SAMPLING SEQUENCES FOR BERGMAN SPACES FOR p<1

ALEXANDER P. SCHUSTER AND DROR VAROLIN

ABSTRACT. We provide a proof of the sufficiency direction of Seip’s characteriza-
tion of sampling sequences for Bergman spaces for p < 1 based on the methods of
Berndtsson and Ortega-Cerda.

1. INTRODUCTION

For 0 < p < oo and ¢ a function subharmonic in D = {z € C : |z| < 1}, define
F(f to be the set of functions analytic in D satisfying

e—9(2) L/r
ép — {/ ’f ’Z|2dA(Z)} < o0,

where dA denotes Lebesgue area measure.
We say that a sequence I' = {v,} of distinct points in the disk is a sampling
sequence for F£ if there exist positive constants K; and K5 such that

/]

KAl f11G,, < Z [f(r)Pe 0 (1 — | ?) < K2 £,

for all f € F}.
Letting ¢(z) = log ﬁ, we obtain the standard Bergman space AP and the

corresponding sampling sequences, which were characterized by Seip [5] for p = 2
using methods that were extended to the case 1 < p < oo by the first named
author [4]. Berndtsson and Ortega-Cerda [1] showed, using an altogether different
proof, that a variation of Seip’s density condition from [5] is actually sufficient to
give sampling sequences in F ¢2) While it does not appear that the arguments of
Seip can be modified to work for AP when 0 < p < 1, the techniques of [1], as
was conjectured in [2], can be adapted to Fg (and hence AP) for 0 < p < 1. The
purpose of this note is to show how this can be done.
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We introduce the definitions necessary for the statement of the theorem we will
prove.
The sequence I' = {~,,} is said to be uniformly discrete if

(L) = inf [0, ()| > 0.

where
_ (-2
C1- &
is the standard involutive Mobius transformation. The disk of centre ¢ and radius
r in this metric will be denoted by A((, 7).

In the disk it is useful to consider the invariant Laplacian A = (1—|z|?)29%/9207%,
and for a measure pu and a function g, the invariant convolution u * g, defined by

dp(S)
[ st 7% o

d¢(2)

1

(nxg)(z) = —

Consider now the measure v =7y (1 — |,,|*)?d,, , where 4, is the Dirac-delta
measure at the point z, and for 1/2 < r < 1 the function

€0 :{ élog# if 1/2 <|¢] <,

0 otherwise,

where ¢, is such that [ Sr(()ﬂff—fé)z)z =1

We are now in a position to state the main theorem of this note.
Main Theorem. Suppose a sequence I' is uniformly discrete, and ¢ is a C? sub-

harmonic function with uniformly bounded invariant Laplacian A¢. If there exists
r <1 and é > 0 such that

(&) (2) > ]%Aqb(z) +5

for all z € D, then T is a sampling sequence for Fq’;.

Seip [5] introduces the following definitions. For I' uniformly discrete, z € D and
1/2 <r <1, let

1
2 1/2< | <r 108 15,7

1
1—r

D(T,r) =

log
and

D™(I') = liminf inf D(¢(T),r).

We then have the following theorem, as stated in [4].
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Theorem A. Let 1 < p < co. A uniformly discrete sequence I' is a sampling
sequence for AP if and only if D—(I') > 1/p.

A calculation shows that
D(¢.(T'),7)
(v*&)(2)

Moreover, since Ad(z) = 1 if ¢(z) = log ﬁ, the sufficiency direction of Theorem
A will follow from the Main Theorem, for 0 < p < .

As mentioned above, the proof is based on the techniques used in [1]. Our
main interest lies in proving the Main Theorem when 0 < p < 1, thus completing
Theorem A, but the proof works, without modification, when 1 < p < oo. With
the reader of the paper [1] in mind, we will employ the same notation as in that
article.

The paper is organized as follows. In the next section we recall some of the
notation from [1] that is necessary to prove the Main Theorem, and we then prove
the main theorem given a collection of technical lemmas. Finally, we complete these
technicalities, some of which were claimed without proof in [1], so we have included
details here for the convenience of the reader.

Cr 1
— — 5 as r — 1.
1—r

1
2

log

2. PROOF OF THE MAIN THEOREM

For 0 < t,e < 1, consider the functions
t
Xe = E_2XA(O,€) and Ve = vk Xe.
Note that
VedAx & —v & = (W& )dA* xe — V&,

which approaches 0 as € — 0 and ¢ — 1. Here we have used the fact that fdAxg =
gdA x f and

p* (hdA*g) = (u*xh)dAxg (1)
whenever h is radial. We can therefore choose r and ¢ close to 1 and € close to 0 so
that 5

VedA x 60(2) > %Agb(z) +3

for all z € D. Consider now the function
v= g(l/6 —VedAx&)dAx E,

where E(z) = log|z|?. Since E is the fundamental solution of the invariant Lapla-
cian (with respect to the invariant convolution), we see that

Av = g(l/e —vedAx &),

so that the function v = ¢ + v satisfies

~ P )
<ty — .
Aw_QVE 5

We require the following four lemmas to complete the proof of the theorem.
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Lemma 1. There are positive constants C, and C, such that
—Ce<wv(z) <0  forall zeD. (2)

Moreover,

lv(z) — tloge?| < C, (3)
for all z € D with p(z,7v,) < € for some n.

Lemma 2.

e—¥(2) e—¥(2)
h(= < / P _qA(- 4
5 | A < Z s M Ty AR @)
for all h € Fg.

Lemma 3. There is a constant C' > 0 such that for each h € F£ and a € D, there
exists hy € FY such that he(a) = h(a) and

o N
SO R < [h(2) e < Cem O hy (=)

for all z € A(a,1/2).
Lemma 4. There is a constant C' > 0 such that

1
L 9(2)IPdA(2) < Clg(@)P(1 — |al?)® + Ce? / 9(2)PdA(2)
€ JA(a,e) A(a,1/2)

for all g € Fg.

We take these lemmas as given and proceed with the proof. Suppose that h € F £ .
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Then

5 o—0(2) J—
— | |h(z)|P——d )|P dA
2/D| (= pdAG) < eQZ/A(%,E) P A
; / e—(2) g—v(2)
= — h(z)|P ————5—dA(z)
¢ Z B L= [ef?
e—?(2)
< Cte Pt~ 22/
('Yn 6)

= |22
< Cte P2 Z - |% /A(7 : |h(2)|Pe=?F)dA(2)
e—¢(rn)

< Cte P= QZl_WQ /A(7 6)\ hn(2)|PdA(2)

e—¢(rn)

= Cte P! —/ Bn z2)|PdA(z
; 1 — |ynl? A(%,e)‘ )] (2)

dA(z)

—¢(vn)
i e
SR D v o

n

{C B () P(L = |y [)? + Cte? /A lﬁn<z>|pdA<z>}

(Yn,1/2)

—(2)
< Cte ™Y e 0 (1~ |, ) [h(7)P + CteP™ ptz / P dA(z)
" (%,1/2> 1 — |z
< Cte ! B(m) ( h(va)? + Cte?Pt [ |h(z p €0 4
€ Ze — | P)|h(n) P + Cte | W (2).

The first line is Lemma 2, the third follows from Lemma 1, while the fourth
follows from the fact that

i~ 2
1—|2]2 = 1—¢€2

for all z € A(yn,€). The fifth line is a consequence of Lemma 3, where hy, = he,. s
while the seventh follows from Lemma 4 and the eighth from Lemma 3.

If we take € small enough, we arrive at the lower sampling inequality. The upper
inequality follows from the fact that I' is uniformly discrete. [ ]

3. TECHNICALITIES
We consider now the proofs of the four lemmas.
Proof of Lemma 1. We enumerate I once and for all, and let I'y be the first NV
terms of I'. We then set

UN =T Z (1—1v*?%, and wy =vn*E— (vy* E)dA*&,.
vyel'n
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Several applications of (1) yield

dA
wy(z) =) (loglsoz(v)lz—Aér(wc(v))loglwz(é)lzﬂl_—%)-

vel'n

Our first claim is that for each compact set K C D there exists an integer N = N (K)
such that for all z € K and M > N,

war(2) = wy(2).

Indeed, fix v € I and z € D such that |p,(2)| > . The function ¢ + log |~ (¢)[?
is harmonic in the domain V,.(y) = {¢ : 1 <|p,(¢)| <}, and thus

,_dAQ)
| &econonle (0P

) ol 1AO)
- [ eleonle-OF 1

= o 2L(u) _ 2
_/1/2<|u<r§r(u)10g|90z Py ()] = [u?)? = log |- (7).

The second equality follows from the invariance of the measure dA(¢)/(w(1—¢|?)?),
while the third equality comes from the mean value property for harmonic functions
and the fact that &.(C)dA(C)/(m(1 — [¢|*)?) is a radial probability measure. We
therefore have that

@)= 5 (logle)P - [ e loglenOF o).

— 2)2
vyelLNNA(z,T) <1 ‘C’ )

The claim thus follows from the fact that for a given compact set K, there is only
a finite number N of points v € I" such that for some z € K, |~ (2)| <.
We set

w= lim wy,
N —o00

where the limit is taken in the locally uniform topology. In other words, w is the
ordered sum

wle) =3 (loele. )P = [ & et oglo(OF - 20 )

(1= 1¢P)?

Since A(VN « I/) = vy is a positive measure, vy * E is subharmonic. Therefore,
again since &.(¢)dA(C)/(m(1 — |¢|?)?) is a radial probability measure, vy * E <
vn * E &, ie, wy <0. It follows that w < 0. Since v = §(wdA * x.), this implies
the right hand side of (2).
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Turning our attention now to (3), we wish to show first that there exists a
constant E, > 0 such that for every v € T,

lw(2) — log |- (7)|?| < E.

whenever z € A(v,0), where o = §(I")/2. By the above remarks, and since I' is
uniformly discrete, there exists an integer IV, depending only on 7, such that

N

dA(C) )
=D logle=(v)I* = | &(ec(y))logle-(O)F —— 25 | »
=3 (10816200501 - [ Enloctrp) ol OF =12 o
where v9 = v and 71, ..., yn are the members of T in A(~y, fjﬁ,)- It follows that
. ., dAQ)
w(z) = loglo-P = = [ &lec)ogle-(OF = s
N
+ ) log | (3)?
=1

3 s dAQ)
=3 [ etectsonto O e

Now, for any ¢ € I the integral

_ —o_ dA(Q)
o= [ &ect) og - (01—
may be estimated as follows:
1 . L, dAQ)
I < — 1 )21 . 2~ ol
t = c, %<|¢<(t)|<r 0og ’@C( )’ 0og ’90 (g)l 7'('(1 o |<‘2)2

1 o dAQ) _dale)
< o log4/A(z’1/2) log |<pz(€)| 7T(1 o |C|2)2 + 10g4/ﬂ)§r(¢c(t))ﬂ'(1 - |§|2)2

2 1/2 slog s—2
= Zlog4 ————=ds+logd =: D,.
. og /0 (1—32)2 s + log

We thus obtain that

N N
|w(z) = log e (MIP| < 1| + Y logle= (1) 7> + Y 11|
j=1 j=1

< D.(N+1)+Nlogo™? =: E,.
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Next, we need to estimate the convolution product

t dA(()
F.(z) = (log |~ (-)|2dA * x. z:—/ log [~ 0 @, (O ———24—.
( ) ( | ’Y( )| )( ) 62 A(O,e) | Y ( )| 7T<1—|C|2)2
It is easy to verify that, with u = ¢, (7),
Py O Pz (€) = Apu(),
where |A\| = 1. Thus, changing variables, we have
t dA(C)
Fez:—/ log || ———.
= Jawo w1
Then
t CIF_dAQ ot o dA(C) )
F (2 —t10g62:—/ log | =| ——— 55 + — log4e / —— = —tloge
) @ S E2e| 7O TR L T (PP
dA(() t €2
= 4t log [¢|? — log 4€? — tlog €
/;Em,e) el T ey T T e

dA(Q) log 4 N t€2 log €2

= 4¢ ] 2 t .
/;m,e) i T a e

The second line follows from a change of variables and the fact that the hyperbolic
area of a disk of radius € is <. Since |u| <€, 3-A(u,€) € D, and so the absolute
value of the integral in the last line is bounded by

1 1
1_ 42 /Dlog WdA(O,

which is seen to converge. We thus have a constant C such that for sufficiently
small e,

|log |¢ (*)|?dA * x(2) — tlog€?| < C, whenever |¢.(2)] < e.
Therefore, we have that for |, (z)| <,

|wdA * Xe(2) — tlog 62‘ < ‘wdA % Xe(2) — log |907(-)|2dA * Xe(z)}
+ [log [, (-)|?dA % xc(2) — tlog €”|
<D,+M=:C,.

Since v = £(wdA * x.), the proof of (3) is complete.
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Finally, we wish to prove the left inequality of (2). First, if |¢,(v)| < §(T")/2 for
some v € I', then (3) gives a universal lower bound for v(z). On the other hand,
if 2z is isolated away from I', then a look at the way w was estimated above shows
that v(z) is bounded from below by a negative number of even smaller modulus.
This completes the proof. [ |

Proof of Lemma 2. Let us note that the right hand side of (4) is

/ |h(2)[Pe” Vv ()

1|22

dA(z).
We set U = |h|Pe~%. Then log U + ¢ = plog |h| is a subharmonic function. Thus
0< Alogl + A= AU — U2+ Ap < —AU + Ay
=208 U U2 =T ‘

It follows from the nonnegativity of U and the estimate (1) on A above, that

o

AU > —UAyp > —%’Uye +U3.

Dividing by 1 — |z|? and integrating yields
0 U(z) D U(z) )
— —_ < il R A i .
2 /D Tt =5 /D T AR + /D<1 [2*) AU (2)dA(z)

We would like to show that the second integral on the right is nonpositive. If U
were compactly supported, we could use integration by parts to shift the Laplacian
to 1 — |z|%. Since A(1 — |2]|?) = —1 and U > 0, we would be done. So instead,
one “cuts things off” as follows. Let x; > 0, 0 << t < 1 be a function which is
identically one on [0, t], supported compactly in [0,1), with additional properties
to be described shortly. Then

/D(l— [2[)xe (|2 ) AU (2)dA(2) Z/DA((l— [21)xe (1)) U (2)dA().

Recalling that on radial functions,

1, 1
A_4(8T+T8T)7

one computes that
A (1= 2P)xe(l2) = =xellz]) = 2 (2]) + (1 = [2*) Axe (| 2)).-
One then has

/D(l_|Z|2)Xt(|z|)AU(z)dA(Z):/D_Xtﬂz’)U(z)dA"‘Ita
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where

— 12122121 (12 z — 2|5 A > L(Z)
Ji= = [ (= PP DU + (0= 1) BxeD)) = s

Now, by Lemma 1 and the hypotheses on h, U is integrable with respect to the
Poincaré area, and thus with respect to Euclidean area. Hence as t — 1,

/ xe(|ZDU(2)dA(z) — / U(2)dA() > 0.
D D

We claim that with a good choice of y;, the integral J; — 0 as t — 1. To see this,
simply choose x; so that it has bounded invariant Laplacian, uniformly in ¢. (Exam-
ples of this are easy enough to construct. For instance, let f be a smooth function
on the nonnegative real line, which is supported on [0,1/2] and is identically 1 on

[0,1/4]. Then just take
2> — ¢
xll=h =7 (FErt).
2

The boundedness of the invariant Laplacian is easy to check.) Because y; is radial,
this will also give a bound on the gradient. One can then apply the dominated
convergence theorem. This completes the proof. |

Proof of Lemma 3. Since ¢ is subharmonic with bounded invariant Laplacian, we
may apply the Riesz decomposition theorem. Thus, if G is a fixed Green operator,
one has

¢ = G(AP) + fa

for some harmonic function f, in a neighborhood of the closed disc A(a,1/2). Let
ga be a holomorphic function whose real part is f,, and set g, = g4 — ga(a). Then

|9 — ¢(a) — 2R(qa)| < K.
Now, let ho(2) = h(z)e=2P" '9a(=) Then
|h(z)|pe—¢(2) _ ‘}“La(z)|pe—¢(2)+2ﬂ?(qa(2)) < Ce_¢(“)]ﬁa(z)\p,

where C' = eX. The other inequality in the lemma follows similarly. [ |

Proof of Lemma 4. Let z € A(a, ) and write g(z) — g(a) = [ ¢'(u)du, so that

/az g (u)du

<lgla)l + [z —al sup |g'(u)],
u€A(a,e)
10
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which implies that

lg(2)[P <27 {|g(a)lp + 1z —al? sup Ig’(U)Ip}

u€A(a,e)

<2 {\g(a)lp +Clz—al” sup (1—[uf*)7*77 /A( | \g(C)!pdA(C)}

u€A(a,e)

<2 {Ig(a)lp +Clz—alP(1—af*)~*7" /A Ig(C)IpdA(C)} :

(a,1/2)

The second line follows from the standard estimate (see [3], for example)

g @P <C )27 [ JgOPaA).

A(u,€)
Therefore,
1 P
i 9(2)IPdA(2)
€ JA(a,e)
1
<cligap / dA(2)
€ Ala,e)
O (1 )R / 9(OIPA(C) / la— 2PA(2).
A(a,1/2) A(a,e)
Since

/ la— 2PA(z) < e / 1 — G2PdA(2)
Ala,e)

A(a,e)
< (1 - ya|2)p+2/ 1 — G| ~4PdA(2)
A(0,¢)
< Cet?(1 — [af?)P+?,

the result follows. [ |
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