
Positivity conditions for Hermitian symmetric functions
Dedicated to Yum-Tong Siu on the occasion of his sixtieth birthday.

John P. D’Angelo and Dror Varolin
Dept. of Mathematics
University of Illinois
Urbana, IL 61801

Introduction

We introduce a family of positivity conditions for Hermitian symmetric functions,
establish basic properties, and connect the ideas with complex geometry. Let M be a
complex manifold, and let M ′ denote its complex conjugate manifold. In this paper M
will typically be either Cn or the total space of a holomorphic line bundle over a compact
complex manifold.

A holomorphic function R : M ×M ′ → C is called Hermitian symmetric if

R(z, w) = R(w, z)

for all z and w in M . Observe that z → R(z, z) is then necessarily a real-valued function;
we say that R is “real on the diagonal”; conversely, by polarization R is determined by its
values on the diagonal. Let P0(M) denote the collection of Hermitian symmetric functions
on M × M ′. We will introduce in Definition 1, for N a positive integer or infinity, a
subset PN = PN (M) of P0(M). On the diagonal, the set P1 consists by definition of
those R that are nonnegative, and the set P∞ consists (by a classical result recalled in
Lemma 2) of squared norms of Hilbert space valued holomorphic mappings. The subsets
Pk therefore interpolate two natural but distinct notions of nonnegativity for Hermitian
symmetric functions. The condition defining Pk is analogous to a positivity property for
higher curvatures of Hermitian metrics.

We show, as part of Theorem 3, that Pj(C2) 6= Pk(C2) when j 6= k. Theorem
3 includes precise information about when a member of a discrete collection of natural
one-parameter families of Hermitian symmetric polynomials lies in Pk(C2).

Our other main result (Theorem 1) concerns a stability criterion. A subset S of P0(M)
is called stable if there is a finite k for which Pk ∩ S = P∞ ∩ S. The minimum such k is
called the stability index of S, and is written I(S). For example, it is standard that the
collection H of nonnegative Hermitian forms on Cn equals the collection of squared norms
of linear forms; therefore I(H) = 1. For each integer N we give an example of an S for
which I(S) = N . In Theorem 1 we relate the stability index to the number of positive
eigenvalues of the underlying matrix of coefficients of a Hermitian symmetric function.

The concepts in this paper apply in a situation of some interest in complex geometry.
Let X be a complex manifold and let L be a holomorphic line bundle over X. A (possibly
degenerate) metric g on the fibres of L is called a globalizable singular metric if it is the
restriction of a Hermitian symmetric function G on L× L′. Our focus here will be on G.
The subsets PN of these metrics provide intermediate conditions between simply being a
(possibly degenerate) metric (P1) and being a holomorphic pullback of the Fubini-Study
metric (P∞).
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The proof of Theorem 1 applies to show that the stability index for the collection S
of globalizable metrics on a holomorphic line bundle L over a compact complex manifold
X is bounded above by dimH0(X,L∗)− 1. Thus S is stable. See Theorem 2.

There are many other useful positivity conditions for Hermitian symmetric functions.
In particular, the set of nonnegative logarithmically plurisubharmonic (Hermitian) func-
tions properly contains P2. We briefly discuss these issues in Section V.

The authors wish to acknowledge useful discussions over the years with Yum-Tong Siu;
in particular Siu pointed out to the first author a connection between positivity conditions
for bihomogeneous polynomials and isometric imbedding. Motivated by Siu’s comments,
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authors also wish to thank Dan Lichtblau of Wolfram Research, who did a Groebner basis
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I. Positivity Classes for Hermitian symmetric functions

We begin by describing an essentially general class of Hermitian symmetric functions
on a complex manifold M . Let H be a Hilbert space with inner product 〈 , 〉. Let
f, g : M → H be holomorphic mappings, and define R by the formula

R(z, w) = 〈f(z), f(w)〉 − 〈g(z), g(w)〉. (1)

Then R is Hermitian symmetric. When g = 0 in (1) we have R = ||f ||2 on the diagonal;
squared norms of holomorphic mappings will play a special role in this paper. We also note
that, by choosing H = C, and by choosing f and g appropriately in (1), we can obtain the
(polarization of the) real and imaginary parts of an arbitrary holomorphic complex-valued
function.

When R satisfies (1), we use the term holomorphic representation to denote the holo-
morphic mapping (f, g) : M → H×H determining R. When g can be chosen to be 0, we
simply say that f : M → H is a holomorphic mapping representing R.

We now introduce the positivity classes Pk(M) for the collection of Hermitian sym-
metric functions on the manifold M ×M ′. Our notion evokes some classical functional
analysis such as Bochner’s theorem on functions of positive type; the key difference is that
we focus on nonnegativity of matrices of a fixed size rather than of all sizes.

Definition 1. (Positivity classes). Let M be a complex manifold. We denote the set
of Hermitian symmetric function on M ×M ′ by P0(M). For each positive integer N we
write R ∈ PN (M) if

N∑
i,j=1

R(zi, zj)aiaj ≥ 0

for all z = (z1, ..., zN ) ∈ MN and all a ∈ CN . In other words the Hermitian matrix with
(i, j) entry equal to R(zi, zj) is nonnegative definite. We write R ∈ P∞ when R ∈ PN for
all N ; thus
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P∞ =
∞⋂
N=1

PN .

When M is fixed, we drop it from the notation, and write PN for PN (M).

Remark 1. For each subset PN there are corresponding sharp forms; for example
we could demand that the matrix R(zi, zj) be positive definite whenever the points are
distinct. In some contexts other sharp forms are useful; see Definition 5 in Section V.

Definition 2. (Stability Index) Let S be a subset of P0. We define I(S) to be the
smallest k for which

S ∩ P∞ = S ∩ Pk.

If no such k exists we write I(S) =∞. When I(S) is finite we say that S is stable.

We begin by noting some obvious properties of the sets Pk, and then we study P∞.

Lemma 1. Each Pk is closed under sum and under product. For each k we have
Pk+1 ⊂ Pk. If Rλ is a family of Hermitian symmetric functions depending continuously
on some parameter λ, then the set of λ for which Rλ ∈ Pk is closed.

Proof. These facts follow easily from Definition 1. We note that the proof of closure
under product uses a well-known lemma of Schur: if (aij) and (bij) are nonnegative definite
matrices of the same size, then their Schur product (aijbij) is also nonnegative definite. ♠

Lemma 2. Suppose that there is a Hilbert space H and a holomorphic function
f : M → H such that

R(z, w) = 〈f(z), f(w)〉. (2)

Then R ∈ P∞. Conversely, if R ∈ P∞, then there is a Hilbert space H and a holomorphic
mapping f : M → H representing R, and thus (2) holds.

Proof. First assume (2) holds. Fix N , and choose arbitrary points zi in M and
a ∈ CN . We see that

N∑
i,j=1

R(zi, zj)aiaj =
N∑

i,j=1

〈f(zi)ai, f(zj)aj〉 = ||
N∑
i=1

f(zi)ai||2 ≥ 0,

and hence R ∈ PN for all N .
The converse assertion is classical; various versions go back to Mercer in 1909 and to

E. H. Moore in 1916. For historical remarks and related ideas we refer to [A] and [S].
We give a sketch, following [CW], of the converse assertion. Consider the complex

vector space V of functions on M with finite support. Using R we define a Hermitian form
on V by the following formula. For u, v ∈ V we put

〈u, v〉R =
∑

R(z, w)u(z)v(w),

3



where the sum is taken over all z, w ∈ M , but is finite by the support condition. Let V0

denote the collection of u with 〈u, u〉R = 0. It follows from the nonnegative definiteness
of all matrices R(zi, zj) that V0 is a subspace of V . The quotient space is then an inner
product space under 〈 , 〉R, and we take H to be its completion. For z ∈M we define f(z)
to be the image under the quotient map of the function with support at the single point z
and value unity there. Since R is holomorphic on M ×M ′, it follows that f : M → H is
holomorphic. ♠

Next we give a simple example showing that P1(M) and P2(M) are distinct sets even
in very simple situations. This example also gives insight into the stability index.

Example 1. Let M = C2. For each real number c we define Rc by

Rc(z, w) = z2
1w1

2 + (c− 2)z1z2w1w2 + z2
2w2

2

It is elementary to check that Rc ∈ P1 if and only if c ≥ 0 whereas Rc ∈ P2 if and only
if c ≥ 2. In fact, for each k larger than 2, Rc ∈ Pk if and only if c ≥ 2; therefore, if
S = {Rc : c ≥ 0}, then I(S) = 2. Recall by contrast that I(H) = 1 when H is the set of
nonnegative Hermitian forms.

We recall the standard test for nonnegative definiteness of an N by N matrix and
provide the appropriate caution. A Hermitian matrix is nonnegative definite if and only if
every principal minor determinant is nonnegative. It is not sufficient to assume only that
every leading principal minor determinant is nonnegative. The matrix 1 0 0

0 0 0
0 0 −1


has leading principal minor determinants of 1, 0, and 0, and yet it has a negative eigenvalue.
See [D4] for more discussion.

We immediately obtain a method for deciding whether R ∈ Pk. Given k points
z1, ..., zk in M , we put ∆R

k (z) = det(R(zi, zj)).

Lemma 3. Suppose R ∈ P0(M) and k ≥ 1. Then R ∈ Pk if and only if R ∈ Pk−1

and ∆R
k (z) = det(R(zi, zj)) ≥ 0 for all z = (z1, ..., zk) ∈Mk.

Next we give a method for computing ∆R
k (z) in many cases. We say that R has finite

rank if there is a finite-dimensional Hilbert space representation for R; in other words, if
there are holomorphic mappings f, g : M → CK such that

R(z, w) = 〈f(z), f(w)〉 − 〈g(z), g(w)〉. (1)

For example, every polynomial function R has finite rank. See [D4] for a simple proof.
One notes that globalizable metrics (See Definition 3) on a holomorphic line bundle L
over a compact complex manifold also have finite rank, simply because the space of global
sections of L∗ is finite-dimensional.

Suppose that R has finite rank. For each z = (z1, ..., zk) ∈ Mk we consider a k by k
matrix whose i, j entry is hj(zi), where hj is a component function of either f or g. We
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let ∆R
k,m(z) denote the tuple of determinants of all such matrices, excluding the obvious

repetitions, for which precisely m of the column vectors are components of g. We write
||∆R

k,m(z)||2 for the sum of squared absolute values of all these determinants.
We have the formula

det(R(zi, zj)) = ∆R
k (z) =

k∑
m=0

(−1)m||∆R
k,m(z)||2. (3)

Formula (3) expresses the determinant ∆R
k (z) in terms of the components of f and g

in a somewhat tractable fashion. The proof is an elementary computation in exterior alge-
bra. One computes the wedge product of the column vectors of the matrix det(R(zi, zj)),
expands by the distributive law, and uses the formula for the determinant of a k by k
matrix in terms of k-th exterior powers. Formula (3) results. We note also that formula
(29) from Section V provides a proof and additional insight when k = 2.

Formula (3) immediately combines with Lemma 3 to yield a necessary and sufficient
condition for an R with finite rank to lie in some Pk:

Proposition 1. R ∈ Pk if and only if
∑j
m=0(−1)m||∆R

j,m(z)||2 ≥ 0 for 1 ≤ j ≤ k.

We now turn to our first main result. Theorem 1 generalizes the simple fact that, for
scalar-valued entire holomorphic functions f and g on Cn, the function |f |2 − |g|2 can be
nonnegative only when g is a constant multiple of f . For general k, if R = ||f ||2−|g|2 ∈ Pk
and f has too few linearly independent components, then g must be a linear combination
of the components of f , and thus R actually must be a squared norm.

Let R be a Hermitian symmetric function on Cn with Taylor expansion

R(z, z) =
∑
a,b

cabz
azb.

We let N+(R) and N−(R) denote the number of positive and negative eigenvalues of the
(perhaps infinite) Hermitian matrix cab. We allow the value infinity. In Theorem 1 we will
not assume that R has finite rank, although the situation reduces easily to that case.

Theorem 1. Let R be a Hermitian symmetric function on Cn such that R ∈ Pk.
Then either N−(R) = 0 or N+(R) ≥ k + 1.

Proof. We will work solely on the diagonal. If N+(R) ≥ k + 1, then we are done.
Suppose otherwise that R ∈ Pk, N−(R) > 0, and N+(R) ≤ k. Since N+(R) is finite, we
may write R = ||f ||2 − ||g||2 as usual. In view of Lemma 1, by adding an appropriate
squared norm to R, we may suppose the following hold: g takes values in C, N−(R) = 1,
f takes values in Ck, and that N+(R) = k.

Choose k points z1, ..., zk ∈ Cn. We define the square matrix A(f)(z) and column
vector G(z) by

A(f)(z) =


f1(z1) f2(z1) ... fk(z1)
f1(z2) f2(z2) ... fk(z2)
... ... ...

f1(zk) f2(zk) ... fk(zk)

 and G(z) =


g(z1)
g(z2)
...

g(zk)

 .
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Consider the system of k linear equations A(f)(z)c(z) = G(z) for k unknowns cj(z).
Since the functions fi are linearly independent, the generic value of det(A(f)(z) is nonzero.
The solution to the system is therefore given as the ratio of two determinants by Cramer’s
rule. We let Bj(f, g)(z) denote the matrix obtained by replacing the j-th column in A(f)(z)
with G(z). Thus

cj(z) =
det(Bj(f, g)(z))

det(A(f)(z))
. (4)

On the other hand, when g is scalar-valued, (3) simplifies to give:

det(R(zi, zj)) = ∆R
k (z) = |det(A(f)(z))|2 −

k∑
j=1

|det(Bj(f, g)(z))|2 (5)

Since R ∈ Pk, the determinant on the left-hand side of (5) is nonnegative. Each term in
the sum on the right-hand side of (5) is therefore bounded by |detA(f)(z)|2. Combining
this fact with (4) shows that each cj(z) is a bounded meromorphic function, and hence a
constant, written cj . We therefore obtain, for each i,

g(zi) =
∑
j

cjfj(zi).

Since the points zi are arbitrary, g is a linear combination of the fj ; this statement con-
tradicts the original assertion that N−(R) 6= 0. ♠.

Corollary 1. Let Sk denote the collection of Hermitian symmetric functions on Cn

whose underlying matrices of Taylor coefficients have at most k positive eigenvalues. Then
I(Sk) ≤ k and Sk is stable.

The proof of Theorem 1 yields a test for whether g is a linear combination of the fj .
See Proposition 3 and Theorem 2 for an alternative point of view.

The proof of Theorem 1 goes through with essentially no change if Cn is replaced with
a holomorphic vector bundle over a compact manifold, or, more generally, with a complex
manifold admitting no nonconstant bounded holomorphic functions. On the other hand, no
result resembling Theorem 1 holds for Hermitian symmetric functions on bounded domains
in Cn. It is easy to write down, for an arbitrary j, a Hermitian symmetric function R on
the unit ball for which N+(R) = 1 and N−(R) = j.

II. Globalizable metrics.

Hermitian symmetric functions arise naturally in complex geometry. In several im-
portant contexts Hermitian symmetric functions (nonnegative on the diagonal) restrict to
(possibly singular) Hermitian metrics, and have played a key role in analytic geometry.
See [Siu] and [CD2].

Let X be a compact, complex manifold, and suppose that L is a holomorphic line
bundle over X. The complex vector space H0(X,L∗) of sections of the dual bundle L∗ is
finite-dimensional. Let C be a Hermitian form on H0(X,L∗). We associate with C the

6



Hermitian symmetric function RC on L× L′ as follows. If {φα} is a basis for H0(X,L∗),
and cαβ = 〈Cφα, φβ〉, then

RC(z, w) =
∑
α,β

cαβφα(z)φβ(w). (6)

Definition 3. Let C be a Hermitian form on H0(X,L∗). The function RC defined
on L× L′ by (6) is called a globalizable singular metric on L.

Suppose that C is positive semi-definite; then, for each φ ∈ H0(X,L∗), the function
RC is nonnegative on the diagonal. On the other hand, simple examples (see Example 1 and
Theorem 3) show that the function defined by (6) can be nonnegative on the diagonal even
when C has some negative eigenvalues. In case C has negative eigenvalues the mapping g
in a holomorphic representation of RC must be nonzero. Hence the intermediate positivity
classes Pk provide useful geometric information.

A globalizable singular metric G on L can be written

G =
∑
α,β

cαβφαφβ , (7)

where {φα} form a basis for H0(X,L∗). The (necessarily) Hermitian matrix (cαβ) is called
the underlying matrix of G.

We will drop the adjective singular and refer to G as a globalizable metric on L. We
use the term metric because G restricts to a Hermitian metric on the fibres of L. In other
words, there is a (possibly singular) metric g in the usual sense for which G(z, w) = g(z, w)
whenever π(z) = π(w). In [CD2] the metric g is defined to be globalizable when a G
extending g and satisfying (7) exists.

Complex projective space Pn−1 and powers of the universal bundle Um provide nice
examples. The usual Fubini-Study metric G on U is globalizable.

The dual bundle Hm of Um is the m-th power of the hyperplane bundle; it is generated
by global sections which we may identify with homogeneous polynomials of degree m. It
is natural to equip Um with the Hermitian metric Gm given by the m-th tensor power
of the Fubini-Study metric on U. The metric Gm provides another simple example of a
globalizable metric. In the particular case of Um, a globalizable metric may be identified
with a bihomogeneous polynomial on Cn:

R(z, w) =
∑

|α|=m,|β|=m

cαβz
αwβ .

The matrix of coefficients (cαβ) is Hermitian symmetric and R(z, z) nonnegative. For Um,
the natural metric Gm can be identified with the bihomogeneous polynomial defined by

R(z, w) = 〈z, w〉m.

In Theorem 3 we will consider perturbations of this particular R.
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We interpret one piece of Lemma 1 in this setting.

Corollary 2. Suppose that (L,R) and (E,G) are holomorphic line bundles over a
complex manifold X with the indicated globalizable metrics R and G. Suppose that R
and G are in Pk. Then R⊗G ∈ Pk.

Proof. The result follows from Lemma 1, because Pk is closed under product. ♠

Corollary 2 implies that the natural tensor product metric on a power of a line bundle
lies in the same class Pk as does the original metric. When k = 2 the converse of this fact
plays a crucial role in the proof of the isometric imbedding theorem in [CD2].

III. Bihomogeneous polynomials, metrics, and the functions Σk.

In this section we give an alternative manner for verifying that R ∈ Pk when R is
a bihomogeneous polynomial, or more generally, a globalizable metric. We begin with a
general lemma.

Lemma 4. Let M be a complex manifold andH be a Hilbert space with inner product
〈 , 〉. Suppose that f, g : M → H×H is a Hilbert space representation of the Hermitian
symmetric function R. Then R ∈ PN if and only if

||
N∑
i=1

f(zi)ai||2 ≥ ||
N∑
i=1

g(zi)ai||2 (8)

for all choices of N points zi ∈M and all a ∈ CN .
Proof. The computation is virtually the same as the proof of Lemma 2, and hence is

left to the reader. ♠

We recall that a bihomogeneous polynomial R on Cn × (Cn)′ is a polynomial in z
and w that is homogeneous of the same degree in both sets of variables. Equivalently, for
λ ∈ C,

R(λz, λz) = |λ|2mR(z, z). (9)

A bihomogeneous polynomial is real on the diagonal if and only if it is Hermitian sym-
metric, and this symmetry holds if and only if the matrix of coefficients of R is Hermitian
symmetric. See [D2] and [D4] for discussion of bihomogeneous polynomials.

We may identify a Hermitian symmetric nonnegative bihomogeneous polynomial R of
degree 2m on Cn with a globalizable metric on Um over Pn−1. To see this fact, we write
R, as in the definition of globalizable metric, in the form (7), where φα is the monomial
zα. The dual bundle Hm is generated by global sections which we may identify with
homogeneous polynomials of degree m.

Let now X be a compact complex manifold and π : L → X a holomorphic line
bundle. We denote the pairing of a section s of L∗ with a vector v ∈ L by s[v]. We
obtain Hermitian symmetric functions R : L × L′ → C by mimicking the situation for
bihomogeneous polynomials.
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Every Hermitian symmetric function R on L × L′ is given, after diagonalizing the
associated Hermitian form C from (6) by the formula

R(v, w) =
m∑
j=1

µjsj(π(v))[v] sj(π(w))[w]. (10)

In (10) the µj are the nonzero eigenvalues of C and s1, ..., sk are linearly independent
elements of H0(X,L∗). By collecting the terms according to the sign of µj we write
R = ||f ||2 − ||g||2, where the components of f and g are global sections of L∗. Thus the
sections determine a (finite-dimensional) Hilbert space representation for R, and R ∈ P1

precisely when R is a globalizable metric. The following simple result characterizes when
R ∈ Pk.

Proposition 2. Let π : L → X be a holomorphic line bundle over a compact
complex manifold X. Let R be the Hermitian symmetric function defined on the diagonal
by R = ||f ||2 − ||g||2. Then R ∈ Pk if and only if

||
k∑
i=1

f(wi)||2 ≥ ||
k∑
i=1

g(wi)||2 (11)

for all w1, ..., wk in X.
Proof. Let s be a section of L∗, and choose v ∈ L. For a ∈ C and p ∈ X, we have

s(p)[av] = s(p)[w] for some w ∈ L. The proposition follows by combining this fact with
formula (8) and the conclusion of Lemma 2. ♠

We introduce notation for the functions appearing inside the norms in (11).

Definition 4. Let X be a set, G be an additive Abelian group, and f : X → G a
function. For each positive integer N we define ΣNf : XN → G by

(ΣNf)(z1, ..., zN ) = ΣNi=1f(zi).

We can then interpret the conclusion of Proposition 2 in several ways.

Corollary 3. Let R be a Hermitian symmetric function on L×L′, written in the form
R = ||f ||2 − ||g||2 as in Proposition 2. Then R ∈ PN if and only if ||ΣNf ||2 ≥ ||ΣNg||2.

Corollary 4. Let Rλ be defined on the diagonal of L×L′ by Rλ = ||f ||2−λ||g||2. Let
S = {Rλ}. If there is an N such that the variety V (ΣNf) is not contained in the variety
V (ΣNg), then I(S) ≤ N .

Let X be a compact complex manifold, and let L→ X be a holomorphic line bundle.
We let h = dim H0(X,L∗), By Definition 4, Σks : Lk → C is defined by

(Σks)(v1, ..., vk) =
k∑
j=1

s[vj ],
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and is a section of the vector bundle Lk → Xk. We will consider the zero varieties

V (Σks) :=
{

(x1, ..., xk) ∈ Xk ; Σks|Lx1 × ...× Lxk
≡ 0
}
.

Proposition 3. Let g, s1, ..., sN ∈ H0(X,L∗), and suppose that

N⋂
j=1

V (Σhsj) ⊂ V (Σhg).

Then g is a linear combination of s1, ..., sN .

Lemma 5. Let T ∈ H0(X,L∗)∗. Then there exist points v1, ..., vh ∈ L such that for
all s ∈ H0(X,L∗),

Ts = Σhs(v1, ..., vh).

Proof. We may assume T 6= 0. Choose a basis s1, ..., sh of H0(X,L∗) such that

Ts1 = 1 and Tsj = 0 for j = 2, ..., h.

Select vectors u1, ..., uh such that the matrix with components Aij := si(uj) is invertible.
This choice is trivial (as is the Lemma) when h = 1. For h ≥ 2 selecting such vectors is
also possible; for instance, we may choose

uj ∈ V (sj)−
⋃
i 6=j

V (si), j = 1, ..., h.

Now choose complex numbers λ1, ..., λh such that

h∑
j=1

A1
jλj = 1 and

h∑
j=1

Aijλj = 0 for i = 2, ..., h,

and let vj = λjuj , j = 1, ..., h. For any s ∈ H0(X,L∗), there exist µi such that s =
∑
i µis

i.
In this case, Ts = µ1. On the other hand,

Σhs(v1, ..., vh) =
h∑
i=1

h∑
j=1

µis
i(vj) =

h∑
i=1

h∑
j=1

µiA
i
jλj =

h∑
i=1

µiδ
1i = µ1. (12)

Formula (12) completes the proof of the Lemma. ♠

Proof of Proposition 3. Let U be the subspace of H0(X,L∗) generated by the sections
s1, ..., sN . Let U⊥ ⊂ H0(X,L∗)∗ be the annihilator of U . Suppose T ∈ U⊥. Then by
Lemma 5 there exist vectors v1, ..., vh ∈ L such that Ts = Σhs(v1, ..., vh). Now, since
Tsi = 0 for i = 1, ..., N , the hypothesis on g and the expression Ts = Σhs(v1, ..., vh) imply
that Tg = 0. Thus g ∈ (U⊥)⊥ = U , as desired. ♠
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It is possible to prove Proposition 3 using the ideas in Theorem 1, but we feel that
Proposition 3 is interesting in its own right. The operation Σk can be thought of as a
discrete version of the (k − 1)–jet of a section. In fact, the Σk contain more information
than jets do, because one may look at points not on the diagonal. From this point of view
the hypothesis of Proposition 3 says that the global section g vanishes to order h whenever
the global sections s1, ..., sN do.

In both Theorem 1 and Proposition 3 we conclude that a function g must be a linear
combination of some given functions fj (or sj) under certain conditions. In each case these
conditions guarantee that the function ||f ||2 − |g|2 lies in P∞. Thus Proposition 3 is an
algebraic analogue of Lemma 2.

Let S denote the set of singular globalizable metrics on L. Proposition 3 and Corollary
3 combine to show that I(S) ≤ dimH0(X,L∗). The ideas from Theorem 1 provide a
stronger result on the stability index.

Theorem 2. (Stability of Positivity Conditions) Let X be a compact complex man-
ifold, and let L be a holomorphic line bundle over X. Let S be the set of globalizable
metrics on L. Then S is stable. In fact I(S) is at most dim(H0(X,L∗))− 1.

Proof. We first observe that bounded meromorphic functions on L must be constant.
We can therefore virtually repeat the proof of Theorem 1. Put k = dim(H0(X,L∗)) − 1.
Let R denote a globalizable metric, whose underlying Hermitian form is C. Note that C
has at most k+1 eigenvalues. Suppose that R ∈ Pk; by the argument in Theorem 1, either
C has no negative eigenvalues, or at least k + 1 positive eigenvalues. In the second case
the total number of positive eigenvalues must equal k + 1. Thus, in either case, R is in
P∞. Therefore S ∩ Pk = S ∩ P∞, and hence S is stable and I(S) = k. ♠.

IV. Perturbations of the standard metric on U2m.

In this section we will show that the sets Pk(M) are distinct even when M = C2. We
may also regard formula (13) below as arising from a family of globalizable metrics on the
line bundle U2m over P1.

We consider a family of bihomogeneous polynomials defined on C2. These polynomials
may be considered as perturbations of the natural example (on the diagonal) z → ||z||4m =
R0(z, z). For each real number λ, and each positive integer m we define

Rλ(z, w) = 〈z, w〉2m − λ(z1z2w1w2)m (13)

Note that Rλ depends on both λ and m. Let us write Sλ,m for the set of polynomials
of the form (13). Theorem 1 below provides precise information on when Rλ ∈ Pk. We
determine the set of values of λ (in terms of m) for this inclusion to hold in the special
cases k = 1, k = 2, and k = ∞. We also show that Pk = Pj for k ≥ j ≥ m + 1. Thus,
Rλ ∈ P∞ if and only if Rλ ∈ Pk whenever k ≥ m + 1. In particular I(Sλ,m) = m + 1.
Finally we determine the precise value of λ for Rλ to be in Pm.

These results demonstrate an important fact about our positivity conditions.
Consequence. For each m, we have Pm(C2 6= Pm+1(C2). Thus P1(M) is not stable
already for M = C2.
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Theorem 3. Fix m, and let Rλ be defined by (13). The following statements hold:
1) Rλ ∈ P1 if and only if λ ≤ 22m.
2) Rλ ∈ P2 if and only if λ ≤ 22m−1.
3) Rλ ∈ P∞ if and only if λ ≤

(
2m
m

)
.

4) For each integer k > m, Rλ ∈ Pk if and only if Rλ ∈ P∞.
5) Rλ ∈ Pm only if λ ≤

(
2m
m

)
+ 2.

6) I(Sλ,m) = m+ 1.
Proofs. 1) To decide whether P1 holds is elementary. By homogeneity it suffices to

assume that ||z||2 = 1; we then want the largest λ such that

1− λ|z1|2m|z2|2m ≥ 0 (14)

given that |z1|2 + |z2|2 = 1. It is evident that the maximum value of |z1|2m|z2|2m on the
sphere occurs when |z1|2 = |z2|2 = 1

2 . Combining this observation with (14) shows that

1− λ

22m
≥ 0,

which gives the result we want.
3) To decide when P∞ holds is also elementary. On the diagonal we have

Rλ(z, z) = (|z1|2 + |z2|2)2m − λ(|z1|2|z2|2)m.

Expanding the left-hand side by the binomial theorem reveals that we obtain a squared
norm if and only λ is at most the coefficient there of (|z1|2|z2|2)m; this coefficient is

(
2m
m

)
.

2) We next verify that P2 fails for Rλ when λ > 22m−1. We choose the points z = (1, 1)
and w = (1,−1) and compute

Rλ(z, z)Rλ(w,w)− |Rλ(z, w)|2 (15)

there. We suppose that the expression in (15) is nonnegative. Using the orthogonality of
z and w, the computation simplifies and we obtain the condition

0 ≤ 22m − 2λ,

which shows that the inequality fails for λ > 22m−1. To verify that P2 holds for λ ≤ 22m−1

one must first show that the cut-off value of λ is determined when 〈z, w〉 = 0. We omit
the considerable details; they are similar to the proof of 5). After verifying this fact, we
must maximize |z1z2|2m + |w1w2|2m given that |z1|2 + |z2|2 = |w1|2 + |w2|2 = 1 and that
z and w are orthogonal. The maximum occurs at several points, including 1√

2
(1, 1) and

1√
2
(1,−1). These points yield the desired statement about λ.

We prove 4) in Proposition 4 below. We prove 5) in Proposition 5 below. Statement
6) follows by combining statements 4) and 5). ♠

Before proving these statements we interpret them when m = 1 and m = 2. First we
set m = 1 and recover information implied by Theorems 1 and 2:

P1 ∩ Sλ,1 6= P2 ∩ Sλ,1

12



but that
P2 ∩ Sλ,1 = P∞ ∩ Sλ,1.

Thus I(Sλ,1) = 2.
Next consider m = 2; we see that

P1 ∩ Sλ,2 6= P2 ∩ Sλ,2 6= P3 ∩ Sλ,2
but that

P3 ∩ Sλ,2 = P∞ ∩ Sλ,2.

Thus I(Sλ,2) = 3. This information does not follow from Theorems 1 and 2.
It is instructive to prove 4) of Theorem 3 first when m = 2. By Corollary 3 we must

determine the set of λ for which the inequality

|z4
1 + w4

1 + u4
1|2 + 4|z3

1z2 + w3
1w2 + u3

1u2|2 + 4|z1z3
2 + w1w

3
2 + u1u

3
2|2 + |z4

2 + w4
2 + u4

2|2

≥ (λ− 6)|(z1z2)2 + (w1w2)2 + (u1u2)2|2 (16)

holds for all triples of points z, w, u.
(16) is trivial for λ ≤ 6; of course 6 is the cut-off point for being a squared norm. We

use Corollary 4. Suppose that (16) holds, and we can show that the left-hand side of (16)
can vanish when the right-hand side does not vanish. We see that the inequality will fail
for any λ larger than 6.

Let h denote the polynomial in six variables given by (z1z2)2 + (w1w2)2 + (u1u2)2.
Let J denote the ideal in the polynomial ring given by

J = (z4
1 + w4

1 + u4
1, z

3
1z2 + w3

1w2 + u3
1u2, z1z

3
2 + w1w

3
2 + u1u

3
2, z

4
2 + w4

2 + u4
2).

To verify the existence of points as in the previous paragraph, it suffices to prove that
h is not in the radical of J . Dan Lichtblau of Wolfram Research verified this and other
statements for us using the Groebner basis algorithm from Mathematica. After knowing
this information, it is natural to instead seek points that work.

First we choose z1z2 = w1w2 = u1u2 = 1. With these choices h will have the value 3.
Next we assume that |z1|2 = |w1|2 = |u1|2 = 1. By doing so, the four equations defined
by the vanishing of the generators of J become the two equations (17) and (18) and their
complex conjugates.

z4
1 + w4

1 + u4
1 = 0 (17)

z2
1 + w2

1 + u2
1 = 0 (18)

We choose the three values to equal 1, b, and b2, where b is a primitive third root of
unity. Then both (17) and (18) become 1 + b+ b2 = 0, which holds since b3 = 1 and b 6= 1.
This verifies statement 4) of Theorem 3 when m = 2.

We now generalize this proof.
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Proposition 4. (Stability) For each positive integer m, and each real λ, let Sλ,m
denote the set of Hermitian symmetric functions Rλ on C2 satisfying (19):

Rλ(z, w) = 〈z, w〉2m − λ(z1z2w1w2)m. (19)

Then, for k ≥ m + 1, the sets Sm,λ ∩ Pk are all the same. In particular, Rλ ∈ Pk if and
only if λ ≤

(
2m
m

)
, and I(Sλ,m) ≤ m+ 1.

Proof. We mimic the proof in the special case m = 2. Let g(z) = zm1 z
m
2 . We observe

that, for z1 6= 0, we have g(z1, 1
z1

) = 1. For any collection of points Wj in C2 of the form
(wj , 1

wj
) we therefore have ΣNg(W1, ...,WN ) = N .

Let J denote the ideal analogous to the ideal in the special case above. The generators
of J are the functions ΣNhj , where hj(z) = z2m−j

1 zj2, for 0 ≤ j < m or m + 1 ≤ j ≤ 2m.
We claim that, for N = m+ 1, we can find N points Wi in C2 of the form Wi = (wi, 1

wi
)

such that ΣNf(W1, ...,WN ) = 0. By Corollary 4 this implies the desired result for Rλ.
We will find solutions where |wi|2 = 1. Assume this condition. Then the 2m equations

hj = 0 become m equations and their conjugates. It therefore suffices to verify the first m
equations:

m∑
i=1

w2m−2j
i = 0 (20)

for 0 ≤ j ≤ m−1. To satisfy the equations in (20) we set (w1)2 = 1, (w2)2 = η, (w3)2 = η2,
and so on, where η is a primitive m+ 1-st root of unity. We obtain the m equations

m∑
i=1

η(i−1)(m−j) =
m−1∑
i=0

(ηm−j)i = 0. (21)

For each j, equation (21) holds because ηm−j is an m + 1-st root of unity but does not
equal 1. ♠.

Proposition 5. Statement 5) from Theorem 3 holds.
Proof. We have Rλ = ||f ||2 − λ||g||2 on the diagonal, where f and g are as follows:

||f(z)||2 = ||z||4m −
(

2m
m

)
|(z1z2)m|2 (22)

||g(z)||2 = |(z1z2)m|2. (23)

Note that the right-hand side of (22) is a squared norm. The components of f are all
the homogeneous polynomials of degree 2m except for the middle term (z1z2)m, and the
coefficients are the binomial coefficients.

By Corollary 3 the largest λ for which Pk holds is given by the infimum of the expres-
sion

||Σkf(w1, ..., wk)||2

||Σkg(w1, ..., wk)||2
. (24)
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In (24), wj = ((wj)1, (wj)2). Let k = m. Since (24) is homogeneous of degree 0, and
because of the symmetry, the infimum happens where wk = (1, ηk−1) and ηm = 1. Plugging
this into (24), and using properties of roots of unity, all the terms in ||Σmf ||2 vanish except
the terms |Σ((wj)1)m|2 and |Σ((wj)2)m|2. These each give the value m2. On the other
hand, the value of Σmg at these points is m. Hence the value of (24) at these points is 2.
Incorporating the terms

(
2m
m

)
|(z1z2)m|2 gives the desired result for Rλ, where f and g are

expressed in the forms (22) and (23).
This calculation proves that Rλ is not in Pm when λ >

(
2m
m

)
+ 2. Containment does

hold for this value, because the infimum in (24) is attained at these points. Even though
the numerator vanishes on a two-dimensional variety, the denominator vanishes there as
well, and the limiting value of the ratio, as we approach this variety, exceeds 2. ♠.

Remark 2. For any homogeneous polynomial mapping f of degree m in two variables,
the variety V (Σkf) is positive dimensional for k ≥ 2. On the other hand, for the functions
in Theorem 3, we have V (Σkf) ⊂ V (Σkg) for k ≥ 2. The key point is that the infimum of
the ratio happens away from the variety V (Σkf).

V. The role of P2.

The main purpose of this section is to discuss P2 in more detail. For completeness we
first recall and augment our list of geometric positivity conditions. Suppose that R = RC
is a globalizable metric as in (6). The following positivity conditions all arise:

Definition 5. (Geometric positivity conditions)
1) GP∞: The matrix (cαβ) of coefficients is nonnegative definite.
2) GP]∞: The matrix (cαβ) of coefficients is positive definite.
3) G: There is an integer d such that

Rd(z, w) =
∑
µ,ν

Eµνψµψν

where the matrix (Eµν) is nonnegative definite.
4) G]: There is an integer d such that

Rd(z, w) =
∑
µ,ν

Eµνψµψν

where the matrix (Eµν) is positive definite.
5) R ∈ P2; equivalently the global Cauchy-Schwarz inequality holds:

|R(z, w)|2 ≤ R(z, z) R(w,w).

6) A sharp form of the global Cauchy-Schwarz inequality holds:

|R(z, w)|2 ≤ R(z, z) R(w,w),

and equality happens only in some specified precise setting.
7) The function z → logR(z, z) is plurisubharmonic.
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8) The function z → R(z, z) is plurisubharmonic.

Items 2), 4) and 6) are sharp forms of items 1), 3), and 5). We could of course also
introduce sharp forms of 7) and 8).

By elementary linear algebra 1) is equivalent to the existence of a (finite-dimensional)
Hilbert space valued mapping f representing R and is thus is the same as P∞. One can
easily show [D4] that 3) implies 5). By definition, 5) is the same as R ∈ P2. The assumption
that R is a (possibly degenerate) metric is of course the same as R ∈ P1. Conditions 7)
and 8) lie between P1 and P2; It is shown in [D4] that 5) implies 7) implies 8). We revisit
our main example below to show that each converse assertion fails. Statements 7) and 8)
are equivalent in the bihomogeneous case; see [D3].

Theorem 3 Revisited. Let M be C2. For each real number λ we define a Hermitian
symmetric polynomial rλ by

rλ(z, z) = (|z1|2 + |z2|2)4 − λ|z1z2|4. (25)

(Thus m = 2 in Theorem 3.) The following statements are true:
2.1) rλ ∈ P1 if and only if λ ≤ 16. (This is the condition for being a metric.)
2.2) rλ is plurisubharmonic (on the diagonal) for λ ≤ 12.
2.3) log(rλ) is plurisubharmonic (on the diagonal) for λ ≤ 12.
2.4) rλ ∈ P2 if and only λ ≤ 8.
2.5) For k ≥ 3, rλ ∈ Pk if and only if rλ ∈ P∞; this condition occurs if and only if

λ ≤ 6.

Remark 3. Theorem 3 therefore reveals that four of the five conditions are distinct
already for bihomogeneous polynomials of degree 8 in C2. If we set z2 = 1, and consider the
resulting function of one variable, then the condition λ ≤ 12 for logarithmic plurisubhar-
monicity is unchanged; the condition for plurisubharmonicity becomes λ ≤ 3

32 (69+11
√

33).
(See [D4]). The value of this expression is approximately 12.39. Thus all five conditions
are distinct for polynomials in two variables.

Condition 7) from Definition 5 is equivalent to the strict negativity of the bundle L
using the metric R. The Cauchy-Schwarz inequality on a globalizable metric is thus an
intermediate condition between being a holomorphic pullback and having negative curva-
ture. We therefore give a different characterization of P2; this result holds for Hermitian
symmetric functions not necessarily arising from metrics.

In order to state the result in a geometric fashion we introduce two pieces of notation.
Suppose that f, g : M → H are holomorphic mappings. We write f ∧ g for the skew-
symmetric function from M ×M to H⊗H defined by

(f ∧ g)(z, w) = f(z)⊗ g(w)− f(w)⊗ g(z) (26)

We also write θf (z, w) for the angle between the vectors f(z) and f(w) in H. Finally
we note the standard identity

||f(z)⊗ f(w)||2 = ||f(z)||2||f(w)||2 = ||f(z)||2||f(w)||2sin2θf (z, w) + |〈f(z), f(w)〉|2. (27)
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Let (f, g) : M → H×H be a holomorphic representation of R. We have the following
beautiful geometric interpretation of P2. When k = 2 the formulas in Lemma 6 provide
an alternative way of expressing the determinant (3) used earlier.

Lemma 6. Let R = ||f ||2 − ||g||2 ≥ 0 on the diagonal; then R ∈ P2 if and only if

||(f ∧ g)(z, w)||2 ≤ ||f(z)||2||f(w)||2sin2θf (z, w) + ||g(z)||2||g(w)||2sin2θg(z, w) (28)

for all z and w in M . This inequality can also be written as

||(f ∧ g)(z, w)||2 + |〈f(z), f(w)〉|2 + |〈g(z), g(w)〉|2 ≤ ||f(z)||2||f(w)||2 + ||g(z)||2||g(w)||2.
(29)

Proof. We apply the definition of P2; since R is nonnegative at each point, it is in
P2 if and only if the determinant ∆2

R is nonnegative at each pair of points z and w. The
determinant information yields

|R(z, w)|2 ≤ R(z, z)R(w,w). (30)

Next replace R(z, w) by its holomorphic representation in (30). Finally expand, collect
terms, and use (27). It follows that inequality (28) is equivalent to (30). It is clear that
(28) and (29) are also equivalent. ♠

Inequalities (28) and (29) differ from the usual Cauchy-Schwarz inequality because of
the presence of the term ||(f ∧g)(z, w)||2, which relates f and g. Inequalities (29) and (30)
are equivalent forms of the nonnegativity of ∆2

R as in (3).
As in the proof of Theorem 1, Lemma 6 is especially useful when g is scalar-valued.

In that case sin2θg(z, w) vanishes, and formulas (28) and (29) simplify.
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