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Abstract. We provide a proof of the sufficiency direction of Seip’s characteriza-

tion of sampling sequences for Bergman spaces for p < 1 based on the methods of

Berndtsson and Ortega-Cerdà.

1. Introduction

For 0 < p < ∞ and φ a function subharmonic in D = {z ∈ C : |z| < 1}, define
F pφ to be the set of functions analytic in D satisfying

‖f‖φ,p =

{∫
D
|f(z)|p e

−φ(z)

1− |z|2
dA(z)

}1/p

<∞,

where dA denotes Lebesgue area measure.
We say that a sequence Γ = {γn} of distinct points in the disk is a sampling

sequence for F pφ if there exist positive constants K1 and K2 such that

K1‖f‖pφ,p ≤
∑
n

|f(γn)|pe−φ(γn)(1− |γn|2) ≤ K2‖f‖pφ,p

for all f ∈ F pφ .

Letting φ(z) = log 1
1−|z|2 , we obtain the standard Bergman space Ap and the

corresponding sampling sequences, which were characterized by Seip [5] for p = 2
using methods that were extended to the case 1 ≤ p < ∞ by the first named
author [4]. Berndtsson and Ortega-Cerdà [1] showed, using an altogether different
proof, that a variation of Seip’s density condition from [5] is actually sufficient to
give sampling sequences in F 2

φ . While it does not appear that the arguments of

Seip can be modified to work for Ap when 0 < p < 1, the techniques of [1], as
was conjectured in [2], can be adapted to F pφ (and hence Ap) for 0 < p < 1. The
purpose of this note is to show how this can be done.
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We introduce the definitions necessary for the statement of the theorem we will
prove.

The sequence Γ = {γn} is said to be uniformly discrete if

δ(Γ) = inf
n 6=m
|φγn(γm)| > 0,

where

φζ(z) =
ζ − z
1− ζz

is the standard involutive Möbius transformation. The disk of centre ζ and radius
r in this metric will be denoted by ∆(ζ, r).

In the disk it is useful to consider the invariant Laplacian ∆̃ = (1−|z|2)2∂2/∂z∂z,
and for a measure µ and a function g, the invariant convolution µ ∗ g, defined by

(µ ∗ g)(z) =
1

π

∫
D
g(φz(ζ))

dµ(ζ)

(1− |ζ|2)2
.

Consider now the measure ν = π
∑
n(1− |γn|2)2δγn , where δz is the Dirac-delta

measure at the point z, and for 1/2 < r < 1 the function

ξr(ζ) =

{ 1
cr

log 1
|ζ|2 if 1/2 < |ζ| < r,

0 otherwise,

where cr is such that
∫
D ξr(ζ) dA(ζ)

π(1−|ζ|2)2 = 1.

We are now in a position to state the main theorem of this note.

Main Theorem. Suppose a sequence Γ is uniformly discrete, and φ is a C2 sub-
harmonic function with uniformly bounded invariant Laplacian ∆̃φ. If there exists
r < 1 and δ > 0 such that

(ν ∗ ξr)(z) >
2

p
∆̃φ(z) + δ

for all z ∈ D, then Γ is a sampling sequence for F pφ .

Seip [5] introduces the following definitions. For Γ uniformly discrete, z ∈ D and
1/2 < r < 1, let

D(Γ, r) =

∑
1/2<|γn|<r log 1

|γn|

log 1
1−r

and
D−(Γ) = lim inf

r→1
inf
z∈D

D(φz(Γ), r).

We then have the following theorem, as stated in [4].
2



Theorem A. Let 1 ≤ p < ∞. A uniformly discrete sequence Γ is a sampling
sequence for Ap if and only if D−(Γ) > 1/p.

A calculation shows that
D(φz(Γ), r)

(ν ∗ ξr)(z)
=

1

2

cr

log 1
1−r
→ 1

2
as r → 1.

Moreover, since ∆̃φ(z) = 1 if φ(z) = log 1
1−|z|2 , the sufficiency direction of Theorem

A will follow from the Main Theorem, for 0 < p <∞.
As mentioned above, the proof is based on the techniques used in [1]. Our

main interest lies in proving the Main Theorem when 0 < p < 1, thus completing
Theorem A, but the proof works, without modification, when 1 ≤ p < ∞. With
the reader of the paper [1] in mind, we will employ the same notation as in that
article.

The paper is organized as follows. In the next section we recall some of the
notation from [1] that is necessary to prove the Main Theorem, and we then prove
the main theorem given a collection of technical lemmas. Finally, we complete these
technicalities, some of which were claimed without proof in [1], so we have included
details here for the convenience of the reader.

2. Proof of the Main Theorem

For 0 < t, ε < 1, consider the functions

χε =
t

ε2
χ∆(0,ε) and νε = ν ∗ χε.

Note that
νεdA ∗ ξr − ν ∗ ξr = (ν ∗ ξr)dA ∗ χε − ν ∗ ξr,

which approaches 0 as ε→ 0 and t→ 1. Here we have used the fact that fdA ∗ g =
gdA ∗ f and

µ ∗ (hdA ∗ g) = (µ ∗ h)dA ∗ g (1)

whenever h is radial. We can therefore choose r and t close to 1 and ε close to 0 so
that

νεdA ∗ ξr(z) >
2

p
∆̃φ(z) +

δ

2

for all z ∈ D. Consider now the function

v =
p

2
(νε − νεdA ∗ ξr)dA ∗ E,

where E(z) = log |z|2. Since E is the fundamental solution of the invariant Lapla-
cian (with respect to the invariant convolution), we see that

∆̃v =
p

2
(νε − νεdA ∗ ξr),

so that the function ψ = φ+ v satisfies

∆̃ψ ≤ p

2
νε −

δ

2
.

We require the following four lemmas to complete the proof of the theorem.
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Lemma 1. There are positive constants Cr and Cε such that

−Cε ≤ v(z) ≤ 0 for all z ∈ D. (2)

Moreover,

|v(z)− t log εp| ≤ Cr (3)

for all z ∈ D with ρ(z, γn) < ε for some n.

Lemma 2.

δ

2

∫
D
|h(z)|p e−ψ(z)

(1− |z|2)
dA(z) ≤ t

ε2

∑
n

∫
∆(γn,ε)

|h(z)|p e−ψ(z)

(1− |z|2)
dA(z) (4)

for all h ∈ F pφ .

Lemma 3. There is a constant C > 0 such that for each h ∈ F pφ and a ∈ D, there
exists h̃a ∈ F pφ such that h̃a(a) = h(a) and

1

C
e−φ(a)|h̃a(z)|p ≤ |h(z)|pe−φ(z) ≤ Ce−φ(a)|h̃a(z)|p

for all z ∈ ∆(a, 1/2).

Lemma 4. There is a constant C > 0 such that

1

ε2

∫
∆(a,ε)

|g(z)|pdA(z) ≤ C|g(a)|p(1− |a|2)2 + Cεp
∫

∆(a,1/2)

|g(z)|pdA(z)

for all g ∈ F pφ .

We take these lemmas as given and proceed with the proof. Suppose that h ∈ F pφ .
4



Then

δ

2

∫
D
|h(z)|p e

−ψ(z)

1− |z|2
dA(z) ≤ t

ε2

∑
n

∫
∆(γn,ε)

|h(z)|p e
−ψ(z)

1− |z|2
dA(z)

=
t

ε2

∑
n

∫
∆(γn,ε)

|h(z)|p e
−φ(z)e−v(z)

1− |z|2
dA(z)

≤ Ctε−pt−2
∑
n

∫
∆(γn,ε)

|h(z)|p e
−φ(z)

1− |z|2
dA(z)

≤ Ctε−pt−2
∑
n

1

1− |γn|2

∫
∆(γn,ε)

|h(z)|pe−φ(z)dA(z)

≤ Ctε−pt−2
∑
n

e−φ(γn)

1− |γn|2

∫
∆(γn,ε)

|h̃n(z)|pdA(z)

= Ctε−pt
∑
n

e−φ(γn)

1− |γn|2

∫
∆(γn,ε)

|h̃n(z)|pdA(z)

≤ Ctε−pt
∑
n

e−φ(γn)

1− |γn|2

{
C|h̃n(γn)|p(1− |γn|2)2 + Ctεp

∫
∆(γn,1/2)

|h̃n(z)|pdA(z)

}

≤ Ctε−pt
∑
n

e−φ(γn)(1− |γn|2)|h(γn)|p + Ctεp−pt
∑
n

∫
∆(γn,1/2)

|h(z)|p e
−φ(z)

1− |z|2
dA(z)

≤ Ctε−pt
∑
n

e−φ(γn)(1− |γn|2)|h(γn)|p + Ctεp−pt
∫
D
|h(z)|p e

−φ(z)

1− |z|2
dA(z).

The first line is Lemma 2, the third follows from Lemma 1, while the fourth
follows from the fact that

1− |γn|2

1− |z|2
≤ 4

1− ε2

for all z ∈ ∆(γn, ε). The fifth line is a consequence of Lemma 3, where h̃n = h̃γn ,
while the seventh follows from Lemma 4 and the eighth from Lemma 3.

If we take ε small enough, we arrive at the lower sampling inequality. The upper
inequality follows from the fact that Γ is uniformly discrete. �

3. Technicalities

We consider now the proofs of the four lemmas.

Proof of Lemma 1. We enumerate Γ once and for all, and let ΓN be the first N
terms of Γ. We then set

νN = π
∑
γ∈ΓN

(1− |γ|2)2δγ and wN = νN ∗ E − (νN ∗ E)dA ∗ ξr.
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Several applications of (1) yield

wN (z) =
∑
γ∈ΓN

(
log |ϕz(γ)|2 −

∫
D
ξr(ϕζ(γ)) log |ϕz(ζ)|2 dA(ζ)

π(1− |ζ|2)2

)
.

Our first claim is that for each compact setK ⊂ D there exists an integerN = N(K)
such that for all z ∈ K and M > N ,

wM (z) = wN (z).

Indeed, fix γ ∈ Γ and z ∈ D such that |ϕγ(z)| > r. The function ζ 7→ log |ϕγ(ζ)|2
is harmonic in the domain Vr(γ) = {ζ : 1

2 < |ϕγ(ζ)| < r}, and thus∫
D
ξr(ϕζ(γ)) log |ϕz(ζ)|2 dA(ζ)

π(1− |ζ|2)2

=

∫
Vr(γ)

ξr(ϕζ(γ)) log |ϕz(ζ)|2 dA(ζ)

π(1− |ζ|2)2

=

∫
1/2<|u|<r

ξr(u) log |ϕz ◦ ϕγ(u)|2 dA(u)

π(1− |u|2)2
= log |ϕz(γ)|2.

The second equality follows from the invariance of the measure dA(ζ)/(π(1−|ζ|2)2),
while the third equality comes from the mean value property for harmonic functions
and the fact that ξr(ζ)dA(ζ)/(π(1 − |ζ|2)2) is a radial probability measure. We
therefore have that

wN (z) =
∑

γ∈ΓN∩∆(z,r)

(
log |ϕz(γ)|2 −

∫
D
ξr(ϕζ(γ)) log |ϕz(ζ)|2 dA(ζ)

π(1− |ζ|2)2

)
.

The claim thus follows from the fact that for a given compact set K, there is only
a finite number N of points γ ∈ Γ such that for some z ∈ K, |ϕγ(z)| ≤ r.

We set
w = lim

N→∞
wN ,

where the limit is taken in the locally uniform topology. In other words, w is the
ordered sum

w(z) =
∑
γ∈Γ

(
log |ϕz(γ)|2 −

∫
D
ξr(ϕζ(γ)) log |ϕz(ζ)|2 dA(ζ)

π(1− |ζ|2)2

)
.

Since ∆̃(νN ∗E) = νN is a positive measure, νN ∗E is subharmonic. Therefore,
again since ξr(ζ)dA(ζ)/(π(1 − |ζ|2)2) is a radial probability measure, νN ∗ E ≤
νN ∗E ∗ ξr, i.e., wN ≤ 0. It follows that w ≤ 0. Since v = p

2 (wdA ∗χε), this implies
the right hand side of (2).
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Turning our attention now to (3), we wish to show first that there exists a
constant Er > 0 such that for every γ ∈ Γ,∣∣w(z)− log |ϕz(γ)|2

∣∣ ≤ Er
whenever z ∈ ∆(γ, σ), where σ = δ(Γ)/2. By the above remarks, and since Γ is
uniformly discrete, there exists an integer N , depending only on r, such that

w(z) =
N∑
j=0

(
log |ϕz(γj)|2 −

∫
D
ξr(ϕζ(γj)) log |ϕz(ζ)|2 dA(ζ)

π(1− |ζ|2)2

)
,

where γ0 = γ and γ1, ..., γN are the members of Γ in ∆(γ, r+σ1+rσ ). It follows that

w(z)− log |ϕz(γ)|2 = −
∫
D
ξr(ϕζ(γ)) log |ϕz(ζ)|2 dA(ζ)

π(1− |ζ|2)2

+

N∑
j=1

log |ϕz(γj)|2

−
N∑
j=1

∫
D
ξr(ϕζ(γj)) log |ϕz(ζ)|2 dA(ζ)

π(1− |ζ|2)2
.

Now, for any t ∈ Γ the integral

It =

∫
D
ξr(ϕζ(t)) log |ϕz(ζ)|−2 dA(ζ)

π(1− |ζ|2)2

may be estimated as follows:

It ≤
1

cr

∫
1
2<|ϕζ(t)|<r

log |ϕζ(t)|−2 log |ϕz(ζ)|−2 dA(ζ)

π(1− |ζ|2)2

≤ 1

cr
log 4

∫
∆(z,1/2)

log |ϕz(ζ)|−2 dA(ζ)

π(1− |ζ|2)2
+ log 4

∫
D
ξr(ϕζ(t))

dA(ζ)

π(1− |ζ|2)2

=
2

cr
log 4

∫ 1/2

0

s log s−2

(1− s2)2
ds+ log 4 =: Dr.

We thus obtain that

∣∣w(z)− log |ϕz(γ)|2
∣∣ ≤ |Iγ |+ N∑

j=1

log |ϕz(γj)|−2 +
N∑
j=1

|Iγj |

≤ Dr(N + 1) +N log σ−2 =: Er.
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Next, we need to estimate the convolution product

Fε(z) =
(
log |ϕγ(·)|2dA ∗ χε

)
(z) =

t

ε2

∫
∆(0,ε)

log |ϕγ ◦ ϕz(ζ)|2 dA(ζ)

π(1− |ζ|2)2
.

It is easy to verify that, with u = ϕz(γ),

ϕγ ◦ ϕz(ζ) = λϕu(ζ),

where |λ| = 1. Thus, changing variables, we have

Fε(z) =
t

ε2

∫
∆(u,ε)

log |ζ|2 dA(ζ)

π(1− |ζ|2)2
.

Then

Fε(z)− t log ε2 =
t

ε2

∫
∆(u,ε)

log

∣∣∣∣ ζ2ε
∣∣∣∣2 dA(ζ)

π(1− |ζ|2)2
+

t

ε2
log 4ε2

∫
∆(u,ε)

dA(ζ)

π(1− |ζ|2)2
− t log ε2

= 4t

∫
1
2ε∆(u,ε)

log |ζ|2 dA(ζ)

π(1− 4ε2|ζ|2)2
+

t

ε2
log 4ε2

ε2

1− ε2
− t log ε2

= 4t

∫
1
2ε∆(u,ε)

log |ζ|2 dA(ζ)

π(1− 4ε2|ζ|2)2
+ t

log 4

1− ε2
+ t

ε2 log ε2

1− ε2
.

The second line follows from a change of variables and the fact that the hyperbolic

area of a disk of radius ε is ε2

1−ε2 . Since |u| < ε, 1
2ε∆(u, ε) ⊆ D, and so the absolute

value of the integral in the last line is bounded by

1

1− 4ε2

∫
D

log
1

|ζ|2
dA(ζ),

which is seen to converge. We thus have a constant C such that for sufficiently
small ε,

| log |φγ(·)|2dA ∗ χε(z)− t log ε2| ≤ C, whenever |φγ(z)| < ε.

Therefore, we have that for |ϕγ(z)| < ε,∣∣wdA ∗ χε(z)− t log ε2
∣∣ ≤ ∣∣wdA ∗ χε(z)− log |ϕγ(·)|2dA ∗ χε(z)

∣∣
+
∣∣log |ϕγ(·)|2dA ∗ χε(z)− t log ε2

∣∣
≤ Dr +M =: Cr.

Since v = p
2 (wdA ∗ χε), the proof of (3) is complete.
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Finally, we wish to prove the left inequality of (2). First, if |ϕz(γ)| < δ(Γ)/2 for
some γ ∈ Γ, then (3) gives a universal lower bound for v(z). On the other hand,
if z is isolated away from Γ, then a look at the way w was estimated above shows
that v(z) is bounded from below by a negative number of even smaller modulus.
This completes the proof. �

Proof of Lemma 2. Let us note that the right hand side of (4) is∫
D

|h(z)|pe−ψ(z)νε(z)

1− |z|2
dA(z).

We set U = |h|pe−ψ. Then logU + ψ = p log |h| is a subharmonic function. Thus

0 ≤ ∆ logU + ∆ψ =
1

U
∆U − 1

U2
|Uz|2 + ∆ψ ≤ 1

U
∆U + ∆ψ.

It follows from the nonnegativity of U and the estimate (1) on ∆̃ψ above, that

∆̃U ≥ −U∆̃ψ ≥ −p
2
Uνε + U

δ

2
.

Dividing by 1− |z|2 and integrating yields

δ

2

∫
D

U(z)

1− |z|2
dA(z) ≤ p

2

∫
D

U(z)

1− |z|2
νε(z)dA(z) +

∫
D
(1− |z|2)∆U(z)dA(z).

We would like to show that the second integral on the right is nonpositive. If U
were compactly supported, we could use integration by parts to shift the Laplacian
to 1 − |z|2. Since ∆(1 − |z|2) = −1 and U ≥ 0, we would be done. So instead,
one “cuts things off” as follows. Let χt ≥ 0, 0 << t < 1 be a function which is
identically one on [0, t], supported compactly in [0, 1), with additional properties
to be described shortly. Then∫

D
(1− |z|2)χt(|z|)∆U(z)dA(z) =

∫
D

∆
(
(1− |z|2)χt(|z|)

)
U(z)dA(z).

Recalling that on radial functions,

∆ =
1

4
(∂2
r +

1

r
∂r),

one computes that

∆
(
(1− |z|2)χt(|z|)

)
= −χt(|z|)− |z|χ′t(|z|) + (1− |z|2)∆χt(|z|).

One then has∫
D

(1− |z|2)χt(|z|)∆U(z)dA(z) =

∫
D
−χt(|z|)U(z)dA+ It,
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where

Jt = −π
∫
D

(
(1− |z|2)2|z|χ′t(|z|)U(z) + (1− |z|2)∆̃χt(|z|)

) dA(z)

π(1− |z|2)2

Now, by Lemma 1 and the hypotheses on h, U is integrable with respect to the
Poincaré area, and thus with respect to Euclidean area. Hence as t→ 1,∫

D
χt(|z|)U(z)dA(z)→

∫
D
U(z)dA(z) ≥ 0.

We claim that with a good choice of χt, the integral Jt → 0 as t→ 1. To see this,
simply choose χt so that it has bounded invariant Laplacian, uniformly in t. (Exam-
ples of this are easy enough to construct. For instance, let f be a smooth function
on the nonnegative real line, which is supported on [0, 1/2] and is identically 1 on
[0, 1/4]. Then just take

χt(|z|) := f

(
|z|2 − t
1− 1+t

2

)
.

The boundedness of the invariant Laplacian is easy to check.) Because χt is radial,
this will also give a bound on the gradient. One can then apply the dominated
convergence theorem. This completes the proof. �

Proof of Lemma 3. Since φ is subharmonic with bounded invariant Laplacian, we
may apply the Riesz decomposition theorem. Thus, if G is a fixed Green operator,
one has

φ = G(∆̃φ) + fa

for some harmonic function fa in a neighborhood of the closed disc ∆(a, 1/2). Let
ga be a holomorphic function whose real part is fa, and set qa = ga − ga(a). Then

|φ− φ(a)− 2<(qa)| ≤ K.

Now, let h̃a(z) = h(z)e−2p−1qa(z). Then

|h(z)|pe−φ(z) = |h̃a(z)|pe−φ(z)+2<(qa(z)) ≤ Ce−φ(a)|h̃a(z)|p,

where C = eK . The other inequality in the lemma follows similarly. �

Proof of Lemma 4. Let z ∈ ∆(a, ε) and write g(z)− g(a) =
∫ z
a
g′(u)du, so that

|g(z)| ≤ |g(a)|+
∣∣∣∣∫ z

a

g′(u)du

∣∣∣∣
≤ |g(a)|+ |z − a| sup

u∈∆(a,ε)

|g′(u)|,
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which implies that

|g(z)|p ≤ 2p

{
|g(a)|p + |z − a|p sup

u∈∆(a,ε)

|g′(u)|p
}

≤ 2p

{
|g(a)|p + C|z − a|p sup

u∈∆(a,ε)

(1− |u|2)−2−p
∫

∆(u,ε)

|g(ζ)|pdA(ζ)

}

≤ 2p

{
|g(a)|p + C|z − a|p(1− |a|2)−2−p

∫
∆(a,1/2)

|g(ζ)|pdA(ζ)

}
.

The second line follows from the standard estimate (see [3], for example)

|g′(u)|p ≤ C(1− |u|2)−2−p
∫

∆(u,ε)

|g(ζ)|pdA(ζ).

Therefore,

1

ε2

∫
∆(a,ε)

|g(z)|pdA(z)

≤ C 1

ε2
|g(a)|p

∫
∆(a,ε)

dA(z)

+ C
1

ε2
(1− |a|2)−2−p

∫
∆(a,1/2)

|g(ζ)|pdA(ζ)

∫
∆(a,ε)

|a− z|pA(z).

Since ∫
∆(a,ε)

|a− z|pA(z) ≤ εp
∫

∆(a,ε)

|1− az|pdA(z)

≤ εp+2(1− |a|2)p+2

∫
∆(0,ε)

|1− az|−4−pdA(z)

≤ Cεp+2(1− |a|2)p+2,

the result follows. �
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