
DYNAMICS OF POLYNOMIAL AUTOMORPHISMS OF C2

ERIC BEDFORD

In these notes we will consider the dynamics of polynomial automorphisms of C2, by
which we mean the study of the behavior of the iterates fn = f ◦ · · · ◦ f as n → ∞. An
interesting example is given by a (generalized) complex Hénon map, which is a polynomial
diffeomorphism of C2 in the form

f(x, y) = (y, p(y)− δx) (0.1)

where p(y) is a polynomial of degree d ≥ 2, and δ ∈ C is a nonzero constant. We note that
if we conjugate f by a scaling (x, y) 7→ (tx, ty) for t 6= 0, then we can make the leading
coefficient in p equal to 1, so that p a monic polynomial. Further, if we conjugate by a
translation (x, y) 7→ (x+ s, y + s), then we can bring p into the form

p(y) = yd + ad−2y
d−2 + · · ·+ a0

We may solve to find

f−1(x, y) =

(
p(x)− y

δ
, x

)
Thus we see that f−1 has the same general form as h in (0.2), except for the small detail
that the the polynomial inside f−1 is not monic. The differential of f is

Df =
(
fx fy

)
=

(
0 1
−δ p′(y)

)
Thus the jacobian determinant is δ, which is a constant.

We note that f ◦n = (p◦(n−1)(y) + · · · , p◦n(y) + · · · ), where ‘· · · ’ denotes terms of lower
order, so the degree of f ◦n is the same as (deg(f))n, which is also the same as (deg(p))n.

Our focus on these maps comes from [9]:

Theorem 0.1 (Friedland-Milnor). If f is a polynomial diffeomorphism of C2, then it is
conjugate to an element of either A, E, or H, where A are the affine (linear) transformations,
E are the elementary transformations, and H consists of maps of the form fN ◦· · ·◦f1, where
each fj has the form (0.1).

The affine and elementary maps have simple dynamics, so in order to study the dynamics
of all polynomial diffeomorphisms of C2, it suffices to study the class H. In fact, for the
results we present, we will see that there is no essential loss if we restrict our study to the
case of a single Hénon map.

We write (xn, yn) := fn(x, y). With this notation, we see that xn+1 = yn, and so the
entire orbit {fn(x, y) : n ∈ Z} is contained already in either of the infinite sequences
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. . . , x−1, x0, x1, . . . or . . . , y−1, y0, y1, . . . . This means that the map f is equivalent to the
infinite recurrence

yn+1 = p(yn)− δyn−1

with (y−1, y0) = (x, y), and (xn, yn) = (yn−1, yn) for n ∈ Z. Thus f acts as a shift on the
sequence (yn)n∈Z. We can also write f in a different form by conjugating with the involution
τ(x, y) = τ−1(x, y) = (y, x):

h(x, y) = τ ◦ f ◦ τ = (p(x)− δy, x) (0.2)

In this case, we could replace the orbit of h by a sequence (xn)n∈Z, and we would have
hn(x, y) = (xn, xn−1). Both forms (0.1) and (0.2) are equivalent, but we choose to use (0.1)
because this form fits more conveniently with the interpretation of the map acting as a shift
on the orbit.

Notes. Other surveys of this subject are given by Smillie [18] and the book of Morosawa,
Nishimura, Taniguchi, and Ueda [14].
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Figure 1. Filtration which shows behavior in the large.

1. Filtration Properties

This section is devoted to describing the general behavior of a Hénon map f “in the large.”
The sets of the filtration are pictured in Figure 1, which shows the partition of C2 into three
sets: V , V + and V −. The arrows show the permissible transition behaviors. If a point is in
V −, its forward orbit must stay in V − and go to infinity as n→∞. Points in V can go from
V can stay in V or go to V −, but they cannot be mapped to V −. Points in V + can move to
V ; or points from V + can be mapped to V −; the dotted circle means that points from V +

might stay in V +, but a point can stay in V + for only finite time before it must leave.

We have seen that f and f−1 have the same general form, and this same filtration applies
also to f−1, except that we need to flip the locations of all the arrows about the diagonal
x = y.

We start with an elementary observation about p(y) = yd + ad−2y
d−2 + · · ·+ a0.

Lemma 1.1. There are R,C <∞ such that if |y| ≥ R, then

|p(y)− yd| ≤ C|y|d−2

Lemma 1.2. Write f(x, y) = (y, z). Then for R sufficiently large and |y| ≥ R, it follows
that either |x| > |y| or |z| > |y|, or both.

Proof. If |x| ≤ |y|, then by Lemmas 1.1 and 1.2, we have

|z| ≥ |p(y)| − |δx| ≥ |yd| − ε|yd−1| − |δy| > |y| �

From this, we conclude:

Corollary 1.3. If R is sufficiently large, then

(1) f(V −) ⊂ V −

(2) f(V − ∪ V ) ⊂ V − ∪ V
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Lemma 1.4. For ε > 0, R = Rε can be chosen sufficiently large that

f(V −) ⊂ V − ∩ {ε|y| > |x|}

and if (x, y) ∈ V −, then |yn| ≥ |y0|/εn.

Proof. We use the notation f(x, y) = (y, z) = (x1, y1) and let C and R be as in Lemmas 1.1
and 1.2. With (x, y) ∈ V − we have

|y1| = |z| ≥ |p(y)| − |δx| ≥ |p(y)| − |δy| ≥ |yd| − C|yd−2| − |δy| > |y|(|y|d−1 − C|y|d−3 − |δ|)

For the first assertion, we increase R if necessary so that Rd−1 − CRd−3 − |δ| > ε−1, and we
have |y1| > |y0|/ε.

Now we iterate the inequality to get |yj+1| ≥ |yj|/ε, which gives the second assertion. �

The “bounded/unbounded” dichotomy will be important, so we define

K± :={q ∈ C2 : {f±n(q) : n ≥ 0} is bounded},
K :=K+ ∩K−, J± := ∂K±, J := J+ ∩ J−

U± :=C2 −K±.

Remark 1.5. Since the coordinates of f are polynomials, it follows that K± and K are poly-
nomially convex. Similarly, any component of the interior of any of these sets is polynomially
convex.

We see in Lemma 3 that forward orbits are unbounded, so we have:

Corollary 1.6. V − ∩K+ = ∅, so K+ ⊂ V ∪ V +, and K ⊂ V . Thus K has finite volume.

Lemma 1.7. We have the following:

(1) V − ⊂ f−1V − ⊂ · · · ,
⋃
f−nV − = U+.

(2) K+ =
⋂
n≥0 f

−n(V ∪ V +).

(3) With Vn := fnV ∩ f−nV , we have V1 ⊃ V2 ⊃ · · · , and
⋂
Vn = K.

(4) W s(K) = K+

Remark 1.8. Part (1) corresponds to the dotted arrow in Figure 1: it says that an orbit can
remain in V + for only finite time. Such an orbit must either enter V −, where it goes to
infinity, or the orbit stays in V for n ≥ n0 and thus belongs to K+.

Proof. By Lemma 2 and the Corollary, we see that V − ⊂ f−1V − ⊂ · · · and
⋃
f−nV − ⊂ U+.

To prove (1), we consider an element (x, y) ∈ U+ and we must show that (xn, yn) ∈ V −

for some n > 0. The only possibility is that (xn, yn) ∈ V + for all n. In this case, we have
xn+1 = yn, and since (xn+1, yn+1) ∈ V +, we have |yn| ≥ |yn+1| for all n ≥ n0. This sequence is
decreasing, the limit limn→∞ |yn| must exist. On the other hand, this means that limn→∞ |xn|
must exist. Now we apply Lemma 3 to f−1. This says that |xn| ≥ C|xn+1| for points in V +,
which means the limit cannot exist.

Parts (2) and (3) are elementary consequences of (1).
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For part (4), we observe that K is compact, so W s(K) ⊂ K+ is immediate. So let (x, y)
be a point of K+. By (1), the forward orbit enters V and remains there and is thus bounded.
We define the forward limit set ω(x, y) to be the accumulation points of the forward orbit
{fn(x, y) : n ≥ 0}. It is elementary that ω(x, y) is also invariant under f−1. This means
that it belongs to K. Now, since all accumulation points belong to the compact set K, it
follows that dist(fn(x, y), K)→ 0 as n→∞. �

We define the Fatou set F of a map f to be the set of points q where the iterates {fn :
n ≥ 0} are locally normal. By this, we mean that for any subsequence fnj , there is a further
subsequence fnjk which either diverges to infinity or converges to a (finite) limit, and in
either case the convergence is to be uniform on a neighborhood of q. (Equivalently, F is
the set where f is Lyapunov stable, if we extend f to the one point compactification of C2.)
Since our map f is invertible, we have the forward Fatou set F+ := F(f) where the forward
iterates are normal (equicontinuous), as well as the backward Fatou set F− := F(f−1).

Theorem 1.9. F± = C2 − J±

Proof. C2 − J+ = U+ ∪ int(K+). If q ∈ U+, then by Lemma 1.7, the iterates of a neighbor-
hood of q tend uniformly to infinity. If q ∈ int(K+), then also by Lemma 1.7, a neighborhood
of q will enter V in finite time and remain inside V for all future time. Thus the forward
iterates are uniformly bounded, and by Montel’s Theorem they are a normal family.

Conversely, if q ∈ J+, then the forward orbit of q is bounded. However, every neighborhood
of q intersects U+ and thus contains points that escape to ∞. Thus the iterates of f cannot
be normal in any neighborhood of q. �

Notes. We follow Friedland and Milnor [9] and [3] in our treatment of the filtration.

2. Interlude: Fixed Points, Parameter Space

2.1. Fixed and periodic points. We say that a point (x, y) is fixed if f(x, y) = (x, y), and
(x, y) is periodic if fn(x, y) = (x, y) for some integer n ≥ 1. The minimal value of n is the
period of (x, y).

Theorem 2.1. The set of fixed points of fN ◦ · · · ◦ f1 is finite, and the sum of multiplicities
is dN · · · d1.

Proof. The condition that (x, y) is a fixed point is that fN ◦ · · · ◦ f1(x, y) = (x, y). During
this proof, we use the notation (x1, y1) = (x, y) and (xj+1, yj+1) = fj(xj, yj). Thus a fixed
point is defined by the system of equations

(xj+1, yj+1) = (yj, pj(yj)− δjxj), 1 ≤ j ≤ N

Since xj+1 = yj, we may drop the xj’s and rewrite our equations: a fixed point corresponds
to a solution (y1, . . . , yN) of the system: yj+1 = pj(yj) − δjyj−1, 1 ≤ j ≤ N . This has the
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form
yd11 + · · · = 0
yd22 + · · · = 0
...

...

ydN
N + · · · = 0

where the · · · represent terms of lower degree. Now a version of the Bezout Theorem says
that this system has d1 · · · dN solutions, counted with multiplicity. �

Corollary 2.2. For each period N , there are finitely many points of period N .

2.2. Quadratic parameter space. The form of the maps in (0.1) and (0.2) are analogous
to the family of one-dimensional polynomials. In the quadratic case, we have the family
pc(z) = z2 + c. If we wish to look at pc in the neighborhood of a fixed point, we may
conjugate by a translation to move the fixed point to the origin. This brings the map to the
form qλ(z) = λz + z2. For the analogue in dimension two we consider the family

(x, y) 7→ (p(x)− δy, x)

which is in the form (0.2). We may re-write this map to center it at a fixed point. The fixed
points of this map are solutions of f(x, y) = (x, y), which yields a point (t, t), with t being a
solution of the equation p(t)− δt = t. Thus there are d fixed points, when counted according
to multiplicity. Let us choose one of these fixed points (x, y) = (t0, t0) and conjugate with
the translation (x, y) 7→ (x − t0, y − t0) so that the origin O = (0, 0) is fixed. This means
that our map has the form

g : (x, y) 7→ (a1x− δy, x) + (q(x), 0)

where q(x) is a monic polynomial which vanishes to second order at the origin. Let λ and µ
denote he eigenvalues of Dg at the origin. Since a1 is the trace of Dg and δ is its determinant,
we can write our map as

(x, y) 7→
(
λ+ µ −λµ

1 0

)(
x
y

)
+

(
q(x)

0

)
(2.1)

This form is convenient if we wish to work at a fixed point and see how the map changes as

we change the multipliers at that fixed point. If we conjugate by

(
λ 1
1 0

)
, then we have the

form

hλ,µ(x) =

(
λ 1
0 µ

)(
x
y

)
+

(
0

q(λx+ y)

)
(2.2)

If λ 6= µ, we may conjugate hλ,µ by the matrix

(
1 −(λ− µ)−1

0 1

)
to obtain

Gλ,µ :

(
x
y

)
7→
(
λx
µy

)
+
q(λx+ µy)

λ− µ

(
1
−1

)
(2.3)

We define N := {(λ, µ) ∈ P : λ = µ} (the maps for which the differential at the origin
is non-diagonalizable) and Rm := {µ = λm} ∪ {λ = µm}, m ≥ 2 (maps with resonance of
order m at the origin). Resonances will be discussed at greater length in Section 5.
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Figure 2. Quadratic parameter locus with resonant curves Rm.

In case d = 2, the map is quadratic, and we have q(x) = x2. The family of quadratic Hénon
maps is parametrized by the multipliers at a fixed point. We may consider the parameter
space P = {(λ, µ) ∈ C2 : λµ 6= 0}. Strictly speaking, this is actually a covering of the
parameter space, since generally there are 4 different choices of (λ, µ) for a given map, since
(λ, µ) and (µ, λ) correspond to the same map, and we have two more possilities (λ′, µ′) by
centering at the other fixed point.

Let us consider the region of parameter space ∆2
λ,µ := {(λ, µ) ∈ P : |λ|, |µ| < 1}. We make

an elementary observation:

Theorem 2.3. If (λ, µ) ∈ ∆2
λ,µ, then (0, 0) is an attracting fixed point, so (0, 0) ∈ int(K+).

In the case of quadratic Hénon maps, this is a 2-dimensional analogue of the main cardioid
of the Mandelbrot set, which corresponds to the parameters c such that pc(z) = z2 + c has
an attracting fixed point. However, the 2-dimensional case is more complicated: ∆2

λ,µ is

rich with bifurcations. For instance, attracting cycles of other periods appear in ∆2
λ,µ. The

closure of
⋃
mRm contains the topological boundary of ∆2

λ,µ. When (λ, µ) ∈ Rm ∩ ∆2
λ,µ,

f is locally conjugate to a resonant normal form (z, w) 7→ (λz + cwm, µw) for either c = 0
(linearizable) or c = 1 (nonlinearizable).

3. Rate of Escape Function; Böttcher coodinate

With the notation (xn, yn) = fn(x, y) we define G+
n (x, y) := d−n log |yn|.

Lemma 3.1. There exists C <∞ such that

|G+
n+1(x, y)−G+

n (x, y)| ≤ C

dn+1|yn|

for all (x, y) ∈ V −
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Proof. For (x, y) ∈ V − we have

G+
n+1 −G+

n =
1

dn+1

(
log |yn+1| − log |yn|d

)
=

1

dn+1
log

∣∣∣∣yn+1

ydn

∣∣∣∣
=

1

dn+1
log

∣∣∣∣ydn − p(yn)− δyn−1

ydn

∣∣∣∣ =
1

dn+1
log

∣∣∣∣1−O(Cyd−2
n

ydn

)∣∣∣∣
=

1

dn+1
O(y−2

n )

where the last expression on the second line comes from Lemma 1.1. This last expression is
uniformly summable on V −, so the sequence G+

n is uniformly convergent on V −. �

Lemma 3.2. The limit G+ := limn→∞G
+
n converges uniformly on V −, as well as on compact

subsets of U+, and on any f−N(V −) we have

G+(x, y) = log |y|+O(|y|−1)

Proof. The estimate of Lemma 3.1 gives uniform convergence on V −. If S ⊂ U+ is compact
then Lemma 1.7, there exists N such that fN(S) ⊂ V −. The limit then is uniform on fN(S),
and thus on S itself. Finally, the O(|y|−1) estimate is a consequence of Lemma 3.1. �

Corollary 3.3. G+ is pluri-harmonic on U+ and satisfies G+ ◦ f = d ·G+.

Theorem 3.4. We extend G+ to C2 by setting it equal to zero on K+. This extension of
G+ is continuous and pluri-subharmonic on C2.

Proof. �

We will use the notation log+ |t| = max(log |t|, 0).

Theorem 3.5. For any norm || · || on C2, we have G+ = limn→∞
1
dn log+ ||fn||, and the limit

is uniform on compact subsets of C2.

Proof. �

Now we define a multiplicative version of G+, which will provide an analogue of the
Böttcher coordinate. We define

q(y) := p(y)− yd, h(x, y) :=
q(y)

yd
− δx

yd
(3.1)

so q has degree d− 2. Thus on V − we have

h(x, y) = O(y−2) +O(xy−d) (3.2)

so we record this as:

Lemma 3.6. |h(x, y)| ≤ C ′|y|−1 for (x, y) ∈ V −.
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We have yn = ydn−1(1 + h(xn−1, yn−1)) so if |h(xn−1, yn−1)| < 1, we have a well-defined
choice of d-th root

y1/d
n := yn−1(1 + h(xn−1, yn−1))1/d

Iterating this, we have a well-defined dn-th root:

y1/dn

n := y0(1 + h(xn−1, yn−1))1/dn−1

(1 + h(xn−2, yn−2))1/dn−2 · · · (1 + h(x0, y0))

Theorem 3.7. The infinite product

ϕ+(x, y) := y
∞∏
j=0

(1 + h(xj, yj)))
1/dj+1

converges uniformly on V − and defines a holomorphic function which satisfies ϕ+◦f = (ϕ+)d.
Further ϕ+(x, y) = y(1 +O(1/y)) and G+ = log |ϕ+| on V −.

Proof. By Lemma 3.6, we may choose R sufficiently large that |h| < 1/2 on V −. We note
that for |ζ| < 1/2, |(1 + ζ)1/dn − 1| < c/dn, so the infinite product converges uniformly on
V −, and the limit is an analytic function. �

We conclude from this Theorem that in the variable y, ϕ+ has a simple pole at infinity,
and so it has a Laurent expansion on V −

ϕ+(x, y) = y +
∞∑
n=0

cn(x)

yn
(3.3)

where each cn(x) is an entire holomorphic function. Let us look more carefully at the

coefficients in (3.3). We have xn = yd
n−1

+ · · · and yn = yd
n

+ · · · , where ‘· · · ’ indicates
terms of higher degree. If d = 2, we have

h(x0, y0) = h(x, y) =
a0 − δx
y2

+
d−3∑
j=0

aj
yd−j

(3.4)

and if d > 2,

h(x0, y0) =
ad−2

y2
+

d−3∑
j=0

aj
yd−j

− δx

yd
(3.5)

If n ≥ 1, we have

h(xn, yn) =
∑
j≥2·dn

Aj(x)

yj
+

∑
j≥(d2−1)dn−1

Bj(x)

yj
(3.6)

From this we obtain:

Theorem 3.8. In the expansion (3.3), the coefficients cn(x) are polynomial in x. The
coefficient c0(x) = 0 in (3.3) vanishes identically. If d = 2, then c1(x) = (a0 − δx)/2, and if
d > 2, then c1(x) = ad−2/2 is constant.
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Figure 3. Double trapping region.

Proof. Consider the factors (1 + h(xn, yn))1/dn+1
in the product defining ϕ+. From (3.6) we

see that the nth term is a Laurent series of the form 1 +O(y−Dn) where the degree Dn tends
to infinity as n → ∞. If we fix a degree N , then there are only finitely many terms in the
product which can produce something of the form a(x)y−N . Since the numerators in (3.6)
are polynomials, the coefficient cN(x) must be a polynomial.

We have seen that the denominators in (3.6) are yj with j ≥ 2, so we see that there is no
term y−1, so there can be no constant term in ϕ+. The coefficient c1 are given by taking the
coefficient of y−2 in the root (1 + h(x0, y0))1/d, so we have c1 from (3.4) and (3.5). �

4. Structure of U+ and of U+ ∩ U−

Let τ denote the curve defined by θ 7→ (0, Re2iπθ for 0 ≤ θ ≤ 1. We let τ ∈ H1(U+; Z)
denote its homology class.

Proposition 4.1. {τ} 6= 0 in H1(U+; Z).

Proof. We note first that ∂G+ is a d-closed 1-form on U+ since d = ∂ + ∂̄, and G+ is
pluriharmonic. Further, on V −, we have 2G+ = log(ϕ+ϕ+), so 2∂G+ = ∂ϕ+/ϕ+. By
Theorem 3.7, ϕ+ ∼ y for y large, so∫

τ

∂G+ =
1

2

∫
τ

∂ϕ+

ϕ+
= πi

We conclude that τ defines a nonzero element of H1(U+; Z). �

Theorem 4.2. H1(U+; Z) = Z[1
d
]. Specifically, if γ ∈ H1(U+; Z), then γ ∼ md−nτ for some

m,n ∈ Z.

Proof. Topologically, V − is equivalent to a disk cross and annulus, and the homology of V −

is generated by τ . Thus if σ is a closed curve inside V −, then {σ} ∼ m{τ} for some m ∈ Z.
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Now if γ is a cycle representing an element of H1(U+; Z), then it is compactly supported, so
by Lemma 1.7, there exists n ∈ Z such that fn∗ (γ) is supported in V −. Thus fn∗ (γ) ∼ mτ for
some m ∈ Z. Since f has the form (0.1), we have f∗τ ∼ d · τ . Finally, since f is invertible,
f−1 maps H1(U+; Z) to itself, and we have γ ∼ f−n∗ (mτ) ∼ d−nmτ . �

Recall V = {|x|, |y| ≤ R}, and for µ > 0 define Vµ := {|y| > µ|x|}. For ε > 0, we set

Rε = Vε −
(
V ∪ V −1/ε

)
Making small modifications on the previous sections we have:

Proposition 4.3. For ε > 0, R can be made sufficiently large that ϕ+ is defined on V −ε −V ,
and f(Rε) ⊂ V −1/ε − V .

For s ∈ C, we define
Ds := {q ∈ V −ε : ϕ+(q) = s}

Theorem 4.4. For ε > 0, R may be chosen sufficiently large that for |s| ≥ R, there is a
domain Ωs ⊂ C such that Ds = {y = ψs(x) : x ∈ Ωs} is a graph of a holomorphic function
ψs on Ω. If d > 2, then Ds is approximately the horizontal disk {|x| < |s|/ε}× {y = s}. For
|s| large, Vε cuts the parabola {2y2 − 2sy + (a0 − δx)/2 = 0} into two disks D′ and D′′. Let
D′ denote the disk that comes close to the point (0, s). If d = 2, Ds, is approximately D′.

Proof. By Theorem 3.7, we have ∂ϕ+/∂y ∼ 1 for large y. If d > 2, then by Theorem 3.8,
we have ∂ϕ+∂x = O(y−2). In this case it follows that for y large, Ds is approximately a flat
disk, and Ωs is approximately {|x| < |s|/ε}.

If d = 2, then by Theorem 3.8, we have ϕ+ = y+ (a0− δx)/(2y) +O(y−2) on Vε. Thus the
level set {ϕ+ = s}∩Vε is approximately contained in the parabola y2−sy+(a0−δx)/2 = 0. �

Since G+ is pluriharmonic on U+, ω+ := ∂G+ is a holomorphic 1-form there. Thus
ω+ generates a foliation G+ on U+, and the leaves of G+ are Riemann surfaces. Since
G+ = log |ϕ+| on V −, it follows that if L is a leaf of G+, then the components of the
intersection L ∩ V − are just sets of the form Ds.

Corollary 4.5. ϕ+ cannot be extended to be continuous on V − ∪ f−1(V −).

Theorem 4.6. Let L denote a leaf of the foliation G+. Then L is dense in the set {G+ = c},
and L is uniformized by C.

Now let us discuss the set U+ ∩U−, which consists of the points that escape to infinity in
both forward and backward time.

Lemma 4.7. The image of ι+∗ : H1(U+ ∩ U−; Z) → H1(U+; Z) is surjective, and thus
H1(U+ ∩ U−; Z) is not a finitely generated additive group.

Applying the previous discussion to f−1, we have a foliation G− on U−. Thus there
are two foliations, G+ and G− on the intersection U+ ∩ U−, and by construction, we have
Rε ⊂ U+ ∩U−. Since ϕ+ and ϕ− are both defined on Rε and ϕ+ ∼ y and ϕ− ∼ x there, we
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see that the foliations G+ and G− are transverse at all points of Rε. We define the critical
locus

C := {∂G+ ∧ ∂G− = 0} = {ω+ ∧ ω− = 0}
We note that there is a holomorphic function h(x, y) on U+∩U− such that ω+∧ω− = h dx∧dy,
so C = {h = 0} is defined as the zero set of a single analytic function.

Theorem 4.8. C 6= ∅

Theorem 4.9. C ∩ J− ∩ U+ 6= ∅, and C ∩ J+ ∩ U− 6= ∅.

Notes. The foliation G+, as well as the approach of studying G+ as a fibration, comes
from Hubbard [11]. The topology and biholomorphic type of U+ are studied Hubbard and
Oberste-Vorth in [12]. The results about C are taken from [5].

5. Interlude: Linearization

We say that f can be linearized at a fixed point O if there is a linear map L : C2
lin → C2

lin

and a local biholomorphism Φ : C2
dyn → C2

lin such that Φ ◦L = f ◦Φ. We start by discussing
formal linearization, by which we mean a formal power series

Φ̂ =
∑
m,n≥0

Φ̂(m,n)xmyn

such that Φ̂ ◦ L = f ◦ Φ̂ holds in the sense of formal power series. A formal power series is
not assumed to converge, but all the power series coefficients in the composition f ◦ Φ̂ are
well defined, and are equal to the power series coefficients of Φ̂ ◦ L.

A resonance between numbers λ and µ is a relation of the form λ = λmµn or µ = λmµn

where m and n nonnegative integers with m + n ≥ 2. We suppose that f = L + f2 + O3,
where L(x, y) = (λx, µy), f2 =

∑
m,n≥0 f(m,n)xmyn is homogeneous of degree 2, and O3

represents terms of degree 3 and higher. Let us find

Φ2 = id+ (ϕ1
2, ϕ

2
2) = (x, y) +

∑
m+n=2

(ϕ1
2(m,n), ϕ2

2(m,n))xmyn

such that Φ2 ◦ L = F ◦ Φ +O3. This gives

L+ ϕ2(λx, µy) = L+ (λϕ1
2, µϕ

2
2) + f2(x, y) +O3. (5.1)

Solving for the coefficient of xmyn inside (5.1) with m+ n = 2, we find

ϕ1
2(m,n)(λmµn − λ) = f 1

2 , ϕ2
2(m,n)(λmµn − µ) = f 2

2 , (5.2)

which we may solve if there is no resonance.

Now we define F3 := Φ−1
2 ◦ f ◦ Φ2 = L + f3 + O4. Here f3 is homogeneous of degree 3,

but it is only defined after we have found Φ2. Now we solve for Φ3 = id+ ϕ3 by finding the
coefficients of xmyn with m+ n = 3. This leads to

ϕ1
3(m,n)(λmµn − λ) = f 1

3 , ϕ2
3(m,n)(λmµn − µ) = f 2

3 , (5.3)
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which we may solve if there is no resonance. We continue in this fashion and find successively
Φ2, Φ3, . . . , and at each stage we have

Fn+1 := Φ−1
n ◦ · · · ◦ Φ−1

2 ◦ f ◦ Φ2 ◦ · · · ◦ Φn = L+ fn+1 +On+2

Theorem 5.1. If the pair (λ, µ) is non-resonant, then there is a formal mapping Φ̂ :=

limn→∞Φ2 ◦ · · · ◦ Φn such that Φ̂ ◦ L = f ◦ Φ̂ holds in the sense of formal power series.

Proof. We have found Φn, and Φn = id+On. It follows that up to degree n, the coefficients
of Φ2 ◦ · · · ◦ Φn and Φ2 ◦ · · · ◦ Φn ◦ Φn+1 are the same. All the coefficients of Φ2 ◦ · · · ◦ Φn

are eventually constant as n → ∞. Thus the limit defining Φ̂ exists and gives the desired
formal conjugacy. �

When (λ, µ) ∈ Rm ∩ ∆2
λ,µ, f is locally conjugate to a resonant normal form (z, w) 7→

(z + cwm, w) for either c = 0 (linearizable) or c = 1 (nonlinearizable).

Theorem 5.2. If (λ, µ) ∈ ∆2
λ,µ ∩ R2, then the map hλ,µ in (2.2) cannot be linearized at

(0, 0).

For generic (λ, µ) ∈ Rm, hλ,µ can not be linearized, which is to say that generically a res-
onance produces an obstruction to linearization. But does it always produce an obstruction
in the case of polynomial automorphisms? When m ≥ 3 we do not know whether there is a
value of (λ, µ) ∈ Rm for which it is linearizable.

Question 5.1. Suppose that f = fN ◦· · ·◦f1 is real, in the sense that it preserves R2. Suppose,
too, that it preserves volume, so we may assume δ = 1. If O ∈ R2 is a real fixed point, then
the multipliers are λ and µ = λ−1. Then there are infinitely many resonances λmµn = λ,
with m = n+ 1 > 0. It it never the case that f can be linearized at O?

Up to this point we have discussed the algebraic (formal) aspect of linearization. Once
we have a formal series which gives a formal linearization, we need to address the question
of convergence. In solving for Φ2 and Φ3, we needed to divide by the denominators like
(λmµn − λ) in (5.2) and (5.3). Since these quantities may be small, we encounter a “small
divisor” problem. One well known condition is (5.4), which gives a lower bound on the size
of these divisors (non-resonances):

min (|λmµn − λ|, |λmµn − µ|) ≥ c(m+ n)−N (5.4)

for some c > 0 and N <∞ and all m,n ≥ 0, m + n ≥ 2. There are more general sufficient
conditions, but (5.4) is sufficient for our purposes here. For instance, (5.4) clearly holds if
0 < |λ|, |µ| < 1. We also note (reference???):

(1) If |µ| < 1, the set of λ, for which (5.4) holds is full measure in {|λ| = 1},
(2) If p, q ≥ 1 are integers, then λ = αp, µ = αq satisfies (5.4) for almost every |α| = 1,
(3) The set of λ, µ for which (5.4) holds is full measure in {|λ| = |µ| = 1}.

One of the results of Small Divisor Theory is that condition (5.4) is sufficient to guarantee
convergence of the formal linearizing coordinate Φ (see Pöschel [17]):
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Theorem 5.3. Let f : U → C2 be a holomorphic map of a neighborhood U of O = (0, 0) ∈
C2. If f(O) = O is a fixed point, and if the multipliers λ, µ of DOf satisfy (5.4), then the
formal linearization Φ is convergent in a neighborhood of O.

6. Fatou Components: Conservative Maps

We say that f is conservative if it preserves volume, which is equivalent to the condition
that |δ| = 1 for mappings of the form (0.1) or (0.2) . We know that U+ is a component of
the Fatou set, and by Theorem 1.9 all other components of the Fatou set must belong to
int(K+). Here we discuss the possibilities.

Theorem 6.1. If f is conservative, then Vol(K± −K) = 0. Thus

int(K+) = int(K−) = int(K)

Proof. By Lemma 1.7, f−1(K+ ∩ V ) ⊃ K+ ∩ V . Since f preserves volume, it follows that
f−1(K+ ∩ V )− (K+ ∩ V ) must have zero volume. Further, by Lemma 1.7, we conclude that
K+ − V has zero volume. Finally, by Lemma 1.7, we conclude that the volume of K+ −K
is also zero. This is the first assertion of the Theorem. Since a set of measure zero can have
no interior, the second assertion follows. �

Corollary 6.2. If f is conservative, then every Fatou component is periodic. That is,
conservative maps have no wandering Fatou components.

Proof. Let Ω denote a component of the interior of K. By the invariance of the interior of
K and the invertibility of f , we know that either Ω and fnΩ are disjoint, or they coincide.
Since K ⊂ V , it has finite volume. Thus the sets Ω, f(Ω), . . . , fn(Ω) can remain disjoint
for at most finitely many n, and then we have Ω = fn+1(Ω). �

Question 6.1. It would be interesting to gain some basic topological information about Fatou
components Ω for a conservative map f . Can a Fatou component of f be homeomorphic to
a cell of real dimension 4? Can it be homeomorphic to something else?

Theorem 6.3. Let f be conservative, and let Ω be a bounded Fatou component with f(Ω) =

Ω. O ∈ Ω be a fixed point, and let A := DOf . Then we may diagonalize A ∼
(
λ 0
0 µ

)
with

|λ| = |µ| = 1. Further, there is a linear map Ψ : Ω → C2
lin such that Ψ(O) = (0, 0) ∈ C2

lin,
and Ψ ◦ f = A ◦Ψ.

Proof. Since Ω ⊂ V , it follows that the iterates fn|Ω are bounded by R. By Cauchy’s
estimates, DO(fn) = (DOf)n is also bounded, independently of n ∈ Z. It follows that the
eigenvalues λ and µ both must have modulus one. If λ 6= µ, then A is diagonalizable. If
λ = µ, and A is non-diagonalizable, then it must have a nontrivial Jordan canonical form.
But in this case, the powers An are not bounded. Thus A is diagonalizable in every case.

If A is diagonal, the maps A−nfn|Ω are bounded by R. Thus the averages

Φn :=
1

n+ 1

(
id + A−1 ◦ f + · · ·+ A−n ◦ fn

)
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are also bounded by R. Thus Φn is a normal family, and there are convergent subsequences
Φnj

. We let Ψ denote any limit of a sequence Φnj
. We see that for any n, we have

A−1Φn ◦ f − Φn =
1

n+ 1

(
A−n−1 ◦ fn+1 − id

)
so the right hand side tends to zero as n→∞. This shows that A−1Ψ ◦ f = Ψ. �

Corollary 6.4. In Theorem 6.3, neither λ nor µ can be a root of unity.

Proof. If λN = 1, then AN will be the identity on the x-axis {y = 0}. Thus fN will have a
curve of fixed points, which is not possible by Theorem 2.1. �

Question 6.2. Let f be conservative. Does every Fatou component contain a fixed point? In
other words, does every Fatou component arise from linearizing a fixed point, as in Theorem
6.3?

For an invariant Fatou component Ω, we define G = G(Ω) to be the set of all normal
limits h := limj→∞ f

nj . A priori, each limit gives a holomorphic map h : Ω → Ω ⊂ C2.
However, h must preserve volume, so it is an open map h : Ω→ Ω, which by a Theorem of
H. Cartan must be an automorphism (see Narasimhan [15] for Theorems of H. Cartan). Since
G is the set of limits of maps of a bounded set, it is compact subset of the automorphism
group Aut(Ω). Another Theorem of H. Cartan says that Aut(Ω) is a Lie group. Since G is
generated by the iterates of a single map, it is Abelian, so we have:

Theorem 6.5. Let f be conservative, and let Ω be an invariant Fatou component. Then G
is a compact, Abelian Lie group.

We let G0 denote the connected component of the identity. Since this is a Lie group, it is
equivalent to a torus Tρ for some nonnegative integer ρ. We say that ρ is the rank of Ω.

Theorem 6.6. The rank of Ω is either one or two.

Proof. G contains all the iterates fn|Ω, so it is infinite. Since it is also compact, we cannot
have ρ = 0. Now consider the action of G on Ω. By Theorem 2.1, the fixed points are discrete,
so a generic orbit will have real dimension ρ. Now suppose that ρ = 3. We may choose q ∈ Ω
so that the orbit M := T3 · q is a smooth 3-manifold at q. Let Hq := Tq(M)∩ iTq(M) be the
(unique) C-linear subspace of the tangent space Tq(M). Let L ⊂ T3 be the 2-dimensional
linear subspace (not necessarily closed in T3) such that the tangent to the orbit L · q at q
is Hq. It follows that the tangent space to L · q is complex at each point. Thus L · q is a
Riemann surface. If we pull back the coordinate functions x and y from C2 to L, they are
holomorphic and bounded on L. However, L is equivalent to C, which is a contradiction. It
is clear that we cannot have ρ = 4. �

Global linear model: (p, q)-action. Let us now discuss how linearization gives us the
existence of conservative maps such that K has nonempty interior. We may choose a pair
of multipliers λ, µ with |λ| = |µ| = 1 and a polynomial q(x) which vanishes to order at least
2 at the origin. Let Gλ,µ be as in (2.3). If we choose the pair λ, µ to satisfy (5.4), then by
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Theorem 5.3 it follows that Gλ,µ can be linearized in a neighborhood of the origin. Since the

linear map L =

(
λ 0
0 µ

)
is unitary, it follows that K contains a neighborhood of the origin.

For instance, we may choose λ = αp and µ = αq, p, q ≥ 1, satisfying (5.4) for some |α| = 1.
In this case, L induces the T1-action, where T1 acts on a point (z, w) ∈ C2

lin according to:
θ 7→ (eipθz, eiqθw). Thus the L-orbits are closed curves, and the varieties zq = cwp are
L-invariant. The Fatou component Ω containing O as an example of a rank 1 rotation
domain.

Question 6.3. Suppose that Ω is a rank 1 rotation domain, not necessarily having a fixed
point. Is the G-action on Ω conjugate to a (p, q)-action?

Question 6.4. Is it possible for a conservative map to induce a (p, q)-action as above, but
with p > 0 > q? The invariant varieties for L are now of the form z|q|wp = c. We note that if
such a component Ω has a fixed point, then the multipliers λ, µ at the fixed point will have
a resonance. (This is because we may assume that p and |q| are relatively prime, so there
will exist positive integers m,n such mp + nq = 1, and so λmµn = α.) If there is no fixed
point, it is not clear that this resonance causes a problem.

Global linear model: T2-action. Another possibility is that we choose λ, µ to satisfy (5.4),
and in addition we can choose λ and µ to be multiplicatively independent, which means that
λmµn 6= 1 for all m,n ∈ Z with (m,n) 6= (0, 0). In this case, L induces a T2-action on C2

lin

which acts on a point (z1, z2) ∈ C2
lin as

T2 3 (θ1, θ2) 7→ (eiθ1z1, e
iθ2z2). (6.1)

The generic orbit of this point is the 2-torus

Tc1,c2 = {|z1| = c1, |z2| = c2} ⊂ C2
lin.

Even if there is no fixed point in Ω, we can think of the G-action on Ω as an abstract
2-torus action, and we refer to (6.1) as the linear action. It was shown in [1] that such an
abstract torus action is equivariantly equivalent to a Reinhardt action (6.1). Thus we may
identify the Fatou component Ω with a Reinhardt domain Ω0 ⊂ C2

lin.

A Reinhardt domain Ω0 ⊂ C2
lin is uniquely defined by its real profile ω0 = Ω0 ∩ R2

+. We
define the logarithmic image log(ω0) := {(ξ1, ξ2) : (eξ1 , eξ2) ∈ ω0}. It is clear that Ω must be
polynomially convex, and thus log(ω0) is a convex subset of R2.

Question 6.5. What is the biholomorphic type of Ω?

(1) More specifically, can Ω be biholomorphically equivalent to something familiar such
as the unit ball B2?

(2) Or the bidisk ∆2?
(3) Or more generally, can you say anything about the convex set log(ω0)?

Question 6.6. Let f be conservative. What are the possibilities for the number of components
of int(K)?

(1) Can int(K) be connected? Equivalently, can there be just one Fatou component?
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(2) Can int(K) have infinitely many components?

Question 6.7. Can there be a Fatou component Ω such that Ω = K? Is it possible for int(K)
to be dense in K?

Notes. Theorem 6.3 is taken from Herman [10]. Many of the other results in this section
come from [4].

7. Fatou Components: Dissipative Maps

If a map f is not conservative, then |δ| 6= 1. Here we discuss the components of int(K+) in
the non-conservative case. Because of the following Proposition, we will restrict our attention
to the dissipative case: |δ| < 1.

Proposition 7.1. If |δ| > 1, then K+ has zero volume, and thus int(K+) = ∅.

Proof. Let V be the central bidisk in the filtration. By the filtration properties, K+ ∩ V ⊂
f−1(K+ ∩ V ), and K+ =

⋃
f−n(K+ ∩ V ). We have V ol(K+ ∩ V ) <∞, and

V ol(f−1(K+ ∩ V )) = |δ|−1|V ol(K+ ∩ V ),

so we conclude that V ol(K+) = 0. �

In contrast to the conservative case, it is not known whether Fatou components can be
wandering for dissipative maps:

Question 7.1. Can a dissipative Hénon map have a wandering Fatou component?

Let us consider a component Ω of int(K+) which satisfies Ω = f(Ω). Given a dissipative
map f , we define the set of all normal (uniform on compacts) limits of sequences of iterates:

H = H(Ω) := {all normal limits h = lim
j→∞

fnj : Ω→ Ω ⊂ C2}

If the limit h = limj→∞ f
nj exists, then so does the limit limj→∞ f

nj+1, and we have

h ◦ f = lim
j→∞

fnj ◦ f = lim
j→∞

f ◦ fnj = f ◦ h

on Ω. It follows that if Σ := f(Ω), then f(Σ) = Σ is invariant. We define the rank of
h ∈ H to be the maximum rank of Dzh for z ∈ Ω. Since |δ| < 1, we see that the Jacobian
determinant of h is 0. Thus the rank of each h ∈ H is either 0 or 1. If the rank is 0, then
Σ = h(Ω) = z0 is a fixed point. We will say that Ω has rank 0 if every h ∈ H(Ω) has rank 0.
We start by discussing the case of rank 0.

Proposition 7.2. Suppose that every h ∈ H has rank 0. Then there is a fixed point z0 ∈ Ω
such that limn→∞ f

n(z) = z0 for all z ∈ Ω. In other words, if Ω has rank 0, then it is
attracted to a unique fixed point z0 ∈ Ω.
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Proof. We have seen that if h0 ∈ H has rank 0, then h0(Ω) = z0 is a fixed point. We will
show that the constant function h0 is the only function in H. Suppose there is some other
h1 ∈ H with h1(Ω) = z1. The number of fixed points of f is finite. Let us write them
{z0, . . . , zN}. We may find neighborhoods Vj of zj such that (Vj ∪ f(Vj)) ∩ Vk = ∅ for all
1 ≤ j, k ≤ N . Since h0 and h1 are both in H, there are sequences {nj} and {mj}, both
tending to infinity, and with nj < mj < nj+1 such that for some fixed w′ ∈ Ω, we have
fnj (w′) ∈ V0 and fmj (w′) ∈ V1 ∪ · · · ∪ VN . Let pj denote the first value of nj < p such that
fp(w′) /∈ (V0∪· · ·∪VN). Since {fpj} is a normal family, we may extract a subsequence which

converges to a mapping ĥ ∈ H with ĥ(w′) ∈ Ω −
⋃N
j=0 Vj. Thus ĥ(Ω) is not a fixed point,

which is a contradiction. �

Now let z0 ∈ Ω be the fixed point of Proposition 7.2, and let λ and µ be the eigenvalues
of Dz0f . Since λµ = δ has modulus < 1, we may assume that |µ| < 1. If |λ| > 1, then z0

is a saddle point, and W s(z0) is a manifold of real dimension 2. This is not possible, since
by Proposition 7.2, the whole open set Ω is contained in W s(z0). Thus |λ| ≤ 1. When the
multipliers of a fixed point z0 are |λ|, |µ| < 1, z0 is attracting. If λ is a root of unity and
|µ| < 1, we say that z0 is semi-parabolic/semi-attracting. A semi-attracting fixed point has an
interesting structure, which will be described in Section 16. By the following two Theorems,
we see that the fixed point of a rank 0 domain is either attracting or semi-attracting.

Theorem 7.3. Suppose that Ω has rank zero, and let z0 be its fixed point as in Proposi-
tion 7.2. If z0 ∈ Ω, then z0 is an attracting fixed point, and Ω is its basin of attraction.

Proof. We know that the multipliers of Dz0f are |λ| = 1 and |µ| < 1. If z0 ∈ Ω, then the
iterates {fn} are converge normally to the constant z0 in a neighborhood of z0. Thus the
derivative of the iterates Dz0f

n also converges to Dz0h = 0. Thus we must have |λ| < 1.
Thus z0 is an attracting fixed point, and by Proposition 7.2, Ω is contained in the basin of
attraction of z0. Since Ω is also a component of the interior of K+, it follows that Ω must
contain the whole basin. �

Theorem 7.4. Suppose that Ω has rank zero, and let z0 be its fixed point as in Proposi-
tion 7.2. If z0 ∈ ∂Ω, then z0 is semi-parabolic/semi-attracting, and Ω is its basin.

Proof. �

Let R ⊂ C be either the disk {|ζ| < 1} or the annulus {r < |ζ| < R}. If there is an

imbedding χ : R → R̂ := χ(R) ⊂ C2 such that f(χ(ζ)) = χ(eiκπζ), then we will say that

R̂ is a rotational disk/annulus. We will always assume that a rotational disk/annulus is
maximal: there is no strictly larger rotational disk/annulus which contains it. Since the
fixed points of f are discrete, we see that we must have κ /∈ Q, which means that f induces
an irrational rotation on R̂. It is clear from the Section on Linearization that for suitable
|λ| = 1 and any 0 < |µ| < 1, we can linearize fixed points with multipliers λ, µ and obtain
a rotational disk. However, a rotational annulus has no fixed point, so we cannot simply
construct one by linearizing a fixed point. This raises the question:

Question 7.2. Can a Hénon map f have a rotational annulus?
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The following Theorem shows that a rotational disk/annulus is contained in a Fatou
component where f can be globally linearized.

Theorem 7.5. If R̂ be rotational, then there is a Fatou component Ω such that χ : R →
R̂ ⊂ Ω is a proper imbedding. Further, there is a biholomorphic map Φ : R× C → Ω such
that Φ ◦ f = L ◦ Φ, where L(z, w) = (eiκπz, δe−iκπw), and Φ(ζ, 0) = χ(ζ).

Proof. �

Let Ω be a component of int(K+) such that f(Ω) = Ω. We say that Ω is recurrent if there
is a point z′ ∈ Ω such that the sequence fn(z′) does not converge to the boundary. In other
words, there is a point z′ ∈ Ω, and there is a subsequence fnj (z′) which converges to a point
ẑ ∈ Ω. The condition that Ω is not recurrent is equivalent to the statement that h(Ω) ⊂ ∂Ω
for all h ∈ H.

Theorem 7.6. Let Ω be a periodic Fatou component which is recurrent. Then Ω is the basin
of either an attracting fixed point or a rotational disk or annulus.

Proof. �

A point z is recurrent if it is contained in its ω-limit set, which means that there is a
sequence fnj (z)→ z as nj →∞.

Corollary 7.7. A periodic Fatou component is recurrent if and only if it contains a recurrent
point.

Theorem 7.5 classifies the recurrent Fatou components, although it leaves open the exis-
tence/nonexistence or rotational annuli. For the non-recurrent case, we ask:

Question 7.3. Suppose that Ω is a periodic Fatou component which is not recurrent. Is Ω
necessarily a semi-parabolic basin? Lyubich and Peters [13] have shown that the answer to
this question is “yes” if f has sufficient dissipation, i.e., if |δ| < 1/d2.

8. Interlude: Pictures

Computer graphics have been effective in showing Julia sets for polynomial and rational
maps of C. Here we describe the unstable slice pictures for complex Hénon maps. These
were introduced by Hubbard in the 1980s and have proved to be very useful, especially in
the study of dissipative maps. In addition, their validity has been established by subsequent
theoretical work.

Let p be a saddle point. The unstable slice is simply the intersection W u(p)∩K+. Since p
is a saddle point of some period N , the multipliers of Dpf

N are |µ| < 1 < |λ|. Without loss
of generality, we assume N = 1. The unstable manifold is uniformized by an entire function

ξ : C→ W u(p) ⊂ J− ⊂ C2
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Figure 4. Unstable slices W u(p) ∩ K+ for the map f(x, y) = (x2 + c − δy, x),
c = −1.1 and δ = .15. The black region is W u(p) ∩K+, and the white/gray region
corresponds to the binary digits in the argument of ϕ+. Here the points p are taken
to be the two fixed points of f . On the left, the multiplier is ∼ 3.49931; on the right
it is ∼ −1.10663.

with the property that ξ(0) = p and ξ(λζ) = f(ξ(ζ)) for all ζ ∈ C. Let Eu be the λ-
eigenvector for Dpf , so the line ζ 7→ p+ ζEu is tangent to W u(p) at p. The uniformization
may be computed as

ξ(ζ) := lim
n→∞

fn(p+ λnζEu)

In order to show K+ ∩W u(p), we plot ξ−1(K+) inside C. This may be done by plotting the
level sets of G+ ∼ d−k log |yk|, where k is chosen so that yk is sufficiently large. At this value
of k, we say that the orbit has escaped. We may color the level sets, as in Figures 4 and 6, in
white/gray, depending on whether yk ∈ C is in the upper/lower half plane when it escapes.
When ϕ+ exists, its modulus is |ϕ+| = eG

+
, and the white/gray coloring corresponds to the

digits 0/1 in the kth place of the binary expansion of the argument of ϕ+. While we are
showing the sets on which the argument of ϕ+ is constant and equal to 2−kπ, the level sets
of G+ are implicitly visible.

We will illustrate unstable slices with the map f(x, y) = (x2 + c − δy, x), c = −1.1 and
δ = .15. This map has an attracting 2-cycle. The points of K+ ∩W u(p) are colored black,
and U+∩W u(p) are white/gray, and the fixed point ζ = 0 is a small black dot in the center.
By construction, the unstable slice picture shows a self-similarity, since it is invariant under
the scaling ζ 7→ λζ. Since the multiplier on the right hand of Figure 4 is negative, the two
large black regions, which are in the basin of the attracting 2-cycle, are interchanged. The
multiplier for the left hand image in Figure 4 is much larger than the multiplier for the right
hand image, and this explains why the level sets of G+ on the right hand image are much
narrower.
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Figure 5. This is a highly stylized representation of how the stable manifolds of
saddle points connect visual features (“tip points” and “cut points” in this case)
within a given unstable slice, as well as the connections between different slices.
By [2], the transverse intersections of W u(pj) and W s(pk), j, k = 1, 2 are dense in
the boundary of the unstable slice W u(pj) ∩K+.

In fact, there are infinitely many saddle points, so there are infinitely many unstable slice
pictures. Figure 4 gives the unstable slice pictures based at the two fixed (saddle) points
p1 and p2. In the left hand image, “shape” of the slice W u(p1) ∩ K+ at p1 is like a “tip”,
whereas p2 is a “cut point” for the right hand image. However, in some sense, both of these
unstable slice pictures contain the same information. The unstable slices in Figure 4 are
connected by the stable manifolds W s(p1) and W s(p2), as is shown schematically in Figure
5. Namely, by [2] there are points r ∈ W s(p1)∩W u(p2)∩K+ such that W s(p1) and W u(p2)
intersect transversally at r. Let r ∈ D ⊂ W u(p2) be a small disk. As we map D forward, the
Lambda Lemma says that fn(D) approaches W u(p1) in C1 topology. Let λ1 be the unstable
multiplier of Dp1f . It follows from the Lambda Lemma that the local dilations of D ∩K+

by factor λn1 , centered at r, will converge to the unstable slice picture W u(p1)∩K+. By [2],
such points r are dense in ∂(W u(p2)∩K+), so the left hand side image appears at infinitely
small scale in a dense subset of the boundary of the right hand image.

By looking at Figure 4, we can “see” that “tip” points in the shape of the slice through
p1 are dense in the boundaries of both images. Similarly we see the set of “cut” points
appearing densely. Two more unstable slice pictures are given in Figure 6. These do not
have such simply described shapes as “tip” or “cut” point, but these are shapes that appear
densely at infinitely small scale. This is discussed with more rigor in [7].

A lot of information, for instance connectivity, can be obtained from unstable slices. In
the following result from [6], we uniformize ξ : C → W u(p) and consider the preimage
ξ−1(W u(p)∩K+) in C. The statement “W u(p)∩K+ is connected” means that this preimage
is connected if we take its closure by adding the point at infinity to C.:

Theorem 8.1. Suppose that |δ| < 1. The following are equivalent:
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Figure 6. More unstable slices for the map of Figure 4. Image on the left: the
saddle point has period 3 and multiplier ∼ 2.44918 + 4.43005i. Since this multiplier
is non-real, we see that the slice W u(p)∩K+ spirals towards p. Image on the right:
the saddle point has period 4 and multiplier ∼ 6.26274.

(1) J is connected.
(2) K is connected.
(3) W u(p) ∩K+ is connected for some saddle point p.
(4) W u(p) ∩K+ is connected for every saddle point p.

Of course, we can also consider the stable slices W s(p) ∩K−. It seems that these sets are
always totally disconnected in the dissipative case, so we ask:

Question 8.1. Suppose that |δ| < 1. Is the stable slice W s(p) ∩ K− = W s(p) ∩ J− always
totally disconnected? Dujardin and Lyubich [8] have showed that this is indeed the case if
f is sufficiently dissipative: if |δ| < d−2.

Notes. The unstable slices were introduced and used extensively by Hubbard in the 1980s.
The Thesis of R. Oliva [16] gives a number of computer pictures of bifurcations of maps
which have attracting 2-cycles.

There are also very interesting graphic approaches by S. Ushiki, which may be seen at:
http://www.math.h.kyoto-u.ac.jp/∼ushiki/ . Some of this software visualizes the peri-
odic points of f as a “cloud” in 4-space.

9. Interlude: Currents

10. Uniqueness of Currents

11. Julia set J+

Theorem 11.1. If p is a saddle point, then W s(p) is a dense subset of J+.
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Corollary 11.2. J+ is connected.

Theorem 11.3. If Ω is a periodic Fatou component which is either recurrent or a semi-
parabolic basin, then ∂Ω = J+.

12. Interlude: Model maps

12.1. Complex solenoid.

12.2. Complex horseshoes.

13. Julia set J = J+ ∩ J−

14. Julia set J∗

15. Hyperbolicity and Quasi-hyperbolicity

Question 15.1. Can a quasi-hyperbolic map have a wandering Fatou component?

16. Semi-parabolic fixed points

17. Parallels between Dimensions 1 and 2
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