Math 532 - Fall 2019 Solutions to First Examination

- 1. Let X be a set. Give definitions of the following objects.
 - (a) An algebra on X is: a nonempty collection of subsets of X that is closed under finite unions and complements, i.e., $\mathscr{A} \subset \mathscr{P}(X)$ is an algebra if for all $A, A_1, ..., A_N \in \mathscr{A}$, $A^c \in \mathscr{A}$ and $\bigcup_{i=1}^N A_i \in \mathscr{A}$.
 - (b) A σ -algebra on X is: an algebra \mathscr{M} that is closed under countable unions, i.e., if $A_1, A_2, \ldots \in \mathscr{M}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathscr{M}$.
 - (c) A measurable space is: a set X together with a σ -algebra $\mathcal{M} \subset \mathcal{P}(X)$.
 - (d) A measure is: a function $\mu : \mathscr{M} \to [0, \infty]$, where \mathscr{M} is a σ -algebra, such that $\mu(\mathcal{O}) = 0$ and for any countable collection of pairwise-disjoint sets $\{A_1, A_2, ...\} \subset \mathscr{M}$

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j)$$

- (e) An outer measure is: a function $\rho : \mathscr{P}(X) \to [0, \infty]$, where X is a set, such that (i) $\rho(\emptyset) = 0$,
 - (ii) ρ is monotonic, i.e., if $A, B \in \mathcal{M}$ and $A \subset B$ then $\rho(A) \leq \rho(B)$, and
 - (iii) for any countable collection of sets $\{A_1, A_2, ...\} \subset \mathcal{M}$

$$\rho\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \rho(A_j)$$

(f) A Borel set is: an element of the σ -algebra generated by (a.k.a. the smallest σ -algebra that contains) all of the open sets in a topological space.

2. Let $F : \mathbb{R} \to \mathbb{R}$ be an increasing, right continuous function, i.e., F(x) = F(x+) for all $x \in \mathbb{R}$, and let μ_F be the Lebesgue-Stieltjes measure associated to F, i.e., μ_F is the Borel measure defined on the algebra generated by left-half-open intervals by $\mu_F((a, b]) = F(b) - F(a)$.

(a) Compute $\mu_F([a, b])$, with proof.

For any sequence $\varepsilon_j \searrow 0$ we have that $[a, b] = \bigcup_{j \ge 1} (a - \varepsilon_j, b]$. Hence by continuity from above $\mu_F([a, b]) = \lim_{j \to \infty} \mu_F((a - \varepsilon_j, b]) = \lim_{j \to \infty} F(b) - F(a - \varepsilon_j) = F(b) - F(a - c)$.

(b) Give necessary and sufficient conditions ensuring that every singleton, i.e., a set with exactly 1 element, is a μ_F -null set.

Applying part (a) with b = a yields, for any $a \in \mathbb{R}$, $\mu_F(\{a\}) = F(a) - F(a-)$. Thus every singleton is a null set if and only if *F* is left-continuous. Since *F* is increasing and right-continuous, μ_F annihilates all singletons if and only if *F* is continuous.

3. Let $g: \mathbb{R}^2 \to [0,\infty]$ satisfy

$$\int_{\mathbb{R}^2} g dm = 4$$

where m is Lebesgue measure on \mathbb{R}^2 . Let

$$f_n(x,y) = \pi - e^{-\left(r^2 - n(x+y) + \frac{n^2}{2}\right)}, \quad n \in \mathbb{N},$$

where $r := \sqrt{x^2 + y^2}$.

(a) Determine the function $f(x, y) = \lim_{n \to \infty} f_n(x, y)$.

Note first that $r^2 - n(x+y) + n^2/2 = (x - n/2)^2 + (y - n/2)^2$ is positive. For any point $(x, y) \in \mathbb{R}^2$, if N > 0 is given then with $n > 2N + 2\max(|x|, |y|)$ we have $|n/2 - x| \ge \frac{n}{2} - |x| > N$, and hence $|f_n(x, y) - \pi| \le e^{-(x - n/2)^2 - (y - n/2)^2} \le e^{-2N^2}$, i.e., $\lim_{n \to \infty} |f_n(x, y) - \pi| = 0$, i.e., $f(x, y) = \pi$.

(b) Compute, with justification,

$$\lim_{n \to \infty} \int_{\mathbb{R}^2} f_n(x, y) g(x, y) dm(x, y).$$

Note that $f_n(x,y) \leq \pi$, and therefore $|f_ng| \leq \pi g$. Since $g \in L^1(\mathbb{R}^2)$ the Dominated Convergence Theorem implies that

$$\lim_{n \to \infty} \int_{\mathbb{R}^2} f_n g dm = \int_{\mathbb{R}^2} f g dm = \pi \int_{\mathbb{R}^2} g dm = 4\pi.$$

(c) Compute, with justification,

$$\lim_{n \to \infty} \int_{\mathbb{R}^2} |f_n(x, y)| dm(x, y).$$

We have $\int_{\mathbb{R}^2} |f_n| dm = \int_{\mathbb{R}^2} f_n dm \ge \int_{\mathbb{R}^2} (\pi - 1) dm = +\infty.$

4. (a) Show that for $c \ge 1$ and $0 < A \le 1$, $\log(1 + A^c) \le c \cdot A$. (You may use basic calculus.)

Consider the function $f(x) = cx - \log(1+x^c)$ Then $f'(x) = \frac{c(1+x^c-x^{c-1})}{1+x^c} \ge c\frac{1-x^{c-1}}{1+x^c} \ge 0$. Hence f is increasing and f(0) = 0, so $cx \ge \log(1+x^c)$.

Alternatively, consider the function $f(x) = x - \log(1 + x)$. Then $f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0$, which shows that f is increasing. Thus $f(x) \ge f(0) = 0$ for $x \ge 0$. Hence $cA - \log(1 + A^c) \ge cA - A^c \ge cA - A \ge 0$.

There must be many other possible proofs.

(b) Let (X, M) be a measurable space and let µ : M → [0, ∞] be a positive measure. Suppose f : X → [0, ∞] satisfies ∫_X fdµ = π. Show that the function F : (0, ∞) → [0, ∞] defined by

$$F(c) := \lim_{n \to \infty} \int_X n \log\left(1 + \left(\frac{f}{n}\right)^c\right) d\mu$$

is a simple function.

Hint: For $c \ge 1$ Part (a) should help with dominating the integrand. For $c \in (0, 1)$, try Fatou. If c < 1 then by Fatou's Lemma

$$F(c) \ge \int_X \liminf_{n \to \infty} n \log \left(1 + \left(\frac{f}{n}\right)^c\right) d\mu.$$

But by L'Hôpital's Rule if x > 0 then

$$\lim_{n \to \infty} n \log(1 + (x/n)^c) = \lim_{\varepsilon \to 0} \frac{\log(1 + (\varepsilon x)^c)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{cx(\varepsilon x)^{c-1}}{1 + (\varepsilon x)^c} = +\infty.$$
(1)

Since *f* is non-negative and has a positive integral, it cannot vanish on a set of full measure, and therefore we see that $F(c) = +\infty$ for 0 < c < 1.

If $c \ge 1$ then $n \log(1+(x/n)^c) \le cf$ by part (a), and thus $n \log(1+(f/n)^c) \le cf \in L^1(\mu)$. By the dominated convergence theorem

$$\lim_{n \to \infty} \int_X n \log\left(1 + \left(\frac{f}{n}\right)^c\right) d\mu = \int_X \lim_{n \to \infty} n \log\left(1 + \left(\frac{f}{n}\right)^c\right) d\mu$$

When c > 1 this limit is 0 (follow (1) with $c \ge 1$), and when c = 1 the limit of the integrand is f, and therefore $F(1) = \pi$. Thus

$$F = (+\infty) \cdot \chi_{(0,1)} + \pi \chi_{\{1\}}.$$