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PREFACE

These notes reproduce almost verbatim a course taught

during the academic year 1962/634. The original notes,

prepared by Joan Landman and Marion Weiner, were distributed

to the class during the year. The present edition differs

from the original only in that many mistakes have been

corrected. I am indebted to Miss Weiner who prepared this

edition and to several colleagues who supplied lists of

errata.
I intended the course as an introduction to the modern

theory of several complex variables, for people with background

mainly in classical analysis. The choice of material and the

mode of presentation were determined by this aim. Limitations

of time necessitated omitting several important topics.

Every account of the theory of several complex variables

is largely a report on the ideas of Oka. This one is no

exception.

L.B.

Zurich, July 8, 196+.
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Chapter 1. Basic Facts about Holomorphic Functions

S 1. Preliminaries

We introduce the following notation:

I denotes the field of real numbers.

C denotes the field of complex numbers or the complex plane.

Cn denotes the space of n-tuples of complex numbers

(zl, ...,zn) = Z. C
n may be considered as an n-dimensional vector

space over C or a 2n-dimensional vector space over It. Cn may there-

fore be identified with Ig2n, which induces a topology in Cn.

A. By function, we will mean a complex-valued function f unless

otherwise stated, for instance f: Cn-C.

Definition 1. Let DCCn be open and f(zl, ... , z
n

) a function de-

fined in D. f is said to be holomorphic in D if, for every (zl, ... , zn) ED

and each j = 1, 2, ... , n,

Mil .... z.+h,
8flira

Ihl-o h 8z.

exists and is finite.

We remark that f is holomorphic (in D) if it is holomorphic in

each variable separately. Note that f is not assumed to be continuous.

Hence we obtain immediately:

f1f2,

Property 1. If f1 and f2 are holomorphic On D) then f1 + f2, f1- f2,

and, if f2 40, fl/f2 are holomorphic(in D).

Property 2. If (f . } is a uniformly convergent sequence of holo-

morphic functions in D converging to f, then f is holomorphic in D.

That is, functions holomorphic on an open set form a ring which is closed

under uniform convergence.
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Property 3. Maximum Principle. If f is holomorphic in D and

has a local maximum at a point pE D then f is identically constant in the

component of D containing p.

Definition 2. Let KC ,n be any set. Let f be defined in K. Then

f is holomorphic in K if and only if to every point p of K there exists an

open set DC d;n such that p E D, D fl K is closed in D(i. e. D-K is open in Cn

and there exists a function F holomorphic in D such that F = f on DI) K.

B. We remark that for functions f: In»R the existence of all partial
derivatives 8f/ 8xi, i = 1, ... , n does not imply f is continuous. However,

the corresponding theorem for functions of several complex variables is

true.

Theorem 1 (Hartogs). Every holomorphic function is continuous

(in all variables simultaneously).

Proof. Given in § 3.

For the remainder of this section and Section 2, assume Theorem 1.

Definitions 3. A closed polydisc about z0 in n is the set

{(zl,...,zn)I Izj-z°I<r., j = 1,...,n; 0< rj <co}, denoted {Izj-z I<r.}.
An open polydisc in Cn is the interior of a closed polydisc,

i.e. the set t(zl,... , zn)I Iz.
3
-z

3

0. I < r
j,

j = 1, ... , n; G < r.< ro}, denoted
` 0 1 J

(Izj-zjl< rj1
The boundary of a polydisc is the set

L(zl, .... zn) I Izj - z0jI < rj, j = i, ..., n, and Izj -z0jI = rj for some j J .

The distinguished boundary of a polydisc is the set
{(zl,...,zn)Iz. z. +r.er°J, 0<Cj<2a).
Note that the dimension (over RL) of the boundary of a polydisc is 2n-1,

while the dimension of the distinguished boundary is n.

We remark that proofs will be exhibited for the case n = 2. The

proofs in the general case are similar and may be completed via an induction

argument.
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Theorem 2 (Cauchy Formula). Let f(zl, ... , zn)be holomorphic

in the closed polydisc {I zj -

zo

I,< rj1 . Then for[I z - z
j

I < rj} ,

f(zl..... z
n

)

n

0
k1-zl i = rl

n

... dal .itC-zn rn J-1 Cj-z3
f(1. .

n = 2). We may assume z0 = 0. f(zl, z2) is, for fixed

z2, I z2I < r2, a holomorphic function of zl in I zl rl. Thus by Cauchy' s

Formula

f(zl' z2) 21i (J lizl Mi. z2)dY1

I l I = r1

Similarly, f(t1, z2) is a holomorphic function of z2 for each 1 . Applying

Cauchy' s Formula to f(C1, z2) gives

f(zl'z2) 2vi f
11z1

fFli 21z2 f(C1,C2)dC2)dCl

IrII r1 IK2I = r2

By Theorem 1 we may write this as a double integral

1
f(zl. z2) _ 2a 1)2 (/ Q1-z1)( 2-z2) f(c1. C 2)dC 2dt1 .

III = r1 k2I =r2

Corollary 1. A holomorphic function has derivatives w. r. t.

xi and yi, i = 1, ... , n, of all orders, i. e. holomorphic implies Coo.

Proof. Differentiate under integrals in Cauchy Formula as many

times as desired.

Corollary 2. f holomorphic implies Of/ 8z
J
. holomorphic.

Corollary 3. Let f be holomorphie in the polydisc P = (fz-z01< r.,
J J -

and let I f i < M on P, then
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8
f

(I.
21

v1 r... r vn

...Oznn )).08z28z1

v1!...vn!M
<

v1 vn
r1 ... rn

where z0 denotes the center of the polydisc.

In Corollary 3, f is assumed to be holomorphic in the open polydisc

and continuous on its closure. Without assuming continuity on the boundary

the inequality still holds with M = sup I f

Corollary 4. If fu are holomorphic functions in DCCf and fu-.f

uniformly in D then Of / 8z, Of / 8z. normally, i. e. uniformly on com-

pact subsets of D.

Corollary 5. Power Series Expansion. Let f be holomorphic in

int P, then
v v

-z
1
0) 1... (z n-z n

0) Onf(z1.... , z = Z a (z
1-Z0

v
i
> 0,

n v1... vn

Proof. Same as in one variable. Expand 1/(tj-z.) etc.

Note. Determining the domain of convergence of a given power

series is not trivial. We will do it later.

Corollary 6. (Continuation of 5)

v +...+v
1 81 of=

VV vn V vl vn
0

8z1 ...3zn z

Proof. By Corollaries 4 and 5.

Corollary 'r

tion is unique.

Proof.

The power series expansion of a holomorphic func-

Corollary 6 gives the coefficients.

Corollary 8. If f is holomorphic in a domain D and f = 0 in a

neighborhood of a point of D, then f = 0 in D.

This is the basis of analytic continuation.
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S 2. An inequality

Definition 4. A continuous real-valued function u, of two real

variables, in a plane domain 4 is said to be subharmonic if, for any

closed disc A in J), and for the corresponding function ¢ such that

= u on the boundary of A, and 0 harmonic in A, u < 0 in A..

Properties of subharmonic functions.

1. If u and v are subharmonic then max (u, v) is subharmonic.

2. Being subharmonic is a local property, i. e., if a function is sub-

harmonic in a neighborhood of every point of a domain then it is subhar-

monic in the domain.

3. A harmonic function is subharmonic.

Remark. If f(z) is a holoonorphic function and E > 0 then

log max (I Oz) 1. E) is subharmonic.

Proof. At a point where I f I < E, and thus in a neighborhood of

this point, log max (I f(z) 1. E) = log e = log (constant) is subharmonic. At

a point where I f I > E, log max (If 1, E) = log I f I which is harmonic since

f # 0 and therefore subharmonic. At a point where IfI = E. and in a disc

such that I f I > E/ 2, max log (I f 1, E) is also subharmonic and log max

= max log.

Theorem 3. Under the hypothesis of Theorem 2 and for

r.=1, z.=pe1O J
J J J 2A 21r

n
21-p

log If(zl.... , zn)I < (21 )nf ...f
2cos (A -0 )+pj 1- 1-2p

00
(n-fold)

] ] J

iOl ien
log If(e , e )Id81... dOn

Proof. Take c > 0. Let gE = log max (If(zl, ... , zn)I, E).

If we fix all variables but one, gE is a subharmonic function. We will

prove the theorem for n = 2. Thus
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gE = log max (If(z1, z2)I, E). Fix z2, then gc(z1, z2) is a subharmonic func-

i4 1tion of z1. Thus for zi = p 1e

2x 1-p 2 i6

g(zz)<1 J 1 (e lz)d@
E 1, 2 -2i

O 1-2p1 cos (01-E1)+pi
ge

2 1

i0 io
For fixed 61, gee 1, z2) is a subharmonic function of z2 = P2 e 2

Thus

2n 2

l1

gE(zl' z2) < 2nI 1-2p cos (0 -6)+p2O
1 11 1

2a
1-p 2

2
iS1 i62

f Tiff l-2p cos (0 -6 )+p 2 ge(e , e )d32}d61
v
0 2 2 2 2

Using the continuity of f, write this as a double integral. But

logIf(z1, z2)I< gc(z1, z2), obtaining

log I f(z1, z2)

27r 27
2 1 p

2
i6 i6( (' - .

< (2a 12J J 1 2 gE(e 1, e 2WO dO2

0 0
j=l 1-2p j cos (0j-4 .)+p j

Let a-0, then gC4log I f 1. Therefore by the Lebesgue Monotone Conver-

gence Theorem

log I f(z1, z2) I

2n 2a 2
2 1-p . i6 i6

2A)2J J 1 2 log If(e 1,e 2)Idetd6'2

0
0=1 1-2p

j
cos (6 -¢ j)+p

j
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- § 3. roof of Hartogs' Theorem 1

Use induction on n. The theorem is trivially true for n = 1. As-

sume the theorem, and therefore all corollaries and following theorems

for n-l variables.

Osgood' s Lemma. Let f(zl, ... , zn) be holomorphic for

1zj I < R., 0 < R . < co. Then there exists t such that < Rl, and p > 0

such that p < Ri - I K 1. and a number M, such that I f(zl, ... , zn) I < M for

I zl-K I < p and I zj I <R
i

for j > 2.

Hartogs' Lemma. Let f(zl, ... , z
n
) be holomorphic in I z . I :SR

i
and bounded for I zl-r I < p and I z. I < R,, j > 2. Then f is continuous in_
Iz.I < R

Proof of Osgood' s Lemma. Define for I z I < R1'

m(z) = max I f(z, z2, ... , zn) This maximum exists by induction
Iz.I <Rj

j> 2

hypothesis. Denote by A N ={ z I I z I :SR
1

and m(z) < N}. Then

{z I I z I< R1} 00 t
N

Now A
N

is closed, for if a A
N

and ar-a,

m(a) = max I f(a, z2, ... , zn) I = max lim I f(ar, z 2, ... , z) I < max N = N.
r-oo

For instance, by the Baire Category Theorem, one of the A N contains

a disc. For zl in this disc f is bounded.

Proof of Hartogs' Lemma. We may assume R.
J

= 1, j = 1, ... , n,

=0, and M = 1. Let D1=f(zi,...,zn) Iz1I <p<1, Iz2I <1,...,Iznl<11.
Let z0 = zn) and zl = (zi, ... , zn) be interior points of Dl. Then
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+ I f(z1, z2, ... , zn1
-1,

z0)-f(z1.... , z
1
)

<
IzO

11

+(p -IzlI)(p-Iz1I)
...

+ IzO-Z1I 1n n (1-IzOOI)(1-IznI)

by the Cauchy integral representation on 1 variable and the existence of

the maximum o f I f I in D Since all the denominators are bounded away

from zero as z1-z0, I f(z)-f(zl) I-0 as zk..z0, proving the continuity of

f at z0. The arbitrariness of the choice of z0 implies the continuity of f in

the interior of D1.

Now fix z 2, ... , z
n

; I zi I < 1. Then

00
Vf(zl, z2, . .. , zn) = E av(z2, ... , zn)z

1

for 1z11 < 1
v=0

where

1C8f
IV 2 n v.

az1 / z1=O

by the holomorphicity of f in zl. Near zl = 0, (a1..... z
n
) lies in Dl and

here f is bounded and continuous. Thus

1 M. z2, .. , zn)
av(z2, ... , zn) =

2ir i v+1
d

IK =p1< A
i

and therefore the av are holomorphic. By our induction hypothesis, the

av are continuous, and the proof will be complete once we show that the

power series converges normally for I z1I < 1. Now,

1

lim sup I av(z2,...,zn)Iv < 1
v-0o
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and

v(z2,...,zn) < V.

P

since the series converges for zl I < 1 + n, for some n > 0. Set

A=(z.=e 310<¢.<2r, j = 2,...,n
] 7

A ={(z2....,zn)IIav(z2.....zn)fv > 1. (z2,...,zn)E.A}.

Then Av is open in A, and * lim m(/\) = 0, where m(Av) denotes
v-00

the measure of A For, if we let
CO

UA.
J v=j V

and note that

and

then

Thus

J
j+l

m(nQ.) = limm(Q.)
J j- ao J

n j = b (the empty set).

m(n Q.) = 0 = lim m(Gj).

j-co

A . ,Since . n ., m(/t .)--0.
J J 3i 4 .

Now let z. = r.e J, r. < r < 1, j = 2, ... , n. By Theorem 3,
J J J-

log I av(z2,...,zn)[

i -(_In
v(2 r )n n j=2

I n

n- 1 f j=2
v(2a

)
A

V

(1-r2 )1og I av(e 2, ..,e n)I

2
d62...dOn

1-2rj cos(y1 .-6.)+rj

i6 i6
(e 2, ... , e n)log av

d62...dO
2

ri

1-2rj cos (0 j-6j )+r j

1
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Furthermore
1-r2 1_rj

2
l+rj < l+r

1-2rj-, cos (0 J.-B
J
.)+r

J
? (1-r

J
.)2

1-r. - 1-r

and I a I/Pv. Hence,:

v log 1 n-11
1 1+r

log
la l < ( )

.d..J d9
v n - 1

v (2a)
v 1-r n2

Av

n-1

1 n-1 (1±r) log P m(A) .
(2a )

Therefore for e > 0 there exists a number N(e) > 0 such that if v > N(e)

then

i. e.

log 1 av I < e log

P

= log (p )E

av(z2,...,zn)I <
ev

for Iz.I <r< 1, j = 2,...,n, v> N(e).

Hence, the series converges normally for I z. < r < 1, j = 2, ... , n and-
lzil < PE

J

S 4. Holomorphic Mappings

In this section we make several remarks about the mappings deter-

mined by holomorphic functions.

Note that: f is holomorphic if f 1 Coo and

where

of
-r-- =

0 j=1 n5
..

, ,

2 of _ of + i of

az. ax. ay.
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We remark that, for n > 1, these criteria for holomorphicity form an

overdetermined system of equations. Many of the phenomena associated

with functions of several complex variables arise from just this fact.

Observe that as an easy consequence of the above remark, a holo-

morphic function of holomorphic functions is holomorphic.

Definition 5. Given f.: D --1E, DCCn, j = 1,...,n; denote

f.(zi, ... , zn) = Kj, f = .} is a holomorphic mapping if each fj is holo-

morphic in D.

Note also that if.

tj = .+irij;zj = x.+iyj..

then

a(l, , Vin; nl. . nn)
J 8(xi, . xn; yl, . y

n) 8(z1, ... , zn
)

In particular, J > 0, i. e., a holomorphic mapping preserves

orientation. If J # 0. the map f is locally 1-1, and has an inverse, f-

which is holomorphic. Hence, a holomorphic mapping such that J # 0

carries holomorphic functions into holomorphic functions.

However, under a holomorphic mapping it is possible to map a

bounded domain onto all of Cn. There is no simple geometric charac-

2

terization of a holomorphic map (e. g. angle-preserving), and no Riemann' s

mapping theorem. Hence, there is no canonical domain, like the disc,

and we are forced to consider arbitrary domains.
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Chapter 2. Domains of Holomorphy

S 1. Examples and definitions

Definition 6. Let Dopen(-- DopenC Cn. If f holomorphic in D1

implies that there exists an F holomorphic in D2 such that FID1 = f, then

Dl and D2 are said to exhibit Hartogs' phenomenon.

Note that this does not occur for n = 1.

A. Example 1 (n = 2). Let

D = {(z,w)I IzI < 1, IwI <1 and not IzI <

2

and IwI < 2

and

D = (z,w) IzI < 1, IwI <

We claim that D and D exhibit Hartogs' phenomenon. Let f(z, w) be holo-

morphic in D. Let

D' = t(z,w)`
2

< IzI < IwI < 1}.

D' C D. Hence
00

f(w, z) = E a.(w)zJ for fixed w, IwI < 1

-a0
J

and 2< IzI<1.

Now the a
j
.(w) are holomorphic in w, for

Let

D" C D, here:

a(w) = 1 J f(w, z) dz
2a

.

ii VV_ 1 1 zJ+l
IzI 210

D" = i(z, w)I

2

< IwI < 1, IzI < 1}.

f(w, z) = Z b.(w)zJ.
j=0 J

For w, z such that

2

< I w I < 1 and

2

< I z I < 1 , the series must agree.

Therefore
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aj = bj , j > 0

a.=0 for j<0

Thus f(w, z) = E a.(w)z3, for every fixed w, l W l < I and for every0 J,
z, Izl < 1, i.e. inD

A similar proof gives the holomorphicity in w.

Corollary. (Hartogs' Theorem). A holomorphic function of at least

two variables cannot have isolated non-removable singularities.

Exercise. Consider the domain 0 < r < l zl l 2+... + i znl 2 <

Show that, if f(zl, ... , z
n
) is holomorphic in such a spherical shell, then it

is holomorphic for 0 < l zl l 2+... + l zn l 2 < 1.

Theorem 4. (Hartogs' 2nd Theorem). Let DC Cn be any domain

homeomorphic to a ball, and bounded by a sufficiently smooth surface E.

Then if F is holomorphic in a neighborhood of E, F can be continued ana-

lytically over D.

We remark that this is a theorem in overdetermined systems, and

shall not be proven here.

Example 2. Let D = i(z,w)I lwl< 2, lzl< 1J((z,w)l

Z

< lzl<1, lwl<1

Then if f is holomorphic in D. f is holomorphic in D = OZ. w) lwl<1, Iz1<1}.

(Proof as above.) Note that D is a cell.

B. Definition 7. Let DopenC Cn and $ rz boundary of D. is said to be

an essential boundary point of D if and only if there exists an f, holomorphic

in D and singular at (i. e., f is not the restriction of a function holomorphic

in a_domain D1 _" D such that C. gr D1.

Definition 8. Dopen C!Cn is called a region of holomorphy if and only

if there exists a function f, holomorphic in D, and singular at every boundary

point.

We shall show that, if every boundary point of D is essential, then D is a

region of holomorphy.
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S 2. Convexity with respect to a family of functions

A. Let X denote a topological space and a family of real or complex

valued continuous functions defined in X. Let KCX.

Definition 9. The 9 -hull, K 1, of K is the set of points p of X, such

that for each function f e I which is bounded by 1 on K, I f(p) I < I.

We remark that K; is closed in X.

Note: If and 2 are families such that l C I2, then. nKlK 32 .

Definition 10. X is called .i-convex if K compact implies that K14

is compact.

Example. Suppose X = Dopen`e , and.' is the family of functions

which are linear on every component of D. Then D is I -convex if and only

if every component of D is convex, in the ordinary sense.

If consists of linear functions, then D is 9-convex if it is convex.

Lemma 1. Let K C (Cn . Then K bounded implies K_* bounded, where

is the family of monomials in zl, ...,zn.

Proof. Let M = sup Ix 1, which exists and is finite as K is bounded.

z zE K
The functions gi(z) = NT F , i = 1, ... , n. But I giz) I < 1 for every z E K,

hence I gi(z) I< 1 for every z E K. Hence, if z K g, I I z I I< max M. < CO'

i. e. K.t is bounded.

B. Note. Cn is a normed vector space under the norm,

I I Z II = max (I zl I , ... , 1z
n

I) (and under many norms too, of course).

Definition 11. Let DopencfCn
. The distance of a point z from the

boundary of D, denoted by AD(z) or simply &(z), is A(z) a inf I Iz-S I I.
E bndry D

A(z) satisfies a Lipschitz condition with constant 1.
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Proof. 0(z') =inf I Iz' -d I I < inf (I Iz' -z"I I + I
Iz"-dd

I)

<_ I I z' -z" I I+ inf I I z"- I I= I I z' -z" I I +n(z")

Therefore I A(z' )-z(z") I< I I z' -z" I I .

Definition 12. For any set KC Dopen

AD(K) = inf AD(z)
zE K

C. Note. Kr_ C D, read "K is relatively compact in D", is defined to

mean that the closure of K is compact and contained in D; hence t1(cl K)> 0.

Theorem 5. (Cartan-Thullen). If DopenCCn , then the following

conditions are equivalent:

(i) D is a region of holomorphy.

(ii) All boundary points of D are essential.

(iii) If KC CD, then 0(K) = A(K), where K = K and I is the family of

all functions holomorphic in D.

(iv) D is holomorphically convex.
A

i.e. Kc- c: D implies K' ,-'D.

Corollary 1. If n = 1, then every open set is a region of holomorphy.

Corollary 2. D is a region of holomorphy if and only if every compo-

nent of D is a domain of holomorphy.

Corollary 3. If D
I
C Cp and D2c Cq are domains of holomorphy, then

D1 X D2 C Cp+q is a domain of holomorphy.

Corollary 4. If Da is a region of holomorphy for every a in some set

A, and if 0 Da is open, then fl Da is a region of holomorphy.

Proof. A ssume KC C (n Da ); then KC C Da for every a. Let Ka

denote the hull of K in Da with respect to all functions holomorphic in D

Ka is compact by assumption and KCKa. Thus KC a Ka, and hence K
A

is compact. Since K c nDa , KC . (I 1 Da ).
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Note. In general, a union of regions of holomorphy is not a region

of holomorphy. However, if the regions are nested, i. e. D1CD2C...,

then their union is a region of holomorphy. This, however, we will prove

much later.

Corollary 5. (Exercise) If D is geometrically convex then D is a

region of holomorphy.

D. Proof of Theorem 5. If D = Cn the theorem is easily verified.

Therefore, assume that D is a proper subset of Cn

(i) implies (ii) by the definition of a region of holomorphy.

(ii) implies (iii). Assume (iii) does not hold. Then KCC=D and

0(K) # v(K). Let 7(K) = M and 0(K) = m. Then m < M as K DK. Choose

r, R such that m < r < It < Mi. Thus, there exists a z E K such that d(i) < r..

Let K = z' E K {z) I I z -z' I I < R). Then K is compact. Let f be a holo-
morphic function in D. max I f(z) I = µ exists and is finite as f is continuous

z K
and K compact. If z E K then

v 1+... +v
n

8 f

a7lvl...8zn zn

!'...v '
< 1

Rvl+...+vn

A
Since this inequality holds for all zE K it holds at every point of K, and in

particular, at z. Thus if f is expanded in a power series about z, the serieL

will converge inside a polydisc of radius R about z However, this polydisc

contains, in its interior, points on the boundary of D. Therefore, these

boundary points are not essential.

(iii) implies (iv). Assume that KC C D. Then K is bounded, and
A

hence K is bounded, by Lemma 1 above. K is closed relative to D, but since'
A A

A(K) = z(K) > 0, K is compact.

(iv) implies (i). Let D be any component of D. Construct a

sequence of sets Di, j = 1, 2, ... such that D1C c D2C c D3...C C D and

D = VD., (e. g. D. =(z I zE D, I I z I I < j, A ;(z) > 1). Let
(Pi

be dense
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in D. ((pj could be chosen as the set of points of D whose coordinates in
I2n are rational). For each j we find a point z. D such that I I z.-p. 11<AD(p.)

and z Dj .. We can find such a point since D. doesn't come arbitrarily

close to the boundary of D. Now, for each j, there exists a function fi holo-

morphic in D, such that I1.I < 1 in D. and I f.(z.)I = A. > 1. Next choose .
integers N.

J
> 0 such that

Co -N.
E jA. J < oo .
1 J

Let

co f.(z) N. j
g(z) J

f(z.) )
j=1 J J

Each term of g(z) is holomorphic. In fact, the infinite product converges

normally to a function not indentically zero. For
f.(z) f.(z)
J I < 1 for each j, in D., implies that I I I < 1 for all j, in D .fj(zj) J (zj) 1

Furthermore, recall that a necessary and sufficient condition for the ab-
w

solute and uniform convergence of the product Tj (1+¢ ) is the uniform con-
1 j

00

vergence of the tail end of the series E Now for z `D
f.(z) N. -N. 1

n -N. J

I - I
f .(z

< Aj J, and by construction E ' jAj < c . Therefore g is
j(Z i) j J

a holomorphic function in D.

We claim that g cannot be continued holomorphically to a domain

D
n

thD. For, at z
j,

g has a zero of at least the j order. Thus

g(z) = O(Ijz-zjIIJ) as z - zj.

So, the derivatives of g up to order j vanish at z.. On the other hand, if
J

q is a boundary point of D, then there exists a subsequence p of fpJv LJ1

which converges to q. This means that the p. come arbitrarily close to
iv

the boundary, i.e. d(p. ) 0. This implies that Iiz. -p. 11 -e C and hence
iv iv ]v

that z. - q. Therefore if g is holomorphic at q, all the derivatives of g
v
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vanish at q. This can only happen if g = 0, a contradiction. Hence g is

not holomorphic at any boundary point.

Note. Under a holomorphic mapping, a region of holomorphy is

mapped into a region of holomorphy.

S 3. Domains of Convergence of Power Series

A. In this section we consider power series of the form

ao ra kl k
kE 0... kE 0 a1 , ... (zn-fin) n

11 n
n

1

fort = (t1, .... 5n) fixed. We say that the series converges at a point

(1)

z = (zl, ... , zn) if there is some arrangement of terms for which the series

converges.

Note. In the sequel, we take C = 0 ; i. e. we deal with series of the

form
CO CO kl kn

k
zl ... zn

l
0 ...

k

n

0 alc l.. ,
nk

Abel' s Lemma. If the series (1') converges at some point

z = (zl, z2, ... , zn), then the series converges uniformly and absolutely in

every compact subset of the polydisc

Definition 13.

LIzi I < 121 11.

(i) A point t is said to be a point of normal convergence if there is

a neighborhood of 5 in which the series (11)converges absolutely and normally

(ii) The convergence domain of the series (1') is the set of points of

normal convergence.

From the definition, it is clear that a convergence domain is an open,

connected set, star-shaped about the origin.
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Corollary. If D is a domain of convergence of the series (1') and

41 1z2 "- . , zn)ED then (a 1z1, a 2z2""' a nzn)E D where Ia it <1, i = 1, ... , n.

Definition 14. A domain with the above property is called a complete

circular domain.

If ja i I = 1, i = 1,... , n, the domain is called a circular domain.

Intuitively, a domain is circular if it is rotation-invariant, and com-

plete circular if it has no "holes".

To any complete circular domain DCCn we associate a set D*C1n

as follows: D* is the image of D under the mapping (z1, z2, ... , zn)

(lz1(, 1z21,- .. , lznl ). To D* we associate the set log D*, which is the image

of D* under the map (1 zl 1, ... , I zn 1) - (log i z11, ... , log l zn 1), defined for

I zi j # 0, i = 1, ... , n.

Example. If DCC2 is the complete circular domain tI z11 < 1, I z2I < 1},

then D* is the unit square and log D* the third quadrant, i. e.

log Iz2I

D* is
0 1 z11

and log D* is / 0 log I Z11

B. Theorem 6. Let D be a complete circular domain. Then the follow-

ing conditions are equivalent:

(i) D is a domain of convergence.

(ii) log D* is convex.

(iii) D is a domain of holomorphy.

Example. Let Dc12 be the complete circular domain

(Iz11<1, Iz21<2or1z11<2.1z21<11). D* is then

1z21, log 1z21

and log D* is
0 1 log I zl
log

2
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But, by Theorem 6, if there is a power series which converges nor-

mally in D, log D* must be convex. Therefore the power series must actually

converge in

log I Z21

log (1)

0 log I zl I , and thus in
log (2)

Hence D exhibits Hartogs' Phenomenon.

Proof of Theorem 6. i¢l if n i91 icn
(i) implies (ii). Let (rte , ... , me ) and (R1e .. , Rne ) be

arbitrary points of D. Then log D* is convex if and only if
iii ion

(r1
Ri-a

e
1 .. , ra Rn

a
e ) e D for each a , 0 < a < 1.

n

it `1-a

((Rl+E2) ... (Rn+e2) n 1

is a point of normal convergence I ak k i< k A k where
1 n

(r1+el)
...(rn+el) n

E1
> 0 and A is some constant. Therefore for 0 < a < 1,

I ak k I a< a k A a k . Similarly,1. .

n (r1+e1) 1...(rn+el) n
since (Rlel 1 . , Rrem n)

is a point of normal convergence, we have for
E2

> 0, B some constant, and
0<a < 1,Ia

k
-1'

I1-a < B1-a

a_l-aPi=riit i , i=1,.. ,n.

i4,1 if
Since (r1e , ... , rie

. Let

Then, I ak
. . k I" I ak ... k

I 1-a = I
k

I
k.

n 1 n n

constant

^
k , where pi>pi i=1,...,n.

pl ...pn
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(ii) implies (iii). By Theorem 5, a sufficient condition for (iii) to

hold is that D is convex with respect to the family lof all the functions

holomorphic in D. If D is convex with respect to a subfamily of then D

is convex with respect to f. But, (ii) implies that D is convex with respect

to monomials, as follows:

Let KC C D, and denote ly K the hull of K w. r. t. monomials. K is

closed in
Cn

and by Lemma 1, bounded. It remains to prove KC. D or equiv-

alently that log (K)* Clog D*. Assume D fin, as we already know K C fin.

Let p(z) = azi'... zn n be an arbitrary monomial, mi > 0 integers.

Then log I p(z) I = log j a i + ml log (z11 + ... + m n log I zn I , and

log (hull of K w. r. t. log I p(z) I )* is simply the closed half space Dlog K*

defined by the hyperplane P with coefficients (ml, ... , m
n
) such that

P('ilog K* 0 . Therefore the intersection of all such half spaces is

log {z E
cn

I logI p(z) I < sup log I p(K ))*, which is log (K)*, by the monotonicity
K

of the log.

Now, if a subset S of a complete circular domain D stays away from

8D, then log S* stays away from 8 log D*. To prove this it suffices to show

that (1) z e 8D implies a z = (a 1zl, ... , a nzn) e a D for all a e Cn with I a i I= 1

for all i and (2) every z E IEn
with (log I i l l , ... , 109 1 zn I) E 8 log D* belongs to

D. For then if log S* comes arbitrarily close to 0 log D*, given E > 0 there

are points s e S and d c 8D such that (using sup norm) for every

i, l logl s. I - logl d. I I < E, which implies I I s I - I d. I I < E' , e' - 0 as e - 0;
and by (1) then, there is a point d' E 8D with I si - d'i l< E' for all is a contra-

diction. (1) is easily established once we note that z j D implies for all

a with Iail = 1, az V D; because then if zo c 8D and E > 0 is given, there are

points E D and v D such that IX .-zol< a and Iv. -z°I < e for all i. Hence

for all a, Ia.I =1,la.v. -a.z°I<candla.l.-a.z°I< E,av 4 Dand
a X E D so that a z0 E 8D, as claimed. (2) is proved similarly by considering

the preimage in 'n of a neighborhood of a boundary point of log D*.

Since cl K is compact, there is a ball B in Cn, (I z. I < r ), : cl K, and

a b > 0 such that dist (log K*, a(log B*(l log D*) ) > 6: for B(lD is a complete

circular domain and KC C (B()D).
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Let T = log B* ()1og D*. T is convex and C log D* Use will show

that log (K)* C T, by donsidering the convex hull T1 of T, i. e. the inter -

section of all closed half-spaces in 1$n containing T. Now, if i j Ti. then
there is a hyperplane P in An separating 9 from Ti and such that Pf)(T1UN)=q

Because B 11 D is a complete circular domain, if g° c T, then

c ant 5°JCT. Thus T can only be contained in a closed half space

expressible as {i c m
n
t

n
< c; c c It, all mi > o}. Suppose

> t< T1, if log I i;i I > log r for at least one i, say i = 1, then we may take P to

be the hyperplane : log I z1 I = log r + c, where c > o is such that

log I k1I > log r + c. If log 19i I :Slog r for all i, either the separating hyper-

plane P can already be given with rational (and hence integral) coefficients;

or since P11 log B* is then compact in 1$.n and the distances of 9 and T1 to P

depend continuously on the coefficients of P, we can find a P with rational

coefficients effecting the separation. Therefore, the convex hull of T, which

is cl T, is the intersection of those closed half spaces DT defined by hyper-

planes P with non-negative, integral coefficients and P (1clT = m .

Thus, if P is any hyperplane to be considered in (the intersection

giving cl T) then if we translate P parallel to itself into the half space DT

until it intersects log K* , P becomes a hyperplane to be considered in (the

intersection giving log (K)M), and we have translated P a distance > 6 .

Therefore log (K)* C cl T, and the distance of any point of log (K)* to such a

hyperplane P is > 6, so that the closed ball of radius 6 about any point of

log W* C the closed half space cl T defined by every such hyperplane P and

therefore C cl T. By the convexity of T, it follows that log (K)*C T, as claiint

(iii) implies (i). (iii) implies that there exists a function f holomorphi

in D and in no larger domain. At any point z c D, we may expand f in a

power series which converges normally in a neighborhood of z. Thus there

is a power series which converges in D and in no larger domain.

§ 4. Bergman Domains

A. Definition 15. Let f(zl, ... , zn,X) E T, zi E 11, i = 1, ... , n and X c 1,

such that f is continuous in all variables simultaneously and holomorphic in
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some domain DC Cn for each fixed X e I C &. Then { z I f(z1,... , zn, A) = 0,

z = (z1, ... , z
n) c D, X a 1-1 is called a Bergman Surface.

This is a surface of (real) dimension 2n-1.

Definition 16. A Bergman domain is a domain bounded by a finite

number of Bergman surfaces.

Example. Let n = 2. Let B = {(z1. z2)11 z,' < 1, z2 a B(z1)} where

the B(zI) are domains parametrized by zI and bounded by Jordan curves:

z2 = g(z1, aA ), where g is continuous in all variables and holomorphic in

z1 for 1 z1I < 1 + e . Then B is a Bergman domain.

For example, we might choose

ix 1 is `1 -i;Lg(zl, e ) = 2+zI e + 100 e

For n arbitrary, D = {(z1, ... , zn) I 1z11 < 1, z2 a B(z1),

z3 a B(z1, z2), ... I . These domains will be called quasi-product domains.

They reduce to product domains if B(z1) = B1 independent of z1, B(z1, z2) = B2,

etc. We list the following properties, stated for any Bergman domain and

proven for quasi-product domains in T2

Property 1. Every Bergman domain is a domain of holomorp.y.

Proof. If (zI, z2) is a boundary point then either
ins I

A
z -z is singular at (z1, z2) and regular inside

I _z

or (b) z2 = g(i1, e 0) and then 1 A is singular at (Zr z2) and

z2-g(zl, a
o)

regular elsewhere.

Property 2. A Bergman domain has a distinguished boundary surface,

defined to be the set of those points of the boundary at which at least n

Bergman surfaces intersect. (The distinguished boundary in our example is

j j) .)) I 0, A e [3, 21
1(elo

, g(e1Q , eA
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Property 3. If f is holomorphic in a neighborhood of a Bergman

domain D then the maximum of If I in D is achieved on the distinguished

boundary.

Proof. For each fixed zI, If(z z2)I has its maximum on the boundary

of B(z1); hence, consider I f(z1, g(zI, a )) I . But for each fixed A , this func

tion has its maximum on I zI1 = 1.

Corollary. If f is known on the distinguished boundary of a Bergman

domain B, it is known throughout B.

In fact, we have the following:

Bergman Generalization of Cauchy' s Formula.

f(z z) _
2a1

2 f (eio ,
g(eio

,
eix))

dg(eio , eix )de i41, 2 ii

distinguished (el` -zI)(g(eld, e )-z2
bndry

2v 2n
2 i f(e l`) , g(e e

P`)) iq a iO i.X2r0
(e 1W -zI)(g(el¢ , eLl)-z2 e e ax (e , e )dy dd

0

§ 5. Analytic Polyhedra

In this section we shall define analytic polyhedra. We shall show

that every holomorphy region is a limit of an increasing sequence of analytic

polyhedra.

A. Definition 17. Let Dopen C Cn fI, ... , fk holomorphic in D, and

A = {z l z c D and 1fi(z) I < 1; j = 1, ... , kJ. If ACC D, A is called an

analytic polyhedron (of dimension n) .

Corollary 1. Every analytic polyhedron is a region of holomorphy.

Proof. Let B be an analytic polyhedron, 1 e bndry B. Then

f
j
MI = 1 for some j, say j = 1. But then
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g(z) =
I.

ff z) - 1(Ol(

is holomorphic at every point of B and singular at K.

Corollary 2. Every connected analytic polyhedron is a Bergman

domain.

Proof. Let B be a connected analytic polyhedron, S c bndry B. Then

f. (C) I = 1 for some j; i. e. every boundary point satisfies an equation of the

form f (zl, ... , z -eix = 0

B. Theorem 7. Let D be a region of holomorphy, and K C C D. Choose

Do such that KC C DopenC C D. Then there exists an analytic polyhedron

A in D such that KC C A C C D
0

Proof. Let K e bndry Do . There exists a holomorphic function

gf in D such that Igc(K) I > 1, and I g(z) I < 1 in K. Hence, there exists a

neighborhood NK of each K e bndry D0 such that I gt(NK) I > 1. But bndry D0

being compact, is covered by a finite number of such neighborhoods, say

N , ...'N
C

. Let A = {z I I g (z) I< 1; j = 1, ... , kJ.
1 k J

Corollary. Let D be a region of holomorphy. Then there exists a

sequence A J., j - 1, 2, ... of analytic polyhedra in D such that

A..A
J
.C-CAJ.+1CC D, and D = UCO

1 Jj=

Proof. Choose DoperiC C DZpenC C ...C C D such that U a
l D. = D.

Consider the sequence - Dj} ; there exists a subsequence, say{D.} , such

that

"I 00
A

D1C C D2CC D2CC ...C C D; D = U 1
Di

Then by theorem 7, there exist A.
i

analytic polyhedra, such that

A

D
1
C C A1CC D2CC A2CC ...CC D.
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Chapter 3. Pseudoconvexity

Si. Plurisubharmonic and pseudoconvex functions

A, We have already introduced the notion of a continuous subbarmonic

function (I, S 2). We now extend this definition as follows:

Definition 18. Let D be open in C, 0: D - It. Then 0 is said to be
subharmonic if:

i) oo<0<q,4 CO-ii)
4, is upper semi-continuous; i. e. P m sup 0 (p' ) < 0 (p)

iii) for any domain D CC: D; if h is harmonic in D and continuous on
0 0

oD0, then h > 0 on 8D0 implies h > 0 in D0 ,

Property 1 (Mean Value Property, I). Let {Iz-z0
1 < ri C D, 4, sub-

harmonic in D. Then

2n

4,(z) < 27r J O (z+ refs) d6 .

0

Property 2 (Mean Value Property, II). Let t I z -z
0

< r} C D, 4, sub-

harmonic in D. Then

r 2a

(z <
1

S } 4, (zo reio) r drdB
7rr

0 0

Property 3 (Strong Maximum Principle). Let 0 be subharmonic in
D. Let M = supD 4, . Then, in each component of D either m (z) < M or 4,
is constant.

Property 4. If 0 satisfies i), ii) and the integral condition of Property

1 or 2, then 0 is subharmonic in D.

Property 5. If 0 and 4, are subharmonic, then max (4, , 0) is subhar-
monic.

Property 6. If 0 e C, 4, is subharmonic if and only if A m > 02



27

Definition 19. Let DC Cn , O : D 8 . Then 0 is said to be lp uri-

subharmonic in D if:

i) -00 < 0 < 00 , -00

ii) 0 is upper semicontinuous

iii) if , . . . z. zn) e D and ai e C arbitrary, i = 1.... n, then
(z1 + dal.-

-
. , zn + fa) is subharmonic for small I C I

¢ is said to be pseudoconvex if it is plurisubharmonic and continuous.

Remark. Statement iii) above is equivalent to the following:

0 o T(zl, ... , zn) is subharmonic in each variable separately, for all

linear transformations T .

Corollary 1. Let DCCn , f:D - C. If f is holomorphic in D, then

log I f I is plurisubharmonic. Furthermore, if f # 0 on D, log I f I is pseudo-

convex.

Corollary 2. Plurisubharmonic functions satisfy the strong maximum

principle.

Corollary 3. If DCCn and 0, qi:D - I. are plurisubharmonic, then so

are max(d, v,), 0 +0, and ko , A > 0.

Definition 20. Let q, E C2. The the Hessian of 0 is defined to be the

following matrix:

H =(az.azk }

Note that H is Hermitian, if 0 is real valued.

Proposition 1. Let DC Cn, 0:1) - 1, e C2 . Then 0 is pseudoconvex

if and only if the Hessian of 0 is positive semidefinite.

Proof. Consider CO _ O(z1 + Kal, ... , zn + Can) , ai e C ,

i = 1, ... , n . Now (.5Q) is subharmonic if and only if AID > 0 . But
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2_

= 4 ajar

n4a E
8

a
j1 j j

n a2 _

4 j
kE

=1
azkal akaj

j

Proposition 2. Let DC (Cn , Do C D, 4) :D » . such that Q is
pseudoconvex in D. Then there exists a sequence i[ I of pseudoconvex,

C00 functions in Do such that 0 j - 0 uniformly in Do .

Proof. Define the "smoothing functions" KE , c > O -as follows:

K:Cn-
E

KE(5) > 0

Support KE {I II < EL - i. e. K(G) = 0 for

11511 > E

KE(5)ddldnl ... d9ndnn = 1
Cn

K E Ca0
E

Define: 0 E(z) = 5 KE (z-5) ¢ (5) dg1 ... dnn, where we take ¢ =0
Cn

where it is undefined. Then 4 (z) e C0° . Furthermore, 0 E~ 4) uniformly

in Do, as follows:

b (z) = S K(5) $ (z)dl ... dnn
Cn

4)(z)= KE(5)0(z-5)dg1... dnn
n

Therefore
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(z)-4E(z)I < KE(K) I4(z)-4,(z-K)j df1... drpn
Cn

< max (4,(z)-4, (z-O( O as E -- 0
11C 11<E,ZED0

since 0 is uniformly continuous on Do .

Now 0
E

is plurisubharmonic since

n4,(z) KE(G) 4, (z-) dg1 ... dip

is essentially a linear combination of plurisubharmonic functions with

positive coefficients.

Proposition 3. Let Adomain C C, g:& - DC Cn; g holomorphic. Then

4, is pseudoconvex in D if and only if 0 (g(f) ) is subharmonic and continuous

for all such g.

Proof. Assume 4, is pseudoconvex. By proposition 2, we may assume

4, c Coo. Then pg E Coo . Now,

g(5)
=

and let -t(5) = Og(5)

Then

a21
--a az az gj(r)gk(f) > 0

j, k=1 j k

as the Hessian of 0 is positive definite.

The converse is trivial, as the class of holomorphic g:A-D contains

all linear transformations.

Corollary. The image of a pseudoconvex function under a holomorphic

mapping is pseudoconvex.
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S 2. Pseudoconvex domains

A. Definition 21. Let { I < 1} C C. Then an analytic disc in D is a

mapping g: I 9 I < 1} - DC Cn, continuous on l} and holomorphic

in the interior.

The boundary of the analytic disc is the mapping g restricted to I I =1. '

Set g({I k I < E.

Abusing terminology by suppressing mention of g, we shall refer to

E itself as the analytic disc and to 8E as the boundary. (Note that 8E in

general is not the set-theoretic boundary of the point set E. )

Theorem 8. Let DopenC Cn. Then the following are equivalent:
w

i) Let (E. be a sequence of analytic discs in D. If 8E CC D,
0o J A j

then E C C D. ("Kontinuitatssatz").j=l j
ii) -log A(z) is plurisubharmonic in D, where A(z) is taken in any norm.

iii) For any analytic disc E in D, A(E) = A(8E).

iv) There exists a pseudoconvex function 0 in D such that, for every

N > 0 there exists a KC C D for which p > N on D-K. (Informally, p = +co on

the boundary of D)

Exercises.

a) In Euclidean space, i) has the following analog:

Let DopenC ` In.
Let jEjJ. be a sequence of segments in D. If

U a EjC C D, then U E. C- C D. Show that this property holds if and only if

every component of D is convex.

b) Find the analog of ii) in In

Definition 22. A region with any and hence all of the above properties

is said to be pseudoconvex.

Corollary 1. Let DopenCCn, D. pseudoconvex. If (1.ao D. is open,
J J J =1 J

then nj iD is pseudoconvex.

Corollary 2. Let DopenC Cn. Then D is pseudoconvex if and only if

each component is pseudoconvex.
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Corollary 3. The holomorphic image of a pseudoconvex region is

pseudoconvex.

Corollary 4. Let [Aj I be a sequence of pseudoconvex domains such

that A
J
C A j+l, then U A . is pseudoconvex.

B. Proof of Theorem 8.

iii) implies i). UaEjCC D and A(E.) = L1(8Ej) imply cl( UE.)CD.

That U Z . is bounded follows from the fact that I g assumes its maximum

over E on {I f I =1 , and Uazj is bounded.

ii) implies iv). If D is bounded, we may choose 0 (z) _ -logA(z).

If D is unbounded, choose 4(z) = max (-log A(z), Izll2 + ... + IznI2); where

L(z) is taken in the Euclidean norm.

ii) implies iii). Let E be given by:

g:{ICI <1}--D.

Then -logA(g(O ) is subharmonic and continuous; hence it has a maximum on

{ I Y < 1}, which is assumed on 4 I = 11. Therefore,

-log A(aE) > -log 0 (E)

i.e. &(CIE)< A(E)

But clearly, a(WE) > A(E) .

iv) implies i). Let Z. be given by

gj:{lkI <1}-D.

Consider the subharmonic functions

(g.(t)) , j = 1, 2..... where 0 is the function given by
iv). Note that

max d max 0 (g.(5)) .
kl=1

i. e. max ¢ (z) = max 0 (z)
zeam. zeE.



Now, t1 aE.CCD;

00

hence sup 4(U.1 aE j)<M<oo.-
But therefore sup Q,(tJ 00 E.) < M < co

j=1
]

CD

implying U j=1 FJC C D .

i) implies ii). (Proof due to Hartogs). Since A(z) is continuous,

-log G(z) is continuous. In fact -log Li(z) satisfies a Lipschitz condition on

compact subsets of D. To prove that -log A(z) is plurisubharmonic in D, it

is sufficient to show plurisubharmonicity at a point z0 a D. Thus we must show

that, for the set of points z = z0 + Kz1 where z0 and zl are arbitrary points of D

and Cn respectively, and E C is sufficiently small, -log A(z0 + $z1) = 0) is

subharmonic as a function of C. For I I zl I I small enough in the norm used to

measure A(z), z e D for I K I < 1. Furthermore, /i(5) is subharmonic if it sat-

isfies the mean value property of subharmonic functions, and it is enough to

show this for , = 0; i. e. to show that

(!) ,(0)< 1

2a

21

JG(eie) dO

0

Let g(p) = h(5) + ih*(K), with h a real-valued function such that

h(eiU ii(eie ), g holomorphic for I t I < 1, and continuous for I K I < 1. We

claim that such a function exists. Firstly, the continuity of ' implies the

existence of a harmonic function h, in I 1 < 1, equal to on I K I = 1. Thus

h is defined and is continuous on the closed unit disc. Secondly, take h* to be

some conjugate function to h. Since g is now defined and holomorphic, and its

real part satisfies a Lipschitz condition on I K I = 1, its imaginary part satisfies

a Holder condition. Hence h* is continuous on I5I = I.

Next, let b be any vector in Cn with I I b I I = 1, and let , 0 satisfy

0 < A0 < 1 . Consider the analytic disc in 0 n
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E(X ): t- z0 + C zI + ? e-g(C )b, for ICI < 1 and X fixed 0< a < 4
0.

(1) E(0)C D. This is obvious.

(2) If p e E(A) and X - X, then there exist p. a I(X .) such that pr-p.

(Namely, p1 = z0 + 50z1 + e-g(CO)b where
C0

is the preimage of p.) ,

(3) U DE(X)C(=D.
0<X<A- - 0

(For if z e 8E(X) then

IIz-(z 0+ei8z1)Il < X e-h(eic) < A0elogA(zo eiezl) = k o(z0+eiezl) and hence
(3) holds.

(4) S = LX jo<x< A 0 and E(X ) C DI is open in the space A = [0,A 0j.

(5) S is closed in A.

(This follows from (2), (3), and the Kontinuitatssatz. )

(6) S is the set [O, X 0j.

(From (1), (4), and (a), S =A.)

Hence I(A ) C D for 0 < 1; < 1. Consequently,

zo A e-g(0)b E D for 0 < X < 1, in fact for A complex, I.A I < 1; z0 +X e'ae g(0)beD

for 0 « < 1 and a real, since we can incorporate a-ia into b, as
lleiabil

= IIbII = 1. This means that a ball about z
0

of radius
IXe-g(0)I

is

contained in D, and therefore A(z0) > le-9(0)I =
e-h(0.

Hence

-log A(z0) < h(0), but -log A(z0) _ O(0), and since h is harmonic

2n 2a

.(:) 0(0) < h(0) = 2a h(e1G) dC =
27r

S;P(e1p) &C,

0 0

C. Lemma. Let E be an analytic disc in D, DCCC. Then ECbdry E, the

hull of the boundary of E with respect to holomorphic functions.

Proof. Let E be given by the holomorphic mapping :

g:{ICI <1].- D.

For every f holomorphic in D, f(g(C)) is holomorphic and therefore I f (g(C) ) I

assumes its maximum M on {ICI = 1}. Therefore I f(g(C)) I < M for g(C)e 8 E
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implies If(g(C))I < M for g(C) s 7 .

Theorem 9. If D is a region of holomorphy, then D

is pseudoconvex.

Proof. Let 7-jij 1 e a sequence of analytic discs in D;
such that lj j=1 aZ: jccD/

But Jj=1 j U 1 j cc D, as D is a region of0 J=
holomorphy.

00

o
But by the above lemma, Vj_1 jC Joj-1 Z j, hence

00
=1 7-j c- c D. Now apply theorem 8.U j

Theorem 10. Let
Dopenc ¢n4

If, for every C e ZD,

there exists a ball N about C such that N11 D is pseudoconvex,

then D is pseudoconvex.

Proof. Assume that D is bounded. Then aD is compact.

By hypothesis, for C e cD, there is a ball NC,about 1, such

that ND is pseudoconvex. The set Nj is an open covering

of ZD. The compactness of aD implies that a finite number of

the NC cover aD; call them N1,...,Np. If Ni A NjA ZD p 4),

set Qij = N1l1Nj, for each i # j; i,j = 1,2,...,p. In

each choose any ball Bij centered at any point C e (Qij0 )D)

such that BiJ_ Qij . Since there are only a finite number of

sets Qij, there are only finitely many Bij. Let r = min (radius

of Bij). At each point C e D the ball S(C,r) of radius r

centered at C is contained in some Ni, and hence S(C,r)/1D is

pseudoconvex; because S(C,r)(1D = S(C,r)()(Ni(D) and S(1,r)

is pseudoconvex by Cor. 5, p. 16 and Thm. 9.

Now, consider the function 4)(z) = max(-log ., -log A(z)).

We claim that 4)(z) is pseudoconvex. Clearly 4)(z) is continuous.

If A = Lz 10(z) > r/2 3, then for z e A,
$(z) = -log

= constant

and therefore is plurisubharmonic. If B = jz I A(z) < r/2f,

then for z s B, 4)(z) = -logL(z). But for z e B, z c S(C,r) and

0(z) = AD(z) = (z) where K = S(C,r)1 D. Since K is

pseudoconvex, -logA(z) is pseudoconvex. Thus 4)(z) is pseudo-

convex in D. As z approaches the ?CD, 4)(z) becomes infinite.

By part (4) of Theorem 8, D is pseudoconvex.

Now, consider the case when D is unbounded. Set Dj =
D 11 Iz 1 11 z I1<j j. Each D. is a bounded set. If C e ZD then



"35

either (i) a aD and e S.=
Lz

I jizil < jIor (ii) S-e ash
and 3D, or (iii) C e aD and C e 3S3. For case (i), by

hypothesis, there exists an NC about C such that N,j D is

pseudoconvex. For case (ii), since Si is convex, any ball

about C. NC lying in D, satisfies is pseudoconvex.

For case (iii), there exists a ball N(C,r) such that N AD

is pseud6convex. But N /)SJ is also pseudoconvex. Therefore

N A Di is pseudoconvex. Therefore each Di satisfies the

hypothesis of this theorem and is bounded. We have already

shown that therefore Di is pseudoconvex, j = 1,2,... .

Since Djc DJ+l and DJ -> D, D is pseudoconvex (by Cor. 4

of Thm. 3).

Establishing the converse of Theorem 9 is the Levi Problem.

33. Solution of the Levi Problem for tube domains

Definition 27. Let zj = xj + iyj. The set

D = (zl,...,zn) (x1,...,xn) e B 4Rn where B is some

open subset of Rn, is called a tube domain. B is called

the base of the tube domain.

Example. D = (z1,z2) 1

Ix1
< 1, Ix2I < is is a tube

domain. Here, the base B, of D, is the unit square in Tl2.

Theorem 11. Let D be a tube domain with base B.

The following properties are equivalent.

(1) D is pseudoconvex.

(2) Every component of B is convex.

(;) D is a region of holomorphy.

Note. Assuming Theorem 11, (1) implies (z) is the

solution of the Levi Problem for tube domains.

Proof of Theorem 11. (1) implies (2). Let the norm be

the Euclidean norm, and let ad(z) = -log 0(z)). Then (1)

implies that * is pseudoconvex in D, and *(z) = -log AD(xl +

iyl,...,xn + iyn) _ -log AB(xl,...,xn) since D is a tube

domain.
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2

Suppose ;P E C2, then the matrix azJazk is positive definite. But

alai _ 1 a _i a 1 a -i a iji; and since ci is independent of the2j ayj (axk aykazjaik (--
2

y' s. azai 4
i a'

ax a Thus every diagonal element is positive, i. e.
J k J xk

a 2,r

ax.
J

2
> G. This means that w is convex on every straight line segment in B

parallel to a coordinate axis, and since ci is pseudoconvex this property is

invariant under linear transformations. Hence ;P is convex on every straight

line segment in B, and hence inevery component of B. We claim that this

implies that every component Bo of B is convex:

(a) Firstly, we show that if f X v1 is a sequence of straight line seg-

ments in Bo such that Um )L
v

= A and lim aa,, = µ then if µC Bo X C Bo.
V-w v-w

Indeed, since Vi is convex on each straight line segment in Bo, on each X
v

max fi(x) = max fi(x), i. e. max (-log zi (x)) = max (-logo (x) ), or equiva-
xEX xEM xeA B xEax B

V V V v

lently min AB(x) = min AB(x). Since AB(x) is a continuous function, the
XEA XEak

v v
equality holds in the limit min 6B(x) = min AB(x) But u is a closed set

XE1, XEµ

and µC Bo, therefore min AB(x) > 0; hence L C Bo.
XEµ

(b) Now, let x, y c Bo. We must show that the line segment joining

them belongs to Bo. Since Bo is connected, there exists a curve W (t),

0 < t < 1, lying in B
o

, joining x and y; 4(0)=x,+(1)=y. Fort sufficiently
small, the line segment (x, O (t) )CB

0
. As t - 1 there cannot exist a t0 such

that for all t < to the line segment (x,0 (t) ) C B
0

but the segment (x,4(t0))ti B0, because this would violate (a).

Hence B is convex.0-



37

In the case j C2, it suffices to snow that if Bo is any component of

B and if X is a straight line segment in Bo, then max O(x) = max 4i(x), for
xEX xeOX

then the proof follows as above. So, let X be a straight line segment in Bo

Then «C BdomainC CB and the tube domain D over B satisfies DCC D.
o ^

Hence for every c > 0 there is a pseudoconvex function ikE in D such that

10 c in D, depending only on the x' s; as we can define smoothing

functions KE depending only on the x' s in the proof of Proposition 2. As in the

previous case, each is convex on B. and therefore max cli (x)= max W.
XEA XE aA

But, max y(x) < max (x) + E = max y (x) + E < maxo(x) + 2E, similarly
XEA XEA xe aX E

XEOX

max O(X) > max (X) - E = max P (X) - E > max O(x) - 2E. Letting c \/ 0
XEX XEA E XE aA E XEaX

gives the desired equality.

(2) implies (3). Since every component of B is convex, every com-

ponent of D is convex. Hence D is a region of holomorphy.

(3) implies (1) has already been proved.
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Chapter 4. Zeroes of Holomorphic Functions. Meromorphic Functions..

91. Weierstrass Preparation Theorem

A. Definition 24. Let a v

;;;Vines

zll... znn be a formal

series about the origin. (This lis not assumed to be
convergent). Then the order of the series is the least

integer K such that av
v2 v

10, vl+v2+ ... + vn = K.

The series is said to
?;'normalized

with respect to zl

(at the origin) if ord (series) = K and zi occurs with non-zero

coefficient
aKO...0.

Note that the order of a series is invariant under

holomorphic changes of variables, including non-singular

linear changes, which leave the origin fixed

n

ajs zs

det (ads) / 0 ;

Corollary. If av
..v

zli ... znn = f(z) is a

convergent series of order
l,K,

nthen the following are equivalento

1) f is normalized with respect to z1 at the origin

2) (.4 l # 0

3) fK(z1,0,...,0) 0, where fK denotes the partial

sum T-vl+...+vn = K avvn zll... znn of the K th order

homogeneous polynomials in the series f.

Note that 1) and 3) are also equivalent for formal power
v

series. We shall write f(z) _ av ., v zli...znn for the

sake of brevity, for all formal poweriseries. When convergence

is assumed it will be mentioned explicitly.

Property 1. If av ., v zli...znn = f is any power

series, it may be normalized witR respect to zl (at the origin)

by a linear change of variables: zj _ c,sCs, j = 1,...,n;

det (a3s) # 0. s-
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Proof. Let f be of order K. Assume first that f is

convergent. Then n n
f(O = f( a lscs,..., Z a nsCs) ,

and ord f(C) = ord f(z).

f(C1,0,...,O) = f(a llCl,...,anlC,); hence fK(C1,0,...,0)

is non-zero for some choice of the aj1 3 = 1,...,n. We may

complete the matrix (aik) so that det (aik) # 0.

If f(z) is nonconvergent

f= fK+fK+1+fK+2+...

where the f3 are homogeneous polynomials in the zi of order J.

Now, consider fK as above.

Property 2. If ff(j)(z)j is a countable sequence of

power series, they may be simultaneously normalized with

respect to z1 (at the origin) by one non-singular linear

change of variables.

Proof. For each 3,

f(`)) = f K

0
) +

f K0
+ 1

+ ... ; ord f(,)) = K

Consider the spherical hull

( 2jaJl1
= 11.= f (a11,a21,...,anll

(3)
Now fK (zl,...,zn) is a polynomial, and hence vanishes on

a closed nowhere dense subset of 7;-. But the union of

countably many nowhere dense sets is noyhgre dense, so there

exists (all,...,anl) e 2- such that fK ))(allanl) 0
for every J. But we may now complete `)(a11, ...,anl) 0
to a nonsingular matrix.

We have shown that, if we consider countable collections

of power series, and properties invariant under linear trans-

formations, we may assume these series to be normalized with

respect to z1.
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Note the following properties of order:

(f, g denote formal power series)

ord fg = ord f + ord g

ord (f+g) > min(ord f, ord g)

ord f = 0 if and only if f is a unit; i.e.

if and only if there exists a g such thar fg = 1, where

g is a formal power series.

We remark here that the set of formal power series at a

point, as well as the subset of those power series which

converge in some neighborhood of the origin, form commutative

rings with unit. This ring is an integral domain, with units

the series of order zero.

We remark also that the definitions and consequences

stated above may easily be extended to series whose centers

are any point a c Cn

B. Theorem 12. (Weierstrass Preparation Theorem). Let f

be a formal power series, normalized w.r.t. z1, of order K.

Then

f = h(zi +
alzi-l

+ ... + aK)

where h is a unit, al,...,aK power series in z2,...,zn

and are non units; and this representation is unique.

If f is a convergent power series, then h and ai are also.

Note. zK + alzi-1 + ...+aK as above is called a

Weierstrass polynomial.

Proof. We first make a series of remarks:

For K = 0, the theorem is trivial.

For z = z1, the theorem is also clear.

Furthermore, if f = h(zi + a1zK-1 + ... + aK), the a
1

must have no constant term, for

ord f = ord h + ord (zi + alzi-1 + ... + aK)

Therefore

K = ord (zi + alzK-1 + ... + aK)

If ord ai = 0 for some a1,
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ord (z1 + alzi-l + ... + aK) = K - i < K

We now present a proof for the case of formal power series;

this (constructive) proof will give uniqueness in both cases.

However, if f is convergent, the convergence of h and the

ai is more easily shown by a second proof.

f = fK + fK+1 + ... ; f. homogeneous polynomials of

ord where fK = zl + ... .

We wish to construct a power series

= XO + X1 + ... such that

(1) (fK+fK+l+...) (XO+Xl+...) = YK + YK+l + ...

where X0 # 0 , yK = zi + ...
and all other y3 are of order at most K-1 in zl.

From (1), we obtain

fKXO = YK

But fK = zi + ... , yK = zi + ... hence X0 = 1.

Similarly, fKX1 + fK+lX0 =
YK+1

i. e. fK+l
= - fKXl + YK+l

We choose X1 so that YK+1 has order at most K-1 in

zl, as follows: Let fK+l
= a

zvl zvn
vl+...+vri K+1

vl " 'vn 1 n

µ µn
fK = zl + b z

1
1 .z

n
µl+...+µn K µ1...µn

..

µl# K

X1 = c1z1 + c 2 z 2 + ... + cnzn

Take cl = - aK+1 0 0 and

cj = - a K,O,...,1,0,...'0 - bK-1,0,...,1,0,...,0 aK+l,Q..,O

for j > 2; the subscripts 1 appearing in the j th places.

Choose X2, etc., similarly.

Note that we have proven uniqueness for both convergent

and nonconvergent series. We now proceed to the proof for
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the case: f convergent. It is due to Siegel:

As.before, write

f = fK+fK+l+
fK = zl + ...

For IziI < Izll , 3 = 2,...,n

IfK+l + fK+2 +...I
< cllzllK+l + c2Iz1IK+2

+ ...,

which is convergent for Izll < P small.

Therefore
IfK+l + fK+2 + 'I ` 2

Iz1IK
;

IZJI < IZ1i < P < P,

asI< 2 under the above conditions.
zl

Consider fK/zl ; define t = zi /zl , 3 = 2,...,n.

Then fK/zi is a polynomial in the tj ;

fK- = 1 + r
zl

where r is a homogeneous polynomial in the t without a

constant term. Therefore, for It 3I < pl, Ir? < 1/2.

Under these conditions:

f _ fK + (fK+l +
= fK

= 1 +

= 1 +
fK/z1

fK+l+ ... 1

K
1

= l+q ,

where q is a power series in zl and the t3. We restrict

ourselves to the above inequalities; hence

IqI < 1 .

Choosing some determination of log, we obtain:

log
f

= log (1+q)
K

= q - 9.2/2 + q3/3 - q4/4 + ... ,

fK+l+.../z1
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a convergent power series. Substituting, we obtain a convergent

power series in z1,t2,...,tn ; replacing ti by zj/zl we

obtain a power series in z2,...,zn and Laurent series in z1.

Now assume also that Iz11 > e > 0. Hence

log
K

OD 0 w+; v + w

where aV, Pw are power series in z2,...,zn. Therefore

log f - log fK = v + w

i.e. fe-v = fK ew .

But fe v is an analytic function of z1, and e -v is a

unit. Hence fe-v converges in a neighborhood of the origin,

by Abel's theorem. Therefore the series fKew cannot contain

any negative powers of zl; and also no power of zl > K,

and we have obtained a convergent representation

f = ev(fKew)

as claimed, unique by the above.

Corollary 1. Let f be a convergent power aeries, and

assume f vanishes at the origin. Then the set of zeroes

of f in a neighborhood of the origin is of dimension n-1.

Proof. By a linear change of variables, we may assume

f is normalized with respect to z1,

f = h(zi + alz1-1 + ... + aKK

For z21...0zn small and fixed arbitrarily, al,...,aK

are small, and zi + alzi-1 + ... + aK is a complex polynomial,

with K roots (counting multiplicity). Furthermore, these

zeroes are located in a neighborhood of the origin as they

depend continuously on the a1.

Definition 25. Let Sclosed C. Dopen C Cn. Then S

is said to be a (globally defined) analytic hypersurface or

analytic variety of codimension 1, if S is the set of zeroes

of a function f 0, analytic in D.
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Corollary 2. S is locally arcwise connected.

Corollary 3. If n > 1 and f- is holomorphic in D C_ 0n

then the zeroes of f are not isolated.

92. Rings of power series

A. As we have remarked previously, the set of convergent

power series in zl,...,zn at a point forms a ring, as does

the set of formal power series. We shall now state some

algebraic results which will prove useful in the sequel.

Refer to any standard algebra text, e.g. van der Waerden,

Moderne Algebra, for proofs and details.

Definition 26.- Let R be a commutative unitary ring.

R is said to be an integral domain if: a E R, b e R,

ab = 0 implies a = 0 or b = 0. An element a e R is

called a unit if a has an inverse in R. Elements a,b e R

will be called equivalent, written a a b, if a = eb, where

e is a unit. An element a e R is called reducible if

a = be, where b and c are non-units; a is otherwise

called irreducible or prime. R is a unique factorization

domain (U.F.D.) if every element may be written as a product

of primes, unique up to order and equivalence. A subset I

of R is an ideal if a,b E I implies a-b E I, and a e I,

rt E R implies art E I. I is a proper ideal if I # R,

and maximal if it is proper and such that if t is any ideal

satisfying I e 4 e R, then I = or = R. A ring

R is called a local ring if there exists a unique maximal

ideal. R[t] denotes the ring of polynomials with coefficients

in R and R[t] the ring &f power series in t with

coefficients in Let 7- at3c R[t], a a R, t an

indeterminate. aJtj A called primitive if the coefficients

aj of t have r.-?, common factor except units. (Note that

f a R[t] implies f = ag with a E R and g e R[t] and

primitive.) Two polynomials will be called relatively prime

or coprime if they have no common polynomial factor. We use
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the following results.

Lemma a. (Gauss' Lemma) If R is UFD, R[t] is UFD.

Lemma b. Let p,q a R[t] ('R[t]). Then p and q

primitive implies pq primitive.

Lemma c. Let P1,P2 a R[t], R an integral domain.

Pi
= tK + a1tK-1

+ ... + aK

P2 = tL + b1tL-1
+ ... + bL

Then there exists a polynomial r in the coefficients ai,b

called the resultant of P1 and P2, which is zero if and

only if P1 and P2 have a common factor; i.e. if and only

if there exist p,q,s 6 R[t], deg q > 0, such that

P1 = pq, P2 = sq. Furthermore, there exist polynomials A

and B such that AP1 + BP2 = r.

Lemma d. No proper ideal I of a unitary ring R

contains a unit.

Lemma e. R Is a local ring if the nonunits in R form

an ideal.

B. Definition 27. Let do denote the ring of formal

power series at the origin in n complex variables.

Property 1. pn is an integral domain with unit.

Property 2. The nonunits of (9n form an ideal;

hence e9n is a local ring.

Property 3. 0
n

is UFD.

Proof. We use induction on n. For n = 1, units and

elements of order 1 are irreducible. All elements of

order > 1 are reducible, for if ord g = K > 1

g(z) = zKg1(z)

where gl(z) is a unit, and the decomposition is unique.

Hence, assume 0 n-1 is UFD. We may assume f e On is
normalized at the origin. Then:

f = h(zi + alzi-1 + ... + aK) a hp
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where p is a Weierstrass polynomial; i.e. p e n-11zi,

and is monic. Now f is prime in (9_ if and only if p

is prime in
'9n-1[z1J,

for:

Assume p is reducible; i.e..p = p1p2 . We may take

P1'p2
to be Weierstrass polynomials. Hence f = (hpl)p2.

Conversely, assume f is reducible:

f = flf2

(hlpl)(h2p2)

(h1h2)(p1P2)

But p1p2 = p by uniqueness, and h1h2 = h.

But C n-1[zlJ is UFD by assumption and Gauss' lemma.

Now let f e .

n

f = hp .

But P = Pl ... Pr

where the pi are irreducible Weierstrass polynomials. Hence

f = hp1 ... Pr ,

and this decomposition is unique up to order and equivalence,

for if
f = ti ... ti ,

ti = hi ri ,

by the Weierstrass Theorem and then

rl .., ri = PI ... Pr

by uniqueness. Hence as

0n-l[ zlI
is UFD.

Definition 28. Two holomorphic functions are said to

be relatively prime or coprime at a point if their power

series expansions at that point have no common irreducible

factor other than a unit.

Lemma f. Let f,g be holomorphic functions in D,

0 e D C 0, n > 1 coprime at the origin, such thatn
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f(O) = g(O) = 0. Then in any neighborhood of the origin,

there exist points at which f vanishes and g does not,

and points at which g vanishes and f does not.

Proof. We may assume f and g are Weierstrass

polynomials

f = Z
-1 + ... + aK

g = zL + blzL-1 + ... + bL

Suppose there exist no such points. Let r(ai,b be the

resultant of f and g.

r(ai,bi) c On-1

For each z2,...,zn in a neighborhood of the origin, there

exist z1 such that f and g vanish simultaneously. But

if f and g have a common zero viewed as polynomials in

one variable, then f,g have a common factor. Hence r(ai,b

is zero for each z2,...,zn. But r is analytic, and hence

r = 0 near the origin, implies f,g have a common factor

as polynomials in 0
Lemma g. Let f,g be holomorphic functions coprime at

the origin. They they are also coprime in some neighborhood

of the origin.

Proof. Let f = up

g = vq

where p,q are Weierstrass polynomials, and let

r = Ap + Bq

be the resultant of p and q. Let N be a neighborhood of

the origin so small that u,p,v,q,A and B are convergent.

Let a = (al.....,an) E N. To show f,g are coprime at a,

it suffices to show p,q are coprime. The equation

r = Ap + Bq

persists where r,A,p,B and q are viewed as series about a,

i.e. as series in Ci, where
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Then

(i = zi - ai .
p = C1 + :..

q = CL

i
+ ... .

Now assume p and q have a common factor h 'tat all,

h e c But p,q are primitive in Cl; hence h

is also.

h = ho + hlC1 + ...

where hi 6 nl. But h divides r. Therefore

r = hkA

A e n-1 and k a primitive power series in Cl,

k e 0n-1[ c1]
k = ko + klCl + ...

By comparing coefficients

r = hokoA , a relation in
-1

Hence A divides r, and

r
= hk.

But h and k are primitive, hence hk is primitive,

hence hoo must be a unit, i.e. hk is a unit, implying that

h is a unit. Thus p and q are coprime at a.

§ 3. Meromorphic functions

Let x e Dopen C
fin, and consider functions which

are each defined in some neighborhood of x in D. Call

two such functions equivalent if they coincide on a neighbor-

hood of x. This defines an equivalence relation, and the

equivalence class of a function f at x, denoted by [f]x,

is called the germ of f at x.

If f is a holomorphic function, then [f] x amounts to

a convergent power series.

Germs at x form a ring with the obvious definition of
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addition and multiplication.

The ring 0x of germs of holomorphic functions is a

commutative integral domain with identity and unique factori-

zation. Topologize the space, of germs Q = (J 0x by

defining the following basis for the open BAR Let k e

then k e and so k = [f]X0 , where f is defined

in an e-neighborhood
Nxo

of xo in D. At each y e Nxo,

take that class in Oy containing the direct analytic

continuation of f, i.e. take If]
Y'

Then define

U [f] to be an open set and the collection of such

yeNxo y
sets to be the basis of open sets.

A holomorphic function f in D amounts to a

continuous mapping, f : D -> 0 which assigns to each

point in D a holomorphic germ over that point.

Now form the quotient field Mx of 0 for each

x e D. Topologize M = (J M. as follows: Let 2 c M,

then 2 E Mxo, 14-11x wandand is represented by [fl] o/[f2]xo

where fl and f2 are Riolomorphic functions at xo, and

because of unique factorization we may take fl and f2

to be coprime at xo. Let Nxo be a neighborhood of x
0

in which f1 and f2 are defined and are still coprime.

At each y e Nx , take that class in My represented by

[fl]y/[f2]y. The union over Nx of these classes we

define as an open set and the collection of all such sets

we take as the basis for the topology.

The elements of Mx are called germs of meromorphic

functions over x.

Definition 29. A meromorphic function in D is a

continuous mapping which assigns to each point of D a

meromorphic germ over that point.

Meromorphic functions form a field.

At a point z
0

a D, a meromorphic function g is

efined by the quotient of two functions fl,f2 coprime
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and holomorphic at z0.

a) If f2(zo) / 0, i.e. f2 is a unit, then fl/f2

is holomorphic there and hence g is holomorphic at zo

and therefore in a neighborhood of z0. z
0

is called a

regular point of g.

b) If f2(zo) = 0 and fl(zo) 0, then g is

said to have a pole at z0.

c) If f2(z0) = 0 and fl(zo) = 0, then zo is

called a point of indeterminacy of g. The set of such

points has topological dimension 2n-4.

Corollary 1. The set of regular points of g is open,

and gIregular pts
is holomorphic.

Corollary 2. If z
0

is a pole of g, then there

exists a neighborhood N of z
0

in which every point is a

pole or a regular point. Furthermore, g has no isolated

poles (n > 1), and, for each number M > 0 there exists

a neighborhood NM of zo in which IgI > M.

Corollary 3. A point of indeterminacy is a limit

point of zeroes and poles of g.

Exercise. A point of indeterminacy of g is a limit

point of zeroes of g - a, where a is any complex number.

Poincare's Problem

1) Weak form: Given a domain D, is every function

meromorphic in D a quotient of two functions holomorphic

in D?

2) Strong. form: Given a domain D, g meromorphic

in D, is g the quotient of two functions holomorphic in

D and coprime at every point?

§4. Removable singularities

In this section we shall state three theorems. The

first, Rado's theorem, facilitates the proof of the first

theorem on removable singularities which is a direct

generalization of the Riemann theorem in one complex variable.
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A second theorem on removable singularities will be stated

but not proven.

Theorem 13 (RadS). Let f(z1,...,z
n

) be continuous in
Dopen c-

Cn and holomorphic in (D- jz1f(z) = 03 ). Then

f is holomorphic in D.

Proof (Heinz). A function of n variables is holomorphic

if and only if it is holomorphic in each variable separately.

It is sufficient to prove the theorem for functions of one

variable.

If D' is any open disc whose closure is contained in

D C 0n, we must prove that f(z) is holomorphic in D'.

Without loss of generality, assume that D' is the unit disc

(IzI<1). Let r = (Izh=1) and A = (fzIf(z)=0}0 D').
Since f(z) is continuous in (D'U1), it is bounded

there, and we may assume If(z)I < 1 in (D' -) r

By hypothesis, f(z) is holomorphic in (D'-A).

Construct a complex-valued harmonic function g(z) in

D' such that g(z) = f(z) on r. Then, consider the

following functions for z e (D'-A) and a > 0

l(z) = Re [f(z)-g(z)] + a log If(z)I

Yz) = Re [f(z)-g(z)] - a log If(z)I

W z) = Im [f(z)-g(z)] + a log If(z)I

(z) = Im [f(z)-g(z)] - a log If(z)I

Note that for z s (D'-A), a log If(z)I < 0. Now, as

z -> 3(D'-A), which consists of Tr and points where

f = 0, either

(i) z -> zo e (a(D'-A) /1 r) and then [f(z)-g(z)]-> 0

or (ii) z -> zo E (a(D'-A) /1 A ) and then [f(z)-g(z)]

remains bounded and log If(z)I -> - oo . In either event,

1(z) and 43(z) -> negative numbers while 42(z) and

(z) -> positive numbers. But, since the i are harmonic

in (D'-A), they assume both their maximum and their minimum
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on 6(D'-A). Hence, 41(z) and 43(z) are negative, and

Yz) and 44(z) are positive for all z e el(Di-A).

Let a -> 0, then

41(z) -> Re [f(z)-g(z)] which implies

Yz) -.Re [f(z)-g(z)] which implies

43(z) -> Im [f(z)-g(z)] which implies

dk(z) -> Im [f(z)-g(z)] which implies

Re [f(z)-g(z)j 0

Re [f(z)-g(z)] > 0

Im [f(z)-g(z)] 4 0

Im [f(z)-g(z)] > 0

for all z e cl(D'-A). Therefore f(z) = g(z) for all

z e (cl(D'-A) or)
-

Since aA consists of points of r and

points of cl(D'-A), f(z) = g(z) for z e A. In any

component of the interior of Q, f a 0 and thus g s 0.

Therefore f(z) = g(z) in (D' t) r), which means that

f is harmonic in D'. Thus f has continuous first order

partial derivatives. f satisfies the Cauchy-Riemann

equations in D-A, hence by continuity, on a0 and on r.

In the interior of A, f = 0 and therefore satisfies the

equations in A. Hence f satisfies the Cauchy-Riemann

equations in D' and is therefore holomorphic in D1.

Theorem 14. Let Dopen r_ 0n, and let g 0 be

holomorphic in D. Let f be holomorphie and bounded in

D - zjg(z)= 0J . Then f is holomorphic in D.

Proof. Consider the function

h =

gf if g/0
0 if g=0

Then h is continuous as f is bounded, and holomorphic

where it is not zero. By Radb's theorem, h is holomorphic.

But g is holomorphic by assumption; hence

f = h

g

is meromorphic. But f is bounded, thus without poles,

thus holomorphic.
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Theorem 15. Let
Dopen C an;

g,h holomorphic in D,

not identically zero and relatively prime at every point of

D. Let f be holomorphic in the set D - [zJg(z) = h(z) = 01.

Then f is holomorphic in D.

Theorem 16. Let
Ddomain C 0n

and let g $ 0 be

holomorphic in D. Then (D - {zlg(z) = 03) is connected.

Proof. Let S = (D - zlg(z) = 03). Suppose that S

is not connected, then S = U U V where U and V are open,

disjoint sets. Define a function h
='1 in U

h isZO in V
holomorphic where g # 0, and is bounded; therefore h is

holomorphic in D. This is impossible since it implies that

h is identically 1 in D.

5. Complex manifolds

Remark. From now on, "differentiable" means "Cco"

Definition 30. X is a (differentiable) manifold of
complex

real
complex) dimension r, if the following conditions are

satisfied:

(1) X is a Hausdorff space.

(2) Given an open set in X and a function defined in

it, it is possible to say whether or not this function is
,differentiable

` holomorphic
(3) There exist coordinates: every point in X has

a neighborhood where r (real, differentiable) functions
complex, holomorphic

are defined such that they give a homeomorphism of this

( Rr), and every functionneighborhood onto a domain in

Cdefined in this neighborhood is (differentiable) if
holomorphic

and only if it I. (differentiable as a function of xl,...,xr
holomorphic in each variable of zl,...,zr

The coordinates are called local coordinates and such a

neighborhood is called a coordinate patch.

(4) There is a countable basis for the open sets of X,

i.e. X is second countable.

Remarks. On a complex manifold we may talk about

holomorphic and meromorphic functions; on a differentiable
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manifold, about differentiable functions.

A connected 1-dimensional complex manifold is called a

Riemann surface.

Every complex manifold is a differentiable manifold.

Therefore it is natural to ask on which differentiable

manifolds we can introduce the concept of holomorphic functions:

that is, which differentiable manifolds can be given a complex

structure. Necessary conditions are that the differentiable

manifold be orientable and of even dimension, r = 2n.

If n = 1, these conditions are also sufficient; however,

if n > 1, they are not. In fact, in the latter case,

necessary and sufficient conditions are not known.

There are other differences between the cases n = 1

and n > l:

(i) When n = 1, axiom (4) in definition 30 is

unnecessary as it follows from axioms (1), (2), and (3).

When n > 1, axiom (4) is essential.

(ii) If n = 1 and X is compact, there exist non-

constant meromorphic functions on X (i.e. on every closed

Riemann surface there exist non-constant meromorphic functions).

However, when n > 1, there are compact complex manifolds

having no non-constant meromorphic functions.

(iii) If n = 1 and X is not compact, there exist

non-constant holomorphic functions (i.e. on every open

Riemann surface), while if n > l this is not necessarily so.

For example, let Y be a compact connected complex

manifold of dimension n > 1, then X = (Y-ZpS) is not

compact and if there existed a non-constant holomorphic

function on X, it would be holomorphic also at p (by

Hartogs' Theorem), and it would be constant (by the maximum

modulus theorem).

Examples of Complex Manifolds.

1) 0n

2) Any open subset of a complex manifold.

3) If X and Y are complex manifolds then X x Y is
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a complex manifold, where a function f is holomorphic in

X k Y if it is holomorphic in X and holomorphic in Y.

4) The complex projective space

Pn(M) _ [(zo,zl,...,zn)]Izi are not all zero}-,

where [(z0 ...,z )] denotes the equivalence class of points

(zQ,...,z) Cn+ , where two points (CO,...,Cn) and

(CO' " ''Cn)
are equivalent if and only if there is a

t # 0 such that Ci = tCj, j = 0,1,...,n, with local

coordinates in a neighborhood of (z0,...,zn) where zi 0

for some i, 0 < I < n, being z0/zi'
.. -'zi-1/zi' zi+1/Zi,

..., zn/zi, is a complex manifold. On this manifold

there exist meromorphic functions; the ratio of two homogeneous

polynomials of the same degree is such.

5) The special case of 4, Pi(10) = Riemann sphere =

fC

6) Starting with a complex manifold of dimension n > 1,

omitting a single point, and imbedding P1(C), we will obtain

a new complex manifold. This procedure is known as the

e~- process. We do this for n = 2, starting with C2

First we define the space X to consist of two types

of points:

I = L(zl'z2) I
(zl,z2) E C2 and (z1,z2) / (0,O)}

II =

X =

i ((Cl,C2)]

I VII .
I (Cl' 2)E C2 and (Cl1C2) / (0,O)j.

Secondly, we make X Into a Hausdorff space by defining

the following basis of open sets:

A neighborhood of a point p E I shall be a neighborhood

in the ordinary topology- of C2 such that its closure does

not contain (0,0).

A neighborhood of a point p c II, p= ((C1'C2)]'

and say Cl / 0, shall be the set of points; [(1,C)] s II

satisfying it - C2/Cll < E, and (zl,z2) E I satisfying
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zl / 0, Izl) < E , 1z21 < E and Iz2/zl - C2/Clj < E,

for some E > 0.

Thirdly, we define local coordinates.. Near a point

of I, take z1 and z2 as coordinates. Near a point

[(C11C2)] of II, where say C. # 0 and hence

[(Cl,C2)] = [(C1/C2,l)] _ [(c0,1)] say, take as local

coordinates t and T

zl = (l+t)T Co

z2 = T

C1 = (1+t) to

C2 = 1 .

On this new manifold X, the following holds: every

holomorphic function on X is constant on II. For if f

is holomorphic on X, it is holomorphic on X-P1(C) = C2-10J.

By Hartogs' Theorem, f is also holomorphic at the origin

(0,0). Therefore f approaches some complex number, a,

as its argument goes to the origin. Hence near every point

of P1(0), the value of f is close to a. Thus f = a

on every point of P1(C), but then f must be identically

a on II.

7) A globally presented, regularly imbedded analytic

subvariety Y, of codimension r in an n-dimensional

complex manifold X is defined as follows:

Let fl,...,fr be holomorphic functions defined on X,

such that, for every x e X at which fl(x) _ ... = fr(x)= 0,

the rank of the Jacobian matrix

=J
CZ7

is r, i.e. J is of maximal rank. The derivatives afi/azj

are to be understood in the following way: Let N be a
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coordinate patch containing x, and let 3 : N -> 9"

define the local coordinates

_ (zl,...,zn)

of of 1-1 (z1,...,z n)
1 .3Then i z

Then Y, as a subset of X, is defined as:

Y = j x I f1(x) = ... = fr(x) = 0

Note that Y is closed in X, and that axioms 1, 2 and 4

are clearly satisfied. We now define the local coordinates

in Y.

Let y e Y, with local coordinates I(y) =(zl(y),...,zn(y)

defined in a neighborhood N of y, where N G X, Assume

that, at y, det (6fi/azj) = det A / 0, j = 1,...,r by

relabeling the zi if necessary. Define new coordinates

Cl = fl(zl,...,zn)

r = fr(zl,...,zn)

Cr+l = zr+l

Cn = Zn

Then the transformation taking z to 1 is given by the

square matrix;

1 0

0

which is nonsingular as det A / 0. Then the local coordinates
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in Y are (C r+lP...ACn). as Cl = ... = Cr = 0 on Y.

Note. This example exhibits the technique by which

statements in en that are local, i.e. refer to some neighbor-

hood of a point, are transformed into statements about analytic

manifolds X of dimension n. Hence, when proving results

about manifolds, we shall sometimes assume X C_ In. The

modification of notation needed for arbitrary manifolds will

be left to the reader.

Note. A regularly imbedded globally presented analytic

subvariety of codimension 1 is called a hypersurface.

8)_ A regularly imbedded analytic subvariety Y of

codimension r is a closed subset of X such that every

point of Y has a neighborhood N in X such that

Y /1 N is a globally presented regularly imbedded analytic

subvariety of codimension r in N.



59

Chapter 5. The Additive Cousin Problem

91. The Additive Problem, formulated

A. This "first" Cousin problem (there is a second one) is

a direct generalization of the Mittag-Leffler problem in'one

complex variable:

Given a domain D, a discrete set of points av a D,

and polynomials Pv(z a ), without constant term, find

a function f, in D, with singular part

PV at av.

As we know, this problem is solvable for all domains D C. C.

The Additive Cousin Problem is as follows (we shall denote it

by "Cousin I", or simply C.I in the sequel):

C.I Let X be a complex manifold, and U = ui, i e I

be a given open covering of X, I some index set. Let

meromorphic functions Pi defined in ui, be given, such

that Fi-F3 is holomorphic in ui/)uJ. Find a function F,

meromorphic and defined on X, such that F-Fi is holomorphic

in u1.

This problem is not always solvable, as seen from the

following theorems:

Theorem 17. Extension Theorem (Oka). Let X be a

complex manifold such that the Cousin problem is always

solvable. Let Y be a globally presented regularly imbedded

analytic hypersurface of codimension 1. Then extension from

Y is always possible, i.e. given 4, holomorphic on Y.

there exists 1, holomorphic on X, such that $ = I on.Y.

Assuming this theorem for the moment, we exhibit the

following application:

Theorem 18 (Cartan). Let X C 92, open, such that the

Cousin problem is always solvable in X. Then X is a

region of holomorphy.

Proof. We may assume that X is a domain, that 0 e X,

and that X C2, as we already know that every Cn is a

domain of holomorphy. Hence, assume b c bdry X; b = (bl,b2)
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where b1,b2 are fixed complex numbers. Then if

f(z) = b2z1-b1z2. f(z) = 0 is an analytic plane through

0 and b. Let Y = fzjf(z) = 0} . Now Y1 = Y/IX is an

open set in C; hence Y1 is a region of holomorphy.

Therefore there exists a function 4>, holomorphic in Y

and singular at b. But by the extension theorem, there

exists a 1, holomorphic in X such that _ 4) on Y1,

and I is singular at b.

B. Proof of the Extension Theorem

Let Y = {f = 01 ; and let 4 be holomorphic in Y.

There exists a covering U = luije X of Y such that Y G .ui;

and in each ui there exists ai such that Ii is

holomorphic in ui and equal to 4> on Y /)ui, by

definition of holomorphicity on closed sets (see proof of

Lemma p. 74). Let u0 = X - Y, an open set in X.

Define: Fi = J1/f , i / 0

FO = 1 .

This covering and set of associated functions defines a

Cousin problem, for, on u
0

() ui, FO F1 is holomorphic.

Indeed, on ui 0 UP Fi-Fj is holomorphic except possibly

for points on Y. Hence, assume f(z0) = 0, z0 a ui /) u3.

Introduce local coordinates (C1,..,,Cn) such that f = C1.

But now,

1i(O$C21...PCn) - '$ J(O)'C20 ...,Cn) = 0 ,

as andand jj agree on Y, and
i(Cl,...,Cn) .X (Cl,." ,Cn)

Fi-Fi _

But in the power series expansion ofi ]V only terms

containing powers of Cl appear; hence F1-F5 is holomorphic

in ui (\ u3.

By hypothesis, there exists F, meromgrphic in X,

such that gi = F-F1 is holomorphic in u1. We claim that

I = fF is holomorphic in X and equal to 4)
on Y.



61

Clearly, I is holomorphic on 0 = X - Y. Consider F

on u1, i # 0;

F = gi +
y1

, and gi is holomorphic.

Hence, = fgi + Ji in ui, and on Y n ui,

2. Reformulation of the Cousin Problem

C.I'. (Cousin problem belonging to the covering U).

Given X, an analytic manifold of dimension n, covering

U = {u15 and holomorphic functions
fi3

defined in ui /f u,

satisfying

fA = - fij (antisymmetry)

f ij + f jk + fki = 0 (compatibility),

find holomorphic fi, defined in u1, such that

fib = fi f,.

Claim. C.I' implies C.I.

Proof. Assume C.I is given, and let fi3 = F1-F3,

where the F1 are meromorphic functions defined In u1.

Then the
fij

are holomorphic and satisfy the symmetry

and compatibility conditions. Let fi be the solution

functions of C.I', and define F = Fi ft in ui. Then

F is globally well-defined, for in ui /I u3

Fi - F3 =
fiJ

= fi - fi

hence F1 - fi = F3 - fi

and F solves C.I.

Induced Cousin Problem. Let U = Iuj3, i e i

V = i E I be two coverings of X, and assume that

V is a refinement of U (i.e. every vi is contained

in some u3), and let a Cousin problem belonging to the

covering U be given. We induce a Cousin problem belonging

to V as follows:



Let C- be an "affinity" function from I to J such

that viC uIn vi nvj, assign fii = fa (i)01- (f)
Clearly, the

f1
are antisymmetric and satisfy the

compatibility condition.

We now reformulate the Cousin problem a secoi}d time:

C.V. Let a Cousin problem belonging to the covering

U be given. Find a refinement V of U such that the

induced problem is solvable with respect to V. (We shall

show later that the choice of the affinity function is

immaterial.)

Claim. C.I" implies C.I.

Let U = tuii be a given covering, with associated

meromorphic functions Fi. As before, define fij = Fi-Fi.

Let V = {vij, with associated
gij

be the solvable induced

Cousin problem, with affinity function o":

viC- U.(i) ,

gi,j fa (i)0-(j)
Let gi be the solution functions. Define

F F.(1) - gi
in vi

Then F is globally well defined and solves C.I, for

Fcr (i) - For, 0) fcraw(j) = gii = gi-g j.

Furthermore, F-F1 is holomorphic in u1, for, let x c u1.

Then there exists a vj containing x, and consider:

F-F1 = F-F6 (,)) + F6 (j) - Fi
= - gj + f6. (3) i ,

defined and holomorphic in v j n u_(3) Cl ui = v j iI ui,
and x e vj /1u1.

Remark. We may now consider the Cousin problem for

locally finite coverings only (i.e., for coverings such that
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every point of X has a neighborhood which intersects only

a finite subcollection of the cover),'by virtue of the

following observations:

i) (Paracompactness). In any manifold every covering

has a locally finite refinement by open sets each relatively

compadt in some open set of the origin covering and some

coordinate patch (see de Rham, Varietes Differentiables).

ii) C.I" implies C.I.

03. Reduction of the Cousin Problem to non-homogeneous

Cauchy-Riemann equations

A. Intermediate Problem. Given a complex manifold X,

locally finite open covering U = ui , and holomorphic

functions fij defined in u1 /1 UP antisymmetric and

satisfying the compatibility condition, find functions gi,

defined in ui, such that fii = gi - gj where the gi a COD

Proposition 1. The Intermediate Problem is always

solvable. The proof of this proposition will be presented

subsequently (p. 64).

Let the functions aV, v = 1,...,n be defined on X

as follows:

av = - in ui ; v = 1,...,n.
azv

We claim the aV are globally well defined, i.e.,

agi 0 in ui /I uJ.
V

a2V

But this is clear, for g3-gi = fji and fji is holomorphic

there: Furthermore, the aV satisfy the following

compatibility- ;ondition:

aaV aaµ

azIi azv

and this is clear. Now we can state the final form of C.I:
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Final Problem. Find a function A e Cm , defined on

X, such that aA/a'zv = av, v = 1,...,n; where the av

are as above.

More precisely, given a complex manifold X of dimension

n and COD functions av, v = 1,...,n; defined on X and

satisfying the compatibility conditions

aav 4
3 µ,v = 1,...,n

aZu - aiv

find a function A, defined on X, such that aA/azv = av,

v = 1,...,n.

Note. These differential equations are known as

non-homogeneous Cauchy-Riemann equations.

Proposition 2. The final problem implies C.I.

Proof. Assume there exists a function A, defined as

above. Set fi = gi-A, defined in ui, where the gi a
C00

are given by Proposition 1. Note that

afi agi
aA

azv azv a"zv

0

i.e. the fi are holomorphic. But fi-fi = gi-gj = fib.

Definition 31. Let X be a differentiable manifold,

U = i ui a locally finite open covering. Then a partition

of unity subordinated to the covering U is a system of

functions wj, defined on X, positive and COD, such that

w 0 on X - u

wj = 1 at each point of X

Proposition 3. Given any manifold X and locally finite

open covering U, there exists a partition of unity

subordinated to the covering U.

Proof. Note that, if V is a refinement of U, and

if there exists a partition wi for V, we may define a

partition wi of U as follows: Let a,* be an affinity

function, as before (vi G ud(i)). Now set
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wi on vi
0 otherwise

For those ui not as yet included, define wj = 0.

Let U be given. By Remark i), p. 63, U has a

locally finite refinement V = (v1 such that vi cc
some coordinate patch Pi. Since :X is paracompact and

Hausdorff it is normal, so that there is a locally finite

open covering V' such that vi C-Cvi. For each i,
I

let fi be a diffeomorphism of Pi into IRn. Let s = f(vi)

and si = f(vi); then siopence sopen.
In jRn there are

Coo functions IRn -> [0,1] satisfying *1 = 1 on

Cl si and = 0 outside .. Let iii- f = 91, and set

(DI

B. Proof of Proposition 1.

Let w be a fixed partition of unity subordinate

to U = Lui . Set gj = wi fi, in uj, where this

sum is understood as foll for x e uj, wi(x) = 0

unless x e ui 11uj. When cai(x) = 0, set wifi = 0.

When 0),(x) # 0, fij is defined. Note that witx) = 0

for all but a finite number of indices i.

The gj solve the intermediate problem, for

gi - gj _ wk fik - wk f j k

wk (fik+ fkj)

_ wk (fij) =
fii

Hence, we have reduced the Additive Cousin problem to an

existence theorem for the nonhomogeneous Cauchy-Riemann

equations. We shall exhibit a solution for a polydise

shortly.

Example. Let X be a simply connected differentiable

manifold, U = L ui a locally finite open covering. We pose

a "Cousin Problem" as follows:

To each ui /1 ui let there be assigned a complex
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number
fi3

such that fii = - fji and
fi3

+ fjk + fki = 0.

Then, find constants fi such that fi3 = fi-f3.

Let gi be the solutions of the intermediate problem;

fi, - gi gj; where gi is defined in ui and gi a C°D .

Define:
agi

a
av

=
c

in ui; V = 1,...,n.
v

Then the av are defined globally, as before, and

aaµ/axv. The final problem becomes: Find a

function A such that

T = av , v = 1,...,n.
V

Such a function exists, by Stokes' theorem. Set

fi = gi - A .

The fi are constants, as afi/axv = 0, v = 1,...,n.

Exercise. Prove the converse of the above example,

in the following form:

Let X be a domain in [Rn. Then C.I solvable implies

that every curl-free vector field is a gradient.

Theorem 19. Let D = (z1,...,zn) I Iz3I < R3 < IODJ,

If aj(z1,...,zn) are defined and Cco in D, 3 = 1,...,n,

and satisfy aaJ/az-k = aak/azJ then there is a Cco

function $ in D such that 4/azi = ai for 3 = 1,...,n.

Proof. 1. Let DO = L(zl,...,zn) I IziI < r3 < oo}ce-D.

Then the a3 are defined and Ca) in a neighborhood of DO.

We claim that there exists a 4 defined and C°D in perhaps

a smaller neighborhood of DO satisfying a+/6E ail

3 = 1,...,n. The proof is by induction on k, where we

assume a3 M. 0 for 3 > k. For k = 0, the problem is

reduced to solving the system of homogeneous Cauchy-Riemann

equations, a4/az3 = 0, of which 4 = 0 is a solution.

Assume that the problem can be solved for k = 1-1, and

consider the case k = 1. Choose e > 0 sufficiently small,

and for C = e + ii1 and (z1,...,zn) in an e1 neighborhood

of DO, N(e1,DO), el < e, define
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l
a2(zl,...,zg

w(zl,...,zn) _ - n JJ z
dt dq

Id-ree

w(zl,...,zn) is then defined and C0D in all variables in

N(e1,D0) and satisfies aw/a-zI = of and cb/azj = 0 for

j > 1, by the compatibility conditions a2/z3 = aaj/azk.

The system

(1) =a,, j 0, j = 1+1,...,n;
aZj aZj

is then equivalent to the system

azj j aZj aZj

but since aw/azA = a2, (2) is actually

(21)
a( -W)

= aj
aZj aZj aZj

Now (aj- aw/azj) a Coo in N(e1,D0) and satisfies the

compatibility conditions since a/azk(aI- aw/azj) =

aaj/azk - a/azk(aw/a"zj) = aak/azj - a/azj(&U/azk) =

a/azj(ak aw/azk). Hence, by our induction hypothesis, (21)

has a CcP solution and therefore (1) has a CO solution

in a neighborhood of D0.

2. Construct open polydiscs Dj c. C. Dj+l whose union

is D. By 1., there exist functions +1' 2,... such that

+j a COD on Dj and a+j/azk = ak for k = 1,...,n and

(zl,...Izn c Dj. Choose Ej > 0 such that 5- Ej < eo

If the satisfied I4j+i-+jl < Ej in Dj then

lim $ would exist uniformly on compact subsets of D,
00J->

ince j+p < Ej + Ej+l ... + Ej+p <' Ek in Dj

and for j sufficiently large 5 Ek is the ta'i1 end of a

convergent series. Moreover, for k fixed, (+ k) is

holomorphic on Dk for j > k since 0 on

Dk, i = 1,...,n. Therefore since the sequence f(+j-Yl ,
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3 > k would converge uniformly to ("k), all derivatives

would also converge, so that 4) would be C00 and would

satisfy the differential equations. a4/azk = ak in D.

So the next step is to construction new j' s,
43,

which

are also solutions of the differential equations and satisfy

1+3+1-431 , 63 on D3. Let +1 Let 2 = +2 - hl,

where h1 is a polynomial. h1 must satisfy
1($2-$l )-hl1`E1

on D1. But on Dl
, $2-$l

is holomorphic and hence has a

power series representation which an be approximated as closely

as desired by a polynomial. Let` 43 = $ h2, etc. Since the
3

polynomials are holomorphic, 3/^zk = a4 /azk = ak,

k on n3, and ^I4j+ l < e3 on D3 by

construction. Hence lim = is a CW solution of

a+/azk = ak in D. 3 -'OD

Note. If X and Y are homeomorphic manifolds and

the Cousin Problem is solvable in X then it is solvable

in Y. Thus by the previous theorem, the Cousin Problem

is solvable in any domain which is the product of simply

connected domains in R.
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Chapter 6. Cohomology

1. Cohomology of a complex manifold with

holomorphic functions as coefficients

Let X be a complex manifold and U = £u13, i e I,

be a fixed open covering of X. (We always assume that

ui i ui for i # J.),

A. Definition 32. An r-cochain J on U is a rule which

assigns to every ordered intersection of (r+l) sets,

uio n ... n uir , a holomorphic function fio ...ir (z)

defined in this intersection such that

1. (a) when the ii are distinct and nui

fio...ir(z) is a function holomorphic in nuij.

(b) when the ii are either nondistinct or

n uij
fio...ir(z) = 0.

2. { (odd permutation of (io...ir))= - (io...ir

5 (even permutation of (io...ir))= f (io...ir).

Examples.

1. A 0-cochain is a rule S which assigns to every

ui e U a holomorphic function fi(z) defined in u1.

2. A 1-cochain is a rule f which assigns to every

ordered intersection ui (luJ, a holomorphic function

fij(z) defined in ui n ui such that fi,(z) a 0 if

i = j or ui n u3 = 4, fij = - f3i.

Cochains of the same dimension form an Abelian group

under addition, Cr = Cr(X,U, 0), where 0 refers to

holomorphic functions. This group is also a vector space

over C and a module over holomorphic functions on X.

Definition 33. The coboundary operator, 5, is a

linear mapping of Cr into Cr+l (and therefore a homomorphisad

of the group Cr) given by

r+l
(65)(i0...ir+l) _ (-1)J + (io...ij...ir+1) for f E Cr,

where i denotes the deletion of iJ.
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Of is called an (r+l)-coboundary. There are no

0-dimensional coboundaries. The coboundaries form an

Abelian group under addition, Br = Br(X,U, (9). This

group is also a vector space and a module, as above.

Definition 34. A cochain is called a cocycle when

its coboundary is 0, i.e. 6f =.0.

Since 6 is a linear map, the sum and difference of two

cocycles is a cocycle, and the cocycles form an Abelian group

Zr = Zr(X,U, (9), a vector space, and a module.

Examples,

1. Z° = tholomorphic functions on X For 0 = (5f) (ij)

J(j) - 5(i) implies that fi(z) = fj(z) on uI A uj, and

hence that the fk are restrictions of holomorphic functions

on X.

2. Z1 = Cousin data. For (61)(ijk) = J-(jk)-Hik)+J(ij)
= 0 implies, since 5(ij) = - c(ji), that J(ij)+

0. Therefore we have fij(z) defined in u1 n uj satisfy-

ing fij(z) + fjk(2) + fki(z) = 0 and fij(z) fji(z).

Corollary. 6 = 0.

Proof
*A

A typical term of (65 S) is

a o...ij...ik...Ir+l). We must show that this term

appears with zero coefficient. If we first delete k and

then j, the coefficient of a is (-1)k(-1)j. But this

term is also obtained by first deleting j and then k,

in which case the coefficient of a is (-1)j(-1)k-1 (since

J < k). Hence the coefficient of a in 66.7 is (-1)k(-1)j +

(-1)j(-1)k-l = 0.

By the corollary, every coboundary is a cocycle. Hence

Br C Zr C Cr. Zr/Br is called the r th cohomology group

= Hr(X,U,(O). Hr is also a vector space over R and a

module over holomorphic functions on X.

H0 = Z° = {holomorphic functions on xJ.

If H1 = 0, then every cocycle is a coboundary which

means that for every fij(z) holomorphic in ui ()uj,
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fij(z) _ - fji(z) and fij(z) + fjk(z) + fki(z) = 0, there

exist functions fi(z) and fj(z), holomorphic in ui and

uj respectively, such that fij(z) = fj(z) - fi(z). In

other words, H = 0 implies that every Cousin Problem is

solvable (for the covering U).

B. Let V = IV
i

, j e J, be a refinement of the covering

U. Then every vj is contained in some ui a U, i c I.

Let o(j) = j be an affinity function which assigns to

each vj one ui which we call u such that vj C u13

We assign to every r-cochain }-in U an r-cochain

in V as follows: (Call this mapping o-*).

Corresponding to every non-empty ordered intersection

or (r+l) sets, 0 vji, there is an ordered intersection

of sets, 0 uJi, and hence an r-cochain j -, defined on

uTi . Assign to i- its restriction on /)vji, and call

it f. Then the holomorphic function which t- assigns to

() vji is the holomorphic function which . assigns to

f u- restricted to
Ji ji

o-*

: Cr(x,U, )) -> Cr(X,V, tip)

Properties.

1. is a homomorphism of the group Cr(X,U, 0 ).

2. 66 * _ or- * 6. For if j e Cr(X,U,)) then

r+l
k

(66 00 ...Jr+1) _

(6 *6f) (jO...Jr+l) =
6

r+l
(-1)k(JO..jk...Jr+l)

r+l
(-1)k

*
I (by 1.)

r+l k
(-1) f-(JO ...jk...jr+l) .

(a) 6 * zr(x,U,()) -> Zr(X,V, D). For if

zr(x,U, (D) then 6f = 0 implies that 0 = v' 5 f=66' fr



72

(b) a-* : Br(X,U, (9) -> Br(x,v, 0) . For if
E Br(X,U,O) then 5F implies that cr f= 6"* 6F = 8F

Note. or, depends on the choice of the affinity function d:

Lemma. If c and r are two affinity functions and
d*

and T are their corresponding mappings of C"(X,U, 0) ->

Cr(X,V,(9), respectively, then there exists a linear mapping,

9 :-C
r(X,U,O)

-> Cr-1(X,V, e), such that for f e Cr(X,U,()

T f - d* = 06? W.-f.

Proof. Define 9 as follows:

r-1 c
(9 f) (io...ir-1) (-1)k T(C- (io)...a' Cr((ik)T(ik)

Now

6(8f) (io...ir) _ (-1)k (Af) (io...ik...ir

k k-1
(-1)2 ((:r (io)...a-

-1

(-1)'2 f(6 (1+l)T(,+l).T(ir))}
r k-1

k+Z
(-1) PT (io)...d (12 W iI)..Tk)..T(ir

r r
(-1)k+2' f(d (io). 6(1k)..6(i21)T(i2,)..T(ir))2+1

and

9(6f)(io...ir) _ (-1)26f(6 (10)..a(i1)T(it)...T(ir)

(-1)k f(6 (io)...ir (ik)..a- (iI)T(if)..T(ir

le-= 1+1
(-1) (O (io)..0 (ip)T(ip)..T

k
(-l)

+
f(6 (io)..o(ik)..6 (i2)T(i2)..T(ir))

.2r - A

r
n(-1) }(C. (io)...o (i2)T(i1)...T(ik,)...T(ir))
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(-1)k.r f(d (io)...6' (ik)...cr' (i2)T(i2)...T(ir))
-1 A

k1 +2 (iA)T(i2)...T(ikt)i..T(ir)) + A

where
r

A = : par- (io)...d (it-1)T(it)...T(ir))

r
- } w (1o)...cf

S(T(i0)...T(ir)) - (cr(io)...d(ir))

= T* ¢(io...1r) - cr * f(i0...1r) ,

and it is clear that he remaining terms cancer, when one

writes the sums r , for example, as
* * Y=T 1O k; =0; I <k

Hence, T - cr = 96 + 69, as claimed.

Corollary. If 61 = 0, 5 a Cr(X,U, T), then
T* 895. Hence if $ is a cocycle on U then

T*f and a'*3 are cohomologous cocyclea on V.

Definition 35. If U1 and U2 are open coverings of

X, and if Hr(X,U1, 0), (i.e.
1

is a cohomology class

Af r-cocycles) and 5 2 6 Hr(X,U2, O) then 11 and {2 are
equivalent if they induce the same cohomology class of r-cocycles

on some common refinement of U1 and U2.

Let (f 1] denote the equivalence class of f 1. f 1 is

a representative of (51). Define addition of equivalence

classes as follows:
[11] + (S2] = [gl + g2]

where lj1 induces g1 and f2 induces g2 in some common

refinement of U1 and U 2.
It must be checked that this

definition is independent of the choice of representatives

chosen. (Exercise for the reader). Then these equivalence

classes of cohomology classes of r-cocycles from an Abelian

group under addition, H"(X, Q ), called the r th cohomology



74

group of the manifold X. (H"(X, 0) is independent of the

choice of covering of X). Hr(X,O) = lim Hr(X,U,C9).

An element of Hr(X,(9) can be represented by an r-cocycle

on a covering of X. H"(X, 0) = 0 means that any r-cocycle

on a covering U of X induces a coboundary on some refine-

ment of U. Note that 3- -> (f) is a homomorphism of

Hr(X,U,Q) into Hr(X,0).

H°(X,(o) = [holomorphic functions on Xi.

-If HI(X,D) = 0 then every Cousin Problem is solvable

(of. 2nd reformulation of Cousin Problem).

Holomorphically equivalent manifolds have the same

cohomology groups.

2. Applications

Theorem 20. Let X be a complex manifold and Y a

globally presented, regularly imbedded hypersurface,

Y = (z1,,..,zn) 13(zl,...,zn) = o3 where $ is a holomorphic

function on X. If for some r > 0, Hr(X,9) = 0,

then IF (Y' ) = 0.
Proof. We say that a covering U' = 3ui of X is

sufficiently fine if for every
(

/
finite

ui) () Y a function

holomorphic in this intersection can be continued to

the
finite ui'
Lemma. There exists a covering U0 of X such that

every refinement of U0 is sufficiently fine.

Proof. Let y e Y, then in some neighborhood of y,

N(y), there are local coordinates C11 ...'Cn such that Y

is given-by C
n

= 0. Any function holomorphic in N(y)1j Y

is a function of
C11 ...'Cn-1

and hence is holomorphic as

a function of C11 ...,1n, i.e. in N(y). Clearly if N1

is any open set contained in N(y) any function holomorphic

in N1 A Y can be holomorphically continued to N1. Take

this neighborhood system and add open sets not intersecting Y
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to form an open covering of X. This covering has the desired

property, i.e. is UO.

From now on we consider only such coverings. Now take

such a covering U = Jui3 of X. We must show that every

r-cocycle on Y induces an r-coboundary on some refinement

of U. Let f'y be an r-cocycle on Y, then y assignd to

every ( ui )tlY a holomorphic function fi -. (z) defined

in this intersection. Since U is sufficiently fine,

fio,.ir(z) can be continued to ui . Define = 0 in
J_

j
A uij when (n ui )(" Y = 4, Therefore, there is an r-cochain

;Xon X such that 4X = Sy on Y. Then 5S'` = 0 on Y
which means that

5
= 4g where g is an (r+l)-cochain on X,

But 0 = 56i-X = 4,6g and hence 5g = 0; g is a cocycle on X.

Since Hr+1(X,(9) = 0, g must induce an (r+l)-coboundary on

some refinement U1 of U. So consider everything above in this

refinement U1. Then g = 5h where h is an r-cochain on X.

Therefore 6(SX-4,h) = 0, and hence

is an r-cocycle. Since Hr(X,O) = 0, C_X-4,h
induces an

r-coboundary on some refinement U2 of

TU1.

Considering the

above in this refinement U2,
rX-4h = 6F where F is an

(r-l)-cochain on X. Hence on

SY,

SX-4h
=

cX
= Sy = 6F,

and since F is an (r-1)-cochain on X, it is an (r-l)-cochain

on Y.

Note. The following theorem gives sufficient conditions

for a domain to be a domain of holomorphy. Later on we will

prove that these conditions are also necessary.

Theorem 21. Let
Dopen C Cn,

n > 2. If 0

for 1 < r < n-1, then D is a region of holomorphy.

Proof. Use induction on n. The case n =-2 follows

from Theorem 18. Assume that every open set in
0n-1

for which

IF = 0, 1 < r < n-2, is a region of holomorphy. Rather than

working with a component of D, assume that D is a domain. Then let
DdomC n

and let b c boundary of D. Pass a hyperplane P through b

and an interior point of D and set POD = Y. By Theorem 20, all the
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cohoinology groups of Y from H1 to Hn-2 are 0. By our

induction hypothesis then, Y is a domain of holomorphy.

Hence there is a function g holomorphic on Y and singular

at b. Since H1(D,(9) =.0, the Cousin Problem is solvable

in D, and hence g can be continued ho!omorphically to D,

and the extended function will be singular at b.

§3. Other Cohomologies

A. 1. Had we defined an r-cochain to assign a C0D function,

instead of a holomorphic function, to intersections, then

we would have gotten Hr(X,COO), where X could be a real

manifold.

2. Had we defined an r-cochain to assign a constant

function, i.e. complex number, to intersections, then we would

have gotten Hr(X,C). Here X is any topological space.

3. Had we defined an r-cochain to assign an integer to

intersections, we would have gotten Hr(X,a), the Integral

Cohomology group of the topological space X.

4. In fact, given any Abelian group r, we could have

defined an r-cochain to assign an element of r, in which

case we would get Hr(X, r).

B. Definition 36. Let S be a topological space, X a
Hausdorff space, and p a mapping of S onto X (called the

projection mapping). Denote p-1(x) by Sx, called a stalk,

and note that Sx G S XeX Sx = S. The triple (p,S,X)

is called a sheaf of Abelian groups over X if

a) p is continuous, and for each x e X and each

s c Sx, p is a homeomorphism of a neighborhood of s in S

onto a neighborhood of x.

b) Each stalk Sx is an Abelian group such that:

s -> -s is a continuous mapping of S into S; and

(s,t) -> s +t , defined on the set R of pairs (s,t)

such that s,t belong to the same stalk, is a continuous

mapping of the subset R of S r. S into S.
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For simplicity, we call S the sheaf.

Definition 37. Let UopenC X. A section (or cross

section) of S over U is a continuous map 5 of U into

S such that is the. identity mapping. Denote by r(U)

the additive group of all sections of S over U.

Examples.

1. Let X be arbitrary, and let Sx = ' for all

x e X. Let S = USX have the discrete topology. Then a

section of S over UopenC X assigns some integer to U.

2. Let X be arbitrary, and let Sx = a, any Abelian

group, for all x e X. Let S = USX have the discrete

topology. A section of UopenC X is an assignment of an

element of a to U.

As in example 1, all stalks are isomorphic. Such sheaves

are called constant sheaves.

3. Let X be a complex manifold, and Sx = 6x, the

set of germs of holomorphic functions.

Definition 38. Let x e X, a complex manifold, and

consider holomorphic functions at x, each defined in some

neighborhood of x. We say that two such functions are

equivalent if they coincide on some sufficiently small

neighborhood of x. This is clearly an equivalence relation.

The set of all holomorphic functions as above, modulo this

equivalence relation, is called the set of germs of holo-

morphic functions at x; which we have denoted by d
-

The set of all germs form a group over each point x.

Introduce a topology in the set of all germs S = VSx

as follows: Take any element 5 e S; then f e Sxo, and

is an equivalence class of functions defined in a neighbor-

hood of xo a X. Take a representative g e Sx ; g is

defined in Nx0 , a neighborhood of xo e X. hen for

each y e Nx , assign that class in Sy containing the

direct analy?ic continuation of g, say jgyj. Then

U tgyJ is, by definition, an open set; and these are

Yexo
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to form a basis for the topology of S. Each section over U

is a holomorphic function defined in U. This sheaf is called

the sheaf of germs of holomorphic functions.

4. Let X be a differentiable manifold and. Sx = C°x°

where CX denotes the set of germs of C°D functions at x,

defined similarly to (9x. Then S = L/Coxo is made into

a sheaf as in example 3 above.

With the aid of the concept of a sheaf, we may now define

the cohomology groups in a more general setting.

Let X be a paracompact space with a sheaf S over it,

and U = uii , I e I, an open covering of X. Define the

cochains Cr(X,U,S) on X associated with the covering U,

with coefficients in S, as follows: t e Cr(X,U,S) assigns

to each ordered intersection, ui /1 ... (ui , a section

of S over this intersection so dat J is antisymmetric

in the indices. Note that we can add cochains, and talk of

antisymmetry conditions, for we can add their values using

the group structure of 1-(u0 0 u1 1) ... /1ur).

Continuing the construction as before, we obtain

Hr(X,U,S), and then form the projective (direct) limit,

Hr(X,S).

Theorem 22. Hr(X,Coo) = 0 for all r > 0 and any

differentiable manifold X. In fact Hr(X,U,Ceo), r > 0

is already trivial, for every locally finite covering U.

Proof. We define a homomorphism 9 : Cr(X,U,C,) ->

Cr-l(X,U,Co) r > 0, so that f = 96f + 69f, and this

is sufficient.

Let wi; be a partition of unity subordinate to U

(see Definition 31 and Proposition 3, 3, Chapter V). Define

9S(io...ir-1) = wif(iio...Ir-1) ,

where this sum is understood as follows: wif = 0 if = 0

or if wi = 0. Note that the local finiteness of U insures

that almost all terms of this sum vanish at any point of X.

Now
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(A6 +69j)(io...ir) _ T- wi 4wo...ir)+ o...ik...ir)

(0i (-1)k+l ;(iio... k...ir) + (io...ir)

(-1)k wi 5(iio.. k...ir)

r
(io...ir) wi - (-1)k wif( io... k...ir

+ (-1)k wif(iio...ik...1r)

_ (io...ir) .

Note that this proof hinges upon the fact that

Cr(X,U,CO°) is a module over globally defined Coo functions.
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Chapter 7. Differential Forms

91. Ring of differential forms in a domain

A. Definition 39. Let D G Rn, D open. A differential

form in D is a formula sum 7- ai «.i
dxi

.
r- it<i2<...<ir 1 r 1

/dxi (the symbol " A" is read as "wedge"), where the

ail.,.ir are functions defined in D, possibly zero (in which

case the term dxi A ... /dxi may be omitted from the sum).

Identify 1 dxi A dxi and dxi A ... A dxi .
Note that the collection of differential forms an D

constitute a module (Abelian group written additively),

closed under multiplication by functions in D, of dimension

2n. The addition is the natural one. We denote this module

by RD.

We shall say that a monomial ai ...i dxi A ." A dxi
1 r 1 r

is of degree r of r-dimensional if it is the sum of monomials

of degree at most r, and pure r-dimensional if it is a sum

of monomials of degree precisely r. Observe that any form

in D may be written uniquely as a sum of pure r-dimensional

forms, 0 < r < n. We now introduce a multiplication

in RD, giving RD a ring structure, as follows:

Define (ail ...Ir dxi1 A ... A dxir)*(bjl...Jk dxj1A...Mxj)

O if iK = ')L for some K,L

(eail...ir bjl...jk dxgl A... Adxgk+r otherwise

where each qk is an iK or a JL; qk < qk+l
and a is

the sign of the permutation it : (il"'ir Jl...Jk) '(ql"'qk+r)'
Define "*" on all RD by postulating that the distributive
law holds. The multiplication "*" is clearly associative;

hence RD is a ring. We now denote this multiplication by

"A", for obvious reasons. (RD is also called the ring of

exterior differential forms).
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We note that RD may also be defined as follows: RD

is a ring pith operators CD = functions defined in DJ ,

'generated by the symbols dxl,...,dxn, where

dxi

dxi A dx3 _ - dx3 A dxi

We remark that, if a,a are pure dimensional

a A 0 _ (-1)deg a .

Remark. It is to be understood in the sequel that

all functions are Coo

B. We now introduce a cohomology structure to RD, called

the d-cohomology, or de Rham cohomology.

Define the ring homomorphism d:RD -> RD as follows:

On zero forms, i.e., on functions defined in D, set

df = 1 3x dxj

and on monomials:

d(adx A ... A dx (da) A (dx A ... A dx
1 r 1 ir

Extend d to RD linearly. Note that d is not an

operator-homomorphism, i.e. d(fa) # fda , where f is

a function on D and a e RD.

Example (1). Let D C Ht3, and observe that da on

a zero form acts like a "gradient," on a pure 1-form like

"curl," and on a pure 2-form like "divergence."

Lemma 1. i) d2a = 0 for every ac RD
1i) d(a A3) = da /1 3+ (-1)r aAdt3, for

every pure r-dimensional form a.
Proof of this lemma is left as an exercise. Hint: it

suffices to consider only monomials

Definition 40. A form a e RD is said to be closed

if da= 0.
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A form a e RD is said to be exact if a = 0 for some

RD.

It is clear that the closed forms form a subgroup RD of RD

and that the exact forms are a subgroup RD of RD. Hence, we form

the d-cohomology group RD / RD = closed forms / exact forms.

Lemma 2. The closed forms form a subring of RD' in

which the exact forms are a two-sided ideal.

(i.e. i) closed A closed = closed

ii) closed A exact = exact

iii) exact A closed = exact)

Proof. We may assume that a,P are monomials.

i) If da = dp = 0, then d(aAD) = da/\D + (-I)degaaAdO
= 0.

ii) If = dy, da = 0, d(a Ay) = da Ay + (-1)deg
aafldy

_ ((-1)dega a) A 0,
i.e. cA 0 = d(-l) dega a/1y)

and similarly for iii), ( P A a) = d(y A a).

Hence, the de Rham group is a ring, (the de Rham

cohomology ring).

C. Now assume D C Cn. We identify Qn with R2n in

the usual way, and observe that

zj = x3 + iy3

zi = xi - iy3

are functions of x3 and yj; hence we may apply "d",

obtaining

But the

D;

dz3 = dx3

dz = dx

dx3,dy3 generate

and the above equations

+ idy

- idy
3

3 = 1,...,n .

the ring of differential forms on

are solvable for dx.,dy1 in

terms of dz3 and dz3. Hence the dz3 and dz3 also

generate the ring of forms, so that for any form a e RD
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2n

a = ai ...i ...
dzi A ... Adz i Ad zi A ...1 J

r=0 p+q=r 1 p 1 q 1 p 1 q
it <... <ip

3t<.,. <3q

Now any element may be written uniquely as a sum of pure

dimensional forms; and any pure dimensional form of degree r

may be written uniquely as'a sum of monomials of "bi-degree"

(p,r-p) , p = 0,...,r where

Defytnition 41. We say the monomial

ai . , , i .. dzi
t

A -- A dzi A dzi A.. Adze is of type
ortbide fee (pqq); we denotep dzi A ... A d z i

p
q A dzi A .../\dzi

by upq. Hence any form in RD may be written uniquely as q

a sum of monomials of distinct bidegrees (p,q):

2n
a=

r=0 Aqr
ail...1 31...3q apq

p

Hence, the apq form a basis for the module RD. Let Apq

denote the subset of forms of bidegree (p,q) and note that

AAq A
ApigI

= Ap+pl,q+ql. We now introduce homomorphisms

a : AAq -> Ap+l,q and a : Apq -> Ap'q+l as follows:

n
as = I dzj

n
= 3E

as
as dz

J=1 azi i

where a is a zero form, and extend a, a to RD as before.

Now d = a + as can easily be verified. Hence d2 = 0

(a+a)2 = 2 + 2 + (aa+aa). Note that

(a+a)2 Apq = a2 AAq + a2 AAq + (aa+aa) AAq

=
AA+2,q + Ap,q+2 + 2AA+l,q+l

so that a2 = 0, a2 = 0 and as = - aa.

We now define a-closed, a-closed, a-exact, and a-exact

forms, and form the associated cohomology groups:
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a -closed forms
e-exact forms

and

9-closed forms

a-exact forms

We may again verify that these groups are in fact

cohomology rings.

Observe that, if we restrict the coefficients to be

holomorphic functions in D, a becomes trivial and d = a.

Hence, we can also form the cohomology ring:

closed holomorphic forms
exact holomorphle forms

where we define a holomorphic form as follows:

Definition 42. The form 5- ai
1".j'pil ... 3q

dzi1A
..

A dzi

p

A dz
il

A ... A dz
iq

is said to be holomorphic if q = 0

and the ail...i are holomorphic functions.

92. Differential forms on manifolds

Let D and A be domains in Rn and Rm respectively,

and let f be a diffeomorphism from D onto A . Denote

a point of D by x = (x1,...,xn) and a point of A by

Then f(x)= , or Ei = fj(xl,...,xn),

j = 1,...,m. There is an induced mapping f* associated

with f which maps differential forms in A into differential

forms in D; if = f>_ aj1 j h ... A then
r

fa = 57- ail...jr(f(x)) dfj
1
A ... A dfi

r
and

1. f preserves degrees

2. f(a+O) = f*a + f*3

3. f*(aAP) = f*aA f*6
It. df*a = fda .

Let D,A be domains in 0n, and let f be a holomorphic

mapping from D to A. Let (zl,...,zn) denote a point of D



85

and denote a point of A. The induced mapping

f* (as above) has the properties
*

1. f preserves bidegrees
2. f*(a + 0) = f*a + f*p
3 -f *(a AN = f*

a f*p
4. 5f*a - f*Sa and of*a = f*aa

For the case of holomorphic forms, since f is holomorphic

and a holomorphic function of a holomorphic function is
*

holomorphic, f takes holomorphic forms into holomorphic

forms.

Let X be a differentiable manifold of dimension n.

We define a differential form on X as follows:

Definition 43. A differential form on X is a rule

which defines a differential form in every coordinate patch.

Each coordinate patch Pa is diffeomorphic to a domain D

in 1Rn (by definition). A differential form on X associates

with every coordinate patch P. a differential form a in

Da such that if Pa

1

0 Pa ? 4 then the images of this

intersection in D. and 2D are diffeomorphic and the

induced map on forms takes al into a2

3. Poincare Lemmas

The Poincare Lemmas state that in sufficiently "nice"

domains any closed form not containing a 0-form is exact.

More precisely,

Theorem 23.

(Ta) Let D = t(xl,...,xn) lxiI ` R1 _` aD3 C Rn

and let a be a pure r-dimensional form, r > 0, in D.

If da = 0 then a = dO for some D .

(Tb) Let D = (zl,...,zn)
I IziI < Rj _' SIC cn,

and let a be a purer-dimensional holomorphic differential

form, r > 0, in D. If da = 0 then a = d(3 for some

holomorphic form D .
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(Tc) Let D be the domain in (Tb), and let a be a

(p,q)-form in D, q > 1. If as = 0 then a = aR for

some (p,q-l)-form 0

Proof.

Lemma. Let i,j be fixed numbers, i # J, i,j = 1,2,...,n.

(La) Let D be the domain in (Ta). If 4) is a Cm

function in D, then there is a C°D function W in D

such that 4) = ay/axi and if a$/axi = 0 then 4/axi = 0.

Xi

Proof. Define *(x1, " xn) _ f dt.

0

(Lb) Let D be the domain in (Tb). If $ is a

holomorphic function in D, then there is a holomorphic

function / in D such that 4 = axi/azi and if a4/az3 = 0

then ail//aZj = 0.
Proof. Since $ is holomorphic in D,
OD

_ ak(zl, n)zi+l

*(zl,...,zn) k+

(Lc) Let
00
D1 = (zl,...,zn)

I
IziI < rj < o ' C &n.

If $ is a C function in a neighborhood of D1, then

there is a Coo function p in perhaps a smaller neighborhood

of D1 such that 4) = and if $ is holomorphic in

zi then so is ?r.

Proof. Define

1 n
*(zl,...,zn) r

fJr

-z i
dy dli

ICI<ri+e

(a) (Proof of Ta)). Use induction on k where

a = 57- aj
1 "' Jr

dxj 1'..dxjr
contains no terms with

dxk+l,dxk+2,...,dxn For k = 1, a = aldxl and da = 0

means that dal/axi = 0, i > 2. By (La) there is a bl

with abl/axi = 0, 1 > 2 and a = abl/22x1 dx1. Take = bl.

Assume the theorem to be true for some k-1, and let a be
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a pure r-form with no terms involving dxk+1'
" ''dxn.

Then a = (_1)r-1(dxk A p) + C' where p and a' are pure

differential forms of dimension (r-1) and r respectively

and p and a- do not involve dx3 with j > k. Then

0 = d a = (-1)r(dxk A dp) + d6 . Since 0- contains no terms

with dxk,dxk+11-1 dxn; do' contains only terms with either

dxk, J < k or involving dxl,...,dxk-l'dxk+11"" dxn'

Hence do has no terms with both dxk and dx3, j > k. Thus

dp contains no terms with dxk, J > k, which means that the

coefficients of p do not depend on xk+1'...,xn. Now, define

p as follows: Replace each coefficient of p by a function

whose derivative with respect to x
k

is this coefficient;

call this new form p. The coefficients of p do not depend
A

on xk+l,...,xn. (The existence of p and its independence

of is given by (La).) Hence dp = (dxk A p) +

terms involving dxy 3 < k. Therefore a - (_l)r-1 dp does

not contain dxk^dxk+1' ...,dxn. But d(a -(-1)r-1 do) = da = 0

(and (a p) is a pure r-form. By the induction

hypothesis, then a -(_,)r_1 do = dy which means that

a = d((-1)r-1 p + y).

(b) (Proof of (Tb)). The proof is identical with that

of (Ta) with the x's replaced by z's and a a holomorphic

form. (Lb) gives the existence of a holomorphic form p and

its independence of zk+l
.. "'zn.

(c) (Proof of (Tc)). 1. Let D0 be an open polydisc,

Do c c D. Then a is defined in a neighborhood N of D0

and satisfies as = 0 in N. We claim that there is a form

p, in perhaps a smaller neighborhood of D0, such that

a - a p. For the proof, use induction in dzk anu an

argument analogous to that in (a).

2. Construct open polydiscs Di CC D3+l whose union

is D. By 1., for each Di there exists a form P such

that a = api in a neighborhood of D3.

(i) Assume that a has bidegree (p,l), then has

bidegree (p,0); i.e. pj = = bi
1
.,' i

p
dzi1 ...dzi

p
, and
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app = a in DJ. For fixed k and 3 > k, (p J-PIC) is a
holomorphic form on Dk since (CJ-% ) = 0 on Dk.

Therefore the coefficients of (f3J-Bk) can be approximated

as closely as desired by polynomials, and hence the form

(03-Pk) can be approximatedby a form Pjk whose coefficients

are these polynomials. Choose e > 0 such that 7- ej < oo,

and define -t3}I = = Ib' - bk 1. Construct
A 3 T1...T T1...Tp

as follows:
01 =

131' '2 = 2 - P21
where

102 pil = 11)-P211 < el on Dl, 5.A = P1 - P32 where

I(P3-Y-Q,2I < e2 on D2 and Q32 = Q21 + P32, etc.

a3.
=^a = a on DJ. Since I(33-03+1I < ei on Di

lim g = 0 exists uniformly on compact subsets of D, the
>03

coefficients of f3 are Coo functions and 53 = a in D.

(Cf. Part 2 of the proof of Theorem 19.)

(ii) If a has bidegree (p,q), q > 2 then each

has bidegree (p,q-1). a((iJ+l-3j) = 0 in a neighborhood

of D3. Therefore 3+1-
3
= ayi for some form y3, in a

neighborhood N3 of Di, by 1. of (c). Let wi be a

real valued C°D function = 1 on D and ^ 0 outside a

neighborhood Mi of D3, M3 cc N J. Set y1 = wi yJ
Then yj is defined in DJ+1 and

J+1 - 01 = ayj on

D3. Let ;_l^ al, a2 = 12 and in general

g _ i - a(yl+-2+...1-yJ-1 Then J+1 (RJ+i-pj) -

a(yl+... + a(y1+...+yj-1) _ (sj+l-fY - Oy 1 0, and
n

at"i = ac3,j = a on Dj. Letting 3 -> eo we obtain the
desired R.
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Chapter 8. Canonical Isomorphisms

§1. De Rham's Theorem

A. Definition 44a. Let X be a differentiable manifold

with covering U. We say U is simple with respect to

differential forms, or d-sim lie, if it is open, locally finite,

and, for the intersection of any finite number of sets of the

cover u0 ll... (fur, the Poincare lemma for "d" holds.

Theorem 24a. Let X be a differentiable manifold.

Then there exist arbitrarily fine d-simple coverings (i.e.

every covering of X has a d-simple refinement).

Proof. We shall first prove this theorem assuming X GIRn,

X open. The case of an arbitrary manifold X is treated at

the end of this section.

Assume X C Rn. Note that in any box jixi aiI
` ri'

1 = 1,...,n 5 , Poincare's lemma holds by Theorem 23.

Furthermore, the intersection of any finite number of boxes

is again a box; so it suffices to refine any covering U

to a locally finite covering by boxes and this is easily done.

Lemma la. Hr(X,U,CP) = 0; r > 0, p > 0, where C?

denotes the sheaf of germs of p-forms, and U is locally finite.

Proof. The sections of 00 over U are Coo functions,

so Hr(X,U,C)0) = Hr(X,U,Coo) = 0, r > 0, by Theorem 22.

Since any element of Up, when multiplied by a Coo function,

remains in OP, we may establish this lemma by constructing a

homomorphism A : Cr(X,U,Cp) -> Cr-l(X,U,(p), r > 0, so

that if f s Cr(X,U,CP), then f = Of + 69f precisely
as before. Hence every cocycle is a coboundary.

Corollary. Hr(X,r?) = 0; r > 0, p > 0, Cp as above.

Theorem 25a. Let X be a differentiable manifold, U

a d-simple covering. Then the following groups are canonically

isomorphic, where (P denotes the sheaf of germs of closed

p-forms in X:
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s , p ' 01 r? closed p+l-forms
M H (X,U, exact p+1 form

(ii)
Hr+l(x,U,cp)

= Hr(X,U,CP+1) , r > 0, p > 0

(iii) Hr(X,Um ti
closed r-forms

r > 0..
exact r- forms '

Before proving this theorem (following A. Weil), we

introduce the notion of coelements.

B. Definition 45. A coelement f of bidegree (r,p)

is an r-cochain on a (fixed) covering with coefficients

which are pure dimensional differential forms of degree p,

i.e. if uj ,...,uj are distinct sets of the covering

with nonempty intersection, then frp(JO...Jr) assigns to

this intersection a pure differential form of degree p

defined there.

The coelements form a vector space over C.

Define dfrp = grip+l,
where g assigns to each inter-

section "d" of the form which f assigns; d2f = 0.

Define 5frp = hr+l,p
in the usual way; 52 = 0.

Clearly d5 = 5d (for 5 "adjusts" the domain, and d

the range, of the coelements).

Coelements f for which df = 0 are cochains with closed

forms as coefficients, and if df = Sf = 0, the coelements

are cocycles with closed forms as coefficients.

If U is a d-simple covering, f a coelement, p > 0,

then dfrp = 0 implies f = dg. If r > 0 and 5fr = 0,

then f = 6g by Lemma la.

We say that coelements fr+l,p and fr'p+1 are

associated if there is a coelement grP such that f = 5g

and f = dg.

C. Proof of Theorem 25a.

Note first that (i) and (ii) imply (iii), for

closed (p+l)-forms
ti H1(Yexact p+ - o rms -

,U,C1o
H1+s(XJIUVnp-s)

ti
- - -

ti Hl+p (x,U,n°) , p ? 0
°and _
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Note also that
S

Hr(X,U,( ) = L
frp (df'=5f =O ; r > 06hr-1,pidhr- ,p=0f

(1) We associate a closed (p+l)-form on X (or,

equivalently, a coelement
flop+1

of bidegree (O,p+l))

to each cocycle class in =H1(X,U,CP) as follows: Let

f1p be any cocycle; df = 5f = 0. Using Lemma la, there

exists a g p such that 5g = f. Set
fo,P+l = dg, and

N
note that df = 0; hence, we have assigned a closed

ti

(p+l)-form. (Also, 5f = 5dg = d6g = df = 0.) Denote by

Pj the class in
closed (p+l)-forms
exact p+ -orms containing f. We

make the following assertions:

a) t f) does not depend on the choice of g.

f13= f2> if tfl i.e. if fl-f2 = 5h, dh=0.

y) The class mapping is an isomorphism.
ti

Proof of a) Assume f = 5g1 = 6g , and set f1 = dgl;

f2 = dg2. a) asserts that fi f2 = dhap where .b P is

globally defined on X; i.e. 6h = 0. But fl-f2
= d(g1-g2)

and 6(g1-g2) = 0.

Proof of P) Suppose f1P - f2P - 6h0 , where 6f1 = 6f2

= dfl = df2 = 0 and dh = 0. Now f2 = 5g2, fl = 6g1 = 6g2+6h

z
5(92+h). Hence fl = dg1 = dg2 + dh, f2 = dg2, and

fl-f2 = dh = 0.

Proof of y) It is clear that the association map

If.c -> f I is a homomorphism. It is one-to-one for, assume

0; i.e. f = 6g, and dpP = 0. Now, dg OP = 0

means g OP =
dh0'p-1

so that f = 5g = 6dh: hence f} = 0.

Furthermore, it is onto, for, assume f is any closed (p+l)-

form.
ti

Then df = 0, so f = dg by d-simplicity of ,,U.

Define f = 6g. Then df d6g = 5dg = 61 = 0, as f is

globally defined, and 6f = 62g = 0.

(ii) The proof in this case is essentially the same;

let
fr+1'p

satisfy dfr+l'p = 6fr+l,p = 0. Then there

rp
r

exists a g such that 6g = f. Set f,p+1 = dg, and
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N N
observe df = 6f = 0. With a similar notation, we prove

a), 13), and y).

a) Assume f = 0 = 6g ; then { dgj = 0, for

5grp = 0 implies grp = 5hr-1'p, and dg =
d5hr-l'p

= 6db.

Now dh is closed, so: d4 _ {5(dh)j = 0 in H"(X,U,CP+l).

fr+l,p = 6hrp
implies (dhrpJ = 0, as dhrp = 0.

y) We again have a homomorphism fr+l,p ->{fr,p+lf

It is one-to-one for, if f = §grp and dgrp = 0, then

g = dhr'p-1, and f = 5g = §db , so tf} = 0. Itluis onto,

for assume fr'p+l satisfies df = 6f = 0. Then f = dgrp

by simplicity of U. Set f = 6grp Then df = d6g = 6dg

= 6f = 0 and 5f = 0. Clearly f}

D. Lemma 2a. Let X be a differentiable manifold; U,V

d-simple coverings and V a refinement of U. Then the

following diagrams commute, where CP denotes the sheaf

of germs of d-closed p-forms

i) Hr+l(X,U,) ->
Fir+l(X,V,Fp) _>

ii)

iii)
H1(X,Vs CP)

f;r(X,U,h,

Hr(X,U,f?+l)

Hr(X,V,cp+1)

d-closed (p+l)-forms
d-exa ctp i-TJTorms

d-closed r-forms
d-exact reforms

Hr(X,V,C)

where r > 0 and p > P.

Proof. For i), this lemma states that one obtains the

same result by first mapping a coelement to any associate

and then restricting the domain of definition; or by first

restricting the domain and then associating it. The other

commutativity claims are disposed of as easily.
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Theorem 26a. Let X be a differentiable manifold for

which there exist arbitrarily fine d-simple coverings-. Then

the following groups are canonically isomorphic:

(I) (de Rham): Hr(X,C)
d-closed r-forms r > 0
d-exact r- forms

(II) (Leray): Hr(X,U,C) _ Hr(R,C) , r > 0

for any d-simple covering U.

Proof. Hr(X,C) is a direct limit of groups Hr(X,U,C);

U any covering of X, where the class of all coverings is

directed by "is a refinement of." By Theorem 24a, the

d-simple coverings are cofinal, hence it suffices to consider

only d-simple coverings in the direct limit. By (iii) of

Theorem 25a, H"(X,U,C) .
d-closed r-forma

for any d-simple
d-exact r-forms

U; hence I and II.

We now complete Theorem 24a. Note that Theorem 25a does

not require the existence of arbitrarily fine d-simple

coverings. Now let U be any covering of X. Let V be

a locally finite refinement of U such that each v e V

lies entirely in a coordinate patch and the intersection of

any finite number of v's is contractible to a point. (Such

a covering can be constructed using Whitney's imbedding

theorem.) Since every finite intersection of sets of V

is diffeomorphic to an open set in IRS, the de Rham theorem

applies. If the r th cohomology group of such an open set

in Q3n with complex coefficients is trivial, then every

closed r-form is exact: that this cohomology is trivial is

a known result.

J2. Dolbeault's Theorem

This section is Section 1 applied to complex manifolds

and the operator a.

A. Definition 44b. Given a complex manifold X and covering

U, we say that U is simple with respect to (p,q)

differential forms, q > 1, or 5-simple if it is open,
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locally finite, and, for the intersection of any finite number

of sets of the covering, the Poincare lemma for a holds.

Theorem 24b. Let X be a complex manifold. Then there

exist arbitrarily fine a-simple coverings.

Proof. As before, assume X C.9 n, open. Once again

use Theorem 23, which establishes the Poincare lemma for

for coverings by polydiscs IzJ- a3I < RJT .

The completion of this theorem for a manifold is

remarked on at the end of this section.

Lemma lb. H.r(X,U,CP) = 0, r > 0; where C?p now denotes
the sheaf of germs of forms of type (O,p), and U is locally

finite.

Proof. We may again use a partition of unity argument

as in Lemma la.

Theorem 25b. Let X be a complex manifold, U a

a-simple covering. Then, if (P denotes the sheaf of germs

of a-closed forms of type (O,p), there exist canonical

isomorphisms between the following groups:

i) H1(X,U,C1p) ti
8-closed forms of type (O,p+l)

5-exact forms of type (O,p+l)

ii)
Hr+l(X,U,&)

ti Hr(X,U,5p+l)

iii) Hr(X,U,(9) ti
a-closed forms of type (O,r)

a-exact forms of type (O,r)

where r > 0, p > 0.

Proof. i) and ii) proceed precisely as in Theorem 25a.

iii) is implied by i) and ii), also as before, when one notes

that a a-closed form of type (0,0) is a holomorphic function,

and conversely; i.e. no = c9. -

Lemma 2b. Let X be a complex manifold; U,V

a-simple coverings where V is a refinement of U. Then the

following diagrams commute, where C? denotes the sheaf of

germs of 5-closed forms of type (O,p), and r > 0, p > 0:



95

i) Hr+1(X,U,F')
--->

H,(X,U,np+l)

1'
Hr+l (X,V,fP)

Hr (X,V,(P+l )

ii) H1(X,U,(P)
a-closed forms of type (O,p+l)

3-exact forms of type (O,p+l)
H1(X,V,c

iii) Hr(X,U,(9)
6-closed forms of type (O,r)

A
(t f f t )

Hr(X,V,&)
ype ,rexac orms o

Theorem 26b. Let X be a complex manifold for which

there exist arbitrarily fine 5-simple coverings. Then-there

exist Canonical isomorphisms between

I. (Dolbeault) Hr (X
-closed forms of type (0,r)

s-exact forms of type (O,r)

r>0
II. (Leray) Hr(X,U,!)) =

Hr (X, (9) , r > 0
Corollary. If D r.. &n, D a polydisc, then Hr(D, 0) = 0

for all r > 0.

We shall eventually use this corollary to establish the

result for any region of holomorphy.

Remark. The general Dolbeault theorem reads as follows:

Hr(X,sheaf of germs of holomorphic forms of degree s) ti

5-closed forms of type (s,r)

a-exact forms of type (s,r)
However, we shall require only the restricted result

of 26b, I.

B. In order to complete Theorem 24b, we require the result

that in domains of holomorphy all the above cohomology groups

are trivial (proof in Chap.ll). Assuming this result, we have

the Poincare lemma with respect to a for holomorphy domains,

so that any locally finite covering by domains of holomorphy

is 5-simple. Hence itssuffices to establish that arbitrarily

fine coverings by domains of holomorphy exist.
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93. Complex de Rham theorem

Once again, we attempt to repeat 1 for complex manifolds

X, holomorphic forms, and the operator d.

Definition 44c. Given a complex manifold X and cover-

ing U, we say that U is a-simple or simple with respect

to holomorphic forms, if it is open, locally finite, and, for

the intersection of any finite number of sets of the covering,

the Poincare lemma for a holds. (Recall that a = d on

holomorphic forms.)

Theorem 24c. Let X be a complex manifold. Then there

exist arbitrarily fine a-simple coverings.

Proof. For X Cn, open, the proof is again immediate

and proceeds as before.

At this point, however, we find that no Lemma lc exists.

Hence, we must modify Theorem 250 as follows:

Theorem 25c. Let X be a complex manifold, U a

a-simple covering, for which Hr(X,U,('p) = 0, r > 0, where

C? denotes the sheaf of germs of holomorphic p-forms.

Let C? denote the sheaf of germs of closed holomorphic

p-forms. Then the following groups are canonically isomorphic:

i) 1:1(X,U,Op) ti
closed holomo hic (p+l)-forms
exact o omorp c p+ - orms

ii)hr+l(X,U,,np)_ Hr(X,U,(p+l )

iii) Hr(X,U,C) ti
closed holomorphic r-forms
exact holomorphic r-forms

where p > 0, r > 0.

Proof. As before, under the remark that 00 = C.

Lemma 2c. We state here merely that the analogous

commutativity lemma is valid, assuming the missing Lemma lc

for all manifolds and coverings used.

Theorem 26c. (Complex de Rham). Let X be a complex

manifold for which there exist arbitrarily fine a-simple

coverings and such that Hr(X,U,(?) = 0, `r > 0, for all

3-simple coverings U. Then, there exists a canonical



97

isomorphism between: Hr(x,s) ti
closed holomo hic r-forms r>0.

- exac o omorp c r- orms
(We shall not need the complex Leray theorem.)

Let us assume that we have already proven that in a

domain of holomorphy the cohomology with holomorphic coefficients

is trivial (not closed forms). Then the hypothesized Lemma lc

holds, so that the theorems of this section hold for domains

of holomorphy.
closed holomor hic r-forms

We remark that the group - --- isoph cc r-forms
clearly trivial for r > n, where n is the dimension of

the manifold. Hence

Theorem 27. Let X be a complex manifold of dimension

n, such that Hr(X,U,CP) = 0, r > 0 for all a-simple

coverings U. Then H"(X,C) = 0, r > n.

This theorem gives a topologically necessary condition

for a differentiable manifold X of real dimension 2n to

be a complex manifold.
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Chapter 9. The Multiplicative Cousin Problem

§1. The Multiplicative Problem, formulated

A. This second Cousin problem is a generalization of the

Weierstrass problem in one complex variable:

Given a domain D G C, a discrete set of points,

aV, by and positive integers nv, mv, find a

function f, meromorphic in D, with zeroes at av

of order nv, and poles at bV of order mv.

We,now formulate the multiplicative problem, referred

to as C.II in the sequel:

Multiplicative Cousin Problem. Let X be a complex

manifold U = j ui , i e I, an open covering, and let

functions F1 be defined and meromorphic in ui, such that

F1/Fi is holomorphic in ui /I u3. Does there exist a function

F 9 0, defined and meromorphic in X, such that F/F1 is

holomorphic in u1?

Note. C.II is precisely C.I, written multiplicatively.

As in the Weierstrass problem, where it is sufficient to find

a function with given zeroes of given order, we shall find

we need only consider holomorphic functions Fi. We shall

also show that C.II is not always solvable. As before, we shall

formulate C.II using sheaves and cohomology groups.

B. Definition 46. Let X be a complex manifold, and let

denote the sheaf, over X, of germs of meromorphic

functions under multiplication, where )? = xeX x and

yj consists of the germs of meromorphic functions at x,

and is a multiplicative group.

We topologize n as we did (9, by defining a subbasis

for the topology utilizing the topology of X, as follows:

Let m e then m c Mx and g e m is defined in a
neighborhood N of x. For each y e N, let g a In y be

the equivalent class of meromorphic functions in )!Zy

containing g. Then the sets Ng = Zg e My I y e Nj for
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each choice of g e m, and for each m e , form the

subbasis of

Let j denote the subsheaf of invertible holomorphic

elements of k ; such that c /YC and C for

each x e X. Form the quotient groups At
x x

x /` x' and set/ - xeX with the quotient topology.
The sheaf of germs of divisors of X is the quotient

sheaf
Note that elements of 1-4 are equivalence classes

of germs of meromorphic functions, where germs represented

by two functions F1, F2 are equivalent (at x) if F1/F2

is a local unit, i.e. if F1/F2 is holomorphic and non-

vanishing in a neighborhood of x.

We note also that a set of Cousin data associated with

the covering U may be regarded as a section of A/.-

over X.

Definition 47. A divisor on X is a section over X

of AI-4 , i.e. is an equivalence class of sets of Cousin

data, in the sense that two sets of Cousin data are equivalent

if their "mesh" is a set of Cousin data. A divisor on X

is integral (positive) if all germs are germs of holomorphic

functions.

Definition 48. A divisor a on X is principal if

there exists a meromorphic function F defined in X such

thatthe divisor it defines (F) = a.

Hence, we may state C.II in the following equivalent

way: given a divisor on X, is it principal?

Lemra 1. If every integral divisor of the complex

manifold X is principal, then every C.II is solvable.

Proof. It is enough to show that every divisor is a

quotient of integral divisors. Let p e X, and let Fp be

a meromorphic function defined in a neighborhood Np of p

such that (Fp) is the restriction of a to Np. Fp = V*p
where p and gyp are holomorphic functions defined in Np
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and coprime at p, and hence in a neighborhood of p, say

Np. Let q e Np, and Fq = q/*q the corresponding function

at q, defined in Nq. We shall be done if $p ti $q and

dip ti ?Pq, where defined, where "u" means equivalence modulo

. Now FIB , Fq, hence $p/dip ti q/*q, so $p*q - *p$q,
at q. But $pzyq and yp$q are holomorphic, and are

equivalent in a neighborhood of q. We may choose this

neighborhood so that $q, * are coprime. But $p divides

*pOq; hence p divides q. Similarly, $q divides +p

as gyp, *p were coprime in Np. Therefore Tip/4q is a

unit, i.e. sp ti 4q, and similarly *p ti ?p q. Thus

(4p 1 p s X) and (*p I p e X) are integral divisors.

C. Theorem 28. Let X be a complex manifold such that

C.II is always solvable. Then so is the strong Poincar6'

problem, i.e. every globally defined meromorphic function is

the ratio of two holomorphic functions, coprime at every point

of X.

Proof. Let F be the global meromorphic function. Then

(F) = a/p , where a and p are principal integral divisors;

for as was shown in the proof of Lemma 1, on any complex manifold

X every divisor is a quotient of integral divisors, and

since C.II is solvable every integral divisor is principal;

hence F/f/g = w1/w2 is a local unit. Therefore F/f/g

is holomorphic and equivalent to 1 at each point of X; so

F/f/g is a global unit, say G. Thus F = fG/g, where fG

and g are coprime at each point of X.

Theorem 29. Let X be a complex manifold such that

C.II is always solvable, and Y a regularly imbedded analytic

hypersurface.. Then Y may be globally presented.

Proof. Exercise for the reader.

§2. The Multiplicative Cousin Problem is not always solvable

The following example is due to Oka.

Let X -
M2

be defined as follows:
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X = {(zl,z2) 13/4 < I z

i
I < 5/4, j = 1,2} . Note that X,

as a product domain, is a domain of holomorphy. This shows,

incidentally, that "C.I implies C.II" is false.

Set Y = I zl-z2-1 = 03 /) X, and note that Y is a

closed subset of X consisting of two distinct components,

for (zl,z2) _ (xl + iyl, x2 + iy2) e Y implies 0 < x1 < 1,

where x 1 - 1 = x2. Hence yl = y2 # 0; but Y is nonempty

and (zl,z2) e Y implies (zl,z2) a Y. Fence, we see also

that the components of Y lie in (Im z1 > 0, Im z2 > 0)

and (Im z1 < 0, IM z2 < 0).

Now define the divisor y of X as follows:,

7 =

r(zl-z2 1), for (Im zl )-. 0, IM z2 > 0)

t1 outside the upper component of Y

This clearly defines a set of Cousin data, for which, we claim,

the Cousin problem has no solution. For, assume there exists

a solution F(zl,z2), and consider its restriction to

{IzlI
= 1, Iz2I = 1S

g(a,3) = F(eia,

Now g(a,3) is a continuous, periodic function of both

a and 3 . Furthermore, g has precisely one zero, for
z ;21=11 = (e1ir/,ethe upper component of Y n zll=l,lz

and g . 1 elsewhere. Now consider the edge curve rl

in the a,3 plane as indicated in the figure, and the edge

curve r2 about (Tr/3,2vr/3) within rl and oriented
3

(2y, 2Y)
similarly.

Since g is periodic in a
1 and 6 it is clear that arg g(a,p)

can be defined as a single-valued
r2 rl function along Tl. Furthermore,

4-
by connecting the two curves as

a in the second figure, we obtain

the following:
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f d log g = f dlog g;
rl r2

i.e. arg g(a,P) is also single-valued along r2.
Now F(zl,z2) = 1), where h(zl,z2) is

a unit. In the region enclosed by r2, we may define a

single valued branch of the log; so

f d log g = f d log [-eio + eia

r2 r2

We may calculate this latter integral explicitly. Set

5. B'+T
a = at +

obtain i2T
1I ++ ar LP

d log (-e1 + eia -1) = f d log (-e e -1),

r2 r2'

where r2 now encircles the origin in the
and _eV'+2rri/3 + eia'+7ri/3_1 has a zero at (0,0). Set
-eij3+2ri/3 + eiaI +rri/3 - 1 = u + iv. Now

I a(u,v)
I = - sin 0'-a'+ir/3) .a1 1N17

Hence, if T was chosen small enough, 0 in
i I

the region enclosed by 7'2. So

f d log (u+iv) = f d log (a++ ifl1) # 0 ,

r2 r2

and this contradition establishes our claim.
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93. The solution of the Multiplicative Cousin Problem for

polydiscs

Theorem 30 (Cousin). Let D C
&n

be a polydise. Then

C.II is always solvable.

We prove this theorem twice; the first proof, given in

this section, is due to Cousin. The second is given in §4,

and gives more.

Lemma 2. Let d1,A2 be box domains in an defined as

follows:

={(z1, ,zn) agx9'J' ij, J=2, ...,n7J

A2=(z1, «.,zn)Iagxl<a3,b1-V1'b2;ajf'j- ,PJ'yjfOj,
Let Gl, G2 be open sets (in 0n) containing "l, n2

respectively, and F11 F2 meromorphic (holomorphic) functions

in G1,G2, respectively, such that F1/F2 ti 1 in G1 /1 G2.

Then there exists a domain G such that dl V A2 C. G G (G1LI G2),
and a function F, meromorphic (holomorphic) and defined in

G such that Fi/F ti 1 in Gi 1) G, i = 1,2.

In other words, if C.II is solvable for neighborhoods

of Al and A2, it is solvable for a neighborhood of
Al

V A2.

Proof. It is easily seen that G1 /1 G2 contains a

neighborhood G0 of Al ' 02, and that we may choose this

neighborhood to be simply connected, for O1 /1 A
2

is.

Now, in a simply connected domain every nonvanishing

holomorphic function F may be written as ef, where f is

holomorphic, for f is the solution of the following set of

equations:

/ 0
azi

.

Hence, F1/F2 = of in G0. Define

1
f(C,z21 ...,zn)

fl(z,z2,...,zn) = - f _z dC

yl



104

I f(C,z2,...,zn)
f2(z,z2,...,zn) _ -

J
-z dt ,

y2

where yl and y2 are curves in the projection of GC on

the zl-plane defined as follows: Let C be a simple closed

curve in the zl-plane lying in the projection of Gp on

that plane, positively oriented, and containing the line

[a2 = xl, bl < yl < b21 in its interior. Set

yl = Lz zeC, Rezla2T
y2 = {z z e C, Re zl

<
a0

The situation is indicated in the figure.

Now fl is holomorphic in a

Q neighborhood G1 of Al, and f2 i2

2 holomorphic in a neighborhood G

of A2. Take G to be a domain

satisfying (dl (J A2) C G C

Now define

jai x1 (G1 /I G U (G2 n GA . For
zl 6 interior (yl+y2)' f = fl-f2;

and hence f = f1-f2 wherever

everything is defined so that

F1/F2 = of = efl-f2 there.

fIFle1 in GlIG1
F F2 a-f2

in G21) G2

F is meromorphic (holomorphic) in each neighborhood and

has the same values in (G1 I1 Gl) 17 (G21) G2) by construction.
Lemma . Let A _ (zl,...,zn) 1 aj I xj ` aj,

(ij < yj j ; j = l,..-,nn be a bounded box, A c. G, a

domain in On. Let a be a divisor in G. Then there exists

a neighborhood G1 of a in G, and a function F defined

and meromorphic in G1 such that (F) = a on Gl; i.e.

given C.II for G 7 6, C.II is solvable in a neighborhood of A.

Proof. We cover G by boxes whose edges are parallel to
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the axes as follows: For each point z e 0, there exists a

closed box Al, containing z and contained in some set

associated with the divisor a (i.e. contained in some set

u in which the restriction of a to u is principal).

Let A be an open box containing z and such that AZC 6Z.

:Now A is compact; hence A is contained in the union of

a finite number of open boxeA 2 2
Hence

A C i pi C G, and G1
N

i l Al is a closed neighborhood

of A as it contains 1 A, which is open. We claim that

the restriction of a to G1 is principal; we prove this

indirectly. Let Al =1f(zl,...,zn)) I xl <
al-

a1)/2f ,

(zl,...,zn) (a1-al)/2 < x1 S. Then /) D is a

box, for i = 1,2; j = 1,...,N. Set 0
11

=
SAl

/l011,

G12 =
I02

n G1i. Then G1i is covered by [A n

i = 1,2 and we have "halved" the problem with respect to

x1. Note that G11 U G12 = G1. Now, if a is principal in

Gll and in 012, it is principal in 01; since

(F on G11
(F) (F on G

is a divisor in G1 by lemma 2. Hence,

assume C.Il2 is no;2solvable in G1. Then it is not solvable

in either G11 or G12; choose one such, and call it 02.

Proceed by halving G2 with respect to y1, obtaining 0, C G2,

and so on, each time halving Gn with respect to the "next"

coordinate, where "next" is with respect to the following

sequence:
xl'yl'x2' "

''xn'yn'xl'yl'... . Now the diameters

of the closed nested sets Gm form a null sequence, and so

contain a point which is contained in some set A1. Hence,

for some integer M, GM C 6i. But C.II is therefore

solvable in GM as Al
i

is contained in a set associated

-with a ; and this contradiction establishes the lemma.

Remark. We could also prove this lemma directly by

forming a neighborhood of A with a mesh fine enough so that

a restricted to each box of the mesh is principal. Construct

F by "pasting" the boxes of the mesh following Lemma 2.
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B. Proof of Theorem 30. It is clear that it suffices to

prove this theorem for box domains A. Let Ai be a sequence

of closed boxes such that V1 Al = A and
4i CC Ai+1C C A.

By the above, there exists an F meromorphic in a neighborhood

c}f Di such that (F1) = a there. Hence Fi+1/Fi is a

unit in Di for each i. Clearly, we would be done if the

infinite product F1(F2/F1)(F3/F2)... converged normally in A

to a function F; for at each point z s A, z e An for some

n and there exists an N such that

(FN+1/FN)(FN+2'/FN+1)

"'
converges uniformly to a unit in An. Hence (F1/F) (F2/F1)...

(FN/FN-1) = FN/F ti 1 in An. Generally, the product will not

converge. However, our functions are only defined up to units,

and so we replace Fi by Fi = F
i
e i ui a polynomial,

so that the product formed from these Fi does converge

normally, precisely as in the proof of the Weierstrass theorem

in one complex variable.

Corollary. C.II is solvable in any domain which is the

product of simply connected domains in C.

Exercise. Use the method of the above theorem to solve

C.I for a polydisc.

94. Characteristic classes (From C.II to C.I)

A. In the following, we consider only coverings U such

that ui and u1 11 uj are simply connected; call such

coverings distinguished.

We now associate a cohomology group to C.II, as we did

for C.I. However, our coefficients are now -4 , so that

our cocycles will be multiplicative.

C.M. Let X be a complex manifold, and U any cover-

ing of X with meromorphic functions Fi defined in ui such

that Fi/Fi is a unit in ui /) uj. Set

Fij
= Fi/Fi .

Now
Fij

is a 1-cochain, for F13Fj1 = 1 in u1 11 uj.

It is also a cocycle, for FiJFjkFki = 1 in ui n u, A uk.
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The Cousin problem is now: Given a cocycle FiJ, is it a

coboundary; i.e. is the class of Fi the unit in the

(multiplicative) cohomology group HI(X,U,, )? It is clear

that C.IIt implies C.II.

Now assume that the covering is distinguished. We may

thus define
2rif

Fij = e i<3
and 2vi(-fit)

Fji
= e , with fii = 0

Now observe that fij = - fji; i.e. fij3- is an additive

1-cochain, with holomorphic coefficients. However, this is

not necessarily a cocycle, for

ki = log 1 = mijkfib + fjk + f
1

an integer. But 3miJki is a 2-cocycle (with integral

coefficients); the antisymmetry condition is easily verified,

and 6mijk = 0 for mijk is a coboundary of a 1-cochain.

Note that
mijk is not uniquely determined by the Cousin

problem, for the fij are only determined up to an additive

integer. However, let fib be replaced by fij + nij.

Then mi3k is replaced by mijk + (ni3 +nJk+ nki), and so
the class of

mijk in H2(X,U,Z) is unchanged. We are

thus led to:

Definition 49. The cohomology class of mijk in

H2(X,U,Z), for distinguished covers U, is called the

characteristic class of the Cousin problem.

B. The above procedure gives us a mapping of the group of

divisors into the group of characteristic classes, for which

a commutative lemma holds.

This map is clearly homomorphic._ We may regard it as

a map of H1(X,U,) -> H2(X,U,Z), for distinguished covers

U, for,suppose the cocycle
Fij

of C.II' is a coboundary;

i.e. Fi3 = Fi/F3. Then fij = fi-f3 and mijk = 0, i.e.
Z

the map Fi3 -> fmijki is a map of classes
jFijj

.j mi3kj.
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There is a commutativity lemma in this case which we also

shall not state explicitly. Furthermore, distinguished

coverings are cofinal in the set of all coverings (easily

seen for domains in space) so that we summarize in the

following theorem, which makes no reference to particular

coverings:

Theorem 31. (Oka-;Serre). There exists a canonical homo-

morphism of the group of divisors of X into H2(X,Z), with

the following properties, where a denotes a divisor and

c(a) its class:

i) If a is principal then c(a) = 0.

ii) if H'(X,0) = 0 and c (a) = 0, then a is

principal.

Proof. Note that i) states that C.II solvable implies

H2(X,U,Z) = 0, and ii) states that if C.I is solvable, then

this condition is sufficient. We remark also that i) Implies

that if two divisors differ by a principal divisor, they

have the same class. It is clear that the map is homomorphic,

for a multiplication of divisors (on a fixed U) induces an

addition of the associated 1-cochains and hence also of the

mijk.

i) Now let a = M. Then Fi . F on ui for each

i, so that F1j = F1/FJ 1. Fence we may choose
f1

= 0

for every i,j.

ii) c(a) = 0 implies
milk = nij + njk

+ nki, where

the
nib

are integral. Now redefie ifi1 b setting
A
fij = fij^ n1j. Note that Fij=e

i
= e

i'
. But

now the
fij

is a cocycle, for

fi3 + fjk + fki = mijk - (nij +n
jk

+ nki) = 0.

Hence the
fib

are also coboundaries as H1(X (9) = 0 so

f = f -f , and now we are done, for F = e fi erif

Fi/FJ, is F
je-2Trifj _ Fie-2Trifi.

Hence the function
F = Fie i in u i is globally defined, and clearly

solves C.II.
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Corollary 1. Let X be a complex manifold. If
H2(X,ac) = H3. (X,(9) = 0, then C.II is solvable.

Corollary 2. Cousin II is solvable in any polydisc X.

Proof. We have shown C.I is solvable in any polydisc,

i.e. that H1(X,0) = 0; H2(X,Z) = 0 is a well-known

topological result.
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Chapter 10. Runge Regions

Runge regions are regions in which Runge's theorem can

be generalized: the theorem states that in a simply connected

domain in the finite plane a holomorphic function can be

expressed as a normally convergent series of polynomials.

In other words, given an e > 0, a compact subset K of

a simply connected domain D, and a holomorphic function

f in D, there is a polynomial p such that If-pl < e

on K. Note that in a multiply connected domain it may be

impossible to represent a holomorphic function by an infinite

sum of polynomials.

91. Preliminaries

Let X and Y be complex manifolds of the same

dimension with YopenG X.

Definition 50. Y has the Runge property relative to

X if every holomorphic function in Y can be represented

as a series of functions holomorphic in X converging

normally in Y, i.e. given KcompactG Y, and e } 0,

for every holomorphic function f in Y there is a

holomorphic function g in X such that If-gj < e on K.

Lemma a. Let X be a complex manifold of dimension

n and Hq(X,0) = 0 for all q > 0. Let fl,...,fr be

holomorphic functions in X such that if, at p e X, fl =

f2 = ... = fk = 0 for k fixed, k = then the

rank of the matrix (afi/az2) is min (k,n), where

i = 1,...,k; A = 1,...,n; and z2 are suitable local

parameters. Let Yj = T p e X I fj(p) = 01. Then

(1) Z = Y1 A Y2 /i... n Yr is a regularly imbedded manifold

of dimension n-r and Hq(Z, (9) = 0 for all q > 0.

(2) Every holomorphic function on Z is the restriction

of a function holomorphic in X.

Proof. (1) Define Z0 = X; Z1 = Y1; Z2 = Yl A Y2;

...; Zr = Z. Zj+1 is a globally presented, regularly



in

imbedded, analytic hypersurface in ZJ. By Theorem 20

(p. 73), and since ZO has trivial cohomology groups of

all positive dimensions, so has Z1. But then so has Z2,

etc. Hence Hq(Z, D) = 0 for q > 0.

(2) Since H1(Zr_1,(9) = 0, the first Cousin problem

is solvable in Zr_1. Since Z = Zr is a globally

presented regularly imbedded analytic hypersurface in Zr-1'

by the extension theorem, (Theorem 17, P. 59), every holomorphic

function in Zr can be continued holomorphically to Zr-1'

Similarly, every holomorphio function in Zr-1 can be continued

holomorphically to Zr-21 and so on, down to Z0 = X.

Lemma R. Let Xopen C en and let

X = V X3, Hq(Xis0) = 0 for all q > 0, and let Xi have

the Runge property with respect to Xi+1. Then

(1) Every X has the Runge property with respect to X.

(2) Hq(X, (9) = 0 for q > 0.

Proof. (1) Fix J. Let
KcompactC. X1, e > 0 be

given, and let f be any function holomorphic in X3.

Choose jej with 7- ei = e. Let tKij i > 3 be a

sequence of compact sets Ki c :c Ki+l' Ki C Xi+1, U Ki = X,

and Ki is the given set K3 for i = J. By hypothesis,

there is a function gl holomorphic in XJ+1
With

If-gll<el

on K3. Similarly, for Kj+lpaetc 3
+1,

since 3+1 has

the Runge property with respect to 3 +2, there is a g2

holomorphic in 3+2 with 1g2-g11 < E2 on Kj+1, etc.

Since = ei < CD, lim exists uniformly onk- oo g k = g
compact subsets K of X, because every K C K2 for some L.

g is therefore holomorphic in X and satisfies If-gJ <

I f-gJ I + ( gA-g j+l j + ... < E2 +E.2+l + ... < e on K3.

(2) By Dolbeault's theorem, Hq(X, 0) = 0 for q > 0
closed (O ,q) formsif and only if exact q

orms' 0 for q > 0, i.e.,tv)
if and only if for a differential form a in X of type

(0,q) with as - 0 there is a 0 of type (0,q-l) such

that a = a13 .
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(a) Let q = 1, and let a, defined in X, be a (0,1)

form with as = 0. By Dolbeault's.theorem for X3, there ale

differentiable functions- pl,p2,... defined in X1,X2,...

respectively, such that app = a in XJ. Consider the sum:

pl + (p2-pl) + (p3-p2) + ... . In X1 and X2, a(p2 p3) = 0

and hence p2-p3 being holomorphic can be approximated on

any compact subset of X2 by a holomorphic function P23

on X. Set p2 = p2, 03 = 03 - P23, etc., using the Runge

trick as before (cf. proof of Theorem 23, p. 88).

(b) Let q > 1, and let a , defined in X. be of

type (0,q) with as = 0. Again, there are 01 in Xj

such that api = a in Xi, where p has type (0,q-l).

Since a(p3-02 = 0 in X2, ay2 in X2. Let
A
p3 = 3 -

'2' etc. (cf. p. 88).

92. Polynomial Polyhedra

Definition 51. Let pl,...,pr be polynomials in

zl,...,zn. Let A = z I Ipi(z)I < 1 for j =

A is an open set. If A cc Cn, then A is called a

polynomial polyhedron (of dimension n).

Note that a polynomial polyhedron is a region of holomorphy.

Theorem 32. (Oka-Weil). Let X be a polynomial poly.

hedron of dimension n, then

(1) Hq(X,(9) = 0 for all q > 0

(2) If f(z) is holomorphic in X then f = qj

where the qj are polynomials in zl,...,zn and the pk

used to define X, and the sum converges normally in X.

Proof. (1) X is a bounded set and therefore lies in

a polydisc; assume X lies in the unit polydisc, i.e.

X C (IziI < 1, 3 = 1,...,n). Consider
n+r where r is

the number of polynomials defining X. In Cn+r consider

I- = (zl,...,zn, Cl1"Cr) I IziI' 1, J=l,...,n,

Ci = pi(z), i = 1,...,r,. r' is closed. Define =p =

M I Z iI < 1, Itil < 1). =o is closed in the open
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polydisc. Consider the analytic hypersurfaces

0 = fi(zl,...,zn,Sl,...,Y = Si - pi(zl,...,zn). The fi

are defined everywhere and are clearly holomorphic functions

in Cn+r,

With (1ziI < 1, l(il < 1) as the complex manifold

X in lemma a and noting that the Jacobian of the fi has

maximal rank everywhere because afilaCk = 6ik,' the

hypothesis of lemma a is satisfied and since Z = I:o,

Hq( 7-0, d) = 0, for all q > 0 and every holomorphic

function on ;;-o is a restriction of a holomorphic function

in the open polydisc (1zjI < 1, JCiI < 1). But a

holomorphic function in the open polydisc can be written

as a power series. Hence every holomorphic function on

z:o is the restriction of series, i

aj
..j i

zll... znn converging

normally inn 1 Or

We claim that 7-0 is holomorphically equivalent to

X. For, define the mapping (zl,...,zn) -> (zl)...,zn,

pl(z),...,pn(z)). It is of rank n and one-to-one. The

preimage of =p is X. Hence H'(X,(9) = Hq( 2:0, p) = 0

for all q > 0.

(2) We have already obtained that every holomorphic

function on 5-0 is a restriction of a series

r z 1 ...Crjl,.ia r converging normally in 1:0

But on moo, Ck = Pk(z) and thus the above series is a

series in only the zj, converging normally in X.

§3. Runge domains

Definition 52. Let K Cc 0n. The polynomial hull of K,

K = iz0 I for every polynomial p with jp(z)j <-l on K,
P(z0) ( < 13.

Definition 53. XopenC 0n is polynomially convex if

K c c X implies that K c c X.
Definition 54. A Runge region is a region of holomorphy

in which every holomorphic function can be expanded in a
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normally convergent series of polynomials.

Theorem 33. Let Xopen C fin. The following statements

are equivalent:

(1) X is polynomially convex.

(2) X = V X3, where the Xi are polynomial polyhedra,

XiCCX +1
(3) X is a Runge region.

Proof. (1) implies (2). Since X is polynomially convex,

X is holomorphically convex. By the Cartan-Thullen theorem,

X is a region of holomorphy. Continue the proof by adapting

the proof for analytic polyhedra, Theorem 7 and its corollary,

(p.25)-

(2) implies (3). By the Oka-Weil Theorem, Theorem 32,

each polynomial polyhedron is Runge in the next one, and

Hq(Xj,O) = 0 for all q < 0. Apply lemma P. Hq(X,(9) = 0

for q > 0. Hence by Theorem 21 (p. 75), X is a region

of holomorphy. Let f be holomorphic in X and
KcompactC

X.

Then K C XJ, for some j, and by the Oka-Weil Theorem,

f can be approximated as closely as desired by a polynomial

in K. Hence X Is a Runge region.

(3) implies (1). Since X is a Runge region it is a

region of holomorphy and therefore is holomorphically convex,
A

i.e. if K C cX, then K cc X where K is the hull of K

with respect to holomorphic functions on X. We claim that

K = K and hence K c-c X. Indeed, K . K since the

family of all holomorphic functions on X is larger than the

family of polynomials. It remains to show that K C K.
*

Let z0 e K and let f be a holomorphic function in X

such that jf(z)j < 1

is a polynomial p(z)

K 0 fzo , since x

for z e K. For every s > 0, there

satisfying tp(z)-f(z)I < c

is a Runge region. But then

on

Ip(z)I < 1 + s on K, and since z0 c K*, Ip(z0)l < 1 + E.

Hence If(z0)+ < 1 + 2e, and because c is arbitrary,

lf(z0)I < 1, i.e. z0 a K.
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Chapter 11. Cohomology of Domains of Holomorphy

f1. Fundamental Lemma, stated

compact
(1) Let K On. Let K* denote the polynomial

hull of K; K* _ z I jP(z) max IP(C)I for every polynomial

P. Note that K* is bounded and compact and that

K* = 11J D I D is a polynomial polyhedron, K C D3

(Proof easy).

(2) Recall that an analytic polyhedron Dc
n

was.

defined as follows: there exists an open set G c 0n and

functions fl,...,fv holomorphic in G such that D c G

and I z s G, Ifi(z)I < 1, 1 = 1,...,vj. Since

D C"G, 'hence bounded, we shall assume that G r- I I z II < 1 j ,

the unit polydisc.
(3) Let D be an analytic polyhedron. Then -, the

Oka image of the closure of D, is defined as follows

_ t(z,C) I Izij, IC1 1, z E G, =fn) ;

i = 1,...,n; j = 1,...,v3.

n+v,
and is closed.

We now state the fundamental lemma.

Fundamental Lemma (Oka). Let ` be as above. Then

We shall prove the lemma in this chapter; the proof of

a more general form of the lemma will come later (p. 196).

§2. Applications of the Fundamental Lemma

A. Let D-_r Gopen , Cn be an analytic polyhedron.

->
n+v

Observe that the Oka mapping of cl D c

(zl,...,zn) -> (z11 ...,zn,C11...,Cv) ,

given by: zi = zi, C = fi (zl,...,zn); is defined on all

of G: call the image of G under this mapping " = ". Note
1
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that = is. closed and C =l. Hence there exists an e s 0

such that if dist [(zl'
" ''zn'c1'...PCV)' = ) < c, then

(zl,...,zn) s G; where the distance of a point p s On' from

a set S C.
Om

is defined as infsesIlp-s 11 = infs5S.£max Ipi-siIS
11, ...,m

Let denote thh s-neighborhood of L, defined bye
= w I dist (w, ) < cf.

Applying the fundamental lemma, there exists a polynomial

polyhedron Al c
n+v such that =cc Al c5£. Let

A = Al Izi < 1, It iI < 1i', and note that A is also a

polynomial polyhedron. We now claim that =o = = m1zi1<1,

it j1<1f, the Oka image of D, is the intersection of globally

presented, regularly imbedded hypersurfaces of A, satisfy-

ing the maximal rank condition of lemma a, (p. 110). Indeed,

the hypersurfaces of A,v Y _ j-fj(zl,...,zn) = OS,

j = 1,...,v satisfy J=1 Yj _ =o and also the maximal

rank condition, for the matrix (S
a(C -fi (zl,...,zn))

jk) = (-
k

is of maximal rank. Hence lemma a applies.

Since =p is holomorphically equivalent to D, we

have established:

Theorem 34. If D is an analytic polyhedron, then

Hq(D,c9) = 0, q > 0.

B. Using the Oka mapping, we may consider any function f,

holomorphic in D, as a holomorphic function on =o. By

the above argument and lemma a, f is the restriction of a

function g holomorphic on A. Now by Theorem 32 (p. 112),

g = = * i(z1,...,zn,C1,...,Cv), normally convergent on A,

where the *j are polynomials. This series therefore converges

normally on 5-01 hence on D: f(z1,...,zn) _

= * (z1,...,znv), and we have also established

the following:

Theorem 35 (Oka-Weil Approximation Theorem). Let D

be an analytic polyhedron in G defined by fl,...,fv;

and let f be holomorphic in D. Then

f = f-
where the Pi are polynomials and the series converges normally.
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Corollary. If D is an analytic polyhedron in G, then

any function holomorphic in D may be represented by a sequence

of holomorphic functions defined in G and normally convergent

in D, i.e. D has the Runge property relative to G.

Theorem 36 (Oka). If D is a region of holomorphy, then

Hq(D,0) = 0, q > 0.
Corollary. C.I is solvable in every region of holomorphy.

Remark. Note that this theorem completes the proof of

the de Rham theorems of Chapter 8.

Proof (of Theorem 36). Note that every analytic polyhedron

is a region of holomorphy. Exhaust D by a sequence of
00

analytic polyhedra Di cc DJoienC D,
T l

Di = D; compare

corollary to Theorem 7, p. 25. Now, by Theorem 34, Hq(Dj,O)

= 0, q > 0, j = 1,2,...; and by the Corollary to Theorem 35,

Di has the Runge property relative to Dj+1 Hence we may

apply lemma P.

§3. Preparation for the proof of the fundamental lemma

A. Proposition. Let
Keompact G 9n

and let K* denote

its polynomial hull. Let Gopen._ Cn, and [a<t<<b]C
Topen, C

IffLet F(z,t) be holomorphic in G x T, continuous in x *T,

and such that tz I z e bdry G, F(z, t ) = 0, t e fib/) K*
and F(z,t) / 0 on (K /I G)) <T. Then either, for each

t e [a,b] there exists z e K* /1 G such that F(z,t) = 0; or

F(z,t) / 0 on (K* A G) x [a,b].

Proof. We may assume T to be a polynomial polyhedron.
*

Let U be an open neighborhood of K , which we may also take

to be a polynomial polyhedron, for (K*)* = K*. Further, since

F(z,t) 0 in (K*0 bdry G) x T, we may choose U such that

F(z,t) 0 in (U /)bdry G)x T. Therefore there is an open

set H cc G such that F(z,t) / 0 in U /) (G-cl H) >(T.
Now U x T is a polynomial polyhedron, hence C.I is

solvable (cf. Theorem 32). We are able to find a meromorphic

function G(z,t) in Ux T with poles at the zeroes of F(z,t).
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To this end, we pose the following problem: In (U4 G)x T, set

fl = 1/F(z,t); in (U (I (Cn-cl H)) AT, set f2 = 1. This is

a well-posed problem, for F(z,t) 0 in (U()(G-el H))xT.

Let G(z,t) be the solution of this problem. Set

Yt = z I z e U/)G; F(z,t) = 01. Assume the Proposition
*

is false; i.e. that Yt 0 K 0 for some t° e [a,b];

Yt /) K* = 4 for some t1 a [a,b]. Now 2 tlYt /)K* # 0 1 is
closed; hence there exist numbers b°,bl a [a,b] such that

for b° < t < b1, Yt/IK* = $ and Yb0 K* / 0.

Choose t e (b°,b1). Then there exists an open neighborhood

V of K* such that K *c-- V cU, and Yt AV = $. We may

assume V is a polynomial polyhedron, as any smaller neighbor-

hood has the same property of non-intersection. Consider G(z,t)

for this fixed t; it is holomorphic in V, and can therefore

be expanded in a normally convergent series of polynomials in

V (Theorem 32). Now G(z,t), for a < t < b, is continuous

in K; so IGI has a maximum here: IG(z,t)I < A. But
zcIC; a<t<b

G(z,t) = lim Pj(z), normally in V. Lei _e > 0 be given,

and let N be sufficiently large so that j > N implies

IG-PiI < e on K. Hence IPi(z)l < A + e on K for every

j > N, so IP I < A + e on K*, implying IG(z,t)I < A + 2e

for z e K. But there exists a C e Ybo n K, and

limttbolG(C,t)I < A + 2e, although G has a pole at (l,b°);

and this contradiction establishes the proposition.

B. We now establish some properties of subharmonic functions;

their definition may be restated as follows:

Let
Dopen,

C. Then 4(z) is subharmonic in D if:

(i) - ao < 4)(z) < 00
(ii) 4) is upper semicontinuous; i.e. 1imh $(zn) < 4)(b)

(iii) for every z e D, and each disc

'D(z,p7 = {C I
IC-zI < p}CD,

4)(z) < . f 4)(t) dt

1C-zl=p
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Note. (i) and (ii) imply $ is measurable, for
4)

may beapproximated from above by continuous functions.

Proposition 1. Assume 4 to be subharmonic in D;

then $ possesses the following properties:.

(1) $ is bounded from above on compact sets

(2) If 4 = - co in a neighborhood of some point z

of D, then 4 _ - co on the component of D containing z.

(3) (Maximum principle). Let KcompactC D. Then

4(z) < A on bdry K implies 4(z) < A in K.

(4) Let D z0,r) < D, and assume 4 = constant in

D(z0,r). Then 4 = constant on D z0,r .

Proof. (1) follows from (ii) and (2), (3) from (iii).

We prove (4): We may assume z0 = 0, r = 1, and 4 = 0 on

D(0,1) = fl zl < 15. Then $.t 0 on Jzj = 13 , using (ii).

Assume, e.g. 4(1) > 0; and let 1 > c > 0, R 1 such that

D(0, 1-e) D(O,1) D(O,R) C D. Then 4 < A in D(O,R).

Define
log IzI - log l1-El

u(z) A
log R - log ll-E

Then u is harmonic in D(O,R) - D(0,1-e), 4, < u and u = 0

for (zI = 1 - E. Hence, 4(1) < A log 1 /log. ;

letting s y 0, we obtain 4(1) = 0.

Proposition 2. If $.t 0 and log $ is subharmonic,

then $ is subharmonic.

Proof. (i) and (ii) follow from the monotonicity of

"log", and (iii) from the inequality:

log ( 1 f 4(C) dC) > f log 4(C) dC

IC-z01=r IC-z0I=r

Proposition 3. Let 4(z) > 0 be defined and upper

semicontinuous in Dc 0 such that log 4, is not subharmonic

at z0 a D, and 4(z0) 0. Then there exists a disc

D z0,r C D and a function ' holomorphic in D(z0,r) C -D,
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and continuous in D z0,r , such that 1 on

Iz-z0I=rJ and 4(z0) I '(z0)l = 1.

Proof. We may assume z0 = 0. Let r > 0 be chosen

such that D 0,r c.D and

log-%O) >, J, log 4,(z) dz

Izl=r
Using upper semioontinuity, let $n be continuously

differentiable in D, $n4 4. Let hn(z) be the harmonic

function for which log 4n(z) = hn(z) on jzI=r. Let hn

be the conJj}gate harmonic function, and set
-hri ihn

*n= e
Now on IIzI=rS , log fl &I = (log 4) - hn = log 4 -

log $n < 0, i.e. 1*n1 < 1.
If '(0) 1 *n(0) I = K > 1, then 4 R I&( < 41'nI, so

n(z)I is the required function.
If CO) 1* (0)1 < 1, then In 4(0) + In 1 (0)I < 0,

i.e. In $(0) < hn(0) _
J

hn(z) dz = 7nin 4n(z) dz,

lzJ=r IzI=r
therefore in 4(0) < nl 1/2rr f In 4n(z) dz, so

>aD
zI=r

In 4(0) r in 4(z) dz, contradicting choice of disc.

lzl=r

34. Proof of the fundamental lemma

Statement. Let
Gopen Cc $n

and assume (for the sake

of simplicity) that G cc( I z
i
1<1).

Let fI(zl,...,zn),...,fv(zl,...,zn) be holomorphic in G

and continuous on the closure of G. Denote by

'b = 1(zl,...,zn)
I
(z1,...,zn) c G and (fi(zl,...,zn)I f 1

for i = 1,...,v} : M is compact. Let = _ (zl,...,zn,

cis...Av) g Cn+v I

1ziI< I, Ril < is (zl,...,zn) E G

and Ci = fi(zl,...,Zn) for i = 1,...,v5, the Oka image

of 7). Then = = .

Proof. Let (z2,...,zn) = Z, (C1,...,Cv) = C and hence
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(zl,z20...,zn,Cl,...,CV) _ (z1,Z,C). Let =(z) mean
E11[z1=z} and =*(z) mean 2* () [z1=z]. Denote by

S = f z I there is a (Z,C) for which (z,Z,C) a 2*i: S is

a closed bounded set. Let 00 = [z I there is a (Z,C) for

which (z,Z,C) e 5- and (z,Z) Gy : no is a closed
set C S. Call the complement of 00, C) : 0 is an open
unbounded set.

1) For z e 0 and J = 1,...,v, set

0 if z¢S
RJ(z) = 1

max IC-f (z,Z)Iover all

(z,Z,Cl a

*

If z e S

If, for fixed z and all J = 1,...,v, R{(z) = 0, then

(z) _ (z). Proof: If AZ J S, then (z)

and, since= G =* and hence =(z) C =*(z),
z) _ 4. If z e S, then for all j = 1,...,v, C =

f J(z,Z) for every (z,Z,C) a =*. Since z e 0, z 1 no,
and so (z,Z) e G for every (z",Z,C) a Hence for

every (z,Z,C) a Z7 (z), f (z ,Z) and (z,Z) a G.

Therefore (z,Z,C) a :(z)
2) log RJ(z) is subharmonic for each j = 1'...'V.

Proof: It is enough to consider R1. Rl > 0 and is upper

semicontinuous, i.e. Um R (z ) < R (z). For, if z $' S
zJ->z 1 1

then R1(z) = 0. If z e S and zJ -> z, then for large J,

either zJ j S and then lim R1(zJ) = 0 < Rl(z), or zJ e S
z ->z

and then R1(zJ) = max ICl-fl1 = ICI-fl(zJ,ZJ)I for some

(zJ,ZJ,CJ) e =*. By the compactness of =*, there is

a subsequence (z3, J,CJ)J, converging to a point (z,Z,C)e

and im Rl(zJ) = IC? fl(z,Z)I < max ICl-fl(z,Z)1 = Rl(z).
->z

Hence Rl is upper semicontinuous.

Now, assume that log Rl is not subharmonic at some

z0 a (), then there is a closed disc in 0, [Iz-z0I < PS,

and a function bi(z) holomorphic in the open disc and
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continuous on its closure, such that R1(z) I*(z)I < 1 on

Iz-zOI = p, and therefore < 1 - 2e for some 1/4 > e > 0,

and R1(z0) I*(z0)I = 1. Define F(z,Z,C,t) = (C1-f1(z,Z))*(z)

- (l+t)eia for all C, (z,Z) e G, Iz-z01 < p, and t e T =

It E C
I

It-t01 < e and t0 a [O,a)J , where. a and a are

fixed real numbers to be determined later. We claim that this

F satisfies the hypothesis of the proposition with

K = C Cn, K* T = T and G in the proposition,

call it Gp, = G (1(lz-z&) < p) and all K . Indeed:

a) F is holomorphic in Gp X T and continuous in

cl Gp X cl T.

b) If r = z
I
z e bdry (G ()(Iz-zOI<p)), F(z,Z,C,t)=o

for some t e cl Tj , then r n =* = 4).
Proof: Bdry (G n(Iz-z0I<p)) = ((Iz-z0I<p)(\W) U(Iz-z0I=p)tG).

(i) If (z,Z) a bdry G and Iz-z0I < p, then, since

(Iz-z0I < p) C n = (C-a0) and (z,Z) j G , there is no

for which (z,Z,C) a Therefore, for these boundary

points, r/)
(ii) If (z,Z) a ((Iz-zOl=p)n G) and r n7-* 4,

then there is a z e
(r

/) S) and hence for this z,

Ri(z)= max IC1-fl(z,Z)I. Since IZ-z0I = p , R1(z) I*(z)I <

1-2e . But then 1-2e > (max IC1-fl(z,Z)I) I*(Z)I

IC1-f1("z,Z)I I'("z)I while I1+tI
leial > 1-e and thus

F(z,Z,C,t) y 0, i.e. z a contradiction. Hence

n=*=4-
c) F(z,Z,C,t) 0 for (z,Z,C) e . and t e al T

because on , C1 = fl and therefore IFI = (1+t) > 0.

However, the conclusion of the proposition is violated.

For, by choosing a sufficiently large, I(l+a)I can be made

greater than I(C1-fl)*I.. since the latter is bounded, so that

F / 0 at t = a. But for t = 0, F = (C1-f1), - eia = 0
at a point of =* /) G: for at z0, R1I*I = 1 implies

that R1(z0) # 0 and` hence zQ e S and R1(z0)

max IC1-fl(zO,Z)I = ICi f1(z0,Z)I for some (z0,Z, ) e *.
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Thus 1C1-fl.(zO,Z)I IV'(z0)I = 1 or (C1-fl(z0,Z)) *(z0) = ei

Choose a = A. Hence log R1(z) is subharmonic, and R1 is

then subharmonic by Proposition 2.

Let nl be an unbounded component of o. (nl 4

exists because 0 contains the complement of S, a compact

set in go)

3) '=(z) _ *(z) for z e 01.

Proof: Firstly, there is a z e 00 for which RJ(z) = 0

for all j = 1,...,v. For, since 01 Is unbounded and S

is bounded, (01 n (s-S)) , 4). Therefore there is a z e 01

and z J S and for this z, RJ(z) = 0 for all J. Secondly,

since (nl A (C-S)) is an open set, there is a neighborhood

of this z contained in (01 i1(C-S)) in which R, = 0 for

all J. By 2), since R1 vanishes in a neighborhood of z,

it vanishes in the largest component containing z, i.e. in

01. By 1), then, 7(z) _ 37-*(z) for z e nl.

If we can prove that 01 = C, then we are done. So,

assume Ol C, then 0l has a boundary point to t is

also a boundary point of c , and since C?O is closed,

e n0.

4) 3- (t b.

Proof: Since t o 00 C S, either t e int S or

e bdry S.

a) If t e int S, then there is a sequence of points

tJ -> t , tJ a (S01). Since tJ a S, there are points

(t,ZJ,CJ) e =*, and by 3), (tJ,ZJ,CJ) e =. By the

compactness of T , there is a convergent subsequence

(tJ,ZJ,CJ), tJ -> , ZJ -> Z, CJ
-> C and (t,Z,C) e 5-

b) If a bdry S and 5-(t) _ 4, then for every

point (4,Z,C) with first coordinate sufficiently close

to
t, =

(t) A 4', by compactness, i.e. there is an e > 0

such that if It -tI < e then t) _ 4. Since t e bdry 3,

there is a point tl with I tl e and tl j S. Consider

the function F(z,Z,C,t) = z - ((l-t)t+ ttl) for
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t e T = {t e C 1 It-t01 < Cl., and t0 a [0,1)1, where el

is chosen such that tel for t e "T is contained

in He-eke). F is holomorphic for all (z,Z,C,t). F # 0

for z e 5 and t o T because z = (1-t)e + tel lies

in the disc of radius a about e and by assumption, then,

4). Hence, F satisfies the hypothesis of the

proposition. However, for t = 0, F = z - , and since

t e S, (F=O] n =* = [z=f) () =* _ *( ) ; while
for t = 1 F = z - 1 and since S, [F=Oj ()=* _

[z=tll [)=* _ =*(tl) = 4), contradicting the conclusion

of the proposition. Thus

5) =(z)* = =(z).
Proof: Use induction on n. Either n = 1, or n = k+l

and the fundamental lemma holds for n < k. If n = 1, then

=(z) is a point, namely the point (z,fl(z),...,fv(z)),

and a point is its own polynomial hull. If n = k+l, then

=(z) = i(zl,...,zk+l)Cl,...,Cv)
I IzjI < 1, Icil 1,

(zl,Z) e G (1[zI=z) and Ci = fi(z,Z) for i = 1,...,vf and

therefore is the Oka image of an analytic polyhedron in Ck.

By the induction hypothesis, then, :(z) _ =(z)*.

6) There is an e > 0, a number b, 0 < b < 1, and

N polynomials P (Z,C) such that

a) if iz-ef < e and for all j, IP(Z,C)I < 1,

then (z,Z) E G and

b) if 1z-C < e and (z,Z,1) e = then for all j,

IPi(Z,C){ < b.

Proof. a) If e = then (t,Z) e G, and

there is a point (e,Z,') e = by 4+). Since G is open,

there is a neighborhood of such that every point

in this neighborhood has its first n-coordinates in G; i.e.

there is a S > 0 such that if the distance from (z,Z,C) to

is less than 5, then (z,Z) a G. But since
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any neighborhood of (y) contains a

smaller neighborhood which is a polynomial polyhedron. Hence

we can find an el, and polynomials Pi with the required

property a).

b) At every point (S7Z,C) e =, IPj(Z,VI < 1,

j = 1,...,N. We claim that fbr z sufficiently close to

and (z,Z,C) e =, IPj(Z,C)( < 1 for all J. Suppose not,

then there is a sequence
Ck -> , and Zk, Ck such that

(Ck,zk,Ck) a and max IPjR k,ZkItk)I > 1 for each k.

Since 5 is compact here is asubsequence (Sk,Zk,Ck)

which converges to a point E Z. fence in the

limit we obtain a point e where at least one of the

polynomials Pi has absolute value > 1; a contradiction.

Therefore there is an e2 neighborhood N of such that

IPj(Z,C)l < 1 for all j and (z,Z,C) e e Nt).

Choose e = min (el,e2). Then if Iz-CI < e and (z,Z,C) e

IPj(Z,C)l < 1 for all j, and since IP I is continuous,

there is a number 0 < b < 1 for which TPj(Z,C)I < b.

7) For Iz-el < e, set

(b if z j S
(z) = max

(b,IPj(Z,C)I) over (z,Z,C) a r>

and j = 1,...,N if z e S.

log 4(z) is subharmonic.

Proof: 4(z) > b > 0 and is upper semicontinuous. (The

proof is similar to that of part 2).) Assume that log 4(z) is

not subharmonic. Then there is a disc, C

C(Iz-Cj<e) and '(z) holomorphic in int C and continuous

on C satisfying 4(z) Iy(z)l 1 ^ on p, and thus

is < 1-2e for some e > 0, and
A1.

By definition,

4(z) > b. Therefore on z-C = p, *(z), < 1/b.

Since ai is holomorphic in ^int C, I'(t)J < 1/b and hence

W) > b. This means that C e S and 4(e) = max P.

Pick out one polynomial assuming the maximum value, say P

() = P1(z,)l, (E,Z,C) e*. Let F(z,Z,C,t) _
,,

P1(Z,C) -(z) - eia(1+t) for all z, C, Iz-^el < p, and
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t E T = JtE C I It-tol < e and t0 a [0,a]3 where' a

and a will be determined later. F satisfies the hypothesis

of the proposition. A
a) If z E (Iz-QI=p) and (z,Z,C) E Y* then F / 0

since then z E S and 4) = max (b,IP 1) and satisfies

1 or 1-2E. But all 1P I < $ implies that

IP11 1*1 < 1 - 2E on Iz-fl = p. But jeial (l+ti > 1-E.

b) If E ( 5 ((1z-gj<p)), then F / 0,

for E implies by 6b), that IPiI < b < 1 for all J.

But I*(z)i < 1/b here too and therefore IP1*i < 1 and

thus < 1-2E, while 11+tI > 1-E. However, F contradicts

the conclusion of the proposition. For 7--* c (Iz,F< 1,

ltih< 1) means that P1 is bounded on , and for

Iz-1 < p, i is bounded; hence for a large enough choice of

a, Il+al can be made > JP1j 1*1 so that F(z,Z,C,a) / 0

for (z,Z,O E * . For t = 0, 1 =

lP1(Z,c)l I i(e)l. Hence at the point Q ,Z,C), there is

a^ c^ such that Pl* =
ei . Take a = 6 Then F = 0 at

R ,Z0) and E *.

8) Consider only z e (jz-eI<e). Since e s Q0, there

is a point with first coordinate t belonging to

since there is a point e =*R) with (z,Z) G. At this

point 4) = max (b,IP11) and at least one polynomial is > 1,

i.e. CC > 1, for if not, then (z,Z) e G by 6a). Now

e boundary 1)1 means that in (fz-QI<E), there is an

Tj e 01 . with $(rr) = b. For
a) If q S, 4(n) = b.

b) If i E S, consider any (n,Z,C) e 2-*. Since

rl e c1, (i,Z,L) E by 3). By 6b), IPi(Z,C)i < b for

all j at (rI,Z,t) , and hence 4(q) = b.
Next, consider the set of points (in E)) where

4) > 1. This set is closed because 4) is upper semicontinuous,

and at r), 4 < 1. This means that there is a closed set with

C1 boundary A ` containing n, such that 4 < 1

in int 6 and 4 > 1 at some boundary point of A. Now in
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int A, 4(z) < 1. Therefore either z j S and hence

z j OG, a subset of S, or z s S. If z s S, then- since

+(2) < 1, IPi(Z,t)I < 1 for all j and all (z,Z,C) a 2-*,

and by 6a), (z,Z) c G. Therefore z J 00. Hence all points

in int A s (C-00). But int A is connected and therefore

lies in a component of C-{)0. But 11 s 01. Thus int A C Of.

Then by 3), in int A, = b. Let S be a closed disc c A

and tangent to aA at a point p where ? 1. Then + b

in int S and CO > 1. But a subharmonic function which

is s b in an open disc is = b on the boundary of the disc

(by property(4)of subharmonic functions, p. 119). But 4 > 1

at a boundary point of A; a contradiction. Hence nl = C

and by 3), then, =(z) _ *(z) for all z s d, i.e.
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Chapter 12. Some Consequences of the Approximation Theorem

§l. Relative convexity

Definition 55. Let DOG D, both open in dn. We say

that D o is D-convex if, for every K c G DO, K1CC DO,

where K1 denotes the hull of K with respect to D, i.e.

K1 = jzO E DO
!

!f(zO)! < sup !f(z)! , z e K,

for every f holomorphic in D}
n

Note that K1 K, the hull of K with respect to

functions holomorphic in_ Do.

Theorem 37. Let D0 C. D, both open in Vn. Then the

following statements are equivalent:

1) Do is D-convex.

2) There exists a sequence P3C C P3+1, U P3 = DO,

where each P3 is an analytic polyhedron in D.J

3) Do is a region of holomorphy and (DO,D) is a

Runge pair.

Note. This is in some sense an extension of Theorem 33

of Chapter 10, §3; where D = Cn.

Proof. 1) implies 2): Let K C C Do . There exists

an open set D1 e e Do such that K1 G c.D1. Now, for every

e bdry D1 there exists a function fe such that !fI < 1

on K1 and !fe(e)! > 1, where ff is holomorphic in D.

Hence,there exists a neighborhood N D of , such that

If eI > 1 on Ne. But D1C C -DO; hence bdry D1 is compact

and a finite number of neighborhoods N1,...,Nr suffice.

Let P = {z
!
z e D , !f3(z)! < 1, 1 = 1,...,r]. Now P

is an analytic polyhedron in D, with P r-c D1, and

K C K1 C c-P ; hence every compact subset of D0 may be

inclosed in an analytic polyhedron in D.

So, let Ka C Ka2 e ...C Do be a sequence of compact

sets such that 1 i Ka = Do. As above, there exists an

analytic polyhedron ini D, P1 Ka1. Now, cl P, L/ Ka is
2
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compact; so there exists an analytic polyhedron in D,

P2 a1 P1 U Ka2, and so on.
2) implies 3). Each P i is Runge in Pj+l. Hence

lemma 0 (p. 111) is applicable. Therefore DO is a region

of holomorphy (by Theorem 21, p. 75) and (DO,D) is a

Runge pair.

3) implies 1). Let K CC DO, and let K, K1 be as

in definition 55; K C K1. We claim K = Ki. Assume q / K;

we must show q j K1. Now q / K implies that there exists

a function f(z), holomorphic in D0, such that If(z)I < 1

on K and If(q)I > 1; in fact, there exists an e > 0

such that If(z)I < 1 - 2e on K, and If(q)I > 1 + 2e.

Since (DO,D) is a Runge pair, there exists a function g,

holomorphic in D, such that Ig-fI < e on the compact set

K U q j . But Ig(z)I = Ig(z)-f(z)+f(z)I _<Ig(z)-f(z)j+

if(z)I 1-e on K; and Ig(q)I _> If(q)I-Ig(q)-f(q)I > 1+e;

so q K1.

§2. Unbounded regions of holomorph

Lemma y. Let XopenC en, let Xi C Xj+1 be such that

X = X, where XJ is a region of holomorphy and (Xj,XJ+1)

s a Runge pair. Then X is a region of holomorphy.

Proof. As indicated by the proof of lemma P (Chapter 10,

31), we may assume X is Runge in X. Recall that, for

every K c c. X C Cn, A(K) = A(K) if and only if X is a

region of holomorphy (Theorem 5, Chapter 2, §2). Hence,

assume there exists a K C r- X for which.. A(K) < A(K), where

A is taken in the maximum norm; i.e. there exists a q e K - K

such that A(q) < A(K). For j sufficiently large,

X D K v q Now for every f holomorphic on X,, IfI -C 1

on K implies If(q)I < 1, i.e. q e [Hull of K with respect

to functions holomorphic in Xi]. But Xi is a region of

holomorphy, so dist (q, bdry X > dist (K, bdry Xi); i.e.

letting j -> eo, A(q) > A(K), which is a contradiction.
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Note. One obtains another proof by constructing a

sequence XIc such that X = X, using analytic

polyhedra as in "1 implies 2" of Yheorem 37.

Remark. (Oka) Let X C
(,n;

we assume 0 e X for

simplicity. Let Xr = X z II < J, 4) by assumption.
Then X is a region of holomorphy if and only if Xr is

a region of holomorphy for every r > 0.

Proof. Assume Xr is a. region of holomorphy for every

r > 0. If Xr is Runge in XR for r < R, we are done

by lemma y. Using the preceding theorem, it suffices to

show Xr is XR-convex. Let K let K1 be the

XR hull of K. K1 C C XR as XR is a domain of holomorphy.

But, for every z e K, 114 < r - e. Hence, in K1

IIzII < r - e ; where the norm is the maximum norm. Hence,

K1Cc Xr
The reverse implication is clear.

D. The Behnke-Stein Theorem

Theorem 38. (Behnke-Stein). If X3C. Xj+1 C on,

and X3 is a region of holomorphy, then X = U X3 is a

region of holomorphy.

We first require a lemma:

Lemma 5. Let D1c.c D2CC D3 C c. n be regions, D3 a
region of holomorphy, such that

min IIzl-2311 > max dist (z2-bdry D3).
z1c bdry D1 z2e bdry D2

z
3
e bdry D3

(This means that any subset of D3 whose distance to aD3

is > the distance of cl D1 to aD3 "lies in int D2.)

Then there exists an analytic polyhedron P in D3 such

that D1cc Pcc D2.
Proof. Let K = cl D1, and let K1 denote the D3 hull

of K. Then
AD

(K) _ tD3(Kl), so K1 cc D2. But now there

exists an analytic polyhedron P such that K1 C P CC D2,

as in "1 implies 2" of Theorem 37.
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Proof of Theorem 38. Utilizing OkaIs remark, we may

assume X cc en. We may also assume Xi e C XJ+1 as every

region of holomorphy can be written as a strictly increasing

(i.e. relatively compact) sequence of analytic polyhedra

(see corollary to theorem 7, Chapter 2, 3 5). Define:

Mi = max min IIz-C I I
z e bdry Xi C e bdry X

M

J1'J2'J1<J2
= sax

z e bdry X
min

C e bdry X
I I z-C II

i1
II

J2
m3 = min. a bdry Xi minC a bdry }C) z-C II

mJl' J2' J1<J2
mini E bdry Xj1

minC a bdry X
J2

II z-C II

We select a sequence vl,v2,... of subscripts as

follows:

Set vi = 1. Choose v2 such that Mv2 < mvl, possible

as Mv2->0 as v2-> OD.
Select v3 > v2 such that My v <

my v ;

Mv3 < mv2, possible as vu

3

rn <lmvi =vuim mvl1v3

and My33 -> 0 as v3 -> ae. Continuing, select vj > vJ-1

such Rat M < m and MV m ; possible

as before.
VJ-2'v

Consider now the subsequence Xv ; any three successive

terms X c c X CC X satisfyithe conditions of
+1

lemma 5 for
q g+2

minz
a bdry Xvgllz-CII mvq,vq+2

> Mvq+l'vq+2
C e bdry Xv

q+2

maxi a bdry X minC a bdry X IIz-C II

vq+l Vq+2

Hence, there exists a sequence jPjj of analytic polyhedra

such that Xv c _ C P i C C X
V

, where P i is an analytic
polyhedron ink

XvJ+2
and ce in PJ+1 C Xvj+2

'
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Appealing to the 0 ka-Weil theorem (theorem 35), (Pj,PJ+1)

is a Runge pair. Now use lemma y (or p) to obtain the

desired result.

34. Applications to the Levi problem

We recall the

Levi problem: Is every pseudoconvex domain a domain of

holomorphy?

We shall reduce this problem to the consideration of

"strictly pseudoconvex" domains, defined as follows:

Definition 56. Let Gopen G dn, and let 4>(z) be a

real valued, Coo function on G. Let 4> be strongly

plurisubharmonic i.e., (a2$/ aziazj ) > 0 for every z e G;

assume also that $ > 0 near the boundary of G and $ < 0

somewhere in G; more precisely, there exists an e > 0

such that for every z e j z I dist (z, bdry G) < e, z e Gl,

4>(z) > 0 and there exists a z0 e G such that $(z0) < 0.

Now consider the open (nonempty) set G_= z I z e G

4>(z) < 0; it is called strictly pseudoconvex; any region

D for which there exists a Gopen C Or' and strongly

plurisubharmonic (real-valued, C°D) function $ for which

D = G_ is called a strictly pseudoconvex region.

We remark that a strictly pseudoconvex region is

pseudoconvex; consider log (-1/4). The strict pseudo-

convexity is essentially a "smooth boundary" condition.

Example. The unit ball is strictly pseudoconvex: set

$ = zizi - 1. The unit polydisc is not, and analytic

polyhedra are generally not, strictly pseudoconvex.

Theorem 39. Every pseudoconvex region is the limit

of an increasing sequence of strictly pseudoconvex regions.

Proof. Let D be pseudoconvex; i.e. there exists a

real-valued, continuous, plurisubharmonie function ' in D

such that * -> + oD on the boundary of D. We claim that

for every compact subset K of D there is a strictly
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pseudoconvex region D0 satisfying K e D0 c c.D. To prove

this, notice first that since 4' -> + 00 on aD, there is

a positive integer N so large that K c S e T C Lcompact C D,

where S = iz e D 4'(z) < N3, T = Iz a D ( 4i (z). < N+ j
and L is any compact subset of D containing T. Give

e > 0 small. By Proposition 2, p. 28, there exists a Coo

plurisubharmonic function *0 on L such that I4(z)-*0(z)t< e

on L. Define Xz) = 4i0(z) + e/M zizi;

n 1=1
M = ma

L T_; zizi. Then X(z) is C0O and strongly pluri-
subharmofiit on L. For z e S, X(z) < N + 2e; for
z e (L-ci T), X(z) > N+ 1-e. Therefore if we set

D0 = z e int LI X(z) < N +1/2j, then- Do is strictly

pseudoconvex and K c D0 e L, as claimed. Let K3 be an

increasing sequence of compact subsets of D such that

U KJ = D. For each J, let D3 be a strictly pseudoconvex

region, K3 C Die C D. We choose a sequence v3 of subscripts

as follows : Set vl = 1; D1 C Ki for some Jl ; hence
D l. Set v2 = jl; and so on. Note that Kjc c Dv

so that Dvic G DvJ+1 and U Dv =
D.+1

Proposition. The Levi problem is reduced to the
j

following: Is every strictly pseudoconvex region

with compact closure a region of holomorphy?

Proof. Use the preceding theorem together with the

Behnke-Stein theorem.
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Chapter 13. Solution of the Levi Problem

The object of this chapter is to prove the following theorem.

Theorem 40. If Dopen
on

is pseudoconvex, it is a

region of holomorphy.

Since every pseudoconvex region is the union of an

increasing sequence of strictly pseudoconvex regions (Theorem 39),

and the union of an increasing sequence of regions of holomorphy

is a region of holomorphy (Theorem 38), it suffices to prove

Theorem 401. If Dope c c 0n is strictly pseudoconvex,

it is a region of holomorphy.

The Levi problem has been solved first by Oka (for n = 2),

then by Bremermann, Norguet and Oka for any n. There exist today

many proofs of this theorem using either Okays original method,

or functional analysis. methods (Ehrenpreis, Grauert, Narasimban,

Andreotti-Grauert, etc.), or partial differential equations

(J. J. Kohn). The proof given here follows mainly Grauert

and Narasinhan. The idea of using an "Extension Lemma" plus

a result by L. Schwartz to establish finiteness of cohomology

groups is due to Cartanand Serre.

61. Reduction to a finiteness statement

Proposition 1. If Dopen ` Cn is strictly pseudoconvex,

then dim H (D, hJ) < co .
Let U = ,u1S be a fixed, locally finite covering. The

dim H1(D, ')) = m < co means that given (m+l) cocycles on U,

a nontrivial linear combination of them is a coboundary on a

refinement of U. But a cocycle on U is a set of Cousin I data,

and a cocycle induces a coboundary when the induced Cousin I is

solvable. Since we can add Cousin data and multiply by constants,

dim H1(D,O ) = m < oo means that a nontrivial linear

combination of (m+l) CI data is solvable.

Proposition 1 implies Theorem 401.
open

Recall that
Di_

On is strictly pseudoconvex if

there is an open set G,::Tn such that D-:zl:G and in G there is a

real-valued C00 function 4 which is strongly plurisubharmonic

and D = [$<O].

A. Lemma 1. Let Dopen : Cn be a strictly pseudoconvex

region. There is an E > 0 such that if u) is a real-valued
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C0D function in G and if Iwl, 00z1I, 13 w/azJazk)

are all < e, D1 = [4iw<0] is strictly pseudoconvex and

D1 c.C 6n .

proof. D ccG since w is small and 4,-Iw is a
real-valued C function in G. 44w is strongly pluri-

subharmonic since the sum of a small quadratic form and positive

definite quadratic form is a positive definite quadratic form.

Lemma 2. Let Dope ` n be a strictly pseudoconvex

region. There is an e > 0 such that if q e bdry D and B is

the polydisc of radius e about q, there is a quadratic

polynomial Q, in z1,...,zn , with Q(q) = 0 and Q(z) # 0

in D /1 B.
Proof. Since $ e COD in G and is real-valued, by

Taylor's theorem,

4,(z) _ 5- [Ai(zj-qj) +AJ(ZJ-qJ)] +
n

7- [A1j(zi-gi)(zj-q3) + Aij(zi-gi)(2j-gj)] +

n

,,T7=
Hij(zi-gi)(zfgi) + R

where H = (Hij) = H* and R involves third order terms.

So,

4,(z) = 2 Re Q(z) + (z-q)* H (z-q) + R
n

where Q(z) _ Aj(zj-qj) A1i(zi-gi)(zj-g3)
1 -1,

Now, since the hessian of 4, is positive definite, H is a

positive definite hermitian matrix of second order derivatives

of 4, at q. Since H varies continuously with q, and at

each boundary point q of D it has a positive smallest eigen-

value, the minimum eigenvalue of H over aD, call it a,

is positive. Hence (z-q)*H (z-q) > ajlz-g112. Similarly by

estimating third order derivatives of 4, over aD, we can

find an M > 0, independent of q, such that - Mjjz-gfl3 _<
R < Hence (z-q)*H (z-q) + R > (a-Mjz-gIJ)(Jz-gjI2.

*
Take e = a/M; then for jjz-qjI < E, (z-q) H(z-q)+R > 0
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except at q where it vanishes. But in D r B 4' < 0;

therefore Q # 0.

Lemma 3. Let Dope cc Cr be a strictly pseudoconvex

region. There is an e > 0 such that if q e bdry D and

B is the polydisc of radius a about q, then B (I D is

a region of holomorphy.

Proof: We will show that every boundary point is

essential. Take e = 1/2 e2, the a of lemma 2.

Bdry (BAD) = ((bdry B)()D) V(Bfbdry D) U(bdry B()bdry D).
If y e bdry B, then since B is a domain of

holomorphy, there is a function holomorphic in B and

singular at y.

If y e (bdry D)( B, then the polynomial Q, of

lemma 2, corresonding to y, is holomorphic, Q(y) = 0,

and Q(z) / 0 in D A B. Hence 1/Q is holomorphic in

D A B and singular at y.
B. Assuming proposition 1, we will show that every boundary

point of a strictly pseudoconvex D is essential. Let

q e bdry D. Let B be the polydisc of lemma 2 and Q(z) the

quadratic polynomial. Let w > 0 be a C00 function whose

support lies in the interior of B and w(q) > 0. Consider

4) - tw, where t > 0 is small. By lemma 1, if t is

small enough, D1 = [4) - tw < 0] is strictly pseudoconvex.

D G D1 cc Cn, q e D1-D, and since supp w C B, D1-D C B.
Since D1 is strictly pseudoconvex, by hypothesis

dim H1(D1,(9) = m < w . Construct (m+l) sets of Cousin I

data as follows. Take U1 = B A D1, U2 = D, as an open

covering of Dl. For each k = 1,2,...,m+l, consider

F1 = 1/Qk, F2 = 0. F1, F2 are meromorphic functions and

because (U1 (1U2)C )C(DI)B) and Q 0 in D n B,
F1-F2 = 1/Qk is holomorphic in U1AU2. A linear combination

of these data is solvable. Therefore there are complex

constants al, ...,am+1 not all zero, m+ a function F(z)

meromorphic in D1 such that F(z) - a1
Q(z)-j

is
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holomorphic in U1 and F(z) - 0 = F(z) is holomorphic in D.

This function F(z) is holomorphic in D and has a pole at q.

§2. Reduction to an extension property

Proposition 2. Let DopenC a d be strictly pseudoconvex.

There is another strictly pseudoconvex region D0 with

Dc C D0c c on such that if a aj dzi is a Coo

differential form of type (0,1) in D and act = 0, then

there exists a Coo form P = Z- b3 dz3 in D0 with aO = 0

In D0 and a C0D function x in D, such that a - j = TX

in D.

2 means that every closed (0,1) form in D is

cohomologous in D-to a (0,1) form defined and closed in a

larger region.

2 implies 1.

Proof: By Leray's theorem, the cohomology groups of D,

Hr(D, (9) are isomorphic to the cohomology groups Hr(D,U,(9)

of D with respect to any simple covering of D. Hence we

need only consider cohomology with respect to a simple covering

in order to prove 1. Let el,e2 be the ets given by Lemma 3

for D and D0, respectively. Take e = 1/2 min (e1,E2) .

Cover aD0 by finitely many open polydiscs of radius a such

that (*) the closures of the polydiscs are disjoint when their

interiors are disjoint. Complete this covering to a finite

covering V _ Lvj ' of D0 by adding open polydiscs of

radius a satisfying (*) and whose closures do not intersect

aD0. About each vj take a slightly larger open polydisc v'

It I If i
such that vi cc v j, if I'cl v / aD0 = 4 then cl vi /) aD0 =
if v4i n vk = c then v4 /1vk = 4, and such that for each

j, v' n DO is still a region of holomorphy. Set ,U = u _

vI n D and U" = Zu j = vj 11 D0 . Then U' and U are
a-simple coverings of D and D0, respectively, since they

are finite coverings by regions of holomorphy.

With each covering we have the groups of cochains,
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Cr(D,U'9(9), Cr(DO,U", 0), and the groups of cocycles

Zr(D,U', (/') and Zr(DO,U', 0). As we have already noted,
these groups are also linear vector spaces. With the

following notion of convergence, it can be shown that Cr,

and hence Zr , is a topological vector space: a sequence

of elements of 0r(D)U,0) converges if in each u1 /1 ... 4 ur+l/+

the sequence of holomorphic functions assigned there converges

normally. In fact, these spaces are Frechet spaces, i.e.

Hausdorff, locally convex, metrizable and complete under the

metric.

Define the mappings

6: Co (D,U',(9) Z1(D,U',O)

to be the coboundary operator and

r : Zl(DO,U",D) -> Zl(D,U',(9)

to be the restriction map; i.e. if z s Z1(D0,U",l9) then

r(z) is the restriction of z to the covering U1. 6 is

a continuous linear map and r is a completely continuous

(i.e. compact) linear map. To show that r is indeed compact,

we must show that there is a neighborhood of the origin which

is mapped into a relatively compact set. A neighborhood of

the origin is the set of all 1-cocycles on U" which assign

holomorphic functions fib to ui n uJ with If13! < e.
it Il

Consider one intersection ui/1u3 ? $ and the holomorphic

functions fij assigned there with IfijI < e. The image

cocycles, under r, assign to ui/lu the holomorphic

functions fij, Ifi3I < e. Take any sequence i.f13 of

these functions, if kI < c, and a compact set K C D,
11 11 ij 0

(ui Au ) 7 , K . D (ui /1 u') . Since the derivatives of the
fib are uniformly bounded on K, is equicontinuous

and uniformly bounded on K, and hence contains a normally

convergent subsequence. This shows sequential compactness

of the image, but in a metric space sequential compactness

implies compactness.
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Now, consider the following two maps of the direct sum

of C°(D,U', O) and Z1(DO,U", 3) into Z1(D,Ut, I9),
6 r=A

Co(D,U t, (q) + Zl (DO,U", ='-- je, z (D,U',
-r=B

where 5 @r means that 6 operates on Co and r on Z1 and -r

is just the map -r operating on Z1. Both maps are

continuous and linear. B is compact, and we claim that

A is onto (see below).

Theorem. (L. Schwartz). Let E, F be Frechet spaces

and A, B : E -> F be continuous linear maps from E into F.

If A is onto and B is compact then the range of A + B

has finite codimension, i.e. dim F(A+B)E < o D. (The proof

is given in the appendix.)

Hence if A is onto, since A + B = 6, this theorem

implies that the space of cocycles on U' modulo coboundaries

is finite dimensional.

It remains to show that A is onto.

Proof. A onto means that a cocycle in U' is

cohomologous to the restriction of a cocycle in U". Let

fij be a cocycle in Ut and fij the holomorphic function

assigned to ui /1 ul # 4. fij = gi-gj where gi, gj are

COD functions on ui, u; respectively; since the intermediate

Cousin I problem is always solvable. In ui, agi = a , a

closed form independent of i because on ui ( u, , agi = agi.

By proposition 2, there is a closed (0,1) form p defined over

Do and a COD function x in D such that a = 13 + 5f- in D.

In ui, G = ahi3 hi E^COD, because
Un

is 5-simple.

Let f = hi - hJ* fib is defined and holomorphic

in ui / ui. Hence a cocycle 3-ij is defined on the larger

covering U". If we restrict this cocycle to Ut we get

a cocycle cohomologous to Indeed,Indeed, in ui /) UP

fij - fij =(gi-gi) - (hi-h j) _ (gi hi- X) - (gj-hj- X) and

a(gi-hi X) = a - F - 5X= 0 and therefore fij - iJ
is

a coboundary on U'.
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§3. Proof of Proposition 2

We will prove a proposition 2' and then show that 2'

implies 2.

Proposition 2'. Let
DopenCG Cn

be strictly pseudoconvex.

Let q e bdry D. Take a to be the a of lemma 3. Let B1 be

the polydisc about q of radius e/2, and let w > 0 be

a COD function with support in B1 and w(q) > 0 so that

D1 = for t > 0 small is strictly pseudoconvex.

Then every closed (0,1) form in D is cohomologous in D

to a (0,1) form defined and closed in D1. (We will say

that D1 satisfies 2' with respect to D.)

Proof. Let B be the polydisc about q of radius e.

Note that D4= D1 CC n and Di-DC B1. Let o' be a COD function,
d 1 in B1 and o'= 0 outside B. Let cn be a closed

(0,1) form in D. Since D/)B is a region of holomorphy

and a is closed in DI'B, there is a
C00 function X in

D /1B such that a = &:. The function Y- C' is C°D in D
and .X1= x. in B1/)D. Thus 0 = a - a(xQ') is a closed
form in D cohomologous to a . In B1/1D, p = a - af_= 0

and therefore can be continued as 0 to all of D1 - D.

2' implies 2.

Proof. Let
DopenEG,n

be strictly pseudoconvex.

Since D C
CGopen,

by definition, there are open sets E, F

such that D CC E CC F e n and the distance from D to E

is greater than e. Cover E by a finite number of polydiscs,

B1, ...,BN, of radius e/2 such that every polydisc containing

a boundary point of D is centered about a boundary point of

D. Let w,,---,,a)N be a partition of unity subordinated to

the covering: w > 0 and COD in E with support in B

and wi = 1 at each point of E. For 2 = 1,...,N

consi er the regions D2 = [4- tj wj < 0], where the tj

are positive numbers so small tat each D2 is strictly pseudo-

convex and D Cc. Cn. Since wi = 1 at every boundary

point of D, ' t w > 0 there. Hence D C C DN. Also,
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D1 satisfies 2' with respect to D and D2 satisfies 21

with respect to D2_1, 2 = 2,...,1t. Hence every closed (0,1)

form in D is cohomologous in D to a closed (0,1) form in

D1 which in turn is cohomologous in D1 (and hence D) to

a closed (0,1) form in D2, etc. up to DN. Take for D0,

in 2, the set DN.
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Chapter 14. Sheaves

61. Exact sequences

In the following, all groups are Abelian and all maps are

homomorphisms.

A. Definition 57. A sequence is a collection of groups A

and maps Ai -> A +l, written {AJ 4J3 or:

... > A -1 > A .> A +1 > ... .

The sequence is said to be exact at A i if im $J-1=ker P

where im $J-l = {ala s Ai , there exists b e A,-1 such that

$ J-lb = as

ker 4i = [al ae Aj, 4.a= 01 .

The sequence f is called exact if it is exact at

AP for every J.

Definition 58. A collection of maps and groups is said

to form a commutative diagram if all compositions of maps

leading from a group A to a group B in the collection give

the same result: e.g. the diagram

A 4> B

\9
C

commutes if ?P4>(a) = 8(a) for every a e A.

Remarks. 1) Clearly, 0 -> A -> 0 is exact if and only

if A=O.
2) 0--> A-> B is exact if and only if 4> is one-to-one.

In this case, we may regard A as a subgroup of B, for

Al = +(A) C B, and 4> : A -> Al is an isomorphism.

Hence the diagram
0->

I tid

0`>A1i>B
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is commutative (i will always denote the inclusion map and

id the identity map).

3) A AL> B -> 0 is exact if and only if 4) is onto.

Here,-the homomorphism theorem of group theory implies

B .. A/ker (ti denotes "is isomorphic to"). Hence, we may

"factor"
4) as follows:

A > B
J \ / 4)1
A/ker 4)

This diagram commutes, where here j (as always) denotes the

canonical projection and is onto; and 4l, the map induced

by $, is an isomorphism.

4) Combining 2) and 3), 0 -> A A-> B ± > C -> 0 is

called a short exact sequence if and only if 4, is 1-1, is

onto and im $ = ker ?i.

Remark. Utilizing the above remarks, the following

diagram commutes and both horizontal sequences are exact:

40->A->B->C>0
$i lid

t?l
1

0 -> A1--1> B J>B/A1-> 0

Note that 4) : A -> Al, id : B -> B and C -> B/A1

are all isomorphisms.

Isomorphic groups may be identified; hence short exact

sequences should be thought of as being in the form:

0-> A l> B L> B/A-> 0
B. Proposition 1. Let I = a,p,y,... be directed by
It > "; and let there be given sequences LAa,$aj , exact

for each a, such that, for a < 0 the following diagram

exists and is commutative:
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... -> A Aa -' .. .J+l
a aO ja l

... -> A --> AO+1 -' ... ,

where the a043 satisfy the following compatibility condition:

a < < y implies a' = apy
aaI3

Then the limit sequence JAS = lim Ai , j is

exact and the following diagram commutes:a
... -> Aa -a> A

A+1
-' ...

li Ii
... -> A > -> ...

J j AJ+l

Remark. The A are defined as follows:

Set S =(J Aa; define an equivalence relation "," oni aeI J a
Si as follows: s1 a A11, s2 a A2 are equivalent, sl s2

if there exists a D such that al < D, a2 < and
a1i a2(3

aj (sl)= aj (s2). Then A = Sand the group structure

is canonical.

Alternatively, define a thread to be a set of elements

ga such that for every a e I, ga e Aa; and for every

pair a,a e I such that a < D , gp = The group

structure is again the obvious one, and the group formed by

the threads is denoted Ai.

The homomorphisms i are defined in the obvious way,

utilizing the +a and the compatibility condition. The proof

of the proposition then follows from the directedness of the

set I.

32. Differential operators

A. Definition 60. Let A be an abelian group. A

homomorphism d : A -> A satisfying d = 0 is called a2
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differential operator.

The sequence A
d
> A

d
> A is not necessarily exact,

but ker d -Dim d as d2 = 0. Hence we may define:

H(A) = ker d/im d,

the derived group of A. H(A) is a measure of the deviation

from exactness of the above sequence, in the sense that H(A) = 0

if and only if the sequence is exact.

We say x e A is closed if dx = 0 ;

x e A is exact if there exists a y e A such that

x = dy.

Denote the homology class in H(A) of an element x e A

by [x].
Definition 61. If A,B are groups with differential

operators, we say that f : A -> B is an allowable homomorphism

if fd1 = d2 f; i.e. if the following diagram commutes:

A
d1

> A

ft
I

f

B
d

> B
2

Examples. The group of cochains on a space, with boundary

operator; continuous maps are allowable.

The additive group of differential forms, d the

differential; differential maps are allowable.

Chains on a simplex, boundary operator; simplicial maps

are allowable.

Proposition 2. An allowable map f : A -> B induces

a homomorphism

f* : H(A) -> H(B) ,

such that if g : B -> C allowable, then:

(gf)* = g
*
f
*

and

(idA)* = idH(A)
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Proof. Define f*[x] = [fx] , x e A. Then f* is a

mapping of H(A) -> H(B) , for :

dx = 0 implies d(fx) = f(dx) _

and

x = dy implies fx = f(dy) = d(fy) .

B. Proposition 3. Let A,B,C be groups with differential

operators, and let the following be a short exact sequence

of allowable maps:

0 ---> A f> B 21-> C --> 0

Then there exists a canonical homomorphism D such that the

following diagram is exact (viewed as an infinite, repeated

sequence)

D .;
H(C) H(B)

g
Proof. (Recall the Weil proof of de Rham's theorem!)

Exactness at H(B): (Does not need D)

i) Let a e H(A); we must show
g*f*(a)

= 0. But, let

x E a ; g*f*(a) = [gf(x)] = 0 as gf = 0.

ii) Let y s B, dy = 0, such that g*[y] = 0. We

wish to find x e A, dx = 0, such that f*[x] _ [y]. Now

g*(y] = [gy] = 0, implies gy = dz, z e C. But g is onto;

hence there exists a y1 E B such that gy1 = z, which

implies gy = dz = dgy1 = g(dy1). Hence y-dy1 E ker g, so

there exists an x e A such that fx = y-dy1, and x is

closed for dfx = f(dx) = dy = 0, and f is one-to-one.

But f*[x] = [y-dy1] = [y], as required.

Construction of D:

Let z e C, dz = 0. Now g is onto, so there exists

a y E B such that z = gy. But 0 = dz = dgy = g(dy), so

dy e ker g implies that there exists an x e A such that

fx = dy, and x is closed as before. Note that x is unique

once y has been chosen. Set D[z] = [x]; D is well defined

if [x] is independent of y. Eence, let y e B such that 0=gy.
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Then y e ker g, so there exists a unique x e A such that

y = fx. Therefore dy = f dx, so D[0] _ [dx] = 0. D is

clearly homomorphic.

Exactness at H(C):

i) Let y e B, dy = 0. Then Dg*[y] = D[gy] _ [x],

where fx = dy. But f is one-to-one, so dy = 0 implies

x=0.
ii) Let z e C, dz = 0 such that D[z] = 0; i.e.

there exists a y e B such that z = gy; dy = fx and

D[z] = [x] = 0. Hence, x = dxl. Set yl = y-fxl. Then

yl is closed, for dyl = dy - dfxl = fx - f(dxl) = f(x-dxl)=0.

Furthermore, g*[y1] = [gy-gfxl] = [gy] = [z], as gf = 0.

Exactness at H(A):

i) Let z e C, dz = 0. Then f*D[z] = [fx], where

z = gy and dy = fx. But then f*D[z] = [dy] = 0.

ii) Let x E A, dx = 0 such that f*[x] = 0; i.e.,

fx = dy. Set z = gy. Then z is closed, for dz = dgy =

gdy = gfx = 0; and D[z] = [x].

§3. Graded groups

Definition 62. A group A is called graded if, for

every integral J, there exists a subgroup Ai such that

x e A implies x= x + ... + x ; x e A , k < co

and the representationlis unique.
i i

Note that this uniqueness implies A 11Ak = 0, j # k.

An element xj e Ai is called pure (J-)dimensional.

Examples. Chains and cochains on a simplicial complex

are graded by their dimension.

Differential forms are graded by their degrees.

In both these cases, Ai = 0 for j < 0.

Definition 63. A differential operator d on a graded

group A is said to respect the grading if there exists an

integer r, called the shift of d, such that d Ai C Aj+r

for every J. (In practice, r is almost always + 1.)
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A map f : A -> B of graded groups with differential

operators is called allowable if the differential operators

have the same shift and f preserves dimension.

Corollary. If A is a graded group with differential

operator which respects the grading, then the derived group

H(A) is graded; and
x c Adx=0}j

(A)

1,

H
j-r

Corollary. An allowable map f : A -> B of graded

groups induces homomorphisms

f* : Hj(A) -> H3(B)

Proposition 4. Let 0-> A -S> B-E> C--> 0 be a short

exact sequence of graded groups and allowable homomorphisms.

Then there exist maps d such that the following sequence

is exact:

... -> Hj(A) f > HO(B) L-> Hj(C) d -> Hj+r(A) -> ...

where r is the shift of the differential operators.

Note: There are Iri distinct sequences.

Proof. Utilizing proposition 3, there exists a

D : H(C) -> H(A). As a map of graded groups, D HO(C)->H3 +r(A),

for: suppose z c C is pure j-dimensional, dz = 0. Then

there exists a y such that gy = z, and dim y = j. There

exists an x such that dy - fx and dim (dy) = j+r = dim x.

But D[z] = [x], so shift D = r = shift d; rename D "d";

then the exactness result of proposition 3 and the above

corollaries conclude the proof.

Example. Let X be a topological space, A C X a

subspace. Let C(Z) denote the graded group of chains over

Z, with standard boundary operator, . Then

0 -> C(A)
i

> C(X) L> C(X)/C(A) a C(X,A) -> 0

is an allowable short exact sequence of graded groups, and

proposition 4 implies the exactness of the sequence

... -> Hi (A) i**> Hi(X)
3**>

HJ(X,A) L> Hj-1(A) -> ...
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§4. Sheaves and pre-sheaves

A. Recall the definition of "sheaf" (Chapter 6, §3, Defn. 36);

we rephrase it as follows:

Definition 64. A sheaf of Abelian groups, S, is defined

as follows: Let X, the base space, be a paracompact

Hausdorff space. For every x E X, let Sx be an associated

Abelian group called the stalk of the sheaf over x; and set

S = L)
Sx, whose topology is smallest such that

XEX
i) the projection map p : S -> X, defined by p(s) = x

if s e Sx, is continuous and a local homeomorphism.

ii) the group operations in the stalks are continuous;

i.e. s -> -s is a continuous map of S into S; and

(sips 2)->s1+s2 , defined on the set R of pairs (sl,s2) such

that s1,s2 belong to the same stalk, is a continuous map of

the subset R of S x S into S.

t Je remark that the stalks are discrete.

Let Y e-- X; then S(Y) = XEY Sx, with the induced

topology, is called the induced sheaf of S over Y.

A section over X is a map t : X -> S, continuous,

such that p -t = idX. A section over Yr:: X is a section

of S(Y) over Y.

Remarks. Every sheaf has at least one section, the zero

section, given by t : x -> 0 E Sx.

If two sections coincide at a point, they coincide in a

neighborhood of this point.

Corollary. Let Y°pe11C X. Then t(Y) is open in S.

B. Definition 65. Let X. be a paracompact Hausdorff space.

Let U =
1 u1

be an open covering of X such that ul,u2 E U

implies u1 /1 u2 E U. Let r(ui) be an Abelian group

associated to each ui E U, such that, if ui c. u
J

there

exists a homomorphism yij : r(uj) -> r'(ui) satisfying

the compatibility condition:

uic uj C. uk implies yji ykj = 'ki
The collection (X, r(ui),Yij) is called a presseaf.

Proposition 5. To each presheaf there may be associated

a sheaf, called the sheaf defined by the presheaf.
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Proof. Take X as the base space. For each x e X the

collection tut I ui a U, x e uij is directed; set Sx equal

to the direct limit of the groups r(ui). Set S = VxeX sX'

with topology defined as follows: s e S implies s e Sx.

Now x e Ux a U; then Isy I sy a Sy; y e Uxf is an open

set and the collection of all such sets is a basis for the

topology of S.

Note that the 1-(u1) form sections of the sheaf S

defined by the presheaf.

Proposition 6. Every sheaf is defined by some presheaf.

Proof. Take U = 'u u
open

in X, . Let r(u) be the

sections over u; and define the yij by restriction.

C. A subset T of a sheaf S is itself a sheaf if and

only if T is open and Tx = T ('Sx is a subgroup of Sx.

Then T is called a subsheaf of S.

Example. S is the sheaf of germs of continuous functions

and T is that subset of S consisting of all the germs of

C0D functions.

95. Exact sequences of sheaves and cohomology

Unless otherwise stated, all sheaves have the same fixed

base space X.

Definition 66. Let S1 and S2 be two sheaves. A

continuous map of S1 into S2 such that $(Sl,x) - S2 x
and $ 1 Sl,x

is a group homomorphism, is called a homo-

morphism of the sheaf S1 into the sheaf S2.

The subset of S1 mapped into the neutral elements

of S2, 10 a Sxj, is called the kernel of 4 ; denoted

ker 4. The ker $ is an open set, for the set of neutral

elements of S2 is the image of the null section of S2 over

X and this is open in S2 (cf. corollary of 34, Chap. 14),

and since $ is continuous, the preimage of the set of

neutral elements of S2 is open in S1. The ker OS
1,x

is the kernel of the group homomorphism 4' I S1,x and thus
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is a subgroup of S1,x. Therefore ker 4) is a subsheaf of S1.

The image of 4), 4)(S1)C S2; denoted im 4), is a

subsheaf of S2 : that im $ is open follows from the

continuity of 4), the commutivity of 4) and the projection

map, i.e. p2$ = pl, and the fact that pl and p2 are

local homeomorphisms, and, as before, im 4 OS
2,x

is a

subgroup of S2,x, so that im $ is a"subsheaf of S2.

Hence we can form the quotient sheaves S211m 4) and

211 ker $, the cokernel of $ and coimage of 4), respectively.

Definition 67 The sequence of sheaves and sheaf

homomorphisms S
Ei+i

> S
J+2

is called exact when,

for each x e X, the sequence S > S 4)> S
j,x j+l,x J+2,x

is exact.

Example. Let T be a subsheaf of S, and let 0 denote

the null sheaf, i.e. the sheaf whose stalks are the trivial

groups over each point. The sequence 0 -> T i> S -> S/T -> 0

is exact by definition.

We have already defined the cohomology groups, Hq(X,S),

q > 0, of a paracompact space X with coefficients in a

sheaf S . For convenience, define Hq(X,S) = 0 for q < 0.

Note that H°(X,S) is the group of global sections of the sheaf.

Let S and T be two sheaves and let $ be a homomorphism

of S into T. We claim that for each q, $ induces a

homomorphism 4)* of Hq(X,S) into Hq(X,T). Consider any open

covering of X, U = I_u1 . The group of cochains C(X,U,S)

is a graded group with differential operator (the coboundary)

which respects grading (the shift is +1). Hence the derived

group H(C(X,U,S)) is graded and its pure dimensional parts

are the cohomology groups of the covering with coefficients

in S. Similarly we have C(X,U,T) and H(C(X,U,T)). Now,

an element of C(X,U,S) is an assignment of sections of S,

and 4) maps S continuously into T, thus 4)
maps

C(X,U,S) into C(X,U,T). $ is in fact an allowable

homomorphism and hence induces a homomorphism of the derived
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groups H(C(X,U,S)) and H(C(X,U,T)). Taking the direct

limit, we obtain the desired homomorphism 4.

.Theorem 41. (Exact cohomology sequence). Let

0 ->.A > B 2> C -> 0 be a short exact sequence of sheaves.

Then there exists, canonically, an exact sequence

0 -> H°(X,A) E> H°(x,B) ±. H°(x,C) -
s> H1(X,A) > H1(x,B) H1(x,c) -
s> H2(X,A) -> ...

Assume the theorem for now. (It is proved in §7, p. 158.)

Definition 68. A sheaf S is fine if and only if,

for any locally finite open covering of X, U = uib

i e I, there exist homomorphisms rli of S into S

such that

1. ii(Sx) = 0 for x i ui and

2. Tji = identity.
is

(The sum is finite at each point because U is locally

finite and q satisfies 1.)

Example. Let X be a paracompact differentiable

manifold, and let S be the sheaf of germs of differential

forms of degree p. Let U be a locally finite covering of

X and let wi3 be a partition of unity subordinate to U.

Define ni to be multiplication by WI. Then { r
are

homomorphisms of S into S satisfying 1. and 2. above,

so that S is a fine sheaf.

Theorem 42. If S is a fine sheaf, then O(XS) = 0

for all q > 0.

Proof. The proof is the exact analogue of the Coo case:

theorem 22, p. 78. Let q > 0 be fixed and let U = {ui be

a locally finite covering of X. Define the homomorphism

9: Cq(X,U,S) -> Cq-1(X,U,S) by 2-Tli'1(iio...iq-1).
iEI

Verify that - = 963- + 5G S- exactly as before. Hence if 6f =0,
then = 69.F. Thus Hq(X,U,S) = 0 and then the direct limit
Hq(X,S) = 0.
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Definition 69. A resolution of,a sheaf S is an exact
l=.l 90 l

sequence of sheaves 0 --> S -> 10 -> Al -> ... such that

Hq(X,Aj) = 0 for all j > 0 and q > 0.

A resolution is called a fine resolution when all the

Aj are fine sheaves.

Examples.

1. Let X be a connected differentiable manifold and

let S = 0 (Sx = 0 and the topology is the discrete one).

Let Aj be the sheaf of germs ofidifferrentiall forms of

degree J. The sequence 0 -> 9 > AO -> A
1
-> ...

is a fine resolution of C.

Proof. Note that if X were not connected we would

have to take for S the sheaf of germs of functions which

are constant on each component of X in order that the

sequence 0 -> S -> _AO -> A1 -> ... be exact at A0. We

have already established that Hq(X,AJ) = 0 for all j > 0

and q > 0 (cf. corollary p. 49) and that the Aj are

fine sheaves. The exactness of the sequence at C and at

_AO is immediate, and exactness at Aj, j > 0, follows

from the Poincare lemmas.

2. Let X be a complex manifold and let S be C9 and

Aj be the sheaf of germs of differential forms of type (0,j).

The sequence 0 AO a> Al a> ... is a fine resolution

of 0 .

Proof. As in example 1., the Aj are fine sheaves, and

the exactness of the sequence at Aj, j > 0, follows from

the Poincare lemmas.

ThTh 43., (Abstiract de Rham). Let

0 -> S > AO o> Al 1> ... be a resolution of a sheaf S.

Consider the in!uced cohomology sequence

0 ---> H0(X,S) Ho(X,AO) -> Ho(X,A1) 1> ... . Then

im 4* C ker and HP(X,S) ker 4*/im +* for all p > 0.
P-1 p canon. p p-1

isom.
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Note. Applying this theorem to the above examples of

resolutions of sheaves, we obtain for 1.

Hp(X,(C) , closed p-forms
J.

p > 0
exact p- forms

i.e. the de Rham Theorem (Theorem 26a, p. 93), and for 2.

HP (X, Q) ti
a-closed (O,p) forms

J,

p > 0

5-exact (0,p) forms

i.e. the Dolbeault Theorem (Theorem 26b, p. 95).

Proof of Theorem 43. For j = 0,1,2,... , set

B = ker +i = im J-l since the resolution sequ;nce is exact.

For each j, the sequence 0 -> ker +i i > A -.i. im 0

is exact by construction; rewrite it as

0 -> B'j i
> Ai U> BJ+l -> 0. By the exactness theorem

(Theorem 41), the sequence

Hq(X,Ai) -> Hq(X,BJ+1) -> Hq+l(X,A is

exact for q > 0 and J.> 0. By hypothesis, Hq(X,A.) = 0

for q > 0 and J.> 0. Hence Hq(X,BJ+1) Hq+1(X,Bj)

for q > 0 and 3 > 0. Then HP(X,S) = Hp(X,B0) ' Hp-1(X,B1)

= Hp-2M B2) ti ... _ H1(X,Bp-1).

o Now Bp = ker p is a subsheaf of Ap. We claim that

X (X,Bp) ker 4p. Indeed, the ker $* is the set of those

global sections of Ap that p maps into the null section

of Bp+l, but, by the definition of gyp, this set is

precisely the set of global sections of Bp.

Consider, next, the exact sequence

0 -> H°(X,B3) -> H°(X,A3) -> H°(X,B3+l) -
5

> H1(X,A3) -> ... for 3 = p-1, p > 0,

i.e. _

0 -> H°(X,Bp-l) -> H°(X,Ap-1) -> ker p -

6
> Hl(X,B ) ->p-1

0 ... .

Since 6 is a homomorphism from ker onto H1(X,B
p-1

in = ker S C ker and Hl(X,B p) ti ker ker S
A-1* * p -p-l p

= ker 4 / im 1, by exactness.

Hence HP(X,S) , ker $* / im p-1.



155

§6. Applications of the exact cohomology sequence theorem

I. Let X be a complex manifold. Let

69: sheaf of germs of homomorphic functions

A: sheaf of germs of meromorphic functions

We may view U as a subsheaf of X ; let i : © -> //lam

be the inclusion. We form the exact sequence

0->0 i>LIp L> 1,/D->0 .

Recall that a section of over X is an equivalence

class of sets of data for a C.I problem. Using the exact

cohomology sequence theorem, there exists an exact sequence

I* y,

0->Ho(X,D) > Ho(X,)) --> H0(X,4/(9) -> Hl(X,Q)--> ...
Now J* sends a meromorphic function (a section of A) into

the Cousin I problem it solves, hence C.I is always solvable

if J, is "onto", i.e.

Theorem I. Hl(X,(9) = 0 implies C.I always solvable

(cf. Chapter 6, §1).

II. Let X

h f

be a complex manifold, Y a globally defined

ypersur ace:

Y = [f=0] ; f holomorphic in X.

Assume f has no critical points where it vanishes [i.e.

maximal Jacobian rank on Y].

Consider (9, the sheaf of germs of holomorphic functions

on X. Let (2Y denote the sheaf of germs of homomorphic

functions on X vanishing on Y. VY is clearly a subsheaf

of (9 ; and we form (as before) the exact sequence:

We claim that (2 / Oy is the induced sheaf of £ over Y.

For points off Y, the stalks are trivial, for any stalk of
0Y over points not in Y is identical with the corresponding

stalk of 0. For any point y0 e Y, two functions representing

elements of ( 0/0Y)y0 are equivalent if and only if they
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coincide in a neighborhood of y0. (If they coincide in

a neighborhood in Y, they coincide in a slightly larger

neighborhood in X, as Y is closed); hence they represent

the same germ in the induced sheaf of (9 over Y.

Using the exact cohomology sequence theorem, we have

the following exact sequence for q > 0 :

... -> Hq(X, (?) -> Hq(X,

jY) _> Hq+l(X, _9 ) ...
Note that Hq(X,_' / 2 ) N Hq(Y, 2/!

?;re now claim that:

n
Theorem II. Hq(X, :9) = 0 = Hq+l(X, .%) for fixed

q > 0 implies Hq(Y, 0. (Cf. Chapter 6, §2, Theorem 20.)

For, using exactness, we obtain immediately:

Hq(X, ) _ Hq+l(X, ;'2Y)

so that it is enough to show Hq+1(X, : Y) = 0.

Let a be a cochain in Hq+1(X, Then f a
is a cochain with CJ coefficients, as f is holomorphic

in X. Hence, multiplication by f induces a homomorphism
*. vq+l,,. T.q+1,, in, Y1.

Clearly f is onto and one-to-one; therefore an

isomorphism.

III. As a last application, we obtain another old result:

Let X be a complex manifold; and let (i denote the

sheaf of germs of invertible holomorphic functions under

multiplication. Note that the sections are the nowhere
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vanishing globally defined holomorphic functions. Let

denote the sheaf of germs of meromorphic functions under

multiplication. Then 9 * C A*, and we obtain the exact

sequence:

The sections of )'47 / 9 are divisors in X, i.e.

equivalence classes of sets of data for the C.II problem.

Using the exact cohomology sequence theorem, we obtain

the exact sequence: *

... -> H°(X,nt*/ *) s H1(X,0*) -> ...
Here j takes a meromorphic function into the C.II problem

it solves: therefore any C.II problem a can be solved if

Sa = 0.
This, however, is not particularly illuminating for we

know little about H
(X,('*);

so, we imbed this group in

another exact sequence involving "simpler" coefficient groups.

We have an exact sequence:

0 !_O exp> (9 0

where here X. is viewed as a subsheaf of giving

exactness at a; "exp" is the map: exp (s) = e27ris and

the exactness at C9 is clear since ker exp s I

e2vis =

and exactness at FIT follows from the fact that every

nonvanishing holomorphic function is locally an exponential.

Hence, we obtain thi exact sequence:

... -> Hl(x
exp-> El(x,6) )

d > H2(X,Ta) -> ... ;

but this gives rise to a (canonical) map:

C = d - 6 : Ho(x,0*) -> H2(X,a) ;

assigning to each divisor D s H°(X,)1 / &) its Chern class

C(D) s H2 (X,73. Clearly, if D is principal, i.e. D s im j

C(D) = 0 for 5(D) = 0 by exactness.

Now assume H1(X,O) = 0. Then d : H1(X,O*) -> H2(X,Tc)

is one-to-one. Thus C(D) = 0 implies D is principal.
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So, we have re-established the Oka-Serre Theorem:

Theorem III. There exists a map C Ho(a,Ih )->H
2
(X,Z)

such that

1) D principal implies C(D) = 0

2) 0 and C(D) = 0 implies D' is principal.

(Cf. Chapter 9, §4, Theorem 31.)

87. Proof of the exact cohomology sequence theorem

We now restate and then prove the theorem:

Theorem 44. Let 0 -> A E> B L C -> 0 be an exact

sequence of sheaves. Then there exists an exact sequence:

... -> H`)(X,A) f > H3(X,B) I.> H')(X,C) 6 > Hj+l(X,A)->...

Proof. Let U = ui be a covering of X; and

consider the sequence:

0 -> Cq(U,A) f> Cq(U,B) .-> Cq(U,C)

where Cq(U,A) denotes the group of q-cochains on the

covering U, and f and g denote the induced mappings.

We claim this sequence is exact.

At Cq(U,A) we must show ker f = 0; therefore assume

a E Cq(U,A); f(a) = 0. Now f(a) = 0 means

f ai0...iq(x) = 0 e Bx for all x e ui00 .../)uiq. By

exactness, f is one-to-one so ai i (x) = 0 e Ax for

every x e ui f .../)ui ; i.e. a= .0q
0

At Cq(U,B), we mat show im f = ker g. Let a c Cq(U A).

Then g f(a)io...iq(x) = gfaio...iq(x) = 0, since gf = 0,

for every x e ui
0
(1 ... nui

q
; hence g f(a) = 0 so

in f c ker g.
Now let 0 e ker g; i.e. g,oi ..,i (x) = 0 for every

o q
x e ui (1 ... 0 ui . For each x e ui /} ... () ui there exists

o q o q
an aio...iq(x) e Ax such that fai

o
.. i

q
(x) = a 1

o
...i (x).

q,
We claim that the assignment a defined by the ai ...i (x) is

a cochain; i.e. that ai ., i is a section over o ui
.. n ui'0 q 0 q
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Now aio...iq(x) a Ax so p- ai0...iq = idui /1,..flui -

To show continuity, let x0 6 Sa = ai ...i (ui /I... n ui
o q o q

=
f-1

i ..,i (u1 0 .../ ui ), an open set for
o q o q

ui°/).../)ui
q

is open, pio .. iq is a section and f is

continuous. Let Nx= be a neighborhood of x0 in Sa ; then

ail..,i [Nx ail.o.1 -
f-1- f(Nx (f. ai

---1

)-lf(Nx

)o l q o o q o o q o
= 0- i f(Nx ) which is open for f is an open mapping.

o
...

q o

Hence, im f = ker g.

We cannot complete this sequence to a short exact

sequence, for g may not be onto [e.g. take sequence

C°(X,G9) -> C°(X,)l.) -> C°(X, ,t/(9)] . So, define
Ca(U,C) = g[c (U,B)], a subgroup of 0 (U,C) comprised of

"liftable" cochains. Hence, we now have the following short

exact sequence of groups and allowable maps:

0 -> Cq(U,A) f> Cq(U,B) J&-> Ca(U,C) -> 0

Hence, we obtain the exact cohomology sequence:

... -> Hq(U,A) -> Hq(UB) -> Ha(U,c) -> Hq+l(U,A)->..

For refinements of U, we have the desired commutativity,

so that we may appeal to the proposition of Chapter 14+, §1,

to obtain the exactness of the limit sequence:

f
... -> Hq(X,A) -> 11 (X,B)g > Ha(X,C) S> gq+1(X,A) -> ...

We shall therefore be done if we can show

Ha(X,C) ti Hq(X,C)

(canonically!), and this shall be proven by showing that for

each cochain $ in -Cq(U,C) for a locally finite covering

U, there is a refinement V in which $ is liftable; then

the limit groups are isomorphic, since we have an injective

(one-to-one) map
I

: Ca(U,C) -> Cq(U,C)

which commutes with the boundary operator and the"refinement"

maps of the direct limit procedure.
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(Since X is paracompact, we may restrict ourselves to

the locally finite coverings U.)

Let U = {ui be a given locally finite covering. Let

W = wij be a new locally finite covering, refining U and

such that wi C G ui for each i, possible since paracompaet-

ness implies normality. .Let 4 e Cq(U,C). To each x e X

we assign an open vx C X such that

i) xe vx
ii) x e wi implies vx C wi

iii) x e u implies vx C u

iv) x uj implies vx 0wj _ 4)

v) x e ui ... (1ui implies i ..,i vx e Caq(V,C).
o q o q

Observe that once we establish the existence of V = £ vxI

the theorem is proved.

Let x e X; using the local finiteness of U,4! there

exist integers r,s < w such that x e L1 i, ...,w. ;
r

uk ,...,uk and no other w1, uk.
1

Set v1 = w (1 ... ()w /) uk /1... luk ; clearly v1 isil it 1 s
an open neighborhood of x and satisfies i), ii), and iii).

Note that any smaller neighborhood of x will also satisfy

these.

For each k / kl,...,ks; x / uk, which implies

x k, so there exists an open neighborhood
vk,x

of x

such that vk,x(1 wk = 4). Set vx = vx Uvk,x
k / k1,...,ks

an open neighborhood of x which now satisfies i),...,iv).

To satisfy v), observe that x e ui (1... n ui can only
0 2 q

happen if ui euk ,...,uk , and that vx C ui f1...n ui .

1 s o q
Now

q
I v2 is a section of c over v2. Hence

o "
4...i (v2) is open in C, so g-1 (v2) is an open,

o q - o q
non-empty subset of B (g is onto). There exists a
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bx e g-1 q(v2 ) such that p o- bx = x, and neighborhood

Nx of bx in B such that p : Nx -> p(Nx) is a honieo-

morphism. Let Mx = Nx/'?g1 i...i (v2), and set
o

vx = p ci g (Mx) C vx
q

Now g I Mx is one-to-one; and g-1 4icr,.iq : vx -> Mx

is a section of B over vx , mapped by g onto the section

io..iq : vx -> g(DIM) of C.
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Chapter 15. Coherent Analytic Sheaves

§1. Definitions

Definition 71. An analytic sheaf iY is a,sheaf whose

base space X is a complex manifold (or subspace of one); and

such that each element of the sheaf can be multiplied by the

germ of a holomorphic function; more precisely, each stalk

x is an X-module, and this multiplication is continuous.

We have the notions of subsheaf, sheaf homomorphism,

Induced sheaf, factor sheaf, etc., as before.

Examples. 0
r

, the sheaf of germs of (r-dimensional)

vector-valued holomorphic functions is an analytic sheaf.

The sheaf of germs of continuous functions is an

analytic sheaf.

The sheaves and ;7-t are not analytic, for there

is no distributive law for multiplication by germs of holomorphic

functions (recall that the operation in the stalks of these

sheaves is multiplication).

Definition 72. An analytic sheaf . is globally finitely

generated if there exist a finite number of global sections

sips 21...Isk such that for every x E X, t e x,

t = 4l(sl)x + ... + Ysk)x where e 0x
Examples. The sheaf 0; section "1".

The sheaf (9 r ; r sections (0,...,0,1,0,...,0).

Definition 73. An analytic sheaf is locally finitely

generated if every point x e X has a neighborhood Nx such

that the induced sheaf Z+ (Nx) over Nx is globally

finitely generated.

Let be an analytic sheaf, and sl,...'sk sections

of ,9'(U), Uopen C X. Let x e U. If there exists a tuple

''Y x
such that

$1(sl)x + ... + 1k(sk)x = 0

the tuple (4 ,...,4 ) is called a relation between the

sections sl,...,sk at x.
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Note that the collection of all such relations forms an

analytic "sheaf of relations" (between sl,...,sk) contained

in Q k (over the space U).

Definition 74. The analytic sheaf is called a

coherent analytic sheaf if:

1) It is locally finitely generated.

2) For every open U C _X, the sheaf of relations of

any finite number of sections over U is also locally finitely

generated.

Note that the definition is local.

Remark. For convenience, we will call a coherent analytic

sheaf, a coherent sheaf.

§2. Oka's coherence theorem

The aim of this section is the statement and two steps

of the proof of a three-step theorem due to Oka. The last

section of the proof will be postponed until two theorems

are established.

Theorem 45. (Oka) The sheaf of germs of vector-valued

holomorphic functions is coherent; i.e. (noting the local

character of coherence) let Dopen1 On, and let "'a
ij(z)l,

i=l,...,q, J=1,...,p be holomorphic functions defined in D.

Let x e D; then there exists an open Dl C D, x e D1, with

the following property:

For any C c D1 the holomorphic solutions p) of

* aij(z) 4i(z) = 0

defined in some neighborhood of may be written as:

L
(z) _ 2 Pv(z) 0z) , i = 1,...,p

where the cv; j=l,...,p, v=1,...,L<® are a fixed finite

set of solutions of *, holomorphic in a fixed neighborhood

of t; and the PV are defined and holomorphic in some

neighborhood of C.
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Note. The i are said to form a finite psuedo basis.

Proof. We proceed by a double induction on q = number

of equations and n = dimension of space. The three steps

of the proof are the following:

I. The theorem is true for n = 0.

II. If the theorem holds for a fixed n and q

equations, then it is true for q equations, where here q > 1.

III. If the theorem is true for some n and all q, then

it is true for n+l and q = 1.

It is clear that these steps complete the theorem; and that

I holds, since a holomorphic function of no variables is a

constant. We may assume x = 0 e D, with no loss of

generality.

II. Let us first introduce the following abbreviations:

(a) =
1
aij(z) j(z) = 0, 1 = 1,...,q

J-

aij(z) j(z) = 0, 1 = 1,...,q-i
J=

CC

(Y) agj(z) j(z) = 03
J-

By hypothesis, (y) has a finite pseudobasis (4 ), !'=1,...,K<0o.

Since any solution of (a) satisfies (y), the general solution

of (a) has the form:
KK 'Pre$ J = 1, ...,p.

These $j must also satisfy (f3), hence:

o _ 7-K,j aij 'r,4K

3-K( ;-j aij4j)'iK i = 1,...,q-l.

Set bir( _ T-j aij +, ; these functions are known.

But the set of equations
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0 = =t, biK *K ' = 1,...,q-1

has by hypothesis a finite pseudobasis (4), p = 1,...,R.

Hence:

So:
R K_ K

and therefore the functions ( +yK 4) form a finite

pseudobasis for (a); proving step II.

We interrupt the proof to establish two needed theorems.

§3. Weierstrass preparation theorem, revisited

A. Theorem 46. (Weierstrass Preparation Theorem) Let f(Z,z)

be holomorphic at the origin, f(O,z) g 0 (where (Z,z) _

(zl, Z = (zl,...,zn-1) and z = zn], so that

f = a, (Z) z3, with a0(O) _ ... = as-1(0) = 0, while

0. Then:

f(Z,z) = h(Z,z) [zs + b1(Z)zs-1 + ... + bs(Z)]

where h is a unit, i.e. h(0,0) / 0; and bl,...,bs are

holomorphic in some neighborhood of the origin with bl(0)

= bs(0) = 0.

Remark. This representation is unique, but we shall not

prove or use this. In the Weierstrass preparation theorem

proved earlier ( 4, §k, Thm 12) we had also assumed that

ord f = s.
Proof. For s = 0, this theorem is a triviality;

hence, take s > 1. Note that a0,...,as-1 havo no

constant term.

Let s < N, an integer. Set zj _ j, J = 1,...,n-1;

and define:

G(C1,...1Cn-1'z) =

Then G is a holomorphic function of its variables in a
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neighborhood of the origin and of order s, so that

Theorem 12 applies. Hence;

H(C1,...,Cn-l,z)(zsI
l(C1,...,Cn-1)zs-1+

... +

and the Bi vanish at the origin. It is now enough to show

that the Si occur only as Cin. Take A to be a primitive

N th root of unity; then:

Z) =
z(zs +

S-1B1)z
= z)

But the expansion of the t'leierstrass Theorem 12 is unique.

Corollary. Let P(Z,z) = zs + a1(Z)zs-1 + ... + as(Z),

where the aj are holomorphic in a neighborhood D of the

origin. Let (C,c) a &n, C c D. Then

P(Z,z) = PI(Z,z) PII(Z,z)

where Pt(Z,z) = zr + J(Z)zr-1 + ... + ar(Z)

PII(Z,z) = zt + P1(Z)zt-1 + ... + pt(Z)

with pi, a. holomorphic in a neighborhood of C, such

that PI(C,z)J= (z_c)r and PII(C,c) / 0.

Proof. Changing variables, set:

Zt = Z - C, zt = z - c
and define: Q(Z

t
z')- = P(Z'+C,z'+c).

Then Q(Zt,z') = QI(Z',zt)QII(Z,zt); where QII is a unit

and QI(Zt,zt) =
ztr + a1(Zt)ztr-1 + ... + ar(Zt).

Set:

PI(Z,z) = QI(Z-C,z-c)

PII(Z,z) = QII(Z-C,z-c)

Then PII(C,c) / 0 and PI(C,z) = QI(0,z-c) = (z-c)r.

It is clear that PI is a monic polynomial.
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B. Theorem 47. (Division Theorem) _ Let there be given

a polynomial P = zs + a1(Z)zs-1 + ... + as(Z) with the aJ

holomorphic in of the origin, and a1(0) = 0.

Let f(Z,z) be holomorphic near the origin. Then:

f(Z,z) = q(Z,z) P(Z,z) + R(Z,z)

where R is a polynomial in z of degree < s, with

coefficients holomorphic in a neighborhood of the origin,

and q is a holomorphic function in a neighborhood of the

origin. Furthermore, this representation is unique.

Proof. We first establish uniqueness. Suppose

0 = qP + R

g3(Z)zJ)P + R

Let v > 1; we equate the coefficients of zs+v obtaining

0 = qv + qv+lal
+ ... +

qv+sas

But a (0) = 0, hence q (0) = 0. But then aq./az = 0,
V

J = l,...,n-1. Similarly, one finds aMgv/amlzi....
Jmn-lzn-1=0'

hence q = 0. But then R = 0.

We now assume f = fJ(Z)zJ. This is no loss of

generality, since the to s of order < s in z may be included

in R.
Assume aJ(Z) = 0 JIZ11J); this may be achieved by

replacing zi by Ci, N > J, i = 1,...,n-1 in f and P,

since a1(0) = 0. The transformation back to the zi is

achieved as in Theorem 46 since we have already established

uniqueness.

Now

zs = ASP +a
sl

(Z)Z"-l + ... + ass(Z)

where AS = 1 and as3 = -a3. Hence, multiplying successively

by zm, m = 1,2,... and substituting appropriately gives:

zs+m
= AS+M (Z,z)P + as+m,l(Z)zB-1 + ... +as+M,s(Z)
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where in fact:
As+m+l = zAs+m + Asas+m 1

as+m+l,p as+m,l asp + as ,.p+l; 0 < p

and
as+m+l,s = a,+$,1 ass
m+.

Hence As+m+l = = as+m-j,1 z'); a

neighborhood of the origin since jaspI [cIZII]p implies

las+m,pI ` (CllZtI)m+p,
(which is easily established by an

induction over m). But this means that all series in the

following expression for f(Z,z), obtained by substitution

for zs+m, converge in a neighborhood of the origin.

00 OD

f(Z,z) = P(Z,z) ( Z- f, A,) + zs_l fj aj1

+ ... + ( T fi ajs)

This is the required representation of f.

§4. The third step

Recall the statement of the missing step in the proof

of Theorem 45:

III. If Theorem 45 is true for some n and all q,

then it is true for n+l and q = 1.

Proof. Consider the equation:

ai(zl,...,zn+l) fi(zl,...,zn+l) = 0

We may assume that not all ai s 0. Write
ai = hips'

valid in some neighborhood of the origin, using a linear

change of variables if necessary ( 4, 91, Property 2), where

hi is a unit and P i is a polynomial in zn+1' It suffices

to consider the equation p

Pi ci 0

where, by renumbering if necessary, we may assume

a'= deg Pp > deg Pj.



169

We first show that there exists a neighborhood of the

origin in which every solution may be represented as a linear

combination, with holomorphic coefficients, of polynomials

in.
zn+l

of bounded degreest

Let (C,c) be any point at which the Pi are analytic.

Write: Pp = PI PII

where PII(C,c) # 0 and PI(C,z) _ (z-c)r, where PI, PII

are polynomials in z = zn+1' of degree < a.

Let (Ci) be a holomorphic solution of: Piei = 0,

in a neighborhood of (C,c). Using the division theorem:

A
Ci =

u'i
PI + Ci

A
where Ci is a polynomial in z with coefficients

Iholomorphic in a neighborhood of C < aand deg Ci < deg P

Consider:

Cl

P11

0

°

C PII \%

1

0 Ppi

0 l 1
C2P

II

wl µ µ 1
P 0

1

Cp-1! 0 0 Pp Cp-1P

Cpl -Pv P -Pp- CpP II

A
where Cp is chosen so that this equation holds identically.

Each of the column vectors, except perhaps the last, is a

solution, so the last is also. Furthermore, we will have

expressed (Ci) as a sum of polynomial solutions if we can

show that CpPII is a polynomial in z. Note also that all

entries of these polynomial solutions (except perhaps CpPII

are bounded in degree by 2a. Now Cp is defined by the

equation:
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so

C = C µ1P1 µP-1
Pp-1

P P
+= + ... +

1

PII C
P

= PII C
P

+

-1 CiP

and is holomorphic. But

1
PI CA = PI Cp + Pi P' Pi)

1

Using the division theorem,

- (Pi Ci) = q PI + R

where q, R are polynomials and deg R < deg PI. Hence

PII C1% Rp = q + -1
P

But PII Cp is holomorphic, so R vanishes of order

(deg PI) > deg R; hence R = 0. Thus:

p t A
Pi C

a polynomial. Furthermore, deg (C PII) = deg
i=

1 A I p PI

deg ( Pi C
i

) - deg (P ) < 2a . Hence we are only

interested in solutions (Ci) of the form:
a

C1(Z,z) = a gij(Z)zj

P

= PI Cp +-M ( (C1-Ci) Pi)

PII C11* = q

Pi ,

i = 1,...,p,

But Pi(Z,z) = grit (Z)zI , i = 1, ...,P;

so PiC1 =
¢+j

z
gij 7ri2

a 2a
2+j

--0 z ( gi j 'iz )E-0 j

Hence Z Pi Ci = 0 if and only if
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gij(Z) iri,(Z) = 0 ; s = 0,...,3a ,
j s

where the
rib

are known functions; and this system of

equations involves n variables. Hence the solutions have a

finite pseudobasis by the induction hypothesis, thus

completing the proof.

§5. Consequences of Oka's theorem

A. Remarks on coherent sheaves.

1. Coherence is a local property. A sheaf is coherent

if and only if every x e X has a neighborhood in which the

induced sheaf is coherent.

2. A subsheaf G of a coherent sheaf J , is coherent

if and only if it is locally finitely generated. For, any

section of G is a section of L, since Gx is a subgroup

of ; x. Hence, the sheaf of relations R of any finite

number of sections of G is the sheaf of relations between

these sections, considered as sections ofSince is

coherent, R is locally finitely generated.

B. Corollary. If 7L is coherent and sl,...,sk are

sections of , then the sheaf of relations R(sl,...,sk)

is coherent.

Proof. R is a subsheaf of (9 k, a coherent sheaf,

and is locally finitely generated, by the definition of

coherence of _L.

Theorem 48. Let and G be coherent sheaves, G

a subsheaf of . Then the quotient sheaf /G is coherent.

Proof. For every x c X, there is a neighborhood Nx

in which a finite number of sections sl,...,sk of (N3,)

generate the stalk at every y e Nx. The images of sl,...,sk

under the natural homomorphism of into Z-/G are sections

of i-(Nx)/G(Nx) generating the factor stalk at every y c Nx.

Hence ;/G is globally finitely generated.

To show that the sheaf of relations of any finite

number of sections of ZG is locally finitely generated,
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consider an open set V C X, sections tl,...,tk of

(V)/G(V), a point x .e V, and a neighborhood Nx of x

in V. Construct sections sl'...,sk of JL as follows:

For each fixed j, (ti )x e x/Gx is the image of an

fj ex under the natural homomorphism h of into

/G. is coherent; thus in perhaps a smaller neighborhood

of x,' there exists a section si of - with CsJ)x = fj

Let be the image of s under h. Then (ta)x = (tax

implying that ti = t1 near x. Therefore, there is a

neighborhood U of x in which we may assume that t i is

the image of sj, J = 1,...,k, and since G is coherent,

that ri,...,rp are sections of G(U) generating the stalk

at every y e U. Now, consider any element of

it is a relation ...,k) e Ox with 41(t1)x = 0.

But 41(t1)x = 0 means that j(si)x a Gx which

means (sJ)x
-

*(r) x
so that

($1' $k''P1' *p) e
C?x+p is a relation between the

sections sl,...Isk,rl...,rp of .., a coherent sheaf.

Thus in some neighborhood Nx C U of x there are sections
V V = 1,...,N of R(sl,...,rp)(Nx

over Nx such that

v

V

k
v ' wv e x '

,p1 \ip/
N

Hence wv (IV) x
1,...,k. Note that the

v

vectors v = l,...,N are sections of R(tl,...,

tk)(Nx) over Nx since they are continuous maps of Nx

into e X such that s + Viri = 0,

i.e. c .s a Gx, i.e. L 4i tj = 0.
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Theorem k9. Suppose A and B are coherent sheaves

and f : A -> B is a homomorphism of A into B. Then

im f, ker f, coker f = B /im f, and coim f = A / ker f are

coherent sheaves.

Proof. It is sufficient to prove that im f and ker f

are coherent, as the coherence-of coker f and coim f is

then given by Theorem 48. To establish the coherence of

im f = f(A) and ker f, we need only show that they are

locally finitely generated since we already know that in f

is a subsheaf of B and ker f is a subsheaf of A (cf.

p. 151).

1. Since A is locally finitely generated, every x e X

has a neighborhood Nx in which a finite number of sections

s1)...,sk of A(Nx) over Nx generate (A(Nx))yI y c Nx.

Their images under f generate ((im f)(Nx))yI y e Nx.

Thus im f is locally finitely generated.

2. For ker f, take x, Nx and sl,...,sk as above.

Since f(s1),...,f(sk) are sections of B(Nx) over Nx,

R(f(sl),...,f(sk)) is a coherent sheaf. Consider the

following mapping g : Ry -> Ay of Ry into Ay, y c Nx

k

(si)y1=1

Since f( 2- 4i(si)y) $i f(si)y = 0, g is a

homomorphism of R into (ker f) I Nx. But every element

of ((ker f) I Nx)y is of the form 7- i(si)y with

i e X and 7- $1 f(si)y = 0. Hence g is onto.

Therefore ker f I Nx is the image under a homomorphism

of a coherent sheaf and thus is coherent, by part 1.

§6. The sheaf of ideals of a variety

Definition 75. Let X be a complex manifold. An

analytic set V in X is a closed subset of X such that
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for every v c V there is a neighborhood Nv of v and

functions 41,...,4k holomorphic in Nv^ such that V/ Nv =

fx E X I Yx) = Yx) = ... = k(x) = Of .

Definition 76. For x e X and V an analytic set

in X, let oX be the subset of x of all the germs

of holomorphic functions vanishing on V. (If x / V

then DX = (
X

; if V = X then X is trivial.)
v is a subgroup of 1 and an ideal. v with
x X XEX x

induced topology is a subsheaf of( called the sheaf of

germs of the ideals of the analytic set V, denoted J V(X).

Theorem 50. (Cartan) If V is an analytic set in a

complex manifold X then JV(X) is coherent.

We will only prove a weaker form of this theorem.

Theorem 51. If V is a regularly imbedded, analytic

subvariety of codimension Ic in an n-dimensional complex

manifold X, then .j (X) is coherent.

Proof. J V(X) is a subsheaf of C9, a coherent sheaf.

Hence it suffices to show that %/ V(X) is locally finitely

generated. Let x e X. If x / V then there is a neighborhood

Nx of x with Nx tl V = . In NX, iV(X) = 0, and we
are done. If x e V, then by the definition of V we can

introduce local coordinates z1,...,zn such that

V = L(zl,...,zn) E X I zl = z9 _ ... = zk = 01 , in some

neighborhood NX of x in X. Now, if f e (d V(`gx))x'

then f is the germ of a functin holomorphic in Nx and

vanishing on V, so that f = 031zi, where the wi are

holomorphic in NX. Since z1,...,zlc are sections of V(NX
over NX and the a) i E vX, the proof is complete.

Remark. (/ (X)/ V(X) is a coherent sheaf, by Theorem 48.

Its stalk over every point off of V is trivial. On V, since

(c,7V(V)
)X

is trivial, its stalk is the stalk of (9 (V).
Hence, on V this sheaf can be identified with the sheaf (0(V)

of germs of holomorphic functions on V. O(X) /')V(X) is

the trivial extension of O(V) to X.
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Chapter 16. Fundamental Theorems (semi-local form)

1. Statement of the fundamental theorems for a box

(semi-local form)

Notation. By an open box in 0n, we mean a (zl,...,zn)

e n ai < x1 ai and bi < yi <bi for all i = 1,...,n;
where zi = xi + iyi and ai,ai,bi,bi are real numbers

or + ooy . By a closed box we mean the closure of a finite

open box.

Theorem 52A. Let X be an open box in 0n, , a

coherent sheaf over X, and Kc'C X. Then there exists an

open box XO such that Kc_C XOC.r X and ,+ (XO) is globally

finitely generated.

Theorem 523. Under the same hypothesis as in Theorem 52A,

there exists an open box XO such that K. c X0 c-,- X and
Hq(XO,_) = 0 for all q > 0.

Note that these theorems hold for polydiscs as well as

for boxes.

Remark. Theorem 521 implies the Fundamental Lemma (proof

later, p. 196).

§2. First step of the proof

By a degenerate closed box we mean a closed box given by,

say ai < xi < ai and bi < yi < bi, i = 1,...,n where some

of the ai = ai and/or bi = bi, i.e. some of the intervals

degenerate into points. The number of non-degenerate intervals

is the (real) dimension of the box.

For r = 0,1,...,2n we formulate

Theorem 52Ar. Let X be an open box in Cn, a

coherent sheaf ofer X, and K e--- X a degenerate closed box

of dimension r. Then there exists an open box ;:O such

that K C`X0 _-.GX and 7" (XO) is globally finitely
generated.

and Theorem 52B r. Under the same hypothesis as in Theorem 52Ar,

there exists an open box X0 such that K Cc XO cc X and
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0 for all q > 0.

Theorems 52A2n and B2n are Theorems 52A and B.

Proof of Theorems 52Ar and B. for r = 0,1,...,2n. The

proof consists of verifying the following three statements.

(1) Theorem 52A0 is true.

(2) If Theorem 52Ai is true for all j < r, then

Theorem 52Br is true.

(3) If Theorems 52Ar and Br are true, then Theorem 52Ar+i

is true.

First we prove that if X is an open box in do and 17
is any sheaf, then Hq(X,1) = 0 for q > 2n. It is enough

to consider Hq(X,U,: ') for U a locally finite covering

of X. Since if X C On we can refine U to a covering

in which more than 2n+l sets always have an empty intersection,

we are done.

That (1) is true follows from the definition of a

coherent sheaf as being locally finitely generated.

To prove (2), assume Theorem 52Aj for J.< r. Let K be

the given degenerate box of dimension r and . the coherent

sheaf over X. Then there is a box X0 with K cc. XOc C X
and -A (X0) globally finitely generated; call the generating

sections sl,...,sm . This means that there exists a

homomorphism fl oft 9 ml(XO) onto J(X0). For, define

f (()..l-> x xeXO by, l
''i(si)x. It is

Pmt

onto because the si generate ( 54(XO))x at every x c X0.

Therefore, denoting ker f1 by G1, we have the following

exact sequence 0 -> G1 i> 0 1f-1, j -> 0 . By Theorem 49,

G1 is coherent. Apply Theorem 52Ar to G over X0. We get

a new X0, call it X and G1(Xl) globally finitely

generated. Then there exist m2 generating sections ... .

Denoting kerf2 by G2, we get the exact sequence

0 -> G2 -> v

m2

-> Again, G2 is coherent and

we can continue this process, as far as we want, up to 4n,
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obtaining G., G41 ...,G4n and X0 X0 J... »X0n-1

Call XOn-1,'

XO. Then for mXO and every ,o, = 0,1,...,4n-1

the sequence 0 -> G2 +1 ->J 1+1 -> GI -> 0 is exact;

GO = Hence the cohomology sequence, ... Hk(XO,O+1) ->

Hk(X0,%) -> Hk+l(XO'G1+1) ->
Hk+l(XO'o I+1) _> ... is

exact for k > 1. But Hk+1(X0',-
ml

+1) =
yk(X0,Lm

4+1) = 0

because Hq(XOr9) = 0 for q > 0. Thus

Hk+1(X ,,) for k > 1 and = O,l,...,4n-1.0 +1- n
Iterating we get Hk(XO,GO) N H2k+"(XO'Gk+2)'

k = 1,...,2n;

O,1,...,2n. Let I = 2n, then
Hk(XO,GO) _ H2k+2n(XO'Gk

'

k = 1,...,2n. Since 2k+2n )- 2n, _Hk(XO,GO) = Hk(XO,: ) = 0

for all k > 0.

It remains to prove (3).

§3. Reduction of (3) to Cartan's theorem on holomorphic matrices

Lemma 1. Let K be an r+l-dimensional degenerate closed

box as in Theorem 52 Ar+1' given by: K= Jai<xi< ai'

Assume, e.g. that ai < ai (or similarly,
O o n

that p i
0

< pi
o C

) , for some 1o. H =%xi = (ai +ai )/2 is
o o o

a 2n-l-dimensional hyperplane. Set K1 = K (Z (ai+ai)/2<xi00 o,
n

K2 = Kf (ai
0
+ai )/2 > xi i . Then, if Theorem Ar+l holds

0 0

for both K1 and K2, it holds for K.

Note. In view of the following claim, it is enough

to prove Lemma 1 using only Theorems 52Ar and Br.

Claim. Lemma 1 implies (3).

Proof. Assume (3) is false. Order all the nondegenerate

dimensions cyclically. Cut K along a first nondegenerate

dimension as in Lemma 1. Then (3) is false for at least one

of the two resulting boxes; choose one and call it K1.

Now cut Kl in the second nondegenerate dimension;

(3) is then false for a still smaller box. Call it K2.

loom.
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Proceed, halving each nondegenerate dimension successively,

obtaining a sequence K3 , K3+1 of closed, nested boxes

such that in no neighborhood of any box is the sheaf induced

by .,/L globally finitely generated. But the K3 intersect

in a point, and a point surely has such a neighborhood; and

this contradiction establishes the claim.

Lemma 2. Let K1, K2 be two closed boxes, given as

follows: < x < ^ < <
>A 1- 01 yl 01

K1 -

A 3 x3 ' a3, P3 < y3
03

, 3 = 2,...,n

K2
-Cti-e < x1 < a1,31 < yl < Pl

where a1 < a1-E. Let . be an analytic sheaf over a

neighborhood of K1() K2. Let there be given sections

al,...,ar of .' over a neighborhood of K1 generating

the stalks of (K1) at every point; and, similarly,IT "
sections bl,.... bs of _ over a neighborhood of K2^

Furthermore, assume that in some neighborhood of I{l (1 K2,

ai = 7- i3 b3 and b3 = Z *3k
ak ' i3, *jk

functions

holomorphic in this neighborhood.

Then there exist sections c1,...,cN over a neighborhood

of K1 1) K2 such that, in
^
a neighborhood of K1, ai= ijc3;

and, in a neighborhood of K2, bi = *i3c3.

Claim. Lemma 2 implies Lemma 1.

Let K1, K2 be as in Lemma 1, where we take 10 = 11

We first show that, in some neighborhood XO of K1 () K2,

ai = i3 b3 and b3 = L !ijiai; where i3, *3i are

holomorphic in X0; and ai, b3 are the generating sections

over K1 and K2, respectively, given by the hypothesized

But then the sheaf overTheorem 52^ Ar+1'
A

K2 = Z[(al+ cil)/2 - e] _f xl < a , ... will also be generated
%

by bl,...,bs for e > 0 so small that KlllK2 1X0.

By the induction hypothesis, there exists a neighborhood

X0 of K1 (1 K2 such that Theorems 52Ar and Br apply; now
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consider the map (2s -> 5 (XO) given by

4ibi. This is a sheaf homomorphism, and the bi generate

the stalks of (XO) at every point, so that the sequence
s
-> j X0) -> 0 is exact. We complete to a short exact

sequence:

-> G ->Lns -> J-(XO) -> 0 ;

and G is coherent. Hence, we have an exact cohomology sequence:

H°(X0,(9) -> H°(XO,J(X0)) -> HI(xo,G)

If X0 is small enough, Theorem 52Br applies, so

HI(XO,G) = 0. Hence H°(XO,9 s) -> S°(XO,j-) is onto; but

this means that every section of over X0 is a linear

combination of the bi ; in particular, the aj are. In a

similar manner, the bi are a linear combination of the a3.

Proof of Lemma 2. Under the hypothesis of Lemma 2,

ai =
4 b3

and bj _ i *Jkak where 4ij, *jk are

holomorphic in a neighborhood of K1 (1
K2-

We adopt the following notation:

a1 \\ ! bi
a = ( : and b = ; column vectors

a
r

_ (4ii) and 41 (4ij); matrices holo-

morphic in a neighborhood of K1 'I K2. Then the hypothesis

takes the form:

$b = a , via = b.

Now consider the (r+s) x(r+s) matrices defined below,

which satisfy the following relations:
a

1
0

Ir 0\
.1

r
ff' ar ar I a r r =

fl O I i b b bI '; .1 I A T .1v s

\ 0 r bs/ is bs



180

where I denotes the ,j x j unit matrix. Define

(i.ir Ir 0
M =

0 Is ' Is
r 1

Then M (a)=
\b

I, and M is a^ nonsingular matrix
0

holomorphic in a neighborhood of K1 n K2.

If we can write M = M1-1M2, where M1 is a holomorphic

nonsingular matrix defined in a neighborhood of K2, and

M2 a holomorphic nonsingular matrix defined in a neighborhood
/f

of K1. Then M2ta) = M1 j b J. Set
\\

a /0
c

(
M2 ( 0 M1 b

r+s
22

Then the c1 are global sections generating in a
11 A

neighborhood of K1 () K2, since the rows of M Ca0
/
are

1sections generating in a neighborhood of
M1

(b
/a.

sections in a neighborhood of K2; and M2 i = M1 / 0

A 0 I `b
in a neighborhood of K1 t7 K2; and both M1, M2 are invertible.

Hence, the proof of Theorems A and B is reduced to:

Lemma (Cartan's Theorem on Holomorphic Matrices) Let17.

M be a holomorphic nonsingular matrix defined in a neighborhood

of K1 K2. Then there exist holomorphic nonsingular matrices

A, defined in a neighborhood of K1, and B, defined in a

neighborhood of K2, such that M = BA.

§k. Proof of Cartan's Theorem on Holomorphic Matrices

A. Recall that II z II = max I z = (z1, ..., zn) fCn.
J=1,..,n

Let A be an N x N matrix; set

A I I a sup .
Ax

Note that Ia1 I . 11 AII < N max IaiiI
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Let A(z) denote an N x N matrix whose entries are

functions holomorphic in a domain DC Qn. Set:

IIIAIII = max IIA(z) n

and
z e D

IIIAIIIa = IIIAIII + H ,

where 0 < a < 1 and H is the smallest constant such that

Iaij(z)-a13(z)I < HIz-zIa

Note that if D1cc D, domains, then IIIAIIIa D < kIiIAaID.,It is known that III 11la is a norm; and if
1

D C (Cn, the N X N matrices whose entries are functions

holomorphic in D form a Banach space under this norm.

Furthermore4

IIIABIJI< IIIAIII IIIBIII ,

IIIABIIIa < c IIIAIIIa IIIBIIIa

(The proof of the above statements is left as an exercise.)
An

.Note that, for any matrix A, eA m nr is dominated

by IIIA I . If IIIAIII < 1, then log (I+A) = A - A2/2 +

A3/3 - A4/4 + ... is dominated by IIIAIII + IIIA1112 /2 + ... .

Furthermore, eA is always nonsingular, and elog(I+A) = I+A.

B. The following propositions establish Lemma 3:

Proposition 1. Let D be a polydisc, D
1
c c D and

M a holomorphic nonsingular matrix defined in D. Given

e > 0, there exists a nonsingular. entire matrix P such

that M = PM1 in D1 and I II I-ML II I D F-'
Proposition 2. There exists an lE > 0 such that,

if IIII -MII. < e then Lemma 3 holds for M.

Claim. Propositions 1 and 2 imply Lemma 3.

Proof. By Proposition 1, M = PM1, IIII-M IIID < e
Then in a smaller domain, IIII-M1IIIa < e . Pence, 1 Ml = BA

by Proposition 2. But P is holomorphic everywhere,

so M = (PB)A.
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P-ropf of Proposition L. Assume that D is a polydisc

about 0. Write:
lM(z) =

M(0)[M(0)-1M(. z) `M`1(TIz) M( z) ...

sM-l(- LL1-z) M(z)1j ,

L an integer. Now

IIII-M"l(Kz)M(KLlz) III < IIIM 1(Lz) III
Kz)_M(K+l

III < E

for L sufficiently large, 0 < K < L. Hence:

Ml (Lz) M(-+ z) = e
N

K
(z)

as the log series converges. So:

M(z) = M(0) eN0(z)...
eNL-l(z)

A
By going to a smaller polydisc, D, if necessary, for

each NK(z) there exists a polynomial sequence PKJ(z)

such that

IIPK.(z)-NK(z)II,. -> 0. Set M4(z) =
M(0)ePOj(z)ePlj(z)ePL-'

.

Then IjIM.(z)-M(z) (CIA -> 0, and det M. # 0 for j
sufficiently large. DHence M(z) = M(zi M-l(z) M(z)f ,

and M(z) M(z) converges uniformly to I with j;

and M is a matrix of entire functions, for all J.j

Proof of Proposition 2. Let Kl, K2 be given as

follows: n ^

where al < al-e, as in lemmas 2 and ;.

M is defined in a neighborhood N of K1 11 K2; we

write M = M(z), where z a z1 and the dependence on

z2,...,zn is suppressed. Now M = I + X. and IIIXIIIa < e
where a is to be chosen later. In the zl-plane, let y be

al<xl` al , Gl _ Yl-`G1
ICl = 1 A

n aj-<x`aj, j=2,...,n
K2 = n

al-c< xl al

,

Pi

<

Yl

<

Gl
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a smooth analytic Jordan curve containing K1 ( K2 and

.lying in N (more precisely, their projections on the

zl-plane). Let yl and y2 denote disjoint closed arcs,

segments of y, such that y /)K
1

C. int yl and y /1 K2c int y21
where "int yi" denotes the segment yi without its

endpoints, as indicated in the diagram.

Let G denote the bounded

component of the complement of y

in the zl-plane, and -` its closure.

Take 6" to be a real-valued C®

function defined on y, 0 < 6'< 1,

> such that a'= 0 on yl and

xl O -E 1 on y2 . For any matrix

yl N y2 Y holomorphic in G and

continuous in U, define:

T (Y) 1
Y( - (S) dCz1 = 1 fT7Ti

y

T2(Y) = Y - T1(Y) =

A
Then T1(Y) is holomorphic in a neighborhood of Ki;

and the linear operator Y -> Ti(Y) is bounded in G;

111Ti(Y) Illa < cIIIYIIIa
We wish to solve the equation:

I + X = (I + T1(Y)) (I + T2(Y))

_ (I + T1(Y)) (I + Y - T1(Y))

for some matrix Y holomorphic in G and continuous in

for IIIXIIla sufficiently small; i.e. we wish to solve:

X Y - T1(Y) T1(Y) + Y T1(Y)

= Y + F(Y) .

Therefore, define T(Y) = X - F(Y), for Y E S = i Y I Y

holomorphic in G and continuous in G, 111Y-XIIIa < E,

IIIXBIa < ei. Note that T(S) a S. We claim that, if e
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is small enough, T is contracting; so that the contracting

mapping. principle applies and there exists a unique YO E S

such that Y0 = X - F(Y0), as desired.

Now I I I Tl(Y) II I a < c IIIY IIIa implies that for some
constant Ic(c,C) depending on c and C (of p. 181),
IIIT(Y)-XIIIa= IIIF(Y)III a..< kIIIYIII2a < k[ IIIY-XIIIa+ IIIXIIIa] 2 4ke

so we require e < 1/4k. Furthermore:

IIIT(Y)-T(Z) IIIa = IIIF(Y)-F(z) IIIa

= III(Y-Z)T1(Y)+ZT1(Y-Z)+T1(Z)T1(z-Y)

+ T1(Y) Tl(Z-Y)IIIa

< IIIY-ZIIIa K(K+l) (IIIYIII + IIIZIIIa)

for some constant K(c,C). Now IIIY-XIIIa < E, hence

0 < IIIY% < 2E, so IIIT(Y)-T(Z)III a< 4E K(11+1) 111Y-Z IIIa,

and we require also s < 1/[41:(K+1)).

§5. New proof of the Oka-Weil Approximation Theorem

Theorem 53. Let X be an analytic polyhedron, XC.,-G
open

C Cn, X = z e G I If(z)I<1, j=1,...,r; fj holomorphic in R

Then, given 4)(z) holomorphic in X, 4) can be approximated

on any K c c X by functions holomorphic in G, in fact by

polynomials in zl,...,zn,fl,...,fr.

Proof. Assume that G C.(IzjI<k<l), and that Kcc X

is given. Let D denote the Oka image of X; D =j I Izil,

ICiI<1
Z E G, Ci = fi(z)5. By Theorem 51,./X(D), the

sheaf of ideals of X, is coherent. Hence by Theorem 52B,

there exists an Oka image DE of an XE, XE Z E GI If(W)I<

1-E, j=1, ...,rj such that K cc XE c c X and since
X(DE) = ;/X

E
(DE), Hq(DE,") X) = 0 for all q > 0.

E
Now XE and X are regularly imbedded analytic

subvarieties of codimension r in DE and D, respectively.

We claim that the function 4)(z) can be extended holomorphically

into DE. Consider the sheaf /X (D). It is a subsheaf of
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LA(DE). Since <9(DE)/C1X (DE) = O(XE), (of. remark at

end of Chapter 15), 0 -> X (DE) T-> !O(DE)'> (XE) -> 0

is exact: i = inclusion, r = restriction. Therefore,

the cohomology sequence H°(DE,O) r> Ho(XE, ©) -> H1(DE'JX
is exact. But Hl(DE,c;/XE) = 0, implying that r is onto.

Hence 4 is the restriction of a function V

holomorphic in DE. Write as a power series
ik

ajl...ik
zil...

Ck
converging uniformly in some DE1

K cc XEllC G XE. Then ' = L pj(zl,...,zn,Cl,...,Cr) on

DE ; t?ie pj are polynomials. Therefore on K,
1

Since zl,...,zn,fl(z),...,

re holomorphic on G, so are the pj.fr(z) are"

96. Fundamental Theorems for regions of holomorphy

(semi-local form)

Theorem 54A. Let be a region of holomorphIT, a

coherent sheaf over X and K c c X. Then there exists an

analytic polyhedron X1 such that K X and a

finite number of sections of (X1) generate Tx at

every x s X1.

Theorem 54B. Under the same hypothesis as in Theorem 54A,

there exists an analytic polyhedron X1 such that K cc X1 cc X
and Hq(X1,_1) = 0 for all q > 0.

Proof of A. Exhause X by analytic polyhedra, C C X XJ+1

cc X, U Xj = X. Pick one of the X3, call it X0,

satisfying K c c XO Cc, X. Let fl,..., fr be the functions
defining XO, and let D be its Oka image. XO is a

regularly imbedded analytic subvariety of codimension r

in D. V

Define the sheaf over D as follows: let

j- ifxEXO
x 1 0 otherwise

and let A c -4 be open if

11
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and only if pA is open in D and A/) Y is open in J'1

(p is the projection map in the sheaf). Since

is coherent, in particular analytic, o is an analytic

sheaf. tie claim that is coherent. Introduce local

coordinates nl' n+r in a neighborhood N in' D of
a.point of XO such that X0 n N is given by nl=...=nr = 0.

7" is locally finitely generated. Consider its sheaf of

relations R(sl,...,sg), i.e. let s1,...,s be sections

of :- over some open set U C (D /1 N). A relation is a

set of functions $j(nl' " ''fin+r)
e 0x, x e U, j=1,...,,

satisfying > 0j(sj)x = 0. But (sj)x = 0 for x j X0,

so that the satisfy j(0,...,O,nr+1' 0,

x e U/1 X0. Thus the j(0, ...,O,nr+1' 'nn+r)r are
relations of .j over U /)X0 and hence are locally finitely

generated, say by (ail,..., N) v = 1,...,N in a neighborhood

Nx of x. Therefore as generators of the sheaf R in
ATx

take the (l,..,,arv) and add the 2-tuples (ni,0,...,0),

(01r1i,O,...for I = 1,...,r. Hence

is a coherent sheaf over D.,,

Apply Theorem 52A to :t (D). Then there exists an Oka

image D1 of an X1, X1 = Z ze G I If(z)kl -e,

such that K c -c X1 c c XO and } (D1 Is globally finitely

generated, say by t1,...,t1{. The restrictions of the ti

to X1 generate ( (X1))x at every x e X1.

Proof of B. It is enough to show that Hq(D1,) = 0

for all q > 0. For, consider any covering U of X1, think

of it as a covering of D1. A cochain on U I X1 is an

assignment of a section of -41 and hence by the trivial

extension, it can be considered on U and is an assignment
4

of a section of': hence a cochain on U. A cocycle

on U I X1 is a cochain satisfying a certain relation. By

the trivial extension, it is a cocycle on U. Hence if

Hq(D1,. 0 then Hq(X1,J) = 0 for q > 0. By Theorem 52B,
Hq(D ,) = 0 for all q > 0.

1



187

Chapter 17. Coherent Sheaves in Regions of Holomorphy

31. Statement of the Fundamental Theorems

Theorem 55A. Let X be a region of holomorphy and

a coherent sheaf over X. Then global sections of

generate fx at every x e X.

Theorem 55B. Under the same hypothesis as in Theorem 55A,

Hq(X ,/) = 0 for all q > 0.

These theorems have numerous applications which will be

given later on.

§2. Preparations for the proof

Notation. (zl,...,zn-1) = Z, zn = z so that (z1,...,zn)

_ (Z,z).

Theorem 56. (Cartan) Let P(Z,z) be a lUleierstrass

polynomial of degree s, P(Z,z) = zs + a1(Z)zs-1 + ... + as(Z);

the aj are holomorphic in a neighborhood of the origin and

aj(0) = 0. Let rl,...,rn-l,rn = r be > 0 and such that

each aj is holomorphic for Izjl ^ rj and let P(Z,z) 0

for L(Z,z) I IzjI< rj, j = 1,...,n-1 and IzI = rs .

Izl< rj for all jLet f(Z,z) be holomorphic in D = t(Z,z) I

and let IfI < 1 on D. Then

(1) f = QP + R where Q is holomorphic in int D and

R is a polynomial of degree s-1 in z with holomorphic
s-1

coefficients in int D, R = bj(Z)zj, and

(2) IQ(Z,z)I < K and b (Z)I < K where K does

not depend on f.

Proof. (This proof is independent of the Division

Theorem, Theorem 47, and hence gives a new proof of It.)

Let Q(Z,z) _ I
JItI=r

Pf(Z, )

aZ
; Q is

holomorphic in int D. Then
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R(Z,z) _ P(Z, ) ( P(Z C)_P(Z,z) ) dC . But2R j
I I=r

P(Z P(Z z) s-1 Cs-J_ zs-1----L-- _
z

aJ(Z) z- , ap = 1. Carrying
_p

out the division gives R(Z,z) _ bJ(Z) zJ, where

b(Z) = 1 f P(Z,
)

(Cs-J-l + alts-J-2 + a2Cs-
+...

ICI=r

+ as-J-1) dC.

Hence R is of the required form.

Now to estimate Q and the coefficients of R. For

ICI = r and IzjI < rJ, J = 1,...,n-1, Ifi < 1 and IPI

has a lower bound b > 0 and Ia3I < c, a constant, for

all J. Hence Ib3(Z)I < K1, a constant independent of f.

To estimate Q write Q =(f-R)/P. Then
l+K1(l+r+...+rs-1)

IQI < = K2, a constant independent of f.

Take K = max (K1,K2).
q

Theorem 57. Let MJ be a submodule of 00 J (vector-

valued holomorphic functions in on near the origin) of

dimension qJ, j = 1,...,L; i.e. each MJ is a set of columns

id, i holomorphic near zero, such that this set is

+q /j
closed under addition, and under multiplication by holomorphic

functions near the origin. Then

(1) Each Mi, has a finite basis B3, i.e. for every

MJ there exist a finite number YJ of elements of MJ

such that any other element of MJ is a linear combination

of these with holomorphic coefficients.

(2) After a linear change of variables, we can find

a sequence of polydiscs Dv about the origin Dl ' D2 :) ...

n Dv = 101 , and the finite bases B are defined

in Dl, such that if g M. and is holomorphicNin some
Dv, and III (z)II = sup Iii(Z)I 1 then c= J*1

ze
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where (41,...,4N ) = By4 and the *, are holomorphic in

Dv and 11x,11 < j Kv to constant depending on v).

Proof. We use a double induction. First we show that

if for a fixed n this theorem holds for ideals (1-dimensional

modules), it holds in general. Then we use induction on n.

h
Consider M3, j fixed. Let Ie M3. Consider the

q3 ,,
ideal I1 of all those which can occur as a 1; then

the ideal 1
2

of all those 4 which can occur as a

for l = 0; etc. till Iq of $q 's for $1 = 2 =
qj_1 = 0. By hypothesis each Ik has a finite basis

Bk = f j1,...,jr Then the basis B for M isk J 3

I1\
r/ 0

0

111
2 j 1

0 , j
01 2) , ...,! Oq i = 1,...,rJ

1

0 ' i
Part (2) follows similarly.

Now, for n = 0 the 1.1 are the finite (q3) dimensional

vector spaces of all q3-tuples of constants, and the statements

are obvious.

Assume the theorem for n-1 and every finite number of

modules. We must prove it for n and any finite number of

ideals. Assume that none of the ideals I i is identically

zero, so that we may pick a non-identically zero element

from each. Make a linear transformation such that these

elements are normalized with respect to the variable zn

Consider any one of the ideals I with element 4 0.

Then $ = 4,Op; where
$0

is a unit and p is a i'eierstrass

polynomial, say of degree s, p = zs + a1(Z)zs-1 + ... +

as(Z), a.J(0) = 0. Assume, without loss of generality, that

O doesn't appear, then p e I. Let * be any element of

I. t, is holomorphic In some closed neighborhood N of the
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origin. In N, 1*1 < e, a constant. Hence y/c = X e I,

is holomorphic in N, and I)1 < 1 there. In perhaps a smaller

closed neighborhood D of the origin we may apply Theorem 56.

Then J. = qp + r; q is holomorphic in int D, Iql < K,

and r = b0(Z) + bl(Z)z + ... + bs-1(Z)zs-1, where the b3

are holomorphic in int D and Ib3I < K. Since .K and

qp e I so does r. Consider all s-tuples

!b0(Z)

such that b0 + b
1
z + ... +

bs-lzs-1

a I. They
t\bs-1(Z)

form a module in the n-l variables Z. By hypothesis, this

BI (Z)

module has a finite basis , v = 1,...,m;

M

Bs-1(Z)

so that b3 (Z) _ ' av(Z) BV(Z);(*) av holomorphic in int D,
V=-1 s-1 m

j = 0,1,...,s-1. Then r = b (Z)zJ = - ( av(Z)Bv(Z))z3
3=6

= 1 = qp + avBv) z3

BVz3= qp + L av

V j
-1

Hence p and BVzJ , v = 1,...,mj is a finite basis
3 3

for I. Do this for all the ideals I. ; b0(Z) \

Now for each module L3 consisting of all s-tuplesj 3

such that bk zk a 13, we find polydiscs
Dv ` Cn-1 1 bs-1(Z

c-
with the required property (2). Take a sequence of polydises

Dv in On such that every hyperplane z = constant f)DI is

contained in Dv, Dv+1 C Dv , Dv = 0j , and the bases
for the I3 are defined in D Consider any * a I3, say

given by (**). Then by our induction hypothesis, in (*) the

Ila3II < Kv and we already have lqt < K. Therefore q and a3,
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the coefficients in the basis expansion of *, do have norms

bounded by a constant depending on v.

q
_
_>

Theorem 58. Let M be a submodule of ( D . Let f vi
be a sequence of elements of M which are all holomorphic in

a fixed neighborhood
_ of the origin. If the $

v
converge

uniformly in N to,,. 4) , then $ e M.

Proof. The
4

converge componentwise; 4y

uniformly in N, j = 1,...,q. In any compact subset of N

the 10 are uniformly bounded; assume I4JI < 1. By

Theorem 57, in perhaps a smaller polydise D, 4v = *V

where they are the basis vectors and the are

holomorphic in D with I i2I < KD. Hence for j fixed and

for each fixed I we have a sequence
4,

of uniformly

bounded holomorphic functions in D. Thus contains

a subsequence which converges normally, say to
pY

Therefore for each j there is a subsequence of which

converges normally on D to Tj J . Then $ =v >

`Y JJ on D, where `Y is holomorphic in D. Hence 4)e M.

93. Proof of Theorem A

Now we are ready to prove Theorem A. Exhaust X by
analytic polyhedra, Xjcc Xj+1, JXj = X. Let Kj = cl Xj.

Apply Theorem 54A to each Kj C Xj+l. Then for each j

there exists an analytic polyhedron Nj with Kj r N3C c Xj+l

and a finite number of sections of .L(N3) generate
x

at every x e NJ.; call them sjl,aj2,...,sjL
J*

Consider,

j

for fixed j, all sections of the following form, a =

where the
4v

are holomorphic and bounded in Xj. The

_> ( 1

j = form a Banach space Aj of vector-valued

. /
holomorphic functions under the norm, max

v,X3
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Aj is complete by Theorem 58. Let A0 denote the subspace

of Aj of relations, i.e. 41 e AJ if and only if

s = 4v sjv = 0 . A0 is a closed linear subspace

of Aj, by Theorem 58. Hence we may form Aj/Ao = Bj. >

Denote an element of Bj, represented by
;>

,. by [41]

Bj is a Banach space with norm inf > max I4v1

E[0]
V,X3

Proposition. (Oka-Weil Theorem for sections). Let or

be a section of over Xj such that 0= v v sjv

and [41] a Bj. Let e > 0 be given. Then there exists a

section T ->f 4- over x such that IId- r I Ij < e, i.e.
II6TII1 = 11111111 < e , where (o-- T) I Xj = v Iv sjv'

Proof. We claim that every section

s 1jk = j(k) s+1
2

, where the (k) are holomorphic in
N J,

a neighborhood of
Kj;

k = 1,...,L
j*

For, consider the

mapping f : (LO j+ (Nj))x -> (J (Nj))x, x a NJ, given byl 1 1 Lj+l
(sj+l,N)x

f is a homomorphism of

)LLj+l

n Lj+1(Nj) into (Nj) and is onto because the sj+l,,

generate (t (Njx at every x e Nj. Hence

0 -> G -> Lj+l(ITj) -> (N3) -> 0, where G = ker f, is
an exact sequence of coherent sheaves. By Theorem 54B there

is an analytic polyhedron Nj such that K N N L

and Hq(Idj,G) = 0 for all q > 0. Therefore H°(Nj, 9 j+1)_>

H°(N3, 0 is an exact sequence, implying that the mapping

is onto. Hence every section of 4 (N ) is a Naj+l,1
where the are holomorphic in NJ; therefore so is

each sjk.

Now, (3-= v sjv and sjv =
L1v)310,

where

andand are holomorphic in a neighborhood of Kj. Thus
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` =, *,O s j+1,.2 ' *1 = 2:v +v LT) is holomorphic in a
neighborhood of KJ. On XV the *1 can be approximated

by functions holomorphic in a neighborhood of Kj+1'

I* -*(l)I < e/2 ; by Theorem 53. Hence 61 = n, 01) aJ+1,

is a section of 14- over--a neighborhood of Ki+l, and

III - 1II ' e/2. Similarly cj
= :2::, *1 sj+1,.2 =

m
,+2'Mm

rn s,J+2,m'

where the =1 iQl)x m are holomorphic in a neighborhood

of K3+1, and therefore can be approximated on XJ+1 by

holomorphic functions *(2) in a neighborhood of

o2) _(1)(2)I <Ne/4. Then cr- -(2) s
M 2 - t J+2,t

is a section over a neighborhood of K3+2 and II 62 crlII j+l < e/4,
etc. obtaining o,, off, ... such that Ii ai (ri+lllJ+i -< e/21+1.

Since the Bi are complete, on each Xk, k = j, J+1, J+2,...,

there is a section Tk of 4 such that II Tk ojillp < e for
i large enough and p < k. But then for each k, Tk must

be the restriction to Xk of Tk+1' Hence there exists a

section T of J- over X such that II T-olllp < e for all
p and sufficiently large i. In particular IT-al < 2e.

Note that if s is any section of -4 over X,+1'

then II s III < ciII s II +1 , where ci is a constant depending
only on J. For inf i maxv

PXi
for

+v sjv = s and II s IIi+1 = inf maxv X I*v I for
J+l

-v *V sj+l,v = s.
Take any representation of the sJ+l,v

in terms of the sjv; s1 k1,v = Lµx µV)

s = w ( =v *v (0 )sAµ on X. Hence iI I
= inf max I4vI

< inf[ j maxµ,x Lv ?rv (v)I, where the inf is taken

Vi j
over all representatives Yi e s
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Since v depends only on J, say v = 1,...,L1 +1;

II s IIJ ' L J+1 inf max 1 *V I I).µv) I . On X J, I (µ)
I is

Ia,v,X3
bounded by a constant bJ depending only on J. Therefore

IsIJ < bJ LJ+1 in; max I*vI -< bJLJ+1IisUIJ+1. This

[*1
:v,XJ

proves the proposition.

To complete the proof of Theorem A, we must show that

every stalk X, x e X, can be generated by global

sections. So, let x e X. Then x lies in some XJ.

The sections sjl,...,sJL11 of XJ generate the stalk at

every point of XJ. By tie proposition, there are global

sections tJ1,...,tJLJ such that on XJ

L

(*) tik = (skQ + 'kdsJi ,

where the
*ko

are holomorphic in XJ and I?kk8I < e there.

For c sufficiently small, the transformation (*) is nonsingular,

so that we may solve for the sJ1 in terms of the tJk. Hence

1-.the tik generate 17

34. Proof of Theorem B

aFirst we define the tensor product sheaf $ () c)o' q
over X, where 00,q is the sheaf of germs of differential

forms of type (O,q). This sheaf is called the sheaf of

germs of differential forms of type (O,q) with values in the

sheaf Let x e X. Both x and C)X'q are modules.
Consider all finite sums (4Jfj for +J, e x
and f1 s j-x , wJ e C)X'q. Define addition of two sums

in the natural way,
N M t t> a3 + a, = al + ... +a,, +a, + ... + a M. Allow

interchanges of the order of terms of a sum and drop any

term with J, fJ, ,yJ or wJ equal to zero. Identify the

terms ( 4 Jf J`X);U Jw J) and (fJ 4 Jai Jw j). Then these finite
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sums modulo the identification form an Abelian group

Gx = 1X 'q. Under the following topology, we obtain

the sheaf -,.r-{ O°'q: Take a representative of any element

g E Gx , *jwj). In a sufficiently small

neighborhood Nx of x, the
4J

and j are holomorphic

functions, the fj are sections of over Nx, the wj

are differential forms, and the projection maps of the sheaves

,5- and are homeomorphisms. Then, for each y e N ,x

assign that class in Gy, (4 for which

are the direct anal tic continuations of
4

and
hA

y
j j j

and *j, and the fJ and wj are sections of - and n°'q

through fj and coil respectively. We define the collection

of all these classes to be an open set; and these open sets

are to form a basis for the topology.

Now define a ( 2:: (y jp,Pjawj)

Then 5: -4 0 no, q -> 7Z® C)o, q+l is a homomorphism of the
sheaves; and a2 = 0. Since Hq(X,(9) = 0 for all q > 0,

(cf. Theorem ;6, p. 117), by Dolbeault's theorem (Theorem 26B,

p. 95) we have the Poincare lemma with respect to a in X.

Hence the sequence 0 -> ; i> zr; C)c'° -> 6) C)°' 1 >1U°' 2
-> ... is exact. For, at 3 (, C)°'° ker Tis '*) 9 , and

elsewhere exactness follows from the Poincare lemma. This

sequence is a resolution of f . Indeed, / U C)°'p p > 0

are fine sheaves. For, define multiplication by a CCD function;

if a e C00 then a,( (4)jf3'3'pJwj)) (4)jfj`)*ij(awj));
and then proceed as in the example on p. 152. Then by the

Abstract de Rham Theorem (p. 15 ?), Hq(X A) ti (5 closed (0,q)

forms with values in ; )/(a exact (0,q) forms with values in -4 ).

Now exhaust X by analytic polyhedra Xj. Then for every J,

0 for all q > 0 by Theorem 54B. As in the proof

that Hq(X, (9) = 0 for all q > 0 (Theorem 36), we obtain a

lemma P for the sheaf . ', and hence Hq(X, ) = 0 for all q>O.
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§5. Applications of the Fundamental Theorems

The following results are all obtained relatively easily

from the fundamental theorems A and B. Some of these results

have been obtained previously, with more effort.

Note. In the following, X is a region of 13olomorphy

and I a coherent analytic sheaf over X.

A. Theorem 59a. Let V be an analytic set in X; i.e.

V C X, and every.point p e V has a neighborhood Np such

that X n Np is the set of common zeroes of a finite number

of functions defined and holomorphic in Np. Then

V = f x e X I fi(x) = 0 for every i e I where the fi

are functions holomorphic in X and I is some index set.

We cannot prove this theorem, since it relies on the fact

that the sheaf V(X) is coherent (Theorem 50). However,

we can establish:

Theorem 59. If V is a regularly imbedded analytic

subvariety in X, then there are functions fi, i e I,

holomorphic in X, such that V = x e X I fi(x) = 0 for

every i e I

Proof. JV(X) is coherent by Theorem 51. Hence, by

Theorem 55A, the global sections of 'V(X) generate the

stalk at every point. For any point p e X - V, the stalk

(j v(X))p contains the germ "1"; hence "1" is a linear

combination of functions holomorphic on X and vanishing

on V (with appropriate coefficients). Hence at least one

function does not vanish at p; hence there is a function

holomorphic in X, = 0 on V and # 0 at p.

Theorem 60. Oka's Fundamental Lemma; a general form.

Let V be a regularly imbedded subvariety in X;

P the closure of a polynomial polyhedron in X. Then

cl (V(1 P) = (ci (V(IP))*, its polynomial hull.

Proof. cl (V(P)C P which is defined by polynomial

inequal'_ties. Hence there exists a polynomial polyhedron P'

such that Pcc P'cc X and JV(P') is globally finitely
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generated (applying Theorem A to the coherent sheaf JV(X)).

At any point p e P - V, (,/ V(P'))p contains the germ "1";

which can be expressed as a linear combination, with ! P

coefficients, of global sections of A(P') at p. But

these global sections are holomorphic functions on P'

:vanishing on V. Hence, using a sufficiently high partial

sum, we obtain a polynomial which is close to 1 at p, and

close to 0 on cl V/1P. Hence p / (cl (V()P))*, as desired.

Theorem 61. Cousin I is solvable in X.

Proof. It suffices to show that H1(X,0) = 0. But

0 is coherent, so Theorem B applies.

Theorem 62. In X, every 5-closed form is c-exact.

Proof. Appeal to the Dolbeault isomorphism theorem

and Theorem B.

Theorem 63. Suppose there exist finitely many local

sections sl,...,sr generating all the X x e X. Then

every global section s is of the form s = s where

the +3 are holomorphic in X.

Proof. Consider the sheaf homomorphism (9 r(X) ->

defined by: -> +i(si)x . This map is onto by

r x

hypothesis; hence we may form thenn exact sequence:

0 -> G -> :J r -> ,L -> 0

G is also coherent; hence we obtain the exact cohomology

sequence:

H°(X,(9 r) -> H°(x,?) -> H1(X,G)

Now H1(X,G) = 0 by Theorem B; and since H°(X,(9 r)

H°(X,4) are the global sections in r respectively;

Theorem 617 is complete.

Corollary 1. Let U cc X, U open. Then there exist

finitely many global sections sl,...,sr of such that

every section s of J (U) is of the form s = 4jsj,

where the i are holomorphic in U.
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Proof. By Theorem 6 it is enough to show that there

exist a finite number of.global sections of T generating

the stalks of T (U) at every point. But this is Theorem-A.

Corollary 2. Let D C on, D open. Then the following

are equivalent:

i) D is a region of holomorphy

ii) Whenever +1,...,4r are holomorphic functions in D

without common zeroes, there exist holomorphic functions

r in D such that * 1.
Proof. i) implies ii). View the $i as global sections

of the sheaf 't (D). It is thus enough to show that they

generate the stalks ,9, at every point x e D, as "1" is

a global section and Theorem 63 applies. But this is just

the hypothesis of ii).

ii) implies i). If D has no boundary points, D = 0n

and so is a region of holomorphy. Hence, assume D has

boundary points; we shall show that every such point is essential.

Let "a" e bdry D; a = (al,...,an). Consider the n holomorphic

functions 3 = z-a3. They have a common zero at the point a,

only; hence they have no common zero in D. Hence there exist

*3, holomorphic in D, such that 7- y3(z)(z3-a1i) ° 1 in D.

If the P
3

are all holomorphic in a neighborhood f'a",

( 7- *3(z)(z3-a3))a = 1. But this is clearly a contradiction,

so at least one of the
V3

is singular at "a".

B. Recall that, in a region of holomorphy, we have an

extension theorem for functions defined on regularly imbedded,

globally presented hypersurfaces. This theorem extends as

follows (X still denotes a region of holomorphy):

Theorem 64. Let Y C X be a regularly imbedded

subvariety. Then every function holomorphic on Y is the

restriction of a function holomorphic on X.

Proof. Consider the sheaf .Y(X) . We may form the
exact sequence:

2 -- ' (x) -> iP (x) -> 9 /-/Y -> o ,
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where J/JY = 0(Y) (cf. Remark p. 174). We therefore
have the exact cohomology sequence:

H°(X,(9) -> H0(Y,A -> Hl(X,J )
and Hl(X, J Y) = 0 by Theorem B.

Theorem 65. Let points zj a Xi j ZJ' discrete, be

given together with numbers aj. Then there exists a function

holomorphic in X, such that 4)(zi) = aj.

Proof.
I zj? is a regularly imbedded subvariety, of

dimension zero.

Theorem 66. With the zj as above, let polynomials

Pi(z), of degree NP be given. Then there exists a

function 4,, holomorphic in
N
X,1 such that in some neighborhood

+
of zi, 4)(z) = Pj(z) + OflIzO J ); i.e.

4,
has any given

Taylor expansion up to any given order.

Proof. Consider the sheaf defined by its stalks

as follows. If for x e X, x zi set
x

= C9x. If

for x e X, x = zj set 3'x =germs of functions whose

Taylor expansions about zi have no terms of order < N

i.e. which vanish at zi of order at least Nj+iJ .

is an open subsheaf of CJ (X). For coherence, we must

show that is locally finitely generated. But, for

points x # zj, this is clear; and at zj the stalks are

generated by the polynomials in z-zj of degree Ni +1.

Hence, we may form the exact sequence:

0 -> % j -> () -> I / / -> 0

and therefore the exact cohomology sequence:

H°(X,C)) -> H°(X, ;9/-4) -> 0

by Theorem B. But

(0 Ifx#z
germs of polynomials of degree<Ni if x = zi

C. Recall our attempt to solve the Poincare problem in the

strong sense. This is not possible in an arbitrary region of
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holomorphy; but is possible in its weak sense:

Theorem 67. Given a function g, meromorphic in X,

then g = h/f where h and f are holomorphic in X.

Proof. Locally, we can find holomorphic functions f

such that fg is holomorphic. Hence, define the sheaf j`-

as follows: 7'x = those germs fx e X such that fxgx

is holomorphic. ' is a subsheaf of 9. For coherence,

it suffices to show that is locally finitely generated.

Recall that the Poincare problem is solvable in the strong

sense in any polydisc: g = h1/f1; hl, fl are coprime

and the representation is unique up to units. We claim

fl generates the stalks at every point (in the disc):

If (fl)x / 0, this is clear. If (f1)x = 0, the only

functions regularizing g are then multiples of fl.

Hence, is a coherent nontrivial sheaf. By Theorem A,

there exists some global section f. But fg is then

holomorphic at every point; set fg = h.
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Chapter 18. Stein Manifolds (Holomorphically

Complete Manifolds)

Stein manifolds were designed to generalize the more

characteristic properties of regions of holomorphy.

§1. Definition and examples

Definition 77. A complex manifold X is called a

Stein manifold if:

Condition 0: It is the union of countably many compact sets.

Condition 1: X is holomorp^hically convex, i.e. for

every K C c X, Kc. G X, where K denotes the hull with
respect to functions holomorphic on the manifold X.

Condition 2: The holomorphic functions separate points;

i.e. for every distinct p, q e X there exists a function g

holomorphic on X such that g(p) # g(q).

Condition 3: The collection of functions holomorphic

on X contain for each point a set of local coordinates

at that point.

Examples. i) Any region of holomorphy.

ii) Regularly imbedded n-dimensional subvariety X of CN.

1e note first that X, being regularly imbedded, is closed.

Condition 1 is established by observing that if K
c
(f-c- X but

K I- X, then there is a discrete sequence (zn) a K. Hence

by Theorem 65, there is a holomorphic function 4 on 0n

with Wzn)I -> co; contradicting (zn) a K.

Condition 2 is trivial, as is Condition 3 once it is observed

that every point of X has local coordinates such that

zn+l = ... = Z N = 0 describe X.

iii) If X is a Stein manifold, and f is holomorphic

on X, then the set x I f(x) # 01 is also a Stein manifold.

iv) The product of two Stein manifolds is also one.

We leave it to the reader to verify that iii) and iv)

are Stein manifolds, while stating the following theorems

(without proof).
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Theorem 63. (Stein) Every universal covering space

of a Stein manifold is again a Stein manifold.

Theorem 69. (Behnke-Stein) Every open'Riemann surface

is a Stein manifold.

We remark that there exist manifolds which are not Stein

manifolds; that conditions 2 and 3 can be replaced by a

"K-completeness" condition. (A complex manifold X is

if for every x e X there exist finitely many

functions fl,...,fK holomorphic on X such that x is an

isolated point of the set iy e X I fly = flx,...,fKy = fKx3.),

and that:

Theorem 70. (Grauert) Conditions 1, 2, and 71 imply

condition 0.

§2. An approximation theorem

Definition 78. An analytic polyhedron Y in a complex

manifold X is defined as follows: Y c c.X, such that there

exist a set XO and functions fl,...,fr holomorphic in X

such that:

YccX0cc X and Y = z I z E XO , If j(z)f < 1l.

Theorem 71. Let Y be an analytic polyhedron in the

complex manifold X, as above, and let g be a function

defined and holomorphic in Y. Then g can be expanded in

a normally convergent series of functions of the zj and the

coordinate functions f1, holomorphic in X.

Proof. By adding functions fj, we may assume that:

Y = j z I z s XO; If (z)I < 1, j = 1,...,Nj and that the

Oka map (zi,...,zn -> (fl(z),...,fN(z)) is one to one, of

maximal rank, of Y into ItjI < 1, j = 1,...,N .

The image of Y in the disc is a regularly imbedded analytic

subvariety of the disc. Therefore by Theorem 64, g can be

extended to a function G holomorphic in the disc. Hence

in the disc G = = ci1
...iN

and this series

converges normally. But, setting ti = fi(zl,...,zn), we
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obtain the desired normally convergent expansion.

§3. The fundamental theorems for Stein manifolds

Theorem 72. Theorems A and B hold for Stein manifolds.

Corollary. All consequences of these theorems, except`

Corollary 2, hold also. In particular, we have the

complex de Rham theorem:

Hq(X,C)
closed holomorphic g-forms

ti
exact holomorp c q-?orms

Note that this result shows also that the cohomology

of differential forms on any Stein manifold is trivial.

These statements need no proof!

§4. Characterization of Stein manifolds

Theorem 73. Let X be a manifold satisfying condition 0.

Then the following are equivalent:

i) X is Stein.

11) F-l(X, f) = 0 for every coherent sheaf of ideals

Y-; i.e. for every coherent subsheaf of 1.1 .

Proof. i) implies ii): Theorem B.

ii.) implies i): Recall the corollaries of theorems

A and B:

Given a discrete sequence of points, there exists a function

taking prescribed values. This implies holomorphic convexity

and separation of points.

At every point there exists a function with a

prescribed expansion in terns of local coordinates.
This implies the existence of local coordinate:: :rhich

are holomorphic functions.

Now recall that the proof of these corollaries required

only Theorem B in the form of ii).

Theorem 74. (Grauert-Idarasimhan) Let X be a complex

manifold satisfying condition 0. Then the following are

equivalent:
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i) X is Stein.

ii) There exists a strongly plurisubharmonic real-

valued function 4 on X such that < a CC X, for

every a .

Proof of this theorem is essentially that of the solution

to the Levi problem, and will not be given here.

Theorem 75. (Bishop; Narasimhan) Let X be a complex

manifold of dimension n. Then the following are equivalent:

i) X is holomorphically equivalent to a regularly

imbedded subvariety of 02n+1

ii) X is Stein.

Note that this gives an imbedding theorem for regions

of hol-omorphy.

Proof. i) implies ii). Clear by the examples.

ii) implies i) will not be proved here. One must find

2n+l functions such that the mapping defined by them is

one to one, of maximal rank, and "proper" in that the

inverse image of a compact set is compact. Ue do not

establish this, but make the following remarks: This mapping

is not unique. However, in the space of all holomorphic maps
X _. C2n+1

, under the topology of normal convergence, the

functions of i) are dense.
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Appendix

This appendix is concerned with proving the theorem of

L. Schwartz appearing in chapter 13 on pate 139. We actually

prove a weaker theorem than is stated there, but one which

nonetheless suffices for our purposes.

We assume that E and F are vector spaces, each having a

nested sequence of norms defined on it;

it Iln_II Iln+l ,n= 1,2,....

Furthermore, E and F are metric spaces with metric

OD _

d(xl,x2) 2
n 1Ixl-x21In

1+
11
xl-x2

n

Under the topology induced by each metric, we assume that E

and F are complete and separable, and that E has the edded

property that for each n, {x EE I II xIIn+1 < lJ is totally
bounded (relatively compact) with respect to the norm 11 lin'

The theorem we are going to prove is the following:

Theorem (L. Schwartz). If A and B are continuous linear

mappings of E into F and A is onto and B is compact, then

F/(A+B)E is finite dimensional.
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Before proceeding with the proof, !e note that if

E = Co(D,U',O)®Z1(Do,U",6) and F = Z1(D,U',( ), then E and F

have the properties assume-1 above, for:

The nested sequence of norms on each space is defined as

follows. First, in each ui'(; U' take a sequence of subsets

Kijc. C Kij+1 /1 u1'. In each ujVI uk A 0 of sets of U" take a

sequence of subsets Kjkt C C Kjk,t+l I (uj"Ouk"); and in each

ui'/luj' A 0 of sets of U' tale a sequence of subsets

Kijk`- C_Kij,k+l (ui';"!ujI). Then for E; i.e. f = g + h,geCo
assigns the holomorphic function gi to ui' and h6 Z1 assigns

the holomorihic function hjk to uj"n uk" A 0; define

Il+ IIn = max Igi(z)I + max " Ihjk(z)I
i;zE Kin j,k;z EKjkn

and for ktF; i.e. kEZ1(D,U',JJ) assigns kij to ui'r uj'; define

11 kiln = max Iki.(z)I
i,j;zeKijn J

Clearly these are norms and II IIn ` II IIn+1 for all n = 1, 2, ... .

The separability of E and F is obvious.



Finally, the totally boundedness of Ix tE I II xtI n+l

in the norm II IIn follows from the fact that a uniformly

bounded sequence o= holomorphic functions contains a normally

convergent subsequence.

I. Preliminaries.

Henceforth x and y shall ienote elements of E and F,

respectively. (e and f shall lenote elements of the dual spaces).

Let

Sn=LX&EI IIxIInfin=jyeFI IIYIIn<

esn={xEEI IIxIIn 31n=4YEFI IIYIIn =1i,
Sn= xEE I IIxIIn `lj', I IIYIIn `1j

Note. 1.&C E (or F) is open if and only if for every point

x F vrgrthere is an n and a k > 0 such that x + kSnC ('.

2. xi -> x in E (or F) means 11x1- xI In -
i-> 0

for all n.

E denotes the space of continuous linear functionals on E.

*
The following remarks, although stated for E , are true as well

*
for F

For e E E* define IIeIIn = sup Ie(x)I. These are not really
xeSn

norms because for some n, IIeIIn may be infinite. However for

each fixed n, the elements of E*-with finite norm II IIn form

a Banach space.
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< oD1. For each a EEC there is an n such that
1 1 e 1 1 *

Proof. Since a is continuous, Zx E E I lg(x)I < 1 is an open

set containing 0, and therefore contains a set kSn for some

n and k > 0. Then l e ( x ) I < 1 for all x E kSn, and by linearity

l e" (x) I< for all x E Sn, Implying l l e I I <

2. lllln+l_lllln
3. Given e 6E if there is an n for which lie ll n = 0,

then e = 0.

Proof. If e 0 then there is an xE E and e(x) = a 0.

Since ll xlln = N <oo for some N, E Sn and e (A) = N # 0,

contradicting I I e I In = 0.

4. Since E is separable, the usual argument based on the

Cantor diagonal process shows that from any sequence e1e

with lleilln < C for some fixed n, we may extract a subsequence

ei
converging at every Set e(x) = liim. e FE't

and 1 1e n < C. Let

Sn' 4e E E" l l e l l n < lid ' and n = f E F I f1 1n < 1S .



Define mappings AB Eby (A f )x = f (Ax)-aq

(B*f )x = f (Bx) for f t F'1 and x E E.

1. Since A is onto, Ax is 1-1.

2. B compact means that there is an n such that B(Sn) is s

totally bounded in F.

3. A* and B* are continuous linear maps.

II. Easy Results.

Proposition A. Given n, there exi.st mn and Cn such that for

every f F , 1 1 f 1 1 *-m_ < Cn 11 A#f I I
n'n ce o0

Proof. Since A is onto, F = UA(1!S ) = (the bar
j=-1 n £=1 n

denoting closure). By the BaireCategory Theorem, one of the

closed sets A(j.Sa) contains an open set, therefore a set of the

form y + kE:m , y E F and k > 0. If we make ,k even larger, we

n
can get A ..Sn E:m . For, y F A iSn implies y = Ax, xi --> x,

x1EL Sn, so that A(x+!Sn) ' k , inplyinp A( .k

k'n E
Let f E F*. For yEA(gSn), y = Ax, IIxIIn < $ and

If(y)I = If(Ax)I = I(A*f)xl < IIxIInIIA"flln _< IIA*fIIn. By the

continuity of f, this inequality is valid for y' and hence
n-j

for y . Take Cn 4-
n

1z' E:

Proposition B. There is a fixed positive integer p such

that for every in, B*(E) is totally bounded in the norm II
II
p
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Proof. Choose n so that B(Sn) is totally bounded in F.

(p will be n + 1). Then B(S) is compact in F. Given any m,

B n) C F = By compactness, a finite number of the

cover Mn , and since they are nested, choosing the largest

kgives B(Sn) C 7,977c 9, . Let fE and xE Sn, then

i(B*f)xl = If(Bx)l < 11 f1Im 1IBxIIm < . Therefore, B*( ) is a
set of functionals which are uniformly bounded on Sn, and since

the funetionals are linear, this set is equicontinuous with respect

to the norm n. Furthermore, is totally bounded in

the norm I ( I in . Hence by the Arzela Ascoli theorem, from any

sequence in B"() we may extract a subsequence which converges

uniformly on Sn+l, i.e. is totally bounded with respect

to the norm 11 11n+1.

Corollary 1. if f t F*, then IIB'tfIlp < oo. (For, f F P*

implies f(k for some m, K< oo. )

Corollary 2. If f1 F" are uniformly bounded in some norm,

then there is a subsequence ;fi such that IIB°(fi -fi )IIp 0.

Theorem 1. N = 'f P* (A'+B )f = 03 is finite dimensional.

Proof. Since A" is 1-1, if suffices to show that A"(N) is

finite dimensional. Let p be as in Proposition B. Then A"(N) is
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a Banach space under the norm f llp, because for every e e A'`(N),

a co since e = A*f, f E N, implies e = -B'f which has finite

norm 11 11 p by Corollary 1.

Suppose A*(N) is infinite dimensional. Then there is a

sequence al, a2, ... of linearly independent elements of A*(N).

We claim that there exists -e,; E A (N) satisfying II ek1lp = 1

and IIek - ej11p > for k J. The proof is based on the following.

Lemma. If E is a Banach space and G is a closed, linear,

proper subset of a linear set DAE, then there is an x0E D with

llx011 =land lixo - GII > 2.

Proof. Take x1E D - G and let d = distance of xf to G. Then

there is a y'E G with d < 11x' - y' 11 < 2d. Set xo =
x -x

x
y

11

Now, let G1 = aal}, i.e. the linear space spanned by a1,

and let D12 = Since every finite dimensional linear

subspace of a Banach space is closed, we may apply the above lemma

to G1 and D12 as subsets of A''(N) with norm 11p. Hence, there

exists e1 e D12 with ll el l lp = 1 and Il el - ell
p

1-f for all e E G1.

Next, apply the lemma to G12 = a1,a21 and D123 = 1a1,a2,a3 and

get e2 E with 1 1 8 2 1 1 p = 1 and 11 e2 - ell > 2 for all e E G12

Continue this process, obtaining a sequence jek E A"(N) with

IlekIlp = 1 and I Iek - ell' > 2 for all e belonging to the space

spanned by al, ..., akj but then Il ek - e j V 2 for k J.
11On the other hand, since yek\EA't(N), ek = A' .fk, fk EN.
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By Proposition A, there are constants mp and Cp such that

'Ifklln < Cp. Then by Corollary 2, (B*fk) contains a subsequence

which is Cauchy in the norm II Ilp However, B* fk = -A#fk = -ek,

and
'Lek

can have no Cauchy subsequence in the norm II It by

construction.

Theorem 2. Given n, there exist mn and Kn < co such that if

e 4 (A"+B'')F" and II a Iln < co, then there is an fE F with e = (A"+B*)f

and Ilfllm < 1-11

n
Proof. Let p be as in Proposition B, and let mn be given by

Proposition A. It suffices to consider only n > p; since once we

have established the theorem for n = p we have it at once for all

n < p by choosing for such n, the constants mn = mp and Kn = Kp

and recalling that II Iln+l < Iln. Let N denote the nullspace

of (Aas before. We claim that it is sufficient to prove

that there is a Kn < co such that for all f E F with I I (A"'+B")f 11 n <CD,

II f - NIl<
2

II (A +B)flln. Indeed, if (A"+B'`)f = e, then there

will exist a $t f - N satisfying II4'IIm < KnII (A"+B")f11*
nIH1*

and (A"+3*)$ _ (A"+B*)f = e.
n

Suppose such a Kn does not exist. Then there is a sequence

fiE F such that
h r . - P?II * co and 11 (A''+B*)fiIIn = 1. Take

$it fi - N so that Iifi - Nllm II $ihlm -2 - Nllm , and
Qi n n n

set Then 2 _ II'i - N11 , II'eill* = 1 and
n n n

II (A +B" i In = -T m o.

n
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By Proposition B, a subsequence of the 4ri, call them again i ,
satisfies IIB*(*i-*i)IIp 0, and therefore IIB;F(*i-*i)11n i, 0.

Then by the triangle inequality, Ilk*( ti-* 11ri ;1 0, implying

by Proposition A that 0H e is a y E Fy
n

with 0, and
I I

-
N'I

>. Then N, while
n

((A"+Bw)$)x = r((A+B)x) = lim yi((A+B)x) = lim ((A+B")x = 0
i-'oo i->co

for all x E E means that IF( N. a contradietion.

III. Main Results.

Let yo E TA-+-B-N, and let M =.f E F* I f (yo) = 03 . Call

(A*+B*)M = L.

Lemma 1. Suppose eiE L, eiIIn < C for some n and C < co

and suppose ei(x) j e(x) for all x 6E. Then eEL.

Proof. By Theorem 2, we can find with ei = (A+B*)fi

and 11 fillet < K. We claim that fiE M. Indeed, there are
n

for which ei = (A+B*)4i. Set *i = fi then (A"+B )* i = 0.

Since y0E A+B E, there is a sequence Cxaj C-E such that

(A+B)xa a yo. Hence (yo) = lim 4Vi((A+B)xa = lim
((A+Ba)i1Vj

=0,
ar OD a-> 00

implying that * ICE M, but then fi + $i C- M.

Now, because the 1f} Is uniformly bounded in the norm I
m
n

it follows that a subsequence of the call them again fi,

converges at every point y of F, fi(y) f(y), f F' and f(yo) = 0

so that fEN. But then, ((A"+B")f)x = f((A+B)x) = lim f ((A+B)x)
i-+co i

= lim ((A"+B)f )x = lim e (x) = e(x) for all xE E. Thus
i->oo- i i

e = (A"+B")f E L.
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Before proceeding, we recall some notions from functional.

analysis. The Hahn-Banach Theorem states that if S is a linear

subspace of T, a Hausdorff locally convex topological vector

space, and if x( ('J , an open convex subset of T such that :'!1 S = 4,

then there is a closed hyperplane HS with Hf CJ = $. From this

theorem it follows that since T = H + i.e. H + the linear

space spanned by x, if we define for t e T, 4(t) = A where t = h + Ax,

then $ is a continuous linear functional on T whose nullspace is H.

Hence there exists a continuous linear functional 4 on T satisfying

4(x) = 1 and 4(S) = 0.

'Theorem If e e E' but e L, then there is an x E E such
0

that e(x0) = 1 while g(x0) = 0 for every g EL.

.Proof. ( 1 ) Since e E E " , there is an n for which 1 1 e 1 1 n < oo

If n = 1, i . e . Il a Ill < co, then, since 11 Ill < II Ili , Ile I I2 < 0D.

Therefore IieIIn < oo for some n > 2. In order to simplify notation

we will assume Ile112 < co : the proof in the general case is

(essentially) the same.

( 2 ) There is an rl > 0 such that if g t L and g - e l I2 <

then IIg - eIIl > ft.
Proof. Assume that no such Il exists. Then there is a sequence

(g ) E L satisfying II gj - e II2 < 1 and Ilgj - e IIl 0, i.e. for
every xE E, Igj(x) - e(x)1 J 0. But ll gj - eII2 < 1 implies

llgjlli' < 1 + e < co so that by Lemma 1, e f L; a contradiction.2 - 112 y r
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(3) Take 0, smaller so that 2q < 1, then if g 4E L and

11g - eli2 < 2h, jig -ell >Q.

(4) Let {x1(1)J. be a dense sequence in aSl. Such a sequence

exists since aS1 G E a separable metric space. Then there exists

an integer N1 > 0 such that if g E L and g - e 1 12 < 211 the follow-

ing inequalities cannot hold simultaneously

lg(xi(1)) - e(xi(1))I < V 1 = 1, ..., N1.

Proof. Assume the contradiction, then there is a sequence

(gN)t L with llgN - ell2 < 2n and lgN(xi(1)) - e(xi(1))1 <rLfor

i = 1, ..., N. 11gN- e l l " < 2n implies that I I gNII2 < I co

so that there is a subsequence, call it egain (pN), such that at

every x4 E, &'T (x) N g(x), g t L by Lemma 1, and Jig- e ll2 < 2r(,

lg(xi(1) ) - e(xi(1)) I < 1l for i = 1, 2, ... . Hence lg(x) -e(x)l

for xFaSi, which implies that Jig- ell <q, contradicting (3).
(5) Let jxi(2)S be a dense sequence in 3S

2*
Then there

exists an N2 such that if g6- L and lIg - e 113 < 3y the following

inequalities cannot hold simultaneously

Jg(xi(1)) - e(x1(1))1 < h,
; i = 1, ..., N1

Ig(x1(2)) - e(x1(2))1 < 2q,; i = 1, ..., N2

Proof: Assume the contradiction, then there is a sequence

(gN)EL with gN - ell3 < 3% and IgN(xi(1)) - e(xi(1))1 `-rL
for 1 = 1, ..., N1 ; IgN(xi(2)) - e(x1(2))l < 2ft for i = 1, ..., N2.
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I gN - ell* < 3 q implies that I IgN II3 ` 3YL + I ie II 3 ` 11e112 < 00

so that there is a subsequence of the (gN) converging at every point

of E to a g E L satisfying Ig(xi(1)) - e(xi(1))I < VLfor i = 1, ..., N1,

and g(xi(2)) - e(x1(2))I < 2 VL for i = 1, ..., N2. Hence

Ig(x) - e(x) I < 2 rL for X6 DS2' so that Ilg - el I2 < 2Y1,; but gE L,

and g(xi(1)) - e(xi(1))I < Vor i = 1, ..., N1; contradicting (4).

( 6 ) Continue this process: hence if g E L and IIg - ellk <

then the following inequalities cannot hold simultaneously

Ig(xi(S)) - e(xi(s))I < s Ns k - 1.

Ix1 x(1)
(7) Let jan denote the sequence 1

X(l) (2) (2) x(2) (3) (1t)

x x2
x

Vj, ...,
21'L' 3Vl'

.. E. Since ilxkq kh.
and Iin II IIn+1° for any fixed k, II %Ilk n 0, i.e. an n 0
in E.

( 8 ) If g E L then for some k,
I I g - e l l k < oD. Since

l 1 1 k + 1 < 11
Ilk' for k sufficiently large IIg - e l I k < k q. By (6),

at least one of the inequalities Ig(xi(s)) - e(xi(s))l < sri

for i = 1, ..., Ns; s = 1, ..., k - 1; is invalid.. This means

that there is an n, depending on g, such that Ig( n) - e(an)I > 1.

Then for all g E L, sup Ig(an) - e('.n) I > 1.

(9) Set P = - (g(a1),g(a2),...,g(n),...)Igf'L} and
q = (e(a1),e(a2),...,e(an),...). Since g and e are continuous on E,

g(an) n 0 and e(an) -
n
--0, by ( 7 ) . P, q C °, the Banach space

of sequences of complex numbers tending to zero under the norm,
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(lvII = slp Ivii where vc j , v = (vl,v2,... ). P is a linear

subspace of °. 11P - qII = inf sup Ig(ai) - e(ai)I > 1 by (8).
gEP i

Therefore there is a continuous linear functional on 'X° which is 0

on P and 1 at q. This means that there is a sequence of complex

numbers ak with =lakI < oo such-that if g(L then =akg(ak) = 0

and =ake(ak) = 1.

(10) From (7) and =Iakl < 00, we see that the sequence of

partial sums of =akak is Cauchy in E and therefore converges to

an x° E E. Then e(x0) = 1, while g(xo) = 0 for every g E L;

completing the proof.

Lemma 2. (A+B)E is closed.

Proof. Let y
0
E A+B E. If yo = 0 then we know yo E (A+B)E,

so we may as well assume y
0

# 0. Then there is an fot F" such that

f0(y0) = 1, so that f°0 M. Set eo = eo W L: for if

e0e L, then eo = (A"+B)4o, $o E M, so that if *° = fo - $o, then

0, but *°(y°) = lim *o((A+B)xa) = lim
((A',:+B")Io)xa

= 0
a a

implies
0
E L and hence f0 L. Since e0E

E"
but eo L, by Theorem 3

there exists an x06 E such that e0(xo) = 1 and g(xo) = 0 for every

g E L. Let f E F, then f - f (yo)f0( M. Therefore. if e = (A' +B., )f,

then e - f (yo) eo E L, which means that e (xo ) - f (yo )eo (xo ) = 0, or

e(xo) = f(y0), i.e. ((A"+3")f)x0 = f((A+B)xo) = f(yo) for all f`F
Hence yo = (A+B)xo E (A+B)E.
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Theorem . F/(A+B)E is finite dimensional.

Proof. Let K = (A+B)E. By Lemma 2, K is a closed subspace of F.

If F/K is infinite dimensional, then there is a sequence of linearly

independent yi E F, so that o = K, K1= Ko + {y15, K2 = K1 +y2f., ... are

closed subspaces of F satisfying Ki properly contained in "i+1-

For each i, then, there is a pi such that IHKi
- yi+lllpi >

0.

Hence we can find continuous linear functionals fi E Fay with fi(Ki)= 0

and fi(y1+1) = 1. The fi are linearly independent and for every

i, fi(K) 0. Therefore for every x EE, ((A*+B*)fi )x= fi ((A+B)x) = 0,

so that f
i
E N, and IT therefore is infinite dimensional. This

contradicts Theorem 1 and completes the proof.
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