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Abstract

For each 2-dimensional complex torus T , we construct a compact complex manifold X(T )
with a C2-action, which compactifies (C∗)4 such that the quotient of (C∗)4 by the C2-action
is biholomorphic to T . For a general T , we show that X(T ) has no non-constant meromorphic
functions.

1 Introduction

There is a well-known example, due to J.-P. Serre, of a Zariski open subset of a ruled surface over an
elliptic curve, which is Stein, but not affine ([Ha] 6.3). This example plays an interesting role in complex
analysis, for example in the theory of local cohomology of analytic sheaves (e.g. [KP]) and the theory of
nef vector bundles ([DPS] 1.7). The purpose of this note is to extend this construction to the dimension
4 by interpreting it from the view-point of additive group action. Of course, it may be possible to have
more direct generalization of Serre’s construction to higher dimensions. But our approach via additive
group action reveals a number of interesting features of the resulting 4-dimensional compact complex
manifold. This complex manifold is interesting in the following aspects.

A well-known conjecture in the study of compactifications of Cn is the following:

Conjecture Every compactification of Cn is Moishezon. Namely, a compact complex manifold con-
taining Cn as a Zariski open subset has n algebraically independent meromorphic functions.

Although this is true in dimension 2, it is completely open in higher-dimensions, except for some partial
results in dimension 3 (cf. [PS]). Even under the additional assumption that the compactifying divisor
is smooth, in which case it is conjectured that the compactification is Pn, or under the assumption
that the compactification is Kähler, the problem remains unsolved. One may ask the same question
for compactifications of (C∗)n. But our construction will give a negative answer:

Theorem 1 Let T be any complex torus of dimension 2. Then there exists a compact Kähler 4-fold
X = X(T ) and a smooth divisor D ⊂ X such that D is biholomorphic to P1 × T and X − D is
biholomorphic to (C∗)4.

Since the image of a Moishezon manifold is Moishezon, if T is not an abelian variety, X(T ) is a
compactification of (C∗)4 which is not Moishezon.

One partial answer to the above conjecture is the result of Gellhaus [Ge] that any equivariant com-
pactification of Cn is Moishezon. In other words, if Cn acts on an n-dimensional compact complex
manifold with a faithful orbit, the manifold has n algebraically independent meromorphic functions.
One may ask the following question as a generalization of this result:

If Cn acts on an m-dimensional compact complex manifold, m ≥ n, with a faithful orbit, does the
manifold have at least n algebraically independent meromorphic functions?

In fact, answering question of this type is believed to be one of the possible approaches to the above
conjecture. However, our manifold X(T ) gives a negative answer again. There is a C2-action on X(T )
with faithful orbits by construction, but
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Theorem 2 For a general torus T , the manifold X(T ) has no non-constant meromorphic functions.

Our example suggests that construction of meromorphic functions on the compactification of Cn may
be a very delicate problem.

One of the advantage of the view-point of additive group action in our construction is that it can be
easily generalized to other cases. In principle, when there is a quotient Y ′ of a complex manifold Y by
a lattice in Ck we can get a Ck-action on (C∗)k×Y and a compactification of (C∗)k×Y which is a Pk-
bundle over Y ′. For example, it is straight-forward to generalize our construction to a compactification
of (C∗)2n, which is a Pn-bundle over an n-dimensional complex torus.

2 An approach to Serre’s example via C-action

It is instructive first to give a construction of Serre’s example from the view-point of C-action on
C∗ ×C∗, to clarify the construction in Theorem 1.

Let α ∈ C−R. Consider the C-action on C∗ ×C∗ given by

s · (x, z) = (esx, eαsz) (1)

Since α and 1 are independent over Z, the map s 7→ s ·p is injective for any p ∈ C∗×C∗, i.e., the action
is faithful. Moreover, since α and 1 are independent over R the same map is actually proper. Indeed,
if {sj}j∈N is a divergent sequence in C such that {log |esj x|}j∈N is bounded, then the real part of sj

is confined to a strip of finite width in the s-plane for all j. Thus the imaginary part of sj diverges.
But since α has non-zero imaginary part, log |eαsz| is unbounded.

It follows from general theory of Lie group actions that the quotient of C∗×C∗ by the action (1) is
a Riemann surface B. We claim in fact that it is an elliptic curve. Indeed, this action realizes C∗×C∗

as a locally trivial C-bundle over B, and thus in particular, B is homotopy equivalent to C∗ × C∗.
Since every noncompact Riemann surface has no second homology, we see that B must be compact.
The homology of B then forces it to be an elliptic curve. In fact, one can check that B is the torus
C/(Z + αZ).

Now, since Aut(C) is an affine group, the bundle C∗ ×C∗ → B is an affine bundle with fibers C.
Thus we can attach ∞ to each fiber and obtain a P1-bundle over the elliptic curve B. Equivalently,
the affine transition functions of the bundle C∗ × C∗ → B can be homogenized so as to define a
rank 2 vector bundle E → B whose projectivization P(E) → B has a distinguished section, and the
complement of this section is C∗ ×C∗.

The construction outlined above can be carried out quite explicitly, and the reader is invited to do
so and obtain in particular the following additional facts.

• The bundle P(E) → B is real analytically isomorphic to P1×B. Thus the section of this bundle
has self intersection 0. However, since the complement of this section is Stein, the section is
holomorphically rigid.

• The vector bundle E → B is flat, i.e., it can be given transition functions which are locally
constant.

• In fact, E → B is a non-split extension of O by O, and thus the algebraic structure inherited by
C∗ ×C∗ from P(E) is not affine.

Remark. A famous problem in complex analysis is to determine whether or not C∗ ×C∗ contains an
open subset biholomoprhic to C2 ([RR] Appendix). Perhaps one can show that no open subset of P(E)
is biholomorphic to C2.
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3 Proof of theorem 1

Every complex torus T is biholomorphic to one of the form C2/(Ze1 +Ze2 +Zλ+Zµ), where e1, e2 are
the standard unit vectors in C2 and {e1, e2, λ, µ} are independent over R. We call {λ, µ} normalized
lattice vectors for T . In terms of normalized lattice vectors λ = (λ1, λ2) and µ = (µ1, µ2) , T can be
obtained as a quotient of C∗ ×C∗ by the Z2 action

(m,n) · (z, w) = (ze2π
√
−1(mλ1+nµ1), we2π

√
−1(mλ2+nµ2)).

We denote the quotient map by (z, w) 7→ [z, w].
Fix a torus T = C2/(Ze1 + Ze2 + Zλ + Zµ) and consider the following C2 action on (C∗)4.

(s, t) ∗ (x, y, z, w) := (esx, ety, eλ1s+µ1tz, eλ2s+µ2tw), (2)

where λ = λ1e1 + λ2e2, and similarly for µ.
First, notice that this is a faithful action. Indeed, for fixed p ∈ (C∗)4, if (s, t) ∗ p = (s′, t′) ∗ p then

s− s′ = 2π
√
−1m1

t− t′ = 2π
√
−1m2

(λ1s + µ1t)− (λ1s′ + µ1t′) = 2π
√
−1k1

(λ2s + µ2t)− (λ2s′ + µ2t′) = 2π
√
−1k2

for some integers m1,m2, k1, k2. Thus m1λ + m2µ− k1e1 − k2e2 = 0 and so m1 = m2 = k1 = k2 = 0.
It is possible to show directly, as in section 2, that the map (s, t) 7→ (s, t) ∗ p is an embedding of C2

into (C∗)4. This also follows from the next proposition. Let π : (C∗)4 → T be the holomorphic map
defined by

π(x, y, z, w) =
[
ze−(λ1 log x+µ1 log y), we−(λ2 log x+µ2 log y)

]
.

Proposition 3.1 The map π is the quotient map for the action ∗. That is to say,

π(x, y, z, w) = π(x′, y′, z′, w′) ⇐⇒ (s, t) ∗ (x, y, z, w) = (x′, y′, z′, w′)

for some (s, t) ∈ C2.

Proof.Suppose π(x, y, z, w) = π(x′, y′, z′, w′). Then

z′

z
= e[λ

1(log(x′/x)+2π
√
−1c)+µ1(log(y′/y)+2π

√
−1d)]

and
w′

w
= e[λ

2(log(x′/x)+2π
√
−1c)+µ2(log(y′/y)+2π

√
−1d)]

for some integers c and d. The reader can observe that it is possible to choose a single branch of the
logarithm so that all the numbers appearing in these equations make sense. Now let s = log(x′/x) +
2π
√
−1c and t = log(y′/y) + 2π

√
−1d. Then

x′

x
= es and

y′

y
= et,

and so (s, t) ∗ (x, y, z, w) = (x′, y′, z′, w′). 2

From general theory of Lie group actions, it follows that the bundle π : (C∗)4 → T is a locally
trivial C2 bundle. However, we will show this more directly.
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To this end, let D = D1 be a fundamental domain of T in C2, e.g., D is the convex hull of the 16
vertices {b1e1 + b2e2 + b3λ + b4µ | b1, b2, b3, b4 ∈ {0, 1} }, and let D2, ..., DN be translates of D in C2

such that

D ⊂
N⋃

j=1

Dj .

Let Dj be the image of Dj in C∗ × C∗ under the map (z, w) 7→ (e2π
√
−1z, e2π

√
−1w). The restriction

to Dj of the projection p : C∗ ×C∗ → T is biholomorphic onto its image ∆j . The bundle structure of
(C∗)4 → T is now defined as follows. Let Yj = π−1(∆j) ⊂ (C∗)4 and let ϕj : ∆j ×C2 → Yj be given
as follows. Suppose (ζ, η) ∈ Dj . Then

ϕj([ζ, η], (s, t)) = (es, et, eλ1s+µ1tζ, eλ2s+µ2tη). (3)

This map is well defined because Dj is a fundamental domain, and thus Dj contains a unique (ζ, η)
projecting onto [ζ, η].

It can be verified that the map ϕj is biholomorphic, but we will actually write down the inverse.
To this end, fix ξ = (x, y, z, w) ∈ π−1(∆j), and choose a branch of log such that log x and log y are well
defined. Define the integers m = mj(ξ) and n = nj(ξ) to be those integers such that(

e−(λ1 log x+µ1 log y+2π
√
−1(λ1m+µ1n))z, e−(λ2 log x+µ2 log y+2π

√
−1(λ2m+µ2n))w

)
∈ Dj .

Then

ϕ−1
j (ξ) =

([
e−(λ1 log x+µ1 log y+2π

√
−1(λ1m+µ1n))z, e−(λ2 log x+µ2 log y+2π

√
−1(λ2m+µ2n))w

]
,

log x + 2π
√
−1mj(ξ), log y + 2π

√
−1nj(ξ)

)
.

We leave it to the reader to verify that ϕ−1
j is well defined. The main thing is that ϕ−1

j is continuous,
even though the chosen branch of log, as well as m and n, are not.

It follows from this discussion that the transition functions gij = ϕ−1
j ◦ ϕi for π are of the form

gij([z, w])(s, t) = (s + 2π
√
−1mij , t + 2π

√
−1nij) (4)

for some integers mij and nij . In particular, they are locally constant. We summarize this as follows.

Proposition 3.2 The fiber bundle π : (C∗)4 → T is affine and flat.

The transition functions gij for the affine bundle above can be used to construct a vector bundle
E → T whose transition functions are given by

Gij([z, w])

 r
s
t

 =

 1 0 0
2π
√
−1mij 1 0

2π
√
−1nij 0 1

 r
s
t


Evidently the projectivization X := P(E) of E is a P2 bundle over T . Moreover, even though the
coordinate functions r, s, t are not globally defined, the divisor D = (r = 0) ⊂ X is well defined, i.e.,

Gij([z, w])

 0
s
t

 =

 0
s
t


From this, we also see that D is a trivial P1-bundle over T . Since the projectivization of a vector bundle
over a compact Kähler manifold is itself Kähler, X is Kähler. The proof of Theorem 1 is complete.
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4 Proof of theorem 2

Let us return to the affine bundle π : (C∗)4 → T in Proposition 3.2. Though somewhat abusive, we
will also denote the P2-bundle X → T by π.

Lemma 4.1 The affine bundle π does not have a section or an affine subbundle of rank 1.

Proof.A section of π gives a compact complex torus in (C∗)4, which contradicts the maximum
principle. Under the local trivialization ϕj : ∆j ×C2 → Yj ⊂ (C∗)4 in (3), an affine subbundle is given
by a linear equation

aj + bjs + cjt = 0

where aj , bj , cj are holomorphic functions on ∆j . The transition functions 4 give the relations

ai + bis + cit = aj + bj(s + 2π
√
−1mij) + cj(t + 2π

√
−1nij).

We then have that bj and cj define global holomorphic functions on T . Thus they are constant and
the functions aj on ∆j satisfy

ai − aj = bmij + cnij .

Thus the Z-valued cocyles {mij} and {nij} become linearly dependent in H1(T,O).
But the C2-bundle π is precisely the quotient of the trivial C2-bundle on the universal cover C2 of

T where γ ∈ Γ acts by (p, q) 7→ (p + γ, q + γ). Thus the two cocycles are linearly independent. 2

For the rest of this section, we assume that T has no nonconstant meromorphic functions or curves,
and that every line bundle on T is flat. This is true for a general choice of T .

Lemma 4.2 There cannot be two algebraically independent meromorphic functions on X.

Proof.To obtain a contradiction, suppose that f and g are two independent meromorphic functions
on X. Since T has no nonconstant meromorphic function, possibly after perturbing f and g, we can
assume that there is an irreducible component Z of the variety (f = g = 0) whose intersection with
the generic fiber of π is a finite set disjoint from D, the compactifying divisor. Let A ⊂ T be the set
of points t such that either π−1(t) ∩ Z is not finite, or else π−1(t) ∩ Z ∩ D 6= ∅. Since A is a proper
analytic subvariety of T , it must be finite.

For t ∈ T − A, let ζt be the center of mass of the set-with-multiplicity π−1(t) ∩ Z, and let Z ′ be
the set {ζt | t ∈ T −A}. Then Z ′ is a holomorphic section of the C2-bundle P(E) −D = (C∗)4 over
T − A, and thus extends to a section of P(E) − D over T by Hartogs extension, a contradiction to
Lemma 4.1. 2

Let us say that a meromorphic function f on M has fiberwise linear levels if for each c ∈ P1, the level
sets (f = c) intersect the fibers of π in hyperplanes.

Lemma 4.3 If f is a nonconstant meromorphic function on X, then f has fiberwise linear levels.

Proof.Note first that the C2-action (2) on (C∗)4 extends holomorphically to an action on X, which
fixes D pointwise. Moreover, the action preserves fibers and is linear on them. If f is a meromorphic
function on X with non-linear fiber levels, then by pulling back f with the C2 action, we could produce
a second meromorphic function g with different level foliation on the fibers. Thus g and f would be
algebraically independent, contradicting lemma 4.2. 2

An easy consequence of the assumption that every line bundle on T is flat is

Lemma 4.4 Let L be a line bundle on T . If there exists a non-zero map of line bundles L → O, then
L = O.
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Now we can complete the proof of Theorem 2 by

Lemma 4.5 The manifold X has no meromorphic functions with fiberwise linear levels.

Proof.A level set of such a meromorphic function defines a rank-2 subbundle F ⊂ E such that
PF 6= D. From the transition functions, we have the exact sequence

0 −→ O2 −→ E −→ O −→ 0.

By Lemma 4.4, F must surject to O and PF ∩ (PE − D) defines a rank-1 affine subbundle of π :
(C∗)4 → T , a contradiction to Lemma 4.1. 2
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