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1. INTRODUCTION

In this paper we introduce a generalization of the notions of shears and overshears to arbitrary complex
manifolds. The concept is very simple, but is far-reaching in the study of complex manifolds having very
large automorphism groups. We explore below some of the consequences of this new concept in connection
with the density property, which we now recall.

In [V1] we introduced the notion of complex manifolds with the density property. Recall that a complex
manifold M has the density property if the Lie subalgebra of Xo(M) generated by the complete vector
fields on M is a dense subalgebra. More generally, a Lie subalgebra g C X (M) is said to have the density
property if the complete vector fields in g generate a dense subalgebra of g. (So M has the density property
if and only if Xo (M) has the density property.) Another important case occurs when M has a nonvanishing
holomorphic n-form (n = dimcM), i.e., a holomorphic volume element, w. We say that (M,w) has the
volume density property if the Lie algebra Xo(M,w) := {X € Xo(M) ; Lxw = 0} has the density property.
Andersén proved that (C*,dz; A ... A dzy,) has the volume density property [A], and then Andersén and
Lempert proved that C" has the density property [AL]. The author showed that for every complex Lie
group G, (G x C,w) has the volume density property, where w is the unique (up to constant multiple) left
(or right) invariant holomorphic volume element on G x C, and that if G is a Stein Lie group, then G x C
has the density property. The author also produced several examples of Lie algebras of vector fields with
the density property.

In [V2]we used jets to explore the complex structure of (mostly Stein) complex manifolds with the density
property. It was shown, among other things, that Stein manifolds with the density property admit open
subsets biholomorphic to C* and have interesting properties with respect to their embedded submanifolds.
Some of the results were known for C* through works of Buzzard, Fornaess, Forstneri¢, Globevnik, Rosay,
Stensgnes and others.

With the usefulness of the density property already established in the literature, some sort of classification
or fine structure theorem is very desirable. Such a result seems at the moment very far off, in part due to
the lack of examples. The main theorems of this paper, which we now state, give many new examples of the
density property; more importantly, the proofs establish techniques which can be used to construct other
examples. We shall pursue this in future work.

Theorem 1 Let M? := C?\{zy = 1} and w := (zy — 1)"'dz A dy. Then (M?,w) has the volume density
property

The study of the space M? was inspired by discussions with Rosay several years ago. M? is important
because it is another instance of the mysterious pre-phenomenon (we say “pre” because there are no proofs
that it exists) of a holomorphic volume element which is preserved by every holomorphic automorphism.

In the next result, we study a complex Lie group which is not of the form G x C. There is, as of yet, no
general theory here, so we focus on one example.

Theorem 2 The complex Lie group SI(2,C) := {(a,b,c,d) € C* | ad — bc = 1} has the density and volume
density property.

Next we introduce a new class of complex manifolds with holomorphic volume element called EMV
manifolds. These spaces are generalizations of complex Lie groups, but also of certain (e.g. Stein, but also
some other) complex homogeneous spaces. Roughly speaking, they have the property that all holomorphic
vector fields on them can be approximately written as finite sums of the form ) f; X; where f; are any
holomorphic functions, and X; are divergence zero C-completely generated (see section 2 for the definition)
holomorphic vector fields.

Theorem 3 Let (M,w) be an EMV manifold. Then (M x C,w Adz) has the volume density property. If M
is moreover an open subset of a Stein manifold, then M x C has the density property.



As already suggested, the key tool used in the proofs of these theorems is a generalization to arbitrary
complex manifolds of the notion of shears and overshears. This tool may have some independent interest as
well. The idea is quite simple: given a C-complete holomorphic vector field X in a complex manifold M, one
tries to produce new complete vector fields of the form f - X, with f € O(M). We establish necessary and
sufficient conditions on such f, and these conditions define in a natural way function spaces associated to
X. We then prove theorems to the effect that the structure of these function spaces depends on the intrinsic
and extrinsic geometry of the orbits of X.

The organization of the paper is as follows. In section 2 we briefly recall some basic definitions in the
theory of ordinary differential equations and volume geometry, taking the opportunity to establish notation.
In section 3 we introduce and develop general shears and overshears. In part, our results here explain why it
was easiest to prove the density property for spaces of the form G x C. In section 4 we prove theorem 1, and
in section 5 we prove theorem 2. The proofs are rather combinatorial in nature. In section 6 we introduce
EM and EMYV spaces, and prove theorem 3 as well as some related results. Finally, in section 7 we state a
question which naturally arises in the course of the paper, and give an example of a complex manifold which
may or may not have the (volume) density property, but for which the combinatorial methods of sections 4
and 5 become too cumbersome to carry out.
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2. SOME PRELIMINARIES

In this section we recall a few basic concepts and establish the notation used below.

A holomorphic vector field X is a holomorphic section of T1:9M, the holomorphic part of the complexified
tangent bundle. Since there is a natural identification of T1'°M with the real tangent bundle TM, we can
identify X with a real vector field, which we still denote by X. This vector field has a flow ¢x, which is a
map defined on an open subset of M x R containing M x {0} as follows: for (z,t) € M x R, ¢’ (z) is the
point ¢(t) € M, where ¢ : I C R — M is the maximal solution of the initial value problem

% = X (o), ¢(0) = z.

Moreover, ¢ is holomorphic for each t. We denote the set of holomorphic vector fields on M by Xo(M).

A holomorphic vector field X is called complete if ¢ x is defined on all of M x R. In this case {¢% |t € R}
is a one-parameter group of automorphisms of M.

X is called C-complete if both X and iX are complete. Let 1*t%(z) := % o ¢ty (z). One checks that,
since [X,iX] = 0 for all holomorphic vector fields, {1)¢ | ¢ € C} defines a complex one-parameter group of
automorphisms which is holomorphic in , i.e., a holomorphic C-action. In this paper we shall use the phrase
complete to mean C-complete.

Xo(M) is equipped with a bracket, or commutator, operation [X,Y] = XY — Y X which makes it into a
Lie algebra. Given any Lie algebra g of holomorphic vector fields, we can consider the Lie subalgebra g’ of g
generated by the complete vector fields in g. Any X € ¢’ is said to be g-completely generated. If g = Xo (M)
we omit reference to the Lie algebra. If g = Xo(M,w) (see below) we say that X € g’ is divergence zero
completely generated.

Let us now suppose that M admits a nowhere vanishing holomorphic n-form w, where n = dimcM. We
call such a form a holomorphic volume element. Given a holomorphic volume element w, we can define a
map div, : Xo(M) — O(M) by

L
div, (X) = XY
w
where Lx is the Lie derivative of X:
d
L = — L) .
XO= Gl (px )"

Since Lix,y) = Lx Ly — Ly Lx, one easily shows that

div, ([X,Y]) = Xdiv,Y — Ydiv,X.



Another useful formula, due to H. Cartan, is

din(x) = WX,

where ix is contraction with respect to X.
Finally, we denote the kernel of div,, by Xo(M,w), and call X € Xo(M,w) a divergence zero vector field.

3. GENERAL SHEARS AND OVERSHEARS
Basic propositions and the definition. Let X € Xp(M). We define
F(X)=TI,(X):={feOM)| X f=0}.

If feI'(X) (resp. I?(X)) we say f is a first (resp. second) integral of X. The following proposition is
immediate.

Proposition 3.1. Let X be a holomorphic vector field with (local) flow g% . Then f € I'(X) (resp. I*(X))
if and only if (where defined)

fogk=1Ff (resp. fogk =f+tXf).

While first integrals have been studied extensively in the past, second integrals seem not to have been looked
at. However, in the holomorphic category it is natural to study first and second integrals because of the
following fundamental proposition.

Proposition 3.2. If X € Xo(M) is C-complete and f € O(M), then fX is C-complete if and only if
ferx).

Proof. If X vanishes at some p € M, then so does fX, so the integral curve of fX through p is defined
(and constant) for all ¢ € C. Suppose now that X (p) # 0. Let hy, : C - R,(X) be the integral curve of X
through p. Here, R,(X) is the orbit of X through p. Then

hp(X)(t) = 8,

and hy, is a covering map. Since fX is tangent to the orbits of X, hy(fX) is a well-defined vector field on
C. Precisely,

hy(FX)(t) = f o hy(t)0:-
It follows that the integral curve of fX through p is defined for all time if and only if f o h,(¢) is an affine
linear function of ¢. This holds for all p in M\{X = 0} if and only if f € I*(X). O

Proposition 3.2 is a purely holomorphic result. Note that in general, multiplying a (real) vector field by any
bounded function preserves completeness.

Example 3.3. Let C* = C x C"! (n > 2) have coordinates z = (21,2'). Consider the vector field 3,
on C*. Then f(z)d,, is complete if and only if f(z) = g(2') + h(2')z1. Vector fields of the form f(z2')0,,
are called shear fields, and those of the form f(z')210,,, overshear fields. These vector fields have played a
fundamental role in the study of automorphisms of C™*, as the set of all time-one maps of these vector fields
generates a dense subgroup of Aut(C") [A, AL].

Definition 3.4. Let X be a complete holomorphic vector field on a complex manifold M. An X -shear (resp.
X -overshear) field on M is a vector field of the form f - X, with f € I'(X) (resp. I*(X)).

Second integrals. To find first integrals of a complete vector field X, it is well known that the orbits of X
must have particularly nice behavior. Since X maps I?(X) to I'(X), we can expect that second integrals
are somehow more rare than first integrals. We will show below that this is indeed the case.

One can phrase the problem of finding second integrals, i.e., solving the second order PDE X2 f = 0, as
an inhomogeneous first order PDE with conditions on the forcing term:

Xv=¢ with ¢eIl'(X). (%)
The most optimistic situation occurs when we can solve the equation Xu = 1. In this case, we can write
f eI?(X) as
f=uXf+(f—uX[),
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which shows that I?(X) = I'(X) + uI'(X). We shall see, however, that Xu = 1 does not always have a
solution.

To get a good notion of when I?(X) is “large”, it is convenient to use the language of ideals. Let
Jx := X(I*(X)) C I'(X). Jx isanideal in I'(X), since for ¢ € I'(X) and f € I*(X), pX f = X (pf) € Jx.
Being able to solve Xu = 1 is equivalent to saying that Jx = I'(X). Hence I?(X) is “large” when I'(X) is
large and the quotient ring I'(X)/Jx is “small”, e.g., finitely generated or trivial.

It is interesting that the size of the quotient I'(X)/Jx is intimately tied up with the complex geometry
of the orbit space of X. Our first result is the following.

Theorem 3.5. Let X € Xo(M) be complete, f € I*(X), and set N := M\{X f =0}. Then

1. N/X is a complex manifold,
2. m: N = N/X is a holomorphic submersion,
3. 7x f:N— (N/X) xC is a biholomorphic map, and
4.
(m x )e(fX)(Rp(X),A) = P(Rp(X)) A0
for some ¢ € O(N/X).

Proof. Let u := (1/X f)f. Then Xu = 1, and u o g*(p) = u(p) + t. Note also that X|x is complete, since
{X f =0} is a union of orbits.

1. N/X can be identified with the level set u~1(0) via the map
£:N/X = u™0); Ry(X) = R,(X) Nut(0).

First, if p € N, then g}u(p )(p) € u=1(0), so that no orbit has empty intersection with u~1(0). Hence
¢ is well-defined, at least as a set valued function. Next, note that £ is single valued. Indeed, if
R,(X) Nu~'(0) contains p; and ps, then p; = g% (p) and pa = ¢%2(p). But since u(p1) = u(p2) and
u o gt(p) = u(p) +t, we see that t; = to, hence that p; = ps. Next, £ is 1-1 since orbits of vector
fields never intersect. Finally, & is clearly surjective. To finish 1, note that since du(X) = 1, du never
vanishes on N. Hence u~!(0) is a complex manifold, which we henceforth identify with N/X via €.

2. Observe that the canonical projection m : N — u~1(0) is given by n(p) = g;("(p )(p). Note also that
7| y-1(y : w™t(t) = w~1(0) is a biholomorphic map; |,-1(4) = g%'. Hence 7 is a submersion.

3. Define7: NxC—-Cand G: N xC — N by

7(p, ) == A= f) and G(p, ) = g;(p”\) (p).

Xf(p)

Then, since f € I?(X) (and hence X f € I'(X)), proposition 3.1 gives that 7(g% (p), A) = 7(p,A) — ¢,
and hence that

Glgk (@), N) = g™V ™" 0 gk (p) = G(p, N).
Thus G defines a holomorphic map H : (N/X) x C — N by

H(Rp(X), ) := G(p, ).
Now

mx foH(Ry(X),N) = mx fgx"M(p)

and

Homx f(p)

H((Ry(X), f(p))

- g;(nf(z)))(p)
= p

Thus H = (7 x f)~!, and hence 7 x f is a biholomorphic map.



(X Du(X) = 9 wx fogk o H(R,(X),)
t=0

= % X fogl o gV (p)

= G (B0, 10) + 70 NX0) +1X S p)

— Xf(p)dy
So now

((m x [ (fX)) (Bp(X),A) = (H*f)(Rp(X),A) - (7 x f)(X)(Rp(X),A)
= AXf(z)0x

Taking ¥(Rp(X)) = X f(p) finishes the proof. O

As a corollary, we obtain the following proposition.

Proposition 3.6. Let X € Xp(M) be complete, and define

EX,M = ﬂ {XfZO}, NX,M = M\EX,M.
ferx(x)
(Note that Nx ar is an open subset of M, which is either empty or dense.) Then for each p € Nx m, Ry(X)
is biholomorphic to C. In particular, if X has a nontrivial second integral, then almost every orbit of X is
biholomorphic to C.

Suppose we can solve Xv = ¢ € I'(X). Then theorem 3.5 tells us that N/X is a complex manifold, and
N (= M\{p = 0} ) is biholomorphic to N/X x C. It follows that if M is Stein then N/X is itself Stein
(since N is Stein). In the case where ¢ = 1, the converse is also true.

Theorem 3.7. Let X € Xo(M) be a complete vector field all of whose orbits are biholomorphic to C.
Suppose M /X is a complex manifold and 7 : M — M/X is a holomorphic map. If M/X is Stein, then
Xu =1 has a solution.

Proof. If M/X is a (differentiable) manifold and 7 is smooth, then 7 is a submersion and thus the bundle
m: M — M/X is locally trivial. Furthermore, it is possible to select local trivializations {¢; : 7= (U;) —
U; x C} such that (¢;)«X = 0y for all j. Indeed, let o; be alocal section of 7 : M — M /X over U;. For each
z € 7 1(Uj), define A = A(z) to be the unique complex number for which g% (ojom(z)) = z. X is holomorphic
because of the holomorphic dependence of the flow on initial conditions. Set ¢;(z) = (7(x), A(x)). Note
that ¢; o g% (x) = (w(z),s + A(z)) and so

d

(05)-X (@) = =
s=0

Now, since the fibers of our holomorphic bundle are C, the bundle must be an affine bundle, and so the
transition functions ;i (n(z))t := pry o ¢; o ¢, '(z,t) (where pry is the projection to the second factor)
satisfy

(m(z),s + A(x)) = Ox.

pik(m(@)t = fin(m(@))t + gjk(n(z)).
Moreover, because of the way the ¢; were chosen, f;i(7(z)) =1 for all j, k. Indeed,

Fie(n(2) = o ois (@)t = Do, (0 (07 )o0s = 1.

Next, writing out the identity

Pjk © Pri © pr; = id
shows that {g,r} is a 1-cocycle on M /X, i.e., Cousin-1 data. Since M/X is Stein, g;r = g; — gr. One checks
easily that {g} is a section of w : M — M/X. It follows that 7 : M — M /X is actually a line bundle, since
we can use the section {gx} as an origin for each fiber. Precisely, we can define the transition functions

Py (m(2))v := @ik (n(2)) (v + gr(n(2))) — g;(7(2))-
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Then Pjp(r(z))v = fik(m(2))(v) + @jk(m(2))(gr(7(2))) — g;j(m(z)) = fir(m(z))(v) so that, since fjx =1,
m: M — M/X is trivial. We now define (in the usual way) the global trivialization F' : M — (M/X) x C
by F := 7 x 1, where
Y(x) = pra o pj(z) — g;j(m(x)) for z € 7r71(Uj).
1 is well defined, since for x € U; N Uy,
pry o p;(x) — gj(m(x)) = praog;op (k) — g;(n(z))
= @je(r(er(z))t — gj(m(z))  where t = pra(pi(z))
= t+g(n(z)) — g;(m(z))

= t—gr(m(x))
= pryopx(z) — gr(m(z))
It follows that
F.X = 0.
Setting u(F~1(m(x),\)) = X, we see that Xu = X (F*(F,u)) = (F,X)(F,u) = 1, as required. O

Remark: A more careful look at the proof shows that one does not need M/X to be Stein, but only that
HY(M/X,0) =0.

Remark: Theorems 3.5 and 3.7 explain in part why it was so much easier to prove density theorems for
spaces of the form M x C.
Example 3.8. Let

X (2) = ady + cda € Xo(S1(2,0)) =z = (Z Z) € SI(2,0).

X is aleft invariant vector field on SI(2,C) whose orbits are closed and biholomorphic to C. Hence Si(2,C)/X
is a complex manifold. Nevertheless the equation Xu = 1 has no global holomorphic solutions'. Indeed,
S1(2,C) is homotopy equivalent (by the Gram-Schmidt algorithm) to SU(2) = S2, which is a cell complex
of dimension 3. It follows that SI(2,C) is not biholomorphic to B x C, for then B would be a Stein 2-fold
with 3-dimensional cells, a contradiction.

4. (M?w)

To recall, we define

1
M? = C\{zy = 1} and w:my_lda:/\dy.

In this section we prove Theorem 1.

Notation and facts. It will be convenient to write z = 2y — 1. As we mentioned before, M? admits two
everywhere independent complete vector fields

X(z,y) := 20y and Y(z,y) := 20,.

Since z does not vanish on M?2, it is clear that every holomorphic vector field on M? is of the form fX + gV
for some f,g € O(M?). We note also that

H(z,y) = 20, — y0,
is a complete holomorphic vector field with zero divergence. One can integrate X,Y and H to see that every

orbit of X and Y is biholomorphic to C* and that this is also the case for every orbit of H except for its

Tt is interesting to note, however, that u = (ab + ed)/(|a|? + |¢|?) is a real analytic solution, and that the C-fibration
S1(2,C) — Si(2,C)/X is real-analytically trivial
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single fixed point at the origin of C2. Hence X,Y and H have no nontrivial second integrals. The following
facts are easily computed:

[H,X]=X [H,Y] = -Y [X,Y]=zH
zY —yX = zH
Xx=0 Xy = =z Xz=1zz
Yr==2 Yy = 0 Yz=yz
Hz ==z« Hy = —y Hz=0

Lemma 4.1. Every ¢ € O(M?) is of the form
o(z,y) = f(z,y,2)
for some f € O(C? x C*).

Proof. j: (z,y) — (x,y,2) gives a proper holomorphic embedding of M? into C? x C*. It is thus a standard
fact (Theorem A) that O(M?) = O(C? x C*)|ps2. O

Thus the Laurent polynomials
z ciziz ™t + z dry*z"! + Zelzfl + Z finaly®
§,1>0 k,1>0 1>0 k,1>0

are dense in O(M?). We shall call such Laurent polynomials reduced.
The key lemmas.

Lemma 4.2. Let j and k be nonnegative integers. Then for some polynomial p(z,y) there is a divergence
zero completely generated vector field of the form

2y X + p(z,y)Y
Proof. Since Xz =0, z/ X is complete, which proves the claim for k¥ = 0. Note next that, since Yy = 0, y'Y
is complete, and hence (as a computation shows)
[y'Y, 27 X] = (j + Daly" ' X — jal 1y X + pi(a,y)Y

is divergence zero completely generated. The result follows by induction on k. O

This lemma has a corollary which is of independent interest. Let g denote the Lie algebra of all holomorphic
vector fields of C? which vanish on {zy = 1}, and have w-divergence zero.
Corollary 4.3. g has the density property.

Proof. Note first that the set of divergence zero vector fields of the form p(z,y)X + ¢(x,y)Y for polynomials
p and g, is dense in g. Let V be one such vector field. By lemma 4.2 there exists another such vector field W
which is completely generated, such that V — W = p;(z,y)Y. But since 0 = div(V - W) =Y (p1), V- W
is complete. Thus V =W + (V — W) is completely generated, as desired. O

The following identities are just computations, the last two most easily proved using the commutation
relations given above. We omit the details.

—2z'H = yz7'X + (%)Y
[T Hy*'Y] = lyFt2~ DX 4 ()Y
[+7X,27'H] = ledz= DX 4 (1 —j — 12?27 X + (x)Y

Here and below, the symbol (x) means a polynomial in z, y and 1/z. Using the first identity we have
Lemma 4.4. For each | > 1 there exists a complete divergence zero vector field of the form
yz ' X + (Y-

Using the second identity we have
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Lemma 4.5. For each | > 2 and k > 0 there exists a divergence zero completely generated vector field of
the form
y* 227X+ ()Y

Using the third identity we have by induction

Lemma 4.6. For each | > 2 and j > 0 there exists a polynomial p(x) and a divergence zero completely
generated vector field of the form ’
Y27 X +p()2 71X + (x)Y-

Lemma 4.7. Suppose that p and q are polynomials in one variable, that g € O(M?), and that

V(z,y) = IMX +9(z,9)Y

is a divergence zero vector field. Then p =0 and q is constant.

Proof. The vanishing divergence of V' is equivalent to the closedness of the holomorphic one form 6 = iy w.
An easy computation shows that

g _P) iyq(y) dz + gz, y)dy.

It follows from Stokes’ theorem that if 2 is a smooth 2-manifold with boundary, then
/ 6=0.
0

For y € C*, let v, : [0,27] = M? be defined by

vy (t) = ((e" + y,y").
Note that

it iye

, /27r p((1+et)y) + (1/y)q(1/y) . it gy
0 .

Ty

2mi(yp(y) + a(1/y))

Fix yo and y; in C*, and let 8 : [0,1] — C* be any smooth curve with §(0) = yo and 8(1) = y;. Then
Qyoys = {7805 (t) | (£,5) € [0,1] x [0, 27]}

is a smooth cylinder in M2, and

o0 = Yyo U Yy -
Since yo and y; were arbitrary, it follows that the Laurent polynomial yp(y) + ¢(1/y) is constant, and hence
that p = 0 and ¢ is constant. This completes the proof. O

Proof of theorem 2. Let V = fX + gY be a holomorphic vector field with f and g reduced (see the
remark following lemma 4.1) Laurent polynomials. By lemmas 4.2 , 4.5 and 4.6 there exists a divergence
zero completely generated vector field Wi so that V — Wy = ((p(z) + yq(y))/2)X + (¥*)Y. According to
lemma 4.7 , p = 0 and ¢ is constant. Hence by lemma 4.4 there is a complete vector field W> such that
V — W1 — Wy = h(z,y)Y for some h € O(M?). But since Yh = div(hY) = 0, V — W1 — Wy is complete.
Hence
V=W +We+(V-W; —W,)

is divergence zero completely generated, as desired. O

As mentioned in the introduction, it is not known whether there exists a single automorphism f of M2
such that f*w # Zw. However, this difficulty is immediately lifted by “stabilizing” M2. Then theorem 2
and main result 1.3 in [V1] imply the following

Corollary 4.8. M? x C has the density property.
5. SL(2,0)

In this section we will prove Theorem 2.
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Notation and facts. SI(2,C) will be represented as the set of all 2 x 2 matrices with complex entries
having determinant 1. We will write the members of SI(2,C) as

A:(ab> with ad — be = 1.
¢ d

We shall use a, b, ¢, d as coordinates on C*, in which we will think of SI(2,C) as a submanifold. The canonical
basis of left invariant vector fields will be employed throughout. These are

X(a,b,c,d) = ady + cdq, Y (a,b,c,d) =b0, +dd., and
H(a,b,c,d) = ad, — b0y + cd, — ddy.
The relevant commutation relations are
[H,X]=2X, [HY]=-2Y, and [X,Y]=H.
Of course, X Y and H are C-complete, being left invariant.
Since X,Y and H trivialize the tangent bundle of SI(2,C), an arbitrary vector field V € X (SI(2,C))
may be written
V=VxX+WY+VygH, Vx, Vv, Ve € O(S1(2,C)).
We then define
dZ’U(V) =XVx+YVy + HVy.
The operator div : Xo(S1(2,C)) — O(S1(2,C)) is, up to a constant, the usual divergence operator associated
to any left invariant holomorphic 3-form on SI(2,C). Consequently, it satisfies, for any holomorphic function
f and vector fields U and V,
(i) linearity,
(i) div(fV) =V [+ fdivV, and
(iii) div[U,V] = UdivV — VdivU.
We shall also have occasion to use the right invariant vector fields on SI(2,C). The canonical basis is
x =04 +d0y, y=al.+bd;, and h =ad,+ b0 — O, — ddy.
It is useful to note that
r = d°X—cY +cdH
y = —b’X +a’Y —abH, and
h 2bdX — 2acY + (ad + bc)H

Finally,

I'X)={a,c), I'(Y)=(bdy, and I'(H)={(a™b*c"d|m+n—k-1=0).
Since every orbit of H is biholomorphic to C*, I?(H) = I'(H). For X and Y, the relevant facts about I*
are that Xb = a and Xd = ¢, and that Ya = b and Y¢ = d. We will not need anything about the second
integrals of right invariant vector fields, but we will use the facts that I'(z) = (c,d), I'(y) = (a,b), and
I'(h) = {(a™bFc"d'lm + k —n —1=0).

The volume density property. The volume density property for SI(2,C) follows immediately from the
following.

Theorem 5.1. Every divergence zero polynomial vector field on S1(2,C) is divergence zero completely gen-
erated.

We shall now prove this theorem. The proof involves many steps, and must be broken up into cases. These
cases are isolated according to certain values of an index of monomials. We call this index the H-index, and
define it as

indg(a™bfc"d) :=m —k+n—1.
Note that H(a™b*c"d') = indy(a™b*c"d)a™b*c?d’. A polynomial in a,b,c and d will be called H-
homogeneous of degree r if the H-index of each of its monomials is r. We note that H-homogeneous polyno-
mials is a concept which descends to SI(2,C), i.e., when we identify ad — bc and 1. Let us further point out
that while nonzero constants have H-index 0, 0 has every integer as its H-index. Finally, note that X raises
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the H-index of an H-homogeneous polynomial by 2, and that Y lowers the H-index of an H-homogeneous
polynomial by 2:

H(X(a™b*c"d)) = XH(a™brcd') + [H, X](a™brcd!)
= (indg(a™b*cd') + 2) X (a™bFcnd)
and
H(Y (a™*cd)) = YH(@™bFcd) + [H,Y](a™bkc d')
= (indg(a™bFc"d) — 2)Y (a™b*cd).
Finally, we leave it to the reader to check that completeness holds where necessary.

Lemma 5.2. Let a™bFc*d' be a monomial of H-index different from -2. Then there exists a completely
generated polynomial vector field of the form
a™bkcd X + p(a, b, c,d)H.
We shall simultaneously prove

Lemma 5.3. Let a™b*c"d' be a monomial of H-index different from 2. Then there exists a completely
generated polynomial vector field of the form

a™b*c"d'Y + p(a,b,c,d)H.

Proof. We mark the end of proof of each case by the symbol A.
Case 1 (X,indg > 0): Let mi,m2,n; and ny be nonnegative integers such that my — k +ny —1 = 0,
m1 +mo = m, and nqy + ne = n. Then

[a™bFcd H o™ c™ X] = (my + ny + 2)a™bF"d' X + pH.
A

Case 2 (Y,indg < 0): Let k1, k2,11 and l2 be nonnegative integers such that m —k; +n—11 =0, k1 + k2 = k,
and Iy + Iy = 1. Then
[br2d2Y, a™ bk cnd H] = (kg + 1o + 2)a™b*cd'Y + pH.

In the remaining cases, the following identities will be very useful:

[a™bFrcmd H, [bF2d2Y,aX])] = [a™b* e d H, bR dR X
—a(kzad + lybe)b*2~1d2 1Y 4 pH]
(1= ka —Ip) (a™pFr ¥t e X —

a(ksad + lobe)a™bFr the—1engh+l-ly)

+pH
[amcndll H, [dl2 Y, CX]] — [amcndh H, dl2+1X _ l262dl2—1Y + pH]
= (]_ _ l2) (amcndl1+lz+1X _ l2amcn+2dl1+1271Y)

+pH

We will refer to these as identity 1 and identity 2 respectively.

case 3 (X,indy < —4,k > 0): Let ki, ko,l1,lo > 0 be such that m —ky +n—10; =0, k = k1 + k2 + 1 and
l=1I1+1s Sincem—k+n—-1<-4,14+m— (kg +ks—1)+n— (Iy +13 — 1) <0. Thus, using identity 1,
we can, via case 2, eliminate the Y component. A
case 4 (X,indg < —4,k = 0): Let ly,lo > 0 be such that m +n —1; = 0 and !l = l; + 1, + 1. Since
m+n—1<-4m+(n+2)—(l; +12 —1) <0. Thus, using identity 2, we can, again via case 2, eliminate
the Y component. A
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case 5 (Y,indg > 4): This case can be handled as cases 3 and 4, using appropriate modifications of the
identities 1 and 2, and using case 1 instead of case 2. Specifically, one interchanges the roles of X and Y, of
a and d, of b and ¢, of m and [, and of n and k. The details are left to the interested reader. A

case 6 (X,indg = —1,k > 0): With ky = I, = 0, identity 1 takes the form

[a™bF1cnd H,[Y,aX]] = a™b"Hed X + pH.
Letting k& = k1 + 1 finishes this case. A
case 7 (X,indg = —1,k = 0): With l> = 0, identity 2 takes the form

[a™bF1cnd H, Y, aX]] = a™b*cd 1 X + pH.

Letting [ = Iy + 1 finishes this case. A
case 8 (Y,indg = 1): Again, just use calculations analogous to those of cases 6 and 7. A
case 9 (X,indg = —3): Using identities 1 and 2, and case 8, we can eliminate the Y components, which
have H-index 1. Notice that in this case, 1 — ks — l2 # 0. A
case 10 (Y, indg = 3): This case is analogous to case 9. A
This completes the proof. O

Lemmas 5.2 and 5.3 become false if the index conditions are removed. Fortunately this is not necessary
to proceed.

Lemma 5.4. Let a™b*c"d' be an index -2 monomial. Then there exists a completely generated divergence
zero polynomial vector field V' of the form

V =ambFc"d' X + (x)Y + (x)H.

Proof. First, let us call a monomial a™b*c"d' (a,d)-reduced if either m or I are zero. Every polynomial p
on S1(2,C) can be written uniquely as a linear combination of (a, d)-reduced monomials. Furthermore, p is
(a, d)-reduced if and only if for every left invariant vector field L, Lp is (a, d)-reduced.
case 1 (I > 0,m = 0): Here V = bFc"d' X + ()Y + (x)H. We thus need only note that
1
n+1
This finishes case 1. A

[bFd' 1Y, "M X] = bFed X + (x)Y + (x)H.

case 2 (I = 0): We may assume that V = a™b*c" X —pY + (x) H, where p is an (a, d)-reduced, H-homogeneous
polynomial of H-index 2. Now,

0 = divV = ka™toF 1™ — v,
and so Yp = ka™t!bF~1c". Note thus, that every (a,d)-reduced monomial component of p must be of the
form a™ b¥'. It follows that n = 0, and that p is a monomial, which must be Ca™ b*'. The index conditions

then become m' = k' + 2 and m = k — 2. Next, comparing exponents of Yp and a™1b*~!, we see that
m' = m + 2. Hence if divV = 0, then V is restricted to be of the form
V = (ab)™b*X — (ab)™a®Y + (x)H.
It follows that
V + (ab)™y = (%)H,
and hence V is in fact complete mod H. This finishes case 2, and the proof of the lemma. O

Lemma 5.5. Let p be a non-zero, H-homogeneous polynomial of H-index 2. Then there is no divergence
zero vector field of the form pY + qH.
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Proof. Since Yp is of H-index 0, so is Hq. But as H preserves H-index, ¢ is of H-index 0. Hence Hq = 0, so
that Yp = 0. But every nonzero first integral of Y has nonpositive H-index. Since p is of H-index 2, it must
vanish identically. O

Proof of theorem 5.1: Let V be a polynomial vector field of zero divergence. By lemmas 5.2, 5.3 and 5.4,
there is a divergence zero completely generated vector field W, such that V — W = pY + qH, where p is an
H-homogeneous polynomial of H-index 2. By lemma 5.5, p = 0. Thus Hq = 0, and so ¢H is complete. We
see that V = W + ¢H is divergence zero completely generated, as desired. O

The divergence lemma.

Lemma 5.6. Let V € Xp(SI(2,C)) be a polynomial vector field. Then there exists a completely generated
polynomial vector field W € Xp(SI(2,C)) such that

divW = divV.

Proof. The image by div of the polynomial vector fields is spanned by the following polynomials:
(i) div(a™bkcrd' X) = a™c" X (brd),
(ii) div(a™b*c"d'Y) = b*clY (a™c™), and
(iii) div(a™bFc"d'H) = H(a™bkcnd).
Here m, k,n and [ range over all nonnegative integers. We need only to show that each of these polynomials
is the image by div of a completely generated vector field. To this end, observe that

1
div [amc”X, k—H(kab’“_ld’ + lb’“cd"l)Y] =a™c" X (b*dY),

and that

div [bkdlY, ﬁ(mam_lbcn + namc"_ld)X] =bEdY (a™c).

This takes care of cases (i) and (ii). Case (iii) is only slightly more detailed. To handle it, let j = m4+n—k—1.
If 5 = 0 then H(a™bkcd') = 0 so there’s nothing to do. Suppose that j > 0. Let my,ms,n; and ny be
nonnegative integers such that

(a) m =my +me and n = ny + ns, and
(b)y mi—k+mn, —1=0.
It follows that mso + ny = j. Then
1
div [a™ b d H, ———— (maa™ " 1be™ + noa™2 ™ 1) X
ma + N
= a™bleMd H(a™2c™)
= H(a™b*c"d").
Finally, if j < 0, let k1, k2,l1 and I be nonnegative integers such that

(a) k=k + ko andl=11+l2, and
(b) m—ki+n—-10 =0.

Then ks + I = —j and we have

div |a™bF* c"d" H, (kaab®>—1d> + lybF2cd>~ )Y

ko + 1o
= ™M end H(bF2dR)
= H(a™bFc"d).
The reader may confirm directly or via the ideas in section 3 that all of the vector fields used were complete
where required. This completes the proof. O
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Proof of theorem 2. Let U € Xn(SI(2,C)) be a polynomial vector field. By lemma 5.6 there exists a
completely generated vector field U’ € Xo(S1(2,C)) which is polynomial, such that divU = divU’. Since
V := U — U’ is a polynomial vector field with zero divergence, it is, by theorem 5.1, completely generated.
Hence U = U' + V is completely generated, and Theorem 2 now follows from the density of polynomial
vector fields in X (SI(2,C)). O

6. ELLIPTIC MICROSPRAY MANIFOLDS

In this section we explore more fully the density and volume density property on spaces of the form M x C.
The case in which M is a complex Lie group was already handled in our note [V1]. The proofs of the density
theorems in this section are very similar to those in the less general case [V1], and thus will be very sketchy.
The main point here is to broaden the class of such complex manifolds M in hopes of giving insight into the
density and volume density property.

Definitions and examples.

Definition 6.1. An FElliptic Microspray (EM) manifold is a complex manifold M with the property that
for any V € Xo(M), compact K € M and € > O there are functions f1,..., fr € O(K) and C-completely
generated vector fields Xy, ..., X, satisfying

[v=Sa <

It is also useful to consider slightly more restrictive structures.

Definition 6.2. An EMV (V for volume) manifold is a pair (M,w), where M is a complex manifold and w
is a holomorphic volume element on M, with the property that for any V € Xo(M), compact K @ M and
€ > 0 there are functions fi,..., fr € O(K) and divergence zero completely generated vector fields X1, ..., X,
satisfying

V=il <o
Of course, every EMV manifold is EM. The terminology we have chosen is inspired by that in [Gro].

Examples

1. Every complex Lie group G is EMV. Indeed, the left invariant vector fields, which are all complete,
parallelize the tangent bundle of G, so every vector field can be written in the form > f;V; where
fi € O(G) and {V;} is any fixed basis of g = Lie(G). Moreover, div_ f;V; = > V; f;, so every left
invariant vector field has zero divergence.

2. Every Stein complex homogeneous space is EMV. Indeed, let G be a complex Lie group, and H a
closed complex subgroup such that M = H\G = {Hg ; g € G} is Stein. The left invariant vector fields
on G will project to M, as will the left invariant k-forms (k = dimcM). Let V be the vector space
spanned by the projection to M of the left invariant vector fields on G. All of these vector fields have
divergence zero with respect to any non-zero volume element coming from a left invariant k-form on
G. Our claim is then proved if we can show that Xo(M) = O(M) ® V. To see the latter, consider the
following short exact sequence of coherent sheaves on M:

08>0V = Xp —0.

Here O is the structure sheaf and X is the tangent bundle sheaf. The sequence gives rise to a long
exact sequence in cohomology, a portion of which is

H(O®V,M) = H*(Xo, M) - HY(S, M).

Since M is Stein, H(S, M) = 0 and our claim follows.
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Density theorems. Our first result is a stable volume density property theorem for EMV manifolds.

Theorem 6.3. If (M,w) is an EMV manifold, then (M x C,w A dz) has the volume density property.

Proof. First, let V = 2"X + (x)0,, X € Xo(M) be a divergence zero vector field. We can assume (by
approximation) that X = > ¢;Y; with Y; € Xo (M, w) divergence zero C-completely generated. Now
[1/(n+ 1)2"Y;,0;0,] = 2"¢;Y; + (¥)0,

is clearly divergence zero C-completely generated, and hence V is divergence zero C-completely generated
modulo 8,. That is, there exists a holomorphic vector field W which is divergence zero C-completely
generated, and has the property that V — W = (=, 2)0,. But then 0 = div(V — W) = 8,4, so that V — W
is complete. Hence V.= W + (V — W) is divergence zero C-completely generated. Since every divergence
zero vector field can be approximated by sums of vector fields of the same form as V', we are done. O

The next result is that EM manifolds with holomorphic volume elements are stably EMV.

Proposition 6.4. If M is an EM manifold and w is a nonvanishing holomorphic volume element on M,
then (M x C,w Adz) is EMV.

We shall need the following lemma.

Lemma 6.5. Let M and w be as in proposition 6.4. If X € Xo(M) is (C-) completely generated, then there
exists X € Xo(M x C,w A dz) which is divergence zero completely generated, such that

X - X = (%)9..

Proof. First note that if X € Xo(M) is complete, then so is X — z(div,X)d,. Moreover, the latter has zero
wAdz divergence. Next notice that X + ()0, +Y + ()0, = X +Y + (%)0, and that [X + (x)0,,Y + (%)0,] =
[X,Y] + (x)0,. The lemma follows easily from these facts. O

Proof of proposition 6.4: Let X € Xo(M x C,w Adz) be written as X = 27V} + ()9, where V; € Xo(M).
By approximation, we may assume that the sum is finite. Since M is EM, we may write (again, up to
approximation) V; = >, f;jxSjx where Sj, € Xo(M) are C-completely generated. Now, for each Sj; the
lemma guarantees a divergence zero completely generated S’jk € Xo(M xC,wAdz) so that S}y, —S’jk = (%)0,.
It follows that (up to approximation)

X =Y 2 finSik + (#)0,
ik
which is exactly what was needed. |

Using main result 1.3 in [V1], one immediately obtains the following.
Corollary 6.6. If M is a Stein EMV space, then M x C has the density property. If M is a Stein EM space
and M admits a holomorphic volume element, then M x C? has the density property.
7. A QUESTION
The results in section 6 suggest the following natural question:
Is there a difference between the volume density property and EMV?

To date, in all the examples for which we have been able to settle this question, the answer is “no”. If the
answer “no” can be established in general, this would represent a major breakthrough. However, it is by no
means clear what the answer is. Again, one needs candidates for testing. We propose one now. Let

¥3 :={(a,b,c,d) € C* | a®d — bc = 1}.
¥3 is a smooth subvariety of C! and is also a branched double cover of SL(2,C). Moreover, £3 admits some
interesting complete vector fields:

X =a%0y +cdy, Y =bdy+2add, and H = ad, — 2b0y + 2¢d, — 2ddy



15

correspond to the left invariant vector fields of SL(2,C), and
£ =0a%0,+ b0y, n=cO,+2add, and 6 =ad, + 2b0y — 2cd, — 2ddy

correspond to the right invariant vector fields of SL(2,C). Since ¥® is three dimensional, we expect some
relations between the left and right vector fields. A calculation shows that

1 1
=X+ §a3Y - §a2bH, n = 2ad’X — ®Y + acdH,

and 6 = 4bdX — 2acY + (a®d + bc)H.
We define a volume element  on X2 as follows: set
1 1
Qx =dbp —bdg, Qy = §(a5C —2¢d,), and Q= 5(2ad6a + ¢by — bo, — a%dy),
and define Q = Qx A Qy A Qg. Here, 6,(0;) =0if x =b,¢,d and 1 if x = a, and similarly for &, d. and dg.
One can easily compute the following
[H,X]=4X, [H,Y]=-3Y, [X,Y]=aH,
div(X) = div(Y) = 0.
It follows that div(aH) = 0, and hence that div(H) = 1. Thus, since aH vanishes when a = 0, we need more

than just X,Y and H to prove that ¥* is EMV. However, this is indeed the case.
Proposition 7.1. ¥° is EMV.

Proof. It suffices to show that H can be written as a sum ) f;V; with the V; generated by X and Y. To
this end,
ad[X, Y]+ c[Y,[Y, X]] = 3acY = a*dH — c[Y,aH] - 3acY

= a’dH - ¢((Ya)H — a[Y, H]) — 3acY

= (a®d — bc)H + 3acY — 3acYy

= H.

o

Moreover, we have been able to prove (with considerable difficulty) that if £2 has the volume density property,

then it has the density property. Nevertheless, the combinatorics arising in attempts to prove the volume
density property by the methods of sections 4 and 5 become too cumbersome for us to handle.
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