Math 171 - Fall 2015 Second Practice Examination

Instructor: **Dror Varolin**

1. Sketch the graph of the function

$$f(x) = xe^{-x^2}, \quad x \in \mathbb{R}.$$

2. Let

$$f(x) := \int_0^{x^2} e^{-t^2/2} dt, \qquad x > 0$$

and define

$$a := \int_0^\infty e^{-t^2/2} dt.$$

- (a) Prove that a is finite.
- (b) Prove the $f:(0,\infty)\to(0,a)$ is invertible.
- 3. Compute the following limits

(a)
$$\lim_{x \to \infty} \frac{\ln x^2}{x^2}$$
 (b) $\lim_{x \to 0} \frac{x^3}{x - \sin x}$ (c) $\lim_{x \to 0} \frac{8\sqrt{1 + x} - (4x - x^2)}{x^3}$.

4. Compute the following integrals.

(a)
$$\int_1^5 6x^3 e^{-x^2} dx$$
 (b) $\int_3^8 \frac{dt}{t^3 \sqrt{t^2 - 4}}$.

5. Prove that the integral

$$\int_0^\infty \frac{(\ln x)^4}{1+x^2} dx$$

converges.

6. Find the general solution of the differential equation

$$\dot{y} = -2ty + 2t\cos(t^2)$$