Homework 10 Solutions
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10. The triple integral is
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12. The value can be found to be approximately
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18. We want to set up a triple integral for the volume of the solid bounded by
2z =4—2% and z = 22 + 3y%. To find the bound for integral, we look at the
intersection of the two surfaces.
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20. The volume of the solid bounded by the graph of the surface z = 2xy is

2 2 p2zy 2 2 2 2 22
/ / / dzdxdy = / / 2rydrdy = 2/ xdx/ ydy =4 —
o Jo Jo o Jo 0 0 2

64. Let @ be the cube in the first octant bounded the coordinate planes and
x =4,y =4 and z = 4. Then the average value of f(z,y,z = zyz over Q is
given by

1 1t oo
Average value = —/// fz,y,2)dV = —/ / / xyzdrdydz
V Q 64 0 0 0
1 2% |*

(%)

2

2
=38
0

P =8

64 0




§14.7
The triple integral can be evaluated as follows.
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22. The solid @ with density p has mass
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44. The solid we integrate over is as shown.
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So we can write the integral in cylindrical coordinates as follows.
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In spherical coordinates, the integral becomes
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Evaluating the last integral gives
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6. We have x = uwv — 2u and y = uv. The Jacobian is
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18. First, we calculate the Jacobian for the change of variables.
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Then we see that the four vertices are transformed to
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So, in the new coordiantes, the integral becomes
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20. The coordinate transformation is
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The three vertices get mapped to
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We can evaluate the integral as follows.
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Integrating by parts, we find the final answer to be
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36. The Jacobian is



