
Math 532 - Fall 2019
Solutions to Second Examination

Instructor: Dror Varolin

1. Let p > 0 and let f ∈ Lp(Rn).

(a) Prove that if ||f ||p ≤ 1, ε > 0 and Eε(f) = {x ∈ Rn ; |f(x)| > ε} then m(Eε(f)) ≤
ε−p.

(b) Suppose now that and {fn} ⊂ Lp(Rn) and fn → f in Lp(Rn). Show that fn → f in
measure.

Solution:

(a) For any g ∈ Lp(Rn) we have

m(Eε(g)) =

∫
Eε(g)

dm ≤ 1

εp

∫
Eε(g)

|g|pdm ≤
||g||pp
εp

.

Since ||f ||p = 1, taking g = f yields the desired estimate.

(b) According to the proof of part (a), for any N > 0 one has m({|fn − f | > ε}) ≤
ε−p||fn − f ||pp. Thus

lim
n→∞

m({|fn − f | > ε}) = 0

for every ε > 0, as desired.

2. Let µ and ν be positive measures on (X,M ) such that ν << µ, and write λ = µ+ ν.

(a) Show that 0 ≤ dν

dλ
< 1 µ-a.e.

(b) Show that
dν

dµ
=

dν
dλ

1− dν
dλ

.

Solution:

(a) If λ(E) = 0 then 0 ≤ µ(E) + ν(E) = λ(E) = 0, so ν << λ and µ << λ. By the
Lebesgue-Radon-Nikodym Theorem there are non-negative functions dµ

dλ
and dν

dλ
such

that
dν =

dν

dλ
dλ and dµ =

dµ

dλ
dλ.

Moreover, any two such functions agree on the complement of a λ-null set. Hence

dλ = dµ+ dν =

(
dν

dλ
+
dµ

dλ

)
dλ,



and dν
dλ

+ dµ
dλ

= 1 λ-almost everywhere. This shows 0 ≤ dν
dλ
≤ 1 λ-almost everywhere,

and since µ << λ, µ-almost everywhere. It remains to show that the set F = { dν
dλ

= 1}
is µ-null. But we know that dµ

dλ
= 0 λ-almost everywhere on F , so

0 =

∫
F

dµ

dλ
dλ =

∫
F

dµ = µ(F ).

(b) By part (a) and Lebesque-Radon-Nikodym we know that dµ = dµ
dλ
dλ, dν = dν

dµ
dµ and

dµ
dλ

+ dν
dλ

= 1. By uniqueness of Lebesque-Radon-Nikodym we must have dν
dµ

dµ
dλ

= dν
dλ

,
and therefore

dν

dµ
=

dν
dλ
dµ
dλ

=
dν
dλ

1− dν
dλ

,

as required.

3. Show that if f ∈ L1
`oc(Rn) and f is continuous at x ∈ Rn then x is in the Lebesgue set of f ,

i.e.,

lim
r→0

1

m(Br(x))

∫
Br(x)

|f(y)− f(x)|dm(y) = 0.

Solution: Let ε > 0. We are asked to show that there exists δ > 0 such that

0 < r < δ ⇒ 1

m(Br(x))

∫
Br(x)

|f(y)− f(x)|dm(y) < ε.

To establish the latter statement, note that since f is continuous at x, for every ε > 0 there
exists δ > 0 such that y ∈ Bδ(x)⇒ |f(x)− f(y)| < ε. We choose this δ. If 0 < r < δ then
Br(x) ⊂ Bδ(x), and hence

1

m(Br(x))

∫
Br(x)

|f(y)− f(x)|dm(y) <
ε

m(Br(x))

∫
Br(x)

dm(y) = ε,

which is what we wanted to show.

4. Let Kα : Rn × Rn → R be defined by Kα(x, y) =
1

(1+|x−y|)α for all x, y ∈ Rn, where α > 0

is a real number. For which values of α is the operator Tα : L1(Rn)→ L1(Rn) defined by

Tαf(x) :=

∫
Rn
Kα(x, y)f(y)dm(y)

well-defined and bounded? Justify your answer.

Solution: First observe that

||Tαf ||1 =

(∫
Rn

∣∣∣∣∫
Rn

f(y)

(1 + |x− y|)α
dm(y)

∣∣∣∣ dm(x)

)
≤
(∫

Rn

(∫
Rn

|f(y)|
(1 + |x− y|)α

dm(y)

)
dm(x)

)
=

(∫
Rn
|f(y)|

(∫
Rn

1

(1 + |x− y|)α
dm(x)

)
dm(y)

)
,
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where the last equality is by Fubini-Tonelli. Moreover, if f is a non-negative function then
the inequality is an equality.

By translation-invariance of Lebesgue measure

Cα :=

∫
Rn

1

(1 + |x− y|)α
dm(y)

is independent of x, and by using polar coordinates centered at x ∈ Rn one has

Cα = σn

∫ ∞
0

rn−1dr

(1 + r)α
∈ (0,+∞].

Since ∫ ∞
0

rn−1dr

(1 + r)α
=

∫ 1

0

rn−1dr

(1 + r)α
+

∫ ∞
1

rn−1dr

(1 + r)α
≤ 1 +

∫ ∞
1

rn−α−1dr

and ∫ ∞
0

rn−1dr

(1 + r)α
≥
∫ ∞
1

rn−1dr

(1 + r)α
=

∫ ∞
1

rn−1−αdr

(1 + r−1)α
≥ 1

2α

∫ ∞
1

rn−1−αdr,

we see that Cα is finite if and only if α > n. Therefore if α > n then

||Tαf ||1 ≤ Cα||f ||1.

On the other hand, if 0 < α ≤ n then ||Tαf ||1 = +∞ for any nonegative f ∈ L1(Rn). (For
example, if f is the characteristic function of a set of finite Lebesgue measure.)
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