that, in some neighborhood X, of 'Klf\ Ky,
a; =>_ bij b'j and b'j =5 ¥y4845 where d’i,j’ ¥yy ave
holomorphic in XO; and ay, b j are the generating sections
over K1 and Kg, respectively, given by the hypothesized
Theorsem 52A Ar a° But thenAthe sheaf over
K, = l[(a1+°1)/2 -e)l2x) < 01,} will also be generated
by by,...,b; for e >0 so small that X /\K f)x

By the induction hypothesis, there exists a neighborhood

XO of Kl /\ K2 such that Theorems 52Ar and Br apply; now
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consider the map »(,_()__s -> i(xo) given by (¢1,...,4>s) ->
l <|>i i This is a sheaf homomorphism, and the bi generate
the stalks of ,}((xo) at every point, so that the sequence
_(?_s -> _Li—_(XO) -> 0 1s exact. We complete to a short exact
sequence:

L—>g— 0% — L) —0

1

and G 1s coherent. Hence, we have an exact cohomology sequence:
! 2. 1
H (X0, 2 %) —> HO(X, F(Xy)) —> B (X,6) .

If X, 1s small enough, Theorem 52B_ applies, so
1, 0 s r
H'(Xy,G) = 0. Hence HO(X,,Q®) -» EO(Xy, ) 1is onto; but
this means that every section of ___5_{‘ over X, 1s a linear
combination of the b1 3 1n particular, the a.'j are., In a
similar manner, the b1 are a linear comblnation of the a 3

Proof of Lemma 2. Under the hypothesis of Lemma 2,
ay =>_ ¢ijbj and by = > z/zjl(aK whire 'biJ’ ¥y are
holomorphic in a neighborhood of K, N Ko

We adopt the following notation:

i al \ H bl Y

a =] @ and b=| ¢ |; column vectors
\ 4 bs

¢ = (¢1J) and ¢ = (1:/13); matrices holo-

A
morphic in a neighborhood of Kl N K2' Then the hypothesis
takes the form:

b = a , Ya = b,

Now consider the (r+s) =(r+s) matrices defined below,
which satisfy the following relations:

“!arl=ar,sL ‘:r= g ;
y L) o | o | 1| it .1
\ s/\é // \ l;s/l \ {’s l;s
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where Z|IJ denotes the JxJj unit matrix. Define
e N O/

-I 3 [Ir 0
|

r
0 l Ig \’J’ Ig
Then M(; = (g , and M is a nons%ngular matrix
A
holomorphic in a neighborhood of K, N Ky
If we can write M = MI]‘M2, where M; 1s a holomorphic

nonsingular matrix defined in a neighborhood of K2’ and
M2 a holomorphic nsnsingular matrix defined in a neighborhood

of K. Then Mg(o = (b) Set
fep \

) el e )

Then the ¢ are/\globg‘l sections generating j/l ,in a

——

neighborhood of K, Y, K,, since the rows of %( )are
’

sections generating _:/L in a neighborhood of Ml (b)
Fa

Vo

sections in a neighborhood of KQ, and M, ( o ) =M (b)

in a neighborhood of Kl N K and both M, M, are invertible.
Hence, the proof of Theorems A and B is reduced to:
Lemma Z. (Cartan's Theorem on Holomorphic Matrices) Let

M be a holomorphic nonsingular matrix defined in a neighborhood

of K N K Then there exist holomorphic nonsingular matrices

A, defined in a neighborhood of Kl’ and B, defined in a

neighborhood of K2 such that M = BA

S4. Proof of Cartan's Theorem on Holomorphic Matrices

A. Recall that | z| = max IzJI where z = (2z),...,2.) ¢ c”.
=1,..,Nn

Let A bean NxN matrix; set

= Ax
all = sw AL

Note that | < lall < N max laiJl .

|313
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Let A(z) denote an N XN matrix whose entries are
functions holomorphic in a domain D e”. Set:
MAalll = max [la(z) ]

zeD
and

Mall, = Mall +8,
where 0 < aA< 1 and H 1is the smallest constant such that
layj(z)-a,(2)] < Blz-2* .
Note that if D;c< D, domains, then |||A|||a,D_§ klllAND.
It is known that ||| |||a is a norm; and if 1
DcC wn, the NXN matrices whose entries are functions
holomorphic in D form a Banach space under this norm.
Furthermore:

A

2Bl afil - st ,
Nl ABl] c ftallly Nislil, -

(The proof of the above statements is left as an exercise.)
‘Note that, for any matrix A, eA = 2 —ﬁ-,— is dominated
n .
by S '”ﬁl . Ir |[|alll <1, then log (I+A) = A - A%/2 +

8%/3 - a*/4 & ... 1s dominated by [Alll + AllI%/2 + ... .
Furthermore, eh is always nonsingular, and elog I+A = I+A.
B. The following propositions establish Lemma 3:

Proposition 1. Let D be a polydise, chc D and
M a holomorphic nonsingular matrix defined in D. Given
€ > 0, there exists a nonsingular'-:v entire matrix P such
that M =PM; in D; and |II-Mylll, <e.

Proposition 2. There exlsts an "¢ > O such that,
ir |lz-M}l, <€ then Lemma 3 holds for M.

Claim. Propositions 1 and 2 imply Lemma 3.

Proof. By Proposition 1, M = PM,, HII-MlIIID <€,
Then in a smaller domain, |“I-M1“|a <e . Eence, " M, = BA
by Proposition 2, But P is holomorphic everywhere,
so M = (PB)A.

A

-—
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Proof of Proposition 1. Assume that D 1s a polydise
about 0. UWUrite:

M(z) = mo)u©o) Mg G2) wE2)f ...
{M’l(éi'_'];z) M(Z)} ’

L an integer. Now
lz-w GmdER2) I < N E Il 1) nER )] <.

for L sufficiently large, O <K < L. Hence:

NK(z)

"1 (I\ ) M(K+1 ) = e ,

as the log series converges. So:

NA( N. .(2z)
M(z) = M(0) e 0 Z)... e 11 g .

~
By going to a smaller polydisc, D, 1if necessary, for
each NK(z) there exists a polynomial sequence PKJ(Z)
such that (2) (2) )
P z) P,.(z
B (2)(2) [l = 0. Set My(z) = H(0)e 03" 13...:1"1’!2. ;
Then D'M (z)-M(z)"|« ->0, and det M, # 0 for
sufficiently large. Hence M(z) = MJ(zg zmgl(z) M(z)f ,
and M}l(z) M(z) converges uniformly to I with j;
and M i1s a matrix of entire funcﬁions, for all j.
A
Proof of Proposition 2. Let Kl, K2 be given as

follows: A A
- ))al.fxlf_al, By 2 ¥y 2By
I = a A
,«1 SL“ g3x5 50y, By2yy 2By J=2,..0m
K2 = 2 ~
1—€< xl_f al-, Bl_<_ yl-fﬁl

where a 2 'Ql-s, as in lemmas 2 and 3. " R

M 1is defined in a neighborhood N of X, f)Ke; we
write M = M(z), where z = z, and the dependence on
ZyseeesZ, 1 suppressed. Now M=1I +X, and HIXHIa <
where ¢ 1s to be chosen later. 1In the zl-plane, let 7y be
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a smooth analytic Jordan curve containing f{‘l N }?2 and

1lying in N (more precisely, their projections on the
zl-plane). Let 4 and 7o denote disjoint closed arcs,
segments of vy, such that 7y /')K < int 7, and 7y N K <int 7,,
where "int 'ri" denotes the segment 7y without its

endpoints, as indicated in the diagram.

N Let G denote the bounded
N N component of the complement of ¥y
{\L),J\Q) in the z,-plane, and G its closure.
A !: i \)/\ Take O~ to be a real-valued ¢®
Kk{( A)K2 function defined on 7y, 0 <0 <1,
<L Ay I;‘j x* such that ¢=0 on 7, and
ILﬂ T A l1o=1 on Yo o For any matrix
1 N 72 Y holomorphic in G and

continuous in @, define:

T (Y) = g p HELT(E) 4
k4
1 {1- ;
Y- (Y) = by fHEULTE) o
k4

N
Then Ti(Y) is holomorphic in a neighborhood of Ki;
and the linear operator Y -> Ti(Y) is bounded in 6;
Mz, (0 H < ellvlll,

We wish to solve the equation:

[}

T2(Y)

I+X

(I +7y(Y)) (I + T,(¥))
(T +T(Y) (T Y -Ty(Y)),

"

for some matrix Y holomorphic in G and continuous in G;
for |||Xllla sufficiently small; i.e. we wish to solve:

X = Y -1,(V) Tl(Y) +Y'.l‘1(Y)

1
Y + F(Y) .

Therefore, define T(Y) = X - F{Y), for Ye S = iY | Y
holomorphic in G and continuous in G, My=xlll, < e,
lIxll, < €§. Note that T(S)C S. Ve claim that, 1f e
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is small enough, T 1s contracting; so that the contracting
mapping. principle applies and there exists a unique Yo e S
such that ¥, =X - F(YO), as desired.

Now |l (Ml , < cIIIYIII implies that for some
constant Xk(c,C) depending on ¢ and € (of p. 181),

NNl = NP < klYN2 < 6 MY=xll g + DX 2 < bee?s
80 we require ¢ < l/llk. Furthermore:
lev)-r(z) i, = Nr)-rz) i,

Il (v-2)1, (¥)427, (Y-2)+1, (Z)T) (2-Y)
+ 1y (Y) 7 (Z-0) Il
My-zlll, x(x+2) (Mylh, + Hzli,)

for some constant K(c,C). Now [I|¥-X[ll, <e, hence
0 < IHylll, =<2, so [lIT(¥)-T(2)|l] ,< ¥ K(X+1) [ll¥-2}l,,
and we require also = < 1/[4K(XK+1)].

la

§5. New proof of the Oka-Well Approximation Theorem

Theorem 53. Let X be an analytic polyhedron, chGopen

ce’, X=%z¢0 | I£;(z)1<1, j=1,...,r; f; holomorphic in é}.
Then, given ¢(z) holomorphic in X, ¢ can be approximated
on any Kcc¢ X by functions holomorphic in G, in fact by
polynomials in zl,...,zn,fl,...,f'r.

Proof. Assume that GC. (IzJ|<k<1), and that KccX
is given. Let D denote the Oka image of X; D = {(z,c) | Izil,
|c1|<1 ‘zeG, Ly = fi(z)j By Theorem 51, . X(D)’ the
sheaf of ideals of X, is coherent. Hence by Theorem 52B,
there exists an Oka image D, of an X, --f ze G| IfJ(z)|<
1-e, J= 1,...,rj such that chx CCX and since
UX(D) \/x (D), H (D,JX)_o for all q > O.

Now Xe and X are regularly imbedded analytic
subvarieties of codimension r in De and D, respectively.
We claim that the function ¢(z) can be extended holomorphically
into De’ Consider the sheaf ‘/XE(De)' It is a subsheaf of
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&(o,). since D)/ T, (0,) = C/(x ), (cf. remark at
end of Chapter 15), 0 -> Jx (0, y 1> (Q(D ) 0(x€) >0

is exact: = inclusion, r = restriction. Therefore,
the cohomology sequence H° (D (9) = HO(X 0) - h (D J )

is exact. But H (D :/ ) = 0, implying that r 1is onto.
Hence ¢ is the restriction of a function ¥
holomorphic in D . Write ¢ as a power series

51 Ik
> a Jl"'ik Z;7++. §, converging uniformly in some Del,

Kcc X, ccX - Then 1/=Zpj(zl,...,zn,l;l,...,t;r) on

De 3 the p j are polynomials. Therefore on K,
1 .

¢ = E pj(zl,...,zn,fl,...,fr). Since Zl,...,zn,fl(z),...,
fr(z) are holomorphic on G, so0 are the pJ.

§6. Fundamental Theorems for regions of holomorphy
(semi-local form)

Theorem 54A. Let X be a region of holomorphy, \_Z a
coherent sheaf over X and K«c X. Then there exists an
analytic polyhedron Xl such that Ko Xl ~c X and a
finite number of sections of f_ (Xl) generate jéx
every Xx ¢ Xl.

Theorem 54B. Under the same hypothesis as in Theorem 544,
there exists an analytic polyhedron X1 such that Kcc chc X
and Hq()(l,v ) =0 forall q > O.

Proof of A, Exhause X by analytic polyhedra, chcx

J+l
<cX, ij = X. Pick one of the XJ, call it X

o’
satisfying Kc:cxoc‘cxf Let fl,...,fr be the functions
defining X., and let D be its Oka image. XO is a
regularly imbedded analytic subvariety of codimension r
in D.

Define the sheaf j‘ over D as follows: 1let

\‘7’1 _{‘.fxifxexoj Y

x = , and let A \-i be open if
(\ 0 otherwise
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and only if pA 1is open in D and A/)z is open in \;71_

(p is the projection map in the sheaf,_%). Since .Z(XO)

is coherent, in particu}’ar analytiec, é’_— is an analytic

sheaf. Ve claim that i‘ is coherent. Introduce local

coordinates NyseeesNpn in a neighborhood N in D of

a‘_gpoint of XO such thgt Xo AN is given by Ny=eee=n, = 0.
is locally finitely generated. Consider its sheaf of

relations g_(sl,...,sz), i.e. let s;,...,8, Dbe sections

of _z over some open set U< (D AN). A relation is a

set of :t‘u.nctit'ms ¢J(n1,...,nn+r) € Ox’ x €U, J=l,...,8,

satisfying i bJ(sJ)x = c;. But (SJ)x =0 for x¢ Xos

80 that the éj satisfy ; J>J(0,...,O,nr_'_l,...,n,m_r,)(sJ)x = 0,

X E UI'\XO. Thus the féj(Q,...,O,nr+1,...,nn_l_r))z- are
relations of g‘_ over U /)Xo and hence are locally finitely
generated, say by (1[/{,...,1,'/;), v=1,...,§ 1in a neighborhood
N, of x. Therefore as generators of the sheaf R in N
take the (?,'/;,...,z//:) and add the f-tuples (ni,o,...,o), v
(O,ni,o,...,o),...,‘(0,...,0,1\,1) for 1=1,...,r. FHence \i
is a coherent sheaf over D.yu

Apply Theorem 52A to {_ (D). Then there exists an Oka
image D, of an X;, X; = {zve G | If,(z)]<1-¢, J=1,...,rj—
such that K <c X; ccX, and Z(D)) 15 globally finitely
generated, say by tl,...,tk. The restrictions of the ti
to Xl generate (}(Xl))x at every x ¢ Xl. v

Proof of B. It is enough to show that Hq(Dl,_-:f;) =0
for all q > O. For, consider any covering .U of Xl, think
of it as a covering of Dl' A cochain on U | Xl is an
assignment of a section of .7_"_ , and hence by the trivial
extension, it can be considered on U and is an assignment
of a section of :4_”: hence a cochain on U, A cocycle
on U | Xl is a cochain satisfying a certain relation. By
the tri;vial extension, it is a coecycle on U, Hence if
Hq(Dl,.j_(_) = 0 then Hq():l,i) =0 for q > O, By Theorem 52B,
#4(D;,#) = 0 for all q > O.
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Chapter 17. Coherent Sheaves in Regions of Holomorphy

81, Statement of the Fundamental Theorems

Theorem 55A. Let X be a region of holomorphy and 51
a coherent sheaf over X. Then global sections of ;f
generate ;f at every x e X. s

Theorem 55B. Under the same hypothesis as in Theorem 554,
H4(X,.) =0 for all q > O.

These theorems have numerous applications which will be
given later on. '

82. Preparations for the proof

Notation. (zl,...,zn_l) =2, z,=12 80 that (zl,...,z )
= (Z)Z)o

Theorem 56. (Cartan) Let P(Z,z) be a Velerstrass
polynomial of degree s, P(Z,z) = z5 + al(Z)zs"'1 + vee + aS(Z);
the a, are holomorphic in a neighborhood of the origin and
a (0) = 0. Let PisesesPp 1o =T be > 0 and such that
each a, 1s holomorphic for |z.| < ry and let P(Z z) # 0
for {(Z,z) | Iz I< ry, = 1,...,n-1 and |z| = ry .
Let f(Z,z) be holomorphic in D= {(2,z) | Iz [< ry for all J}
and let |f| <1 on D. Then

(1) £=qP +R where Q is holomorphic in int D and
R 1s a polynomial of degree 3 il in z with holomorphic
coefficients in int D, R=S5S"1D» (Z)z , and

(2) la(z,2z)| <K and J(z)l: K where K does
not depend on f.

Proof, (This proof is independent of the Division
Theorem, Theorem 47, and hence gives a new proof of it.)

1 f(Z ) d
Let Q(Z,2) = m7 ¢ |on POZETCT2T Q 1is

holomorphic in int D. Then

n
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R(Z,2) = oty [ D{2ef) (RZLIREZ2) ) ar , pus

I¢l=r

-1 s-J_ 8-J
M%EZJELQ = s% aJ(Z) L—-E-—-z—z——- ) ao = 1. Carrying

out the division gives R(Z,z) = %fi bd(z) zJ, where

by(2) = by [ HERL (12 4 a3 g g

[gl=r
+ as-J-l) at.
Hence R 1s of the required form.

Now to estimate Q and the coefficients of R., For
¢l =r and |zl <r,, §=1,...,n-1, |f] <1 and |P|
has a lower bound b > 0 and |a,| <c, a constant, for
all Jj. Hence |b,(2)] < K,, a constant independent of f.

To estimate Q write Q =(f-R)/P. Then
14K, (Lr+. o 4r8-1)
Q] < 5 = K5, a constant independent of f.

Take K = max (K,,K,).
1’72 q'j
Theorem 57. Let MJ be a submodule of 670 (vector -
valued holomorphic functions in mnrwar the origin) of

Q}mensign qj, J=1,...,L; 1.e. each MJ is a set of columns

){ b\ ¢

i ih ¢i holomorphic near zero, such that this set is
\4’qJU

closed under addition, and under multiplication by holomorphic
functions near the origin. Then

(1) Each Mj has a finite basis Bj, i.e. for every
MJ there exist a finite number N, of elements of M
such that any other element of MJ is a linear combination
of these with holomorphic coefficients.

(2) After a linear change of variables, we can find
a sequence pf polydiscs Dv about the origin D1 :>D2':>...,
ND, = §0{ , and the finite bases B, are defined
in Dl’ ggfh that if E?s M. and is holqgorphicNin ?2?6
D, ana |[F ()] = o [4,(z)] <2 when ¥ Iu %,

zeDv
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-> ->
where (¢1,...,¢N ) = B, and the ¥, are holomorphic in
D, and llwgh = J K, {a constant depending on v).
Proof. We use a double induction. First we show that
if for a fixed n this theorem holds for ideals (1l-dimensional
modules), it holds in general. Then we use induction on n.
13
Consider MJ, -J fixed. Let | & 3 MJ. Consider the

qj /

ideal I, of all those ¢ which can occur as a ¢1; then

the ideal I, of all those ¢ which can occur as a ¢2

- . 1 _ -
for ¢1 = 0; ete. till I, of ¢qj s for ¢1 = ¢2 = eee
¢qj_1 = 0. By hypothesis each I, has a finite basis

C $sk K/
x = {}1:...&1‘1{3. Thep the basis BJ for M

"ﬁ\ fo\ {
1

. |, sesey
SO

°/ o/ \:ﬁqj
Part (2) follows similarly.

Now, for n =0 the Mj are the finite (qj) dimensional
vector spaces of all qj-tuples of constants, and the statements
are obvious.

Assume the theorem for n-1 and every finite number of
modules. We must prove it for n and any finite number of
ideals. Assume that none of the 1deals I, 1is identically
zero, so that we may pick a non-identically zero element ¢
from each. Make a linear transformation such that these
elements are normalized with respect to the variable Z,-
Consider any one of the 1deals I with element b # 0.

Then ¢ = ¢Op; where ¢O is a unit and p 1s a Velerstrass
polynomial, say of degree 8, p = S+ al(Z)zs'1 + e +
aS(Z), aj(o) = 0. Assume, without loss of generality, that
¢0 doesn't appear, then p e I. Let ¢ be any element of
I. ¢ is holomorphic in some closed neighborhood N of the

> 0

j is

Qeee O

’ 1J=1,ooo,rj
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origin. In N, |y| <c, a constant. Hence ¥/c = Le1,

is holomorphic in N, and |¥| <1 there. In perhaps a smaller
closed neighborhood D of the origin we may apply Theorem 56.
Then J =aqp +r; q 1s holomorphic in int D, |q| <K,
and r = bo(z) +b (Z,z +oeer + b l(Z)z 1, where the b
are holomorphic in int D and ijl <K. Since L and
ap € I so does r. Consider all s~-tuples
/b4(2)

. such that b, + b,z + ... + Db
ha :

J

s-1
1 g-12 € I. They

form a module in the n-1 variables Z., By hypothesis, this
oV
By (2)
module has a finite basis : y v=1,...,m
v
B l(Z)
m 8-
s0 that bJ(Z) = EZE a, (2) B (Z);(*) a, holomorphic in int D,

j=0,1,...,8-1. Then r = %‘l b (Z)z = ‘3{‘—6 (;Z:I a (Z)BJ(Z))zJ

and therefore

Yod - o+37 G o J)-‘-.
= ap+T_ a(ng”zJ), (**)
rence § et vd
lence jp and 2 BJz y V= 1,...,mf is a finite basis
for I. Do this for all the ideals - I,. bJ(Z)

Now for each module L3 consisting of all s—tuples[

(z
such that ?i; bJ z" ¢ I we find polydiscs Dvg,cn“l \- -1
=

with the required property (2). Take a sequence of polydiscs
D; in ¢ such that every hyperplane z = constant /)D; is
contained in D, , Dv+1‘: Dv ,:’]D = (Of and the bases

for the IJ are defined in D1 Consider any ¢ ¢ I,, say
given by (%**). Then by our induction hypothesis, in %*) the
IlaJH.: K, and we already have la] < K. Therefore q and oy
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the coefficients in the basis expansion of ¥, do have norms
bounded by a constant depending on v. -

Theorem 58. Let M be a submodule of (I . Let ;¢ vi
be a sequence of elements of M which are all ho_l_gmorphic in
a fixed neighborhood N of the opigin. If the b y converge
uniformly in N to_ b, then ¢ ¢ M.

Proof. The tbv converge componentwise; 453 ->-¢J
uniformly in N, Jj=1,...,9. In any compact subset of N
the ¢3 are uniformly bounded; assume |¢3| <1l. By
Theorem 57, in perhaps a smaller polydisc D, 43 = ﬁ; V’z }g

- I=
where the {}z - are the basis vectors and the 11/}' are

holomorphic in D with llg'/zll 2 Xpe He{nce_}for J fixed and
for each fixed £ we have a sequence i‘{llz's of uniformly
bounded holomorphic functions in D. Thus {1"};; contains

a subsequence which converges normally, say to Y 3).‘ .
Therefore for each J there isNa subsequence of g&sf which
converges normally on D to ?‘I ‘lz }*j . Then 453 =

->

N
; ¥, }g on D, where Y, is holomorphic in D. Hence ée M

§3. Proof of Theorem A

Now we are ready to prove Theorem A. Exhaust X by
analytic polyhedra, XJC;C XJ+1, ‘\JXJ = X, Let KJ = cl XJ.
Apply Theorem 54%A to each KJ - XJ+1. Then for each J
there exists an analytic polyhedron N, with K, N,cc X
and a finite number of sections of z(NJ) generate }x
at every x ¢ NJA; call them 831’832""’st . Consider,

J41

L
for fixed J, all sections of the following form, s = 2 ¢vBJv’
V=

where tge ‘i’v are holomorphic and bounded in XJ. The
> (%
\ "%y

->
holomorphic functions under the norm, IN»IIJ = max lfbv(z)l 5
v,XJ

form a Banach space AJ of vector-valued
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AJ 1s complete by Theorem 58$ Let AS denote the subspace

of A,j of relations, i.e. ¢ ¢ A? if and only if

> b, 849 = 0 A? is a closed linear subspace
of AJ’ by Theorem 58. Hence we may form A /A° = BJ._>
Denote an element of B,, represented by ¢, by (41 .
By 1s a Banach space with norm lI[d»]I:j inf ma; H» | .

b eldl VoA
Proposition. (Oka-Weil Theorem for sections). Let o

be a section of J© over X; such that =3, b,

->

and [M € BJ. Let & > 0 be given. Then there ex ists a
section T _of :,L over X such that | o~- -rII <eg, 1l.e.
lo=<ll; = II[;&HI <e, where (o= 1) | X, S—'VZC; 84y°

Proof. We claim that every section
- <t (k (k)
= % }.2 841,40 ° where the ]. are holomorphic in

a neighborhood of X.; k = 1,...,Lj. For, consider the

mapping f : (@ J+1(N ), - (# (N Ny x€ Ny, given by

)’1 \ J+1

)-> % (s 341, ,,) . £ 1s a homomorphism of

j-l-l

) J"'I(N ) into J (N ) and is onto because the s
4,4

generate (J‘(N )) at every x e N‘,j Hence

0->G - 0 J"'l(N ) - __,___(N ) =~ 0, where G = ker f, is

an exact sequence of cohererll\t sheaves. By 'I‘heorem 54B there
is an analytic polyhedron N j such that X, C I\ J<_c: N'j

and K (N ,G) =0 for all q > O. Therefore H°(N @ J+1)->

H (NJ,\, ) => 0 1s an exact sequence, 1mp1ying that the mapping
is onto. Hence every section of (N ) 1sa > l,, j+1 ’
where the A g are holomorphic in NJ 3 therefore so 1is
each s K
Nog: o=>_¢ s, and s, = "—_I(V)s , where
’ (v) v Jjv Jv L Lg J+1,8
cbv and X, are holomorphic in a neighborhood of KJ. Thus
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= . (v)
=5 %SJHJ H 1113 Z 4) I_ is holomorphic in a
neighborhood of K i On X j? the 11/Z can be approximated

by functions 11/;1) holomorphic in a neighborhood of KJ +?

hyz..yz )| < ¢/2 ; by Theorem 53. Hence 0 -Z 111( ). 8441, 8

is a section of \4‘ over=a neighborhood 01)” KJ +1?
llo = o ||:j < €/2. Similarly o =5, ”’z Sy4,0 =

1 2 y/
2 ”’fz )(iv{’( ) Sypom) =2 (25, ¥ il)lé‘ ) 83+2,m’

and

where the Z 2] 1)]'. (£) are holomorphic in a neighborhood
of K j41? and therefore can be approximated on X 341 by
holomorphic functions V’s ) in a neighborhood of K'j +2?

W2 -5 w2 <o men oy -5 9D sy,

is a section over a neighborhood of K, , and I|o‘-o‘|| My < e/h,
etc. obtaining o3, Of, ... such that Ilo‘ 1+1I| < g/21+],
Since the BJ are complete, on each Xk’ k = J, J¥1, J+2,¢04,
there is a section T, of S such that |l—r 1II e for
1 large enough and p < k. But then for each Kk, Tr must
be the restrictipn to Xk of Thesl® Hence there exists a
section T of_i‘ over X such that | T-O'ill <¢ for all
p and sufficiently large i. In particular [r-of 3% o

Note that if s 1s any section of <~ over xj+1’
then IlsllJ jllsﬂ 41 » VWhere c, 1s a constant depending
only on j. For f? "J = inf max, y lbvl for
b, 8,y =8 and I|s||J+1 = inf[?ﬁ maxv’xj.l.l hl/vl for

< =
Sy 1l/v S,j+1,v s. Take any representation of the SJ+1,v

» ) (v) 4
in terms of the s,jv’ sJ+1,v Z .L . Then

s=2>_, (>, Wvlév))s on X

—u

4+ Hence lIsIIJ = inf max H’vl

< 1nf[73 max, x. IZV v, ( )I, where the inf 1s taken
V) J

over all representatives 11/ € [111 1, s=>_ %’/.,SJ_,_L,,-
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Since v depends onlyon J, say v = 1,...,LJ+1;
¢ v
IISII‘.,:LJ,,l 1nfu max "”v”l;fv)" on Xy, '}‘(u)' is
27

bounded by a constant b, depending only on Jj. Therefore
Ile_ng Lijg 1nf max |¢v|_<_bJLJ+llls||J+l. This

] VX
proves the proposition.

To complete the proof of Theorem A, we must show that
every stalk j?;, x € X, can be generated by global
sections. So, let x e X. Then x 1lies in some X,.

The sections le"“’sJL of XJ generate the stalk at
every point of XJ. By tge proposition, there are global
sections tJl""’tJL such that on XJ

J L
* =
(*) t 4 g (8, +1[/k£)su ,
where the Y, are holomorphic in XJ and Irl/ul < e there.
For € sufficiently small, the transformation (*) is nonsingular,
so that we may solve for the s in terms of the ¢t, . Hence

A 7] Ik
the th generate 'JLX.

84, Proof of Theorem B

First we define the tensor product sheaf ;f ®a®
over X, where 0°’% 15 the sheaf of germs of differential
forms of type (0,q). This sheaf is called the sheaf of
germs of differential forms of type (0,q) with values in the
sheaf F. Let xe X. Both J, and 0’ are (D, modules.
Consider al:’!. finite sumg Z_(q‘;JfJ@waJ), for ¢J’ vy € iQx
and f, ¢ Tx » ®y € Ox’q. Define addition of two sums
in the natural way, -

N M ! ! 1
; oy +2—1_-_ Gy = o)k oees baykag o oo Allow
interchanges of the order of terms of a sum and drop any
term with ¢., f., ¥, or o, equal to zero, Identify the

terms (¢jfjgjwjnj) and (fJ(§3¢J¢JwJ). Then these finite



195

sums modulo the identification form an Abelian group
Gx = j‘&OO’q. Under the following topology, we obtain
the sheaf J‘@O »9;  Take a representative of any element
ge G, Z(tb £,8904). Ina sufficiently small
neighborhood N of x, the ¢ and ¢ j are holomorphic
functions, the fJ are sections of JL' over N 0 the o
are differential forms, and the projection maps of the sheaves
'_3_" and 0°’% are homeomorphisms. Tben, for each y e N ?
assign tha'c class in G - [>T (¢. fJew )], for which
¢'J and VJ are the direct analytic continuations of ¢
and dzJ, and the fJ and “’J are sections of \'7' and %9
through fJ and a)J, respectively. We define the collection
of all these classes to be an open set; and these open sets
are to form a basis for the topology.

Now define d (> (6 f®ij ) =3 N’J J®yjawd)
Then 3: ’31®0 9 ZR Qo,q+1 is a homomorphism of the
sheaves; and 82 0. Since HY(X, (9) 0 for all q >0,
(cf. Theorem 36, p. 117), by Dolbeault's theorem (Theorem 26B,
p. 95) we have the Poincaré 1emma with respect to 1n X.
Hence the sequence 0 -> f > & o 2. > 78 % >iOO° 2
-> ... 1s exact. For, at ‘7‘0 0%° ker S 1is Fa 0‘)(’9 and
elsewhere exactness follows from the Poincaré lemma. This
sequence is a resolution of Ji. Indeed, {/_@ Oo,p’ p>0
are fine sheaves. For, define multiplication by a c® function;
1t e 6 then of 37 (b;85% yywy)) = 3 (58509 vylaoy));
and then proceed as in the example on p. 152, - Then by the
Abstract de Rham Theorem (p. 153), Hq(x,,é) ~ (S closed (0,q)
forms with values in .7‘)/(3 exact (0,q) forms with values in 5‘ ).
Now exhaust X by analytic polyhedra XJ. Then for every J»
Hq(X.,_}_') =0 for all q > 0 by Theorem 54B., As in the proof
that Hq(x,_(_g_) =0 for all q > O (Theorem 2%6), we obtain a
lemma B for the sheaf \i, and hence Hq(X,_g_') = 0 for all >0,
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§5. Applications of the Fundamental Theorems

The following results are all obtained relatively easily
from the fundamental theorems A and B. Some of these results
have been obtained previously, with more effort.

Note., 1In the following, X 1s a region of Holomorphy
and éf a coherent analytic sheaf over X.

A. Theorem 59a. Let V be an analytic set in X; i.e.
VX, and every point p € V has a neighborhood Np such
that X /IN_ 1is the set of common zeroes of a finite number
of functions defined and holomorphic in N_. Then

{x e X | fi(x) =0 for every 1 e If where the fi
are functions holomorphic In X and I is some index set.

We cannot prove this theorem, since it relles on the fact
that the sheaf ;7V(X) is coherent (Theorem 50). However,
we can establish:

Theorem 59, If V 1s a regularly imbedded analytic
subvariety in X, then there are fqnctions fi, 1e1I,
holomorphic in X, such that V = i xeX | fi(x) =0 for
every 1 e I}

Proof. ,] (X) 1is coherent by Theorem 5l1. Hence, by
Theorem 554, the global sections of v (X) generate the
stalk at every point. For any point p e X -V, the stalk
(§7V(X))p contains the germ "1"; hence "1" 1s a linear
combination of functions holomorphic on X and vanishing
on V (with appropriate coefficients). Hence at least one
function does not varish at p; hence there is a function
holomorphic in X, =0 on V and #0 at p.

Theorem 60. Oka's Fundamental Lemma; a general form.

Let V be a regularly imbedded subvariety in X;

P the closure of a polynomial polyhedron in X. Then
el (VA P) = (el (V(\P))*, its polynomial hull.

Proof. ¢l (VAP)C P which 1s defined by polynomial
inequalities. Hence there exists a polynomial polyhedron P!
such that PcC P'¢c X and ‘]V(P') is globally finitely
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generated (applying Theorem A to the coherent sheaf j (x)).
At any point pe P -V, (J (P')) contains the germ “1"
which can be expressed as a linear combination, with 69
coefficients, of global sections of \/v(P‘) at p. But
these global sectlons are holomorphic functions on P!
svanishing on V. Hence, using a sufficiently high partial
sum, we obtain a polynomial which is close to 1 at p, and
close to 0 on ¢l VAP. Hence p ¢ (cl (V/)P))*, as desired.

Theorem 61. Cousin I 1is solvable 1n X.

Proof. It suffices to show that H (X, O)
O 1s coherent, so Theorem B applies.

Theorem 62. In X, every b-closed form 1is §-exact.

Proof. Appeal to the Dolbeault isomorphism theorem
and Theorem B.

Theorem 6%, Suppose there exist finitely many local
sections 8150058, generating all the 7‘ x? XE X. Then
every global section s 1s of the form s = Z eb s where
the d) are holomorphic in X.

P_r_@_f_‘. Congider the sheaf homomorphism ) I‘()() -> Ot

2]

defined by: | - S ¢>1(31)x . This map is onto by
r/x

hypotheslis; hence we may form the exact sequence:

0 - Q" »-F

G 1is also coherent; hence we obtain the exact cohomology
sequence:
(x,0F) - 1x,F) - K0 .

0. But

il

Now Hl(X,g) = 0 by Theorem B; and since HO(X,Qr),
HO(X,_;Z) are the global sections in 5__0_1’, i respectively;
Theorem 6% 1is complete.

Corollary 1. Let Ucc X, U open. Then there exist
finitely many global sections SyseessS, of 1 such that
every section s of o'l (U) 4s of the form s =3> (bj 3
where the 'bj are holomorphic in U,



198

Proof. By Theorem 6%, it is enough to show that there
exist a finite number of global sections of ;f generating
the stalks of iij) at every point. But this is Theorem A.

Corollary 2. Let D<C ¢% D open. Then the following
are equivalent:

1) D is a reglon of holomorphy

1i) Whenever ¢1""’¢r are holomorphic functions in D
without common zeroes, there exist holomorphic functions
¥1sees¥, in D such that > ¢JWJ g1,

Proof. 1) implies 11). View the ¢i as global sections
of the sheaf QZ(D). It 1s thus enough to show that they
generate the stalks {ﬁ& at every point x ¢ D, as "1" is
a global section and Theorem 63 applies. But this is just
the hypothesis of 11). .

1i) implies i). If D has no boundary points, D= €
and so 1s a region of holomorphy. Hence, assume D has
boundary points; we shall show that every such point 1is essential.
Let "a" ¢ bdry D; a = (al,...,an). Consider the n holomorphic
functions ¢J = zJ-aJ. They have a common zero at the point a,
only; hence they have no common zero in D. Hence there exist
’I’J’ holomorphic in D, such that > wj(z)(zj-ap) =1 in D.
If the ¢, are all holomorphic in a neighborhood "a",

(> ;I/J(z)(zj—aj))a = 1, But this 1s clearly a contradiction,
so at least one of the wj is singular at "a".

B. Recall that, in a region of holomorphy, we have an
extension theorem for functions defined on regularly imbedded,
globally presented hypersurfaces. This theorem extends as
follows (X still denotes a region of holomorphy):

Theorem 64, Let YC X be a regularly imbedded
subvariety. Then every function holomorphi¢ on Y 1s the
restriction of a function holomorphic on X.

Proof. Consider the sheaf /y(X). We may form the
exact sequence:

0 > Jyx) = D) - QT > 0,

n
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where é2/¥7Y = éz(Y) (cf. Remark p. 174). We therefore
have the exact cohomology sequence:

x,9) - 1) - wxJy)

and H! (X, \/ ) = 0 by Theorem B.

Theorem 65. Let points zJ e X, fzj, discrete, be
glven together with numbers a,. Then there exists a function
$, holomorphic in X, such that ¢(zJ) = ay.

Proof. {zjf is a regularly imbedded subvariety, of
dimension zero.

Theorem 66. With the zy as above, let polynomials
PJ(z), of degree NJ, be given. Then there exists a
function ¢, holomorphic in x, such that in some neighborhood
of 2y $(z) = PJ(Z) + o(llz] it ); 1.e. ¢ has any given
Taylor expansion up to any given order.

Proof. Consider the sheaf J, defined by its stalks
as follows. If for xe X, X # zJ set ;! x = L, . If
for xe X, x= zJ set ;%' igerms of functions whose
Taylor expansions about z have no terms of order < NJ,

1.e. which vanish at zJ of order at least N +kf

7 1is an open subsheaf of C) (X). For coherence, we must
show that QE is locally finitely generated. But, for
points x # zJ, this 1s clear; and at zJ the stalks are
generated by the polynomials in z-zJ of degree Nj+1‘

Hence, we may form the exact sequence:
0wt -0 > 0/F -0
and therefore the exact cohomology sequence:
x,0) - 1, 9/F) - o
by Theorem B. But

¢
(49/:}) _ 0 if x # zJ
{ germs of polynomials of degree_fNJ if x = zJ

C. Recall our attempt to solve the Poincaré problem in the
strong sense. This 1s not possible in an arbitrary region of
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holomorphy; but i1s possible in its weak sense:

Theorem 67. Given a function g, meromorphic in X,
then g = h/f where h and f are holomorphic in X.

Proof. Locally, we can find holomorphic functions: f
such that fg 1is holomorphic. Hence, define the sheaf d—-
as follows: J° x = = those germs f € (“‘x such that f «Bx
is holomorphic. i‘ is a subsheai‘ of _LQ For coherence,
it suffices to show that \)L is locally finitely generated.
Recall that the Poincare problem is solvable in the strong
sense in any polydisc: g = hl/fl; hl, fl are coprime
and the representation is unique up to units. Ve claim
f, @generates the stalks at every point (in the disc):
If (fl)x # 0, this is clear. If (fl)x = 0, the only
functions regularizing g are then multiples of fl.

Hence, Q’_‘_ is a coherent nontrivial sheaf. By Theorem A,
there exists some global section f. But fg 1s then
holomorphic at every point; set fg = h.
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Chapter 18, Stein Manifolds (Holomorphically
Complete Manifolds)

Stein manifolds were designed to generalize the more
characteristic properties of regions of holomorphy.

§1. Definition and examples

Definition 77. A complex manifold X 1is called a
Stein manifold if:

Condition O: It is the union of countably many compact sets.

Condition li X 1s holomorgpically convex, il.e. for
every KccX, KccCX, where K denotes the hull with
respect to functions holomorphic on the manifold X.

Condition 2: The holomorphic functions separate points;
i.e. for every distinct p, q ¢ X there exists a function g
holomorphic on X such that g(p) £ glq).

Condition 3: The collection of functions holomorphic
on X contain for each point a set of local coordinates
at that point.

Examples. i) Any region of holomorphy.

i11) Regularly imbedded n-dimensional subvariety X of CN.

We note first that X, being regularly imbedded, is closed.
/C\.'ondition 1 is established by observing that if K i.cX but
KA;Z{X, then there is a discrete sequence (zn) e K. Hence
by Theorem 65, there is a holomorphic functign $ on ¢"
with |$(zn)| -> ; contradicting (z ) e K.

Condition 2 is trivial, as is Condition % once it is observed

that every point of X has local coordinates such that

Zo41 = cce = Zy = 0 describe X. A
1ii1) If X 1is a Stein manifold, and f is holomorphic

on X, then the set ix | £(x) # 0F 1s also a Stein manifold.

iv) The product of two Stein manifolds is also one.

e leave it to the reader to verify that iii) and iv)
are Stein manifolds, while stating the following theorems
(without proof).
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Theorem 63. (Stein) Every universal covering space
of a Stein manifold is agzain a Stein manifold.

Theorem 69. (Behnke-Stein) Every open Riemann surface
i1s a Steiln manifold.

We remark that there exist manifolds which are not Stein
manifolds; that conditions 2 and 3 can be replaced by a
"K-completeness" condition. (A complex manifold X is
K-complete 1f for every x € X there exist finitely many
functions fl,...,fK holomqrphic on X such that x 1is ag
isolated point of the set iy e X | £V = £1X, 000, 6y = foj.),
and that:

Theorem 70. (Grauert) Conditions 1, 2, and 3 imply
condition O.

82. An approximation theorem

Definition 78. An analytic polyhedron Y in a complex
manifold X 1s defined as follows: Ycc¢ X, such that there
exist a set Xo and functions fl,...,fr holomorphic in X
such that:

<
YeeXgce X and ¥ = {z | z ¢ X5 » IfJ(z)l <1}.

Theorem 71. Let Y be an analytic polyhedron in the
complex manifold X, as above, and let g be a function
defined and holomorphic in Y. Then g can be expanded 1n
a normally convergent serles of functions of the zj and the
coordinate functions fi’ holomorphic in X.

Proof. By adding functlons f., we may assume that:
Y=5z | zeXy |£,(z)] <1, j=1,...,N] and that the
Oka map (zl,;..,zng -> (fl(z),...,fN(z)) is one to one, of
maxinal rank, of ¥ 1into {|¢,l <1, §= 1,...,N5.

The image of Y 1in the disc 1s a regularly imbedded analytic
subvariety of the disc. Therefore by Theorem 64, g can be
extended to a function G holomorphic in the disc. Hence

in the disc G = 5 ity gye. .t and this series

converges normally. But, setting Ci = fi(zl,...,zn), we
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obtain the desired normally convergent expansion.

§3. The fundamental theorems for Stein manifolds

Theorem 72. Theorems A and B hold for Stein manifolds.
Corollary. All consequences of these theorems, except‘
Corollary 2, hold also. In particular, we have the
complex de Rham theorem:

q closed holomorphic g-forms
HAX,C) ~ et holomorphic q-forms

Note that this result shows also that the cohomology
of differential forms on any Stein manifold is trivial.
These statements need no proof!

84, Characterization of Stein manifolds

Theorem 73. Let X be a manifold satisfying condition O,
Then the followlng are equivalent:

i) X 1is Stein.

i1) Hl(X,;—_E) = 0 for every coherent sheaf of ideals
jf; i.e. for every coherent subsheaf of gQ_.

Proof. 1) implies ii): Theorem B.

ii) implies 1): Recall the corollaries of theorems
A and B:

Given a discrete sequence of points, there exists a function
taking prescribed velues, This implies holomorphic convexity
and separation of points, g

At every point there exists a function with a
prescribed expansion in terms of local coordinates.

This implies the cxistencc of local coordinates which
are holomorphic functions,

Now recall that the proof of these corollaries required
only Theorem B in the form of 1i).

Theorem 74. (Grauert-Narasimhan) Let X be a complex
manifold satisfying condition O, Then the following are
equivalent:
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i) X 1is Stein.

i1) There exists a strongly plurisubharmonic real-
valued function ¢ on X such that {cb < a}CCX, for
every a .

Proof of this theorem 1s essentially that of the solution
to the Levi problem, and will not %e given here.
Theorem 75. (Bishop; Narasimhan) Let X be a complex
manifold of dimension n. Then the following are equivalent:
1) X 1s holomorphically equivalent to a regularly
imbedded subvariety of ®2n+1.

i1) X 1is Stein.

Note that this gives an imbedding theorem for regions
of holomorphy.

Proof. 1) implies ii). Clear by the examples.

1i) implies 1) will not be proved here. One must find
2n+l functlions such that the mapping defined by them 1is
one to one, of maximal rank, and "proper" in that the
inverse image of a compact set is compact. We do not
establish this, but make the following remarks: This mapping
is not unique. However, in the space of all holomorphic maps
X -> cen+l , under the topology of normal convergence, the
functions of i) are dense.
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Appendix

This appendix 1s concerned with proving the theorem of
L. Schwartz appearing in chapter 13 on pare 139. We actually
prove a weaker theorem than is stated there, but one which
nonetheless suffices for our purposes.

We assume that E and F are vector spaces, each having a

nested sequence of norms defined on it;

HWllg =Wl »n=1,2 w0

Furthermore, E and F are metric spaces with metric

(00}
a(x,,x,) = 2 lxp=x, |
1072 §=:I T+ xl-xalrlln—

Under the topology induced by cach metric, we assume that E
and F are complete and separable, and that E has the sdded
property that fcr each n, {X(E l Hx"n"'l < ]} is totally
bounded (relatively compact) with respect to the norm || lln'
The theorem we are poing to prove is the following:
Theorem (L. Schwartz). If A and B are continuous linear

mappings of E into F and A is onto and B is compact, then

F/(A+B)E is finite dimensional,
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Before proceeding with the proof, we note that if
E = ¢°(0,u',0)ez (D, 0", @) and F = 2}(D,0", ), then E and F
have the properties assume:l above, for:

The nestel sequence of norms on each space is defined as
follows. PFirst, in each ui'(: U' take a sequence of subsets
Ki"jc‘ c K;,J+1 /4‘ui'." In each"uJ"/} uk" # @ of sets of U" take a
sequence of subsets KJMCC KJk,z+1 f (uJ"/'iuk"); and in each
ui'ﬂuj' # @ of sets of U' taie a sequence of subsets
K;ch C‘K;,j,lﬂl /1 (ui'/'\:uj'). Then for 4 ¢ E; i.e. _f: g + h,ge c®
assigns the holomorphic function 83 to ui' and hé Z1 assigns

the holomorphic function hjk to u J"/\uk" # @; define

”“f ”n = max lgi(z)l + max " Ihjk(z)l H
i;zcC Kin J,k;z EKJkn
and for k< F; i.e. kéZl(D,U',J) assigns kiJ to ui';"qu'; define
” k”n = Ta}5°z& [ lkij(z)l
1J ijn
Clearly these are norms and || ”n <1l n4y foralln=1,2, ....

The separability of E and F is obvious.



Finally, the totally boundedness of 3x €E l “x“n+l < 13

in the norm || ||n follows from the fact that a uniformly
bounded sequence o holomorphic unctions contains a normally .

convergent subsequence.

I. Preliminaries.
Henceforth x and y shall ienote elements of E and F,
respectively. (e and f shall ienote elements of the dual spaces).

Let

A
%1
-

1}, v =frer | Nyl <
1, a7, = fve® | Iyl
¥, T -yer | Nyl

= xen | Il
25, = fee | Ilxll,
fex | fixll,

.
]

I A

b~
7]
[}

"
K
-

A

(7]
o
1]
A

Note. 1.0cE (or P) is open if and only if for every point
Qe @there is ann and a k > O such that X + kSnc (9’

2. x

4 — x in E (or F) means ||xi- x”n T 0

for all n.
E* denotes the space of continuous linear functionals on E.

*
following remarks, although stated for E , are true as well

5

*

for F .

* *
For e €E define || el o = Sup le(x)]. These are not really
S

*

norms because for some n, IIeHrl may be infinite. However for
* *

each fixed n, the elements of E -with finite norm || || o form

a Banach space.
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1. For each 3CE" there is an n such that “QH; <.
Proof. Since & is continuous, .{x ¢E l l8(x)] < 13‘ is an open
set containing O, and therefore contains a set kSn for some
nand k > 0. Then |&(x)| <1 for all xekS_, and by linearity
|8(x)| < ]]é for all x€S , implying Il’éllf1 < %.

2. Il Wy <1 IIE.

3. Given e €E*, if there is an n for which |Ie|lf1 =0,

then e = 0.

Proof. If e # O then there is an x¢E and o(x) = a # 0.
- X Xy . a

Since llxlln = N <o for some N, ﬁesn and e(ﬁ) =g #0,

contradicting ||e||:i = 0,

o Since E is separable, the usual argument based on the
Cantor diagonal process shows that from any sequence e 16 E"
with ”31“;1 < C for some fixed n, we may extract a subsequence
e, converging at every x€¢E. Set e(x) = lgm eij(x), then e €E"
and |le||} < C. Let

*® ) * ) Y * * T
5.7 = focE | [lell® <1 ana T = £ eF* | 12l < 3.



Dofine mappings A", B*: F' —E" by (A"t)x = £(Ax)-aig
(B*f)x = £(Bx) for £¢F and x¢E,

1, Since A is onto, ¥ 13 1-1,

2. B compact means that there is an n such that B(Sn) is 2
totally bounded in F.

3, A" and B¥ ave continuous linear maps.
II, Easy Results,

Proposition A. Given n, there exist m and Cn such that for
every £¢F", ||f||;‘_ < C IIA f||

Proof. Sinceg. is onto, F = UA(}'S ) = QW, (the bar
denoting closure). By the BaireCategory Theorem, one of the
closed sets 'AT[S—)' contains an open set, therefore a set of the
form y + kZ:m , YEF and k> 0. If we make [ even larger, we
can got & _(TS_T J I, + For, y€ATES J implies y Ax, x, = x,
x,€£8 , so that A(x+ts )‘.')k:m implying A(kﬁzsn)ﬁ Em
Let £ € F*, For yeA(is ), v= Ax, || x || < {and
l£(y)| = |e(ax)] = [(a")x] < IIx]l 114%¢117 < L 11872017, By the
continuity cf f, this inequality is valid for yé-ﬂ:g;)' and hence
for y¢ {:m Take C_

Proposition B. There is a fixed positive integer p such
that for every m, B’ (::) is totally bounded in the norm || II':.
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‘Proof. Choose n so that B(Sn) is totally bounded in F.
(p will be n + 1), Then B(§n) is compact in F. Given any m,
E(Sn)CF = ‘Q Ly m°. By compactness, a finite number cf the

}’::1 cover E(s_nr, and since they are nested, choosing the largest
Leives B(Sn) CE(E;TC-.',:;. Let f€ :’: and x€S_, then
|(8¥r)x| = |£(Bx)| < Il £1I |IBx||, <¢. Therefore, B*(Y ;) 1s a
set of functionals which are uniformly bounded on Sn’ and since
the functionals are linear, this set is equicontinuous with respect
to the norm || || . Furthermore, S ,,CS 1is totally bounded in
the norm || ”n' Hence by the Arzeld-Ascoli theorem, from any
sequence in B%(::) we may extract a subsequence which converges
uniformly on 8 ., i.e. B%(::;) is totally bounded with respect
to the norm || II,;:,,_]_.

Corollary 1. If feF", then IIB*I‘II:; < 0. (For, f&F"
implies fé€ IE; for some m, K < 00.)

Corollary 2. If {fﬁé F* are uniformly bounded in some norm,
then there is a subsequence ~f13 such that ||B* (£y )||

Theorem 1, N = ‘ch l (A +8%)r = Of 1is finite dimensional.

Proof. Since A* is 1-1, if suffices to show that A¥(N) is

finite dimensional. Let p be as in Proposition B. Then A (N) is
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a Banach space under the norm || ||;, because for every e A”(N),
He”; < oo since e = A*f, fEN, implies 6 = -B"f which has finite
norm || ||: by Corollary 1.

Suppose A*(N) 1s infinite dimensional. Then there is a
sequence 4;, 4, «+s Of linearly independent elements of a¥(w),
We claim that there exists -ek::; ¢ A¥(H) satisfying ||ek|l: =1
and ||ek - ejll; > % for k # j. The proof is based on the following.

Lemma. If E is a Banach space and G is a closed, linear,
proper subset of a linear set IXE, then there is an xoe.D with
Nz Il =1eana |lx, - cll 2 3

Proof. Take x'€ D -G and let d = dlstance of x to'G.' Then
there is ay ¢ Gwithd < [lx -y || <2d. Set x, = —F—1

Now, let G, = {al%, i.e. the linear srace spanneglgy-zlp
and let D;, = {al,agg. Since every finite dimensional linear
subspace of a Banach space is closed, we may apvoly the above lemma
to G) and D, as subsets of A*(N) with norm || H:. Hence, there
exists e, € Dy, with “31”;) =1 and “el - ellp > % for all e €Gy.
Next, apply the lemma to G, = {ﬁl,aa} and Dypy = {ﬁl,az,aBE and
get o, €D, 5o with ||92||; =1and |le, - e'”: > 3 for all e € Gy,
Continue this process, obtaining a sequence {ek§ e A¥(N) with
||ekllz =1 and ||e, - e||; > -]2= for all e belonéing to the space
spanned by @, ees, @ but then Ilek - ejlgf > % for k # 3.

On the other hand, since de €A™ (N), e, = A'f,, f, EN.

Okl k
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By Proposition A, there are constants mp and Cp such that

||fk||':s < Cpe Then by Corollary 2, (B*fk) contains a subsequence
which is Cauchy in the norm || H;. However, B*fk = ’A*fk = -0y,
and {ek} can have no Cauchy subsequence in the norm || |[§ by
construction.

Theorem 2. Given n, there exist n, and Kn < oo such that if
e ¢ (4™+B")F" and ||e]|l” < o, then there is an f€ F" with e = (A™+8%)r
and |l 1l < Kllelly.

Proof. Let p be as in Proposition B, and let m, be given by
Proposition A. It suffices to consider only n > p; since once we
have established the theorem for n = p we have it at once for all
n < p by choosing for such n, the constants m, = mp and Kh = Kp,
and recalling that || ||i+1 <l ||i. Let N denote the nullspace
of (A*+B*), as before. We claim that it is sufficient to prove
that there is a K < cosuch that for all f€ F* with ||(A"‘ﬁs"")f||"f1 <o,
Nt - NH -IE‘-‘II (A"4B™)2]|7 . Indeed, if (A"+B")f = e, then there
will exist a e £ = N satistying ||4]17 <K Il (A"3%)e|[7 = K |l
and (A"+3%)¢ = (A%+3%)f = o

Suppose such a K does not exist. Then there is a sequence

£, € F' such that Ik Lumh-»oo and || (A*+B" )f || =1, Take
¢;€ 1y - N so that || £, -Nn* <||¢|| <2||f - 8%, ana
i i o3 m, i m,
set ¥y = mn' Then 3 < || v, - Nllm, llwill,,, 1 and
o % 1
“ (A"+B )y, ||D = = > 0.
i'n LK i
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By Proposition B, a subsequence of the Wi, csll them again ivi% R
N . 3% 2% 3% St
satisfies ||B (wi-‘bj)llp kg 0, andptherefore‘llB (Wi-\l!j)lln T3 0.
Then by the triangle inequality, ”A':(‘Vi"WJ)”* 3 % implying
by Proposition A that || vy - ‘ll || 1--3' 0. Hence there is a YEF"
with II\lli - \Hl*n 4> 0, and II‘V - NH > 3. Then ‘!'iN, while
(A8 )y)x = y((a+B)x) = 1im ¥, ((A+B)x) = m ((A™+B" )y, )x =
i-00 I»o

for all x&E means that ¥ ¢ N, a contradietion.
III, Main Results.

Let y € TA*BJE, and let M —{r €F" | fly,) =

(A%+8% )M =

ol
0. Call

Lorma 1, Suppose ey € L, || eilli < C for some n and C < oo,
and supvose ei(x) e e(x) for all x €E. Then e €L.

Proof. By Theorem 2, we can find f; €F" with e, = (A™+8¥)r,

and “flum < K. We claim that f,€Ii, Indeed, there are éiE b

n %% s, o _
for which e, = (A"+B )&1. Set ¥, = f, - ¢1, then (A™+B )“’1 = 0,
Since V€ (A+BJE, there is a sequence Jan§ €E such that

(A+B)x —> y_. Hence V,(y ) = lim v, ((A+B)x ) = lim ((A*+B™)y 0,
a a o i'Yo > 0o i a > 0o 1”&1
implying that ¥, € M, but then f; = y; + J;ie M.

Now, because the I«‘f{} is uniformly beunded in the norm || “m ,
L n

it follows that a subsequence of the {fi}f’ call them again {fi?i’
converges at every point y of F, f,(y) — f(y), £f<F" and fly,) =

so that £€M. But then, ((A™+B*)f)x = £((a+B)x) = lim f, ((A+B)x)
i»>m

= 1im ((A%+8" )f )x = 1lim ei(x) = e(x) for all x€ E. Thus

1»00 i-»oo

= (A*+B™)fe L.
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Before proceeding, we recall some notions from functional
analysis. The Hahn-Banach Theorem states that if S is a linear
subspace of T, a.Hausdorff locally convex topological vector
space, and if x¢ (¥, an open convex subset of T such that cINsS = §,
then there is a closed hyperplane HJS with HN¥= ¢. From this
theorem it follows that since T = H + ix}, i.e. H + the linear
space spanned by x, if we define for ‘tET, $(t) = A where t = h + Ax,
then ¢ i1s a continuous linear functional on T whose nullspace is H.
Hence there exists a continuous linear functional ¢ on T satisfying
$(x) =1 and §(s) = 0.

Theorem 3. If e €E" but e¢L, then there is an xer such
that e(xo) =1 while g(xo) = 0 for every g ¢L.

Proof. (1) Since e€ E*, there is an n for which ”6”; < 0.
If n=1, i.e. ||e||1“ < o, then, since || Hé < |l ||l,||e||2 < o,
There fore Helln < o for some n > 2, In order to simplify notation
we will assume HeHé < 0 : the procf in the general case is
(essentially) the same.

(2) There is an 1> O such that 1f g¢L and |lg - ell; < 1,
then |lg - e||]"_ >N. "

Proof. Assumé that nc such N exists. Then there is a sequence:
(gJ. )€ L satisfying ng - eH; <1 and IIgJ - e||{ 5 0, i.e. for
every x€ E, |gj(x) - el(x)] > 0 But Il gy - ell2 < 1 implies

||ng|'§ <1+ ”e“; < o0 so that by Lemma 1, e € L; a contradiction.



215

(3) Take N smaller so that 2 < 1, then if g¢ L and
g -ell} <2n, lig-ellf >n.

(L) Let {xi(l)} be a dense sequence in aSl. Such a sequence
exists since aSlCE a separable metric space. Then there exists
an integer N) > 0 such that if g€L and g - e||; < 2N the follow=-

ing ineqﬁalities cannot hold simultaneously

Ig(xi(l)) - e(xi(l))l SNiLEL, e, N

Proof. Assume the contradiction, then there is a sequence

(gy) € L with |lgy - ell3 < 2N and ‘gN(xi(l)) . e(xi(l)”

< r\lfor

# . * 5
1=1, coo, N lgy- e||2 < 2N implies that ||gNl|2 < va+||e||2< ®
so that there is a subsequence, call it sgain (gy), such that et
every x€ E, gN(x) +> &(x), g€L by Lenma 1, and llg- el|£ 2n,

(1) 1 - . )
Ig(x1 ) - e(xi( ))I <N fori1=1,2, .... Hence lg(x) - e(x)]| 5rl
for x¢ S, which implies that llg-elly <R, contradicting (3).

(5) Let {xi(‘?)} be a dense sequence in aSZ. Then there
exists an N, such that if g€ L and g - e||; < 3y the following

inequalities cannot hold simultaneously

Ig(xi(l)) - e(xi(l))l sh i 1=1, a0, Ny

- e(xi(Z)')l <2n; i=1, ..., N

2

Proof: Assume the contradiction, then there is a sequence

(gN)EL with IIgN - e||§ < 31 and IgN(xi(l)) - e(xi(l))l

(2)”

<N

= (2
for 1 =1, «oo, Ny |gN(x1 )) - e(xi 22R) fori=1, ..., N,
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||8N - eII 3= BQ implies that ||gN 3R+ ||e|| <3N+ Hell2 < ®

so that there is a subsequence of the (gN) converging at every point

of E to a g€ L satisfying |g(xi(1)) - e(xi(l))l :Vlfor i=1, ..., Nl’
(2) - (2) .

and |g(xi ) - elxy )| = 2n for i =1, ..., Ny. Hence

*
2n for x¢ 9S,, so that ||lg - ell, < 2/; but g€L,
1)

lg(x) - e(x)]
(1))

[y

and Ig(xi - e(xi )| < l’Lfor 1=1, «ooy N5 contradicting (4).

*
(6) Continue this process: hence if g€ L and |lg - e||k < kn’

then the following inequalitieés cannot hold simultaneously

Ig(xi(s)) - e(xi(s))l < sV‘L, i=1, «e., Ny 5 8=1, ..o, k-1,
SEVINER
—r—L_: —ﬁ::

(7) Let {an} denote the sequence

1 (2) (2) {2 (3) (K)

N X X% Ne X x5 1
ey ’ — ) eeey y . EE. Since “ IL( = -,

n’oen’ en 2’ 3N kn ik~ k
and || ||n <l ”n+1’ for any fixed k, ”an”k - 0, i.e. @ —0
in E.

*
(8) If g&L then for some k, |lg - ell K < ©. Since

* * *
I 1,3 2 11 llgs for k sufficiently large llg - ell, < kn. By (6),
(s) (s)
) - elx;

at least one of the inequalities |g(xi

| A

sV
fori=1, ..., NS; s =1, .., k-1; is invalid., This means
that there is an n, depending on g, such that Ig(an) - e(an)l > 1,
Then for all g€L, sup lg(a ) - el )| > 1.
(9) Set P = {(g(a ).ela, ),...,g(a ),...)lg(-L} and
= (e(al),e(az),...,e(an),...). Since g and e are continuous on E,
g(an) = 0 and e(an) -E>O, by (7). P, qclo, the Banach space

of sequences of complex numbers tending to zero under the norm,
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Ivll = syp |V1| where ve L°, v = (vl,vz,... )e P is a linear
subspace of £°. ||P - q|] = 12{; Stixp |g(ai) - e(ai)l > 1 by (8).
Therefore there is a continuous linear functional on 5('.0 which is O
on P and 1 at q. This means that there is a sequence of complex
numbers a, with J__|a | < @ such-that if g&L then T aeleg) =0
and | _ae(q) =1

(10) From (7) and :lak| < o, we see that the sequence of
partial sums of :akak i1s Cauchy in E and therefore converges to
an x_€E. Then e(xo) =1, while g(x ) = 0 for every géL;
completing the proof.

Lemma 2. (A+B)E is closed.

Proof. Let y € TA*BJE. If y_ = O then we know y_€ (A+BJE,
so we may as well assume Y, # 0. Then there is an foe F% such that
£,(3,) =1, so that £ €M, Sete = (A*+B”")ro, o #L: for if
e, €L, thene = (A""+B"")¢ , $,€M, so that if y_=f_ - &o, then
(A “+3’ )\y =0, but ¥ (y,) = 11_m v ((a+B)x ) = 11m ((a*+p’ )w )x, =
implies ‘l' €L and hence f é L. Since e E EY but e f_L by Theorenm 3
there exists an x € E svch that eo(xo) 1 and g(x ) = 0 for every
g€L. Let fEF", then f - £(y,)f € M. Therefcre if e = (A"+8")f,
then ¢ - f(yo)eoé L, which means that e(xo) - f(yé)eo(xo) =0, or
e(xo) = f(yo), i.e. ((A'x‘-lLB'x')I‘)xO = f((A+B)xO) = f(yo) for all fET.
Hence y = (A+B)xo€ (A+B)E.
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Theorem li, F/(A+B)E is finite dimensional.
Proof. ILet K = (A+B)E. By Lemma 2, K is a closed subspace of F,
If F/K is infinite dimensional, then there i:s a sequence of linearly
independent y, € F, so that K =K,K,=K +{y]73, K,= K, +{y2}, ves are
closed subspaces of I satisfying K1 properly contained in K1+l‘
For each 1, then, there is a p, such that HKi - y1+1”pi > 0.
Hence we can find continuous linear functionals fiéF* with fi(Ki)=°
and fi(yi+l) =1. The f; are linearly independent and for every
1, £;(K) = 0. Therefore for every x €E, ((A™+B")f,)x=1£, (a+B)x) =0,
so that fie N, and ¥ therefore is infinite dimensional. This

/

contradicts Theorem 1 and completes the proof.
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