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Dedicated to M. Salah Baouendi on the occasion of his 60th birthday.

1. INTRODUCTION

In his celebrated work [S-98, S-02], Siu proved that the plurigenera of any algebraic manifold
are invariant in families. More precisely, let 7 : 2~ — D be a holomorphic submersion (i.e., dm
is nowhere zero) from a complex manifold 2~ to the unit disk D, and assume that every fiber
% = m~Y(t) is a compact projective manifold. Then for every m € N, the function P, : D — N
defined by P, (t) := h%(2;, mK ;) is constant.

Siu’s approach to the problem begins with the observation that the function P, is upper semi-
continuous. Thus in order to prove that P, is continuous (hence constant) it suffices to show that
given a global holomorphic section s of mK g, there is a family of global holomorphic sections s;
of Zi, for all ¢ in a neighborhood of 0, that varies holomorphically with ¢ and satisfies sg = s.

To prove such an extension theorem, Siu establishes a generalization of the Ohsawa-Takegoshi
Extension Theorem to the setting of complex submanifolds of a Kahler manifold having codimension
1 and cut out by a single, bounded holomorphic function. This theorem, which we will discuss below,
requires the existence of a singular Hermitian metric on the ambient manifold having non-negative
curvature current, with respect to which the section to be extended is L2. Thus in the presence of
the extension theorem, the approach reduces to construction of such a metric.

The case where the fibers Z; of our holomorphic family are of general type was treated in
[S-98]. In this setting, Siu produced a single singular Hermitian metric e™* for Kx so that every
m-canonical section is L? with respect to e~ ("1~

However, in the case where the fibers Z; of our holomorphic family are assumed only to be
algebraic, and not necessarily of general type, Siu’s proof in [S-02] does not construct a single
metric as in the case of general type. Instead, Siu constructs for every section s of mK g; a singular
Hermitian metric for mK 4 of non-negative curvature so that s is L? with respect to this metric.

DEFINITION. Let 2" — A be a holomorphic family of complex manifolds and 2y the cental fiber
of Z". A universal canonical metric for the pair (27, 20) is a singular Hermitian metric e~ " for the
canonical bundle K 4 of 2 such that for every global holomorphic section s € H°( 2, mK 2;,),

/ |s|2e=(m=Dr < f o0,
20

The goal of this paper is to prove that for any holomorphic family 2" — A of compact complex
algebraic manifolds with central fiber 2y, the pair (2", Zp) has a universal canonical metric having
non-negative curvature current. To this end, our main theorem is the following result.

THEOREM 1. Let X be a complex manifold admitting a positive line bundle A — X, and Z C X a
smooth compact complex submanifold of codimension 1. Assume there is a subvariety V. C X not
containing Z such that X —V is a Stein manifold. Let T € H°(X,Z) be a holomorphic section of
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the line bundle associated to Z, thought of as a divisor. Let E — X be a holomorphic line bundle
and denote by Kx the canonical bundle of X. Assume we are given singular metrics e~ YE for E
and e~%Z for the line bundle associated to Z.

Suppose in addition that the above data satisfy the following assumptions.

(R) The metrics e"¥E and e~ ¥Z restrict to singular metrics on Z.
(B)

sup |T|%e™%7 < +oo.
X

(G) The line bundles p(Kx + Z + E) + A, 0 < p < m — 1, are globally generated, in the
sense that a finite number of sections of H(X,p(Kx + Z + E) + A) generate the sheaf
Ox(p(Kx +Z+ E)+ A). ) )

(P) V/=100pg > 0 and there exists a constant p such that uy/—100pg > /=100y y.

(T) The singular metric e~ ($2+%E)|Z has trivial multiplier ideal:

I (Z,e"$zFer)|7) = Oy.
Then there is a metric e " for Kx + Z + E with the following properties:
(C) V/—=100k > 0.
(L) For every m > 0 and every section s € H)(Z,m(Kz + E|Z)), |s|?e-((m-Nrteptez) g

locally integrable.
(I) For every integer m > 0 and every section s € HY(Z, m(Kz + E)),

/ |s|26_(m_1)”+‘pE < 4o00.
z

REMARKS. (i) For the ambient manifold X, we have in mind the following two examples:
either X is compact complex projective (in which case the variety V' could be taken to be
a hyperplane section of some embedding of X) or else X is a family of compact complex
algebraic manifolds. In the former case, it is well-known that the hypothesis (G) holds for
any sufficiently ample A, while in the latter case, one might have to shrink X a little to
obtain (G). Of course, there are many other examples of such X.
(ii) Note that in condition (L), the local functions |s|?e~((m=Dr+¢r+¢2) depend on the local
trivializations of the line bundles in question. However, the local integrability condition is
independent of these choices.

Together with a variant of the Ohsawa-Takegoshi Theorem (Theorem 4 below), Theorem 1
implies a generalization of Siu’s extension theorem to the case where the normal bundle of the
submanifold Z is not necessarily trivial. The first extension theorem of this type was established
by Takayama [Ta-05, Theorem 4.1Junder some additional hypotheses. The general case was done
in [V-06], where Theorem 4 was also established. The argument here is related to that of [V-06],
but the focus is on construction of the metric rather than on the extension theorem.

As a result of Theorem 1, we have the following corollary, which is our stated goal.

COROLLARY 2. For every holomorphic family £ — /A of smooth projective varieties with central
fiber 2y, the pair (Z°, Zo) has, perhaps after slightly shrinking the family, a universal canonical
metric having non-negative curvature current.

Proof. Let X be a family of compact projective manifolds 7 : 2" — D, and Z = 2 the central fiber.

Take T'=m, F = Oy and pg = 0. Since %2 is cut out by a single holomorphic function, the line

bundle associated to %y is trivial. Take ¢z = 0. Then the hypotheses of Theorem 1 are satisfied,

perhaps after shrinking the family, and we obtain a metric e* for K »- such that /—100x > 0 and

|s|2e~(m=D#rm is integrable for every integer m > 0 and every section s € H%(25, mKg;). d
2



REMARK. Note that in the setting of families, the constant p is not needed, and the hypotheses
(L) and (I) are the same.

REMARK. In his paper [Ts-02], Tsuji has claimed the existence of a metric with the properties
stated in Corollary 2. As in our approach, Tsuji’s proof makes use of an infinite process. It seems
that convergence of this process was not checked; in fact, it is demonstrated in [S-02] that Tsuji’s
process, as well as any reasonable modification of it, diverges.

PROPOSITION 3. For each integer m > 0, fiz a basis sgm), ey 35\72 of H(X,m(Kz+ E|Z)). Choose
constants €,, such that the metric

1/m
= log Z em (Z |$§m)2>

(=1

is convergent. Suppose e~%F is locally integrable. Then for each m > 0 and every s € HY(X, m(K z+
E|Z)),

/ |s[2e~(Om=Drotem) < 4 o0,
Z

1/
Proof. Fix s € HY(X,m(Kz + E|Z)), and let g, = log (Z |54m)\2) ", Note that e <

—fom - and thus we have

/‘5‘2 —(m—=1)ko+¢r < /’526—(m—1)50,m+@E
z

(m—1)/m
_ /,Sz/m< s )
7 |82 4 s 12

< /Z |s|2/meE—PE e

1/m (m—1)/m
S </ \8fzeVE_We_mVEw_(”_l)(m_l)) </ eVE_“DEw"_1> ;
z z

where w is a fixed Kéahler form for Z and e~ 77 is a smooth metric for E|Z. The last inequality is
a consequence of Holder’s Inequality. Since e~%F is locally integrable, we are done. ]

A calculation similar to the proof of Proposition 3 shows that |s|2e~((m=Drotez+en) ig Jocally
integrable on Z. Thus in view of Proposition 3, Theorem 1 follows if we construct a metric e™"
with non-negative curvature current such that e %|Z = e™"0. This is precisely what we do. We
employ a technical simplification, due to Paun [P-05], of Siu’s original idea of extending metrics
using an Ohsawa-Takegoshi-type extension theorem for sections.
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2. THE OHSAWA-TAKEGOSHI EXTENSION THEOREM

Let Y be a Kahler manifold of complex dimension n. Assume there exists an analytic hypersurface
V C Y such that Y — V is Stein. Examples of such manifolds are Stein manifolds (where V' is
empty) and projective algebraic manifolds (where one can take V' to be the intersection of Y with
a projective hyperplane in some projective space in which Y is embedded).

Fix a smooth hypersurface Z C Y such that Z ¢ V. In [V-06] we proved the following general-
ization of the Ohsawa-Takogoshi Extension Theorem.

THEOREM 4. Suppose given a holomorphic line bundle H — Y with a singular Hermitian metric
e ¥, and a singular Hermitian metric e=%% for the line bundle associated to the divisor Z, such
that the following properties hold.

(i) The restrictions e¥|Z and e=%%|Z are singular metrics.
(ii) There is a global holomorphic section T € H(Y,Z) such that

Z={T =0} and sup|T|’e %% =1.
Y

(iii) /=100vy > 0 and there is an integer p > 0 such that p/—100y > /—100pz.
Then for every s € H(Z, Kz + H) such that

/ |S|26_w < 400 and sANdT € f(e_(@2+¢)|z)7
Z
there exists a section S € HO(Y, Ky + Z + H) such that

S|Z =sNdTl and / |5|2e (P2 +Y) < 4071'@/ |s]2e7Y.
Y Z

3. INDUCTIVE CONSTRUCTION OF CERTAIN SECTIONS BY EXTENSION

Fix a holomorphic line bundle A — X such that the property (G) in Theorem 1 holds.
Let us fix bases

(5" 1< j < M)
of HY(X,p(Kx + Z + E) + A). We let aj(m’o’p) € H(Z,p(Kz + E|Z) + A|Z) be such that

5"z = g™ (aT)®P.
We also fix smooth metrics
e ande F for Z — X, and F — X
respectively. Finally, let us fix bases
ng)’ v sm for HY (X, m(Kz + E|Z)), m=1,2,...

orthonormal with respect to the singular metric (w=(*"Ve=78)"=1e=¢E for (m — 1)K, + mE|Z.
(Since e~ ?F is locally integrable, every holomorphic section is integrable with respect to this metric.)

PROPOSITION 5. For each m = 1,2, ... there exist a constant C,, < +o0o and sections
5 e HO(X, (km + p)(Kx + Z + E) + A)
wherep=1,2,..m—-1,1<35<M,, 1<l <Ny, and k= 1,2, ..., with the following properties.

(a) 63| Z = (s{"™)F @ o™ ) A (dT) )
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(b) If k> 1,

< Chp.

/ Z mko )[2e=(vz+78)

~ (m,k—1,m—1)9
Jf |

(c) For1<p<m-—1,

kp) 12, —(vz+7E)
Z m | (vz+vE
/ < Cp.

-1 5(mkp=1))2 -
T ’

Proof. (Double induction on k and p.) Fix a constant Cyn such that the

s~ Mo ’&J(m,O,O)‘Q n(m_l)e(m_l)(’YZ‘f'WE)

sup < 5
and
21}@1 |U<m,070)|2w(n—1)(m—1) (m=1)ve
sup == Mm 1 _(m0,m—1) < Cm,
z > \ 2
and for all 0 < p <m — 2,
Z]'V_pfl |5(m,07P+1)|2w—ne—('yz+’yE) R
S o < Cm,
X Zj:l |Uj |
and
NP+1 (m707p+1) 2 —(n—l) —YE
P w e ~
sup Z]_l | J | S Cm

M, ,0,
z i oy

k = 0) We set 50 . 6(m 0P) and simply observe that
7.l

Z ‘U mOP) 12—~ (vzHyE)
< Cm/ w"
/ | (mO,p 1)|2 X

(k > 1) Assume the result has been proved for k — 1.

((p = 0)): Consider the sections (sém))@)k ® a](.m’o’o), and define the semi-positively curved metric

Mm 1
k—1 1)
Ure0 = log Z Gyt

for the line bundle (mk — 1)(Kx + Z + E) + A. Observe that locally on Z,

m,0,0) |2 —(pz+eE)

(
(s A dT™)F @ o™ 00 2e(Pztinaoten) = |5im) /xd1m42k5

l J 14 m—1 (m,O,m 1) 2
Z; 1 195 |

Moreover, we have

\/—185(1#1@,5,0 +¢p)>0 and u\/—lﬁé(zﬂk,g,o +p) > V—100¢7.
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Finally,

/| (m00)|2 —(Yr,0,0+¥E)
/ mOO |26(m DyE o= ((m=1)y5+¢E)
| M, m,0,m—1 < oo
S5 o0

We may thus apply Theorem 4 to obtain sections

~](?km e H (X, mk(Kx+Z+E)+A), 1<j<My, 1<0<N,,

such that
PN Z = (s7) %R @ 6 ()00 A (TR, 1< j < My, 1 < €< Ny,
Jit

and
‘U(O)P —(¢e+¥B)

mk(] 2 — (Y, 0,0tz +vE) < 2
/ | 407 | ZNm 1| (m= 1)|2

J=1 J
Summing over j, we obtain
,k,0) _
Z |JnZ ‘2 (vz+7E)
Mm 1 ~(mk=1,m—1) 9
M ’
Z mk0|2_¢z+¢E)
$z+PE—VZ—7
SSUPGZ EZE/ |(mk1m1|2
mOO) 2, —op
< 407rsupe“’Z+¥’E Yz - ’YE/| QZ ’ |“e -
Z]J\iwib 1 0'§m0m 1)|2
<

4O7TCAZ’m sup ePZTPE=127E / ‘Sém) |2w*(”*1)(m*1)€*((m71)7E+¢E)
X A

— 407C,, sup e?Z TPE=1ZE
X

((1 <p<m-—1)): Assume that we have obtained the sections a](rg’k’p 2

N,,,. Consider the non-negatively curved smgular metric

(m,k,p—1)
Vhtp := l0g Z Cpy

s 1<) <My, 1<4<

for (km+p—1)(Kx +Z + E) + A. We have

’J(.mvoap) 2e~(¢zteE)
< e_(QOZ‘HOE)’

M, _ ,0,p—1 ~
St o OP
)

|(S§m))k Q Uj(m,07p)‘26—(<pz+¢k,z,p+<ﬂE) —

. Next,

(m) k (mvovp) 2 —(d%,e, +§0E) — ’0-
/ZKSZ ) ®J] |€ P /ZZMP 1| (mO,p 1)|2

(m,O,p) ‘2€*(¢Z+QDE)

Cc* | % ‘G]
VA ZMp_l ‘O.(m707p71)‘2
6
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where
C* :=supe¥Z277Z,
z
Moreover,

V=100(Yrp +pr) >0 and V—100(Yrrp + vE) > V—10007.

By Theorem 4 there exist sections

&J(Tg’k’p) EHO(X7 (mk+p)(Kx—|—Z+E)+A), 1<j7< My
such that
5_(m,k,p)|Z _ (sgm))m ®

o 0(7?071)) A (dT)(X)km-l-p’ 1 S] < Mp,

J7
and
|0.(m707p |2e—gDE

ko) (2~ (Vk e pt+oz+9E)
]a TP 2= (Wk.tp < 407w/
/ 2 Yyt o

Summing over j, we obtain

Z] Az m’“J’ 2e~(iz+7E)
Mp

1 (m7k7p71)|2
J 1 1%

< 407 p sup 6‘PZ+<PE‘_’YZ—'YECm/ e PE ML
X Z

Letting

Cyp := 407 puCy, max (/ W™, sup eﬂoZ‘H@E‘HPB_'YZ_’YE’ sup eeoz-HOE—’Yz—’YE/ e_SOEwn_1>
X X X Z

completes the proof. O

4. CONSTRUCTION OF THE METRIC

4.1. A metric associated to m(Kx + Z + E). Fix a smooth metric e™ for A — X. Consider
the functions

— log Z |O.(m kp) |2,y =n(mbetp) o —(km(yz+78)+4)
where N = mk + p. Set
Now (m)
3

LEMMA 6. For any non-empty open subset V C X and any smooth function f:V — Ry,

1 / (m) (m) n <Nm0m supy f)
[ A < g ((DmEmSUPY T
fV fwn V( N N 1) fv fw”

Proof. Observe that by Proposition 5, there exists a constant C,, such that for any open subset
VcX,

(M) (m)
/(6 TN~ 1)fW”§Cm81¢pf,
v
and thus

(m) (M) ("l) (m)
/(eAN TN Z/ NRTNN) [t < NG s .
Vv

An application of (the concave version of) Jensen’s inequality to the concave function log then

gives
1 / (m) (m) <NmCm supy f>
Av ' — A w'<log| ————— | .
fvfwn V( N N- 1)f 8 fvfwn
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The proof is complete. O

Consider the function
(m) _ 1 \(m)
A = E)\mk .

Note that A,(Cm) is locally the sum of a plurisubharmonic function and a smooth function. By
applying Lemma 6 and using the telescoping property, we see that for any open set V' C X and
any smooth function f:V — R4,

1 (M) + n (NmCm supy, f>
A L U I
(1) T for /v v fw™ < mlog T

PROPOSITION 7. There exists a constant C’ﬁm) such that

MA@y <, zeX.

Proof. Let us cover X by coordinate charts V7, ..., Vv such that for each j there is a biholomorphic
map F; from Vj to the ball B(0,2) of radius 2 centered at the origin in C", and such that if
Uj = F;l(B(O, 1)), then Uy, ...,Un is also an open cover. Let W; = V; \ F;l(B(O, 3/2)).

(m)

Now, on each Vj, A, is the sum of a plurisubharmonic function and a smooth function. Say

A,(Cm) = h + g on V}, where h is plurisubharmonic and g is smooth. Then for constant A; we have
sup A,(cm) < supg + sup
Uj Uj Uj
< supg+ Aj/ h - Fj.dV
g W,
< supg— Aj/ g - Fj.dV + Aj/ A,im) - FjdV
Uj W]' Wj
Let

C](.m) :=supg — 4; / g - FjdV
Uj W

and define the smooth function f; by
fjw” = FJ*dV
Then by (1) applied with V' = W; and f = f;, we have

Ny Co o supwy. [
sup A,gm) < Cj(m) +mA;log ( Pw; fj) /W fiw".
j

Uj ij fjwn
Letting
Ny, Cop supw. fi
C™ .= max ctm 4+ mA;log bw, Js / fw"
1<GEN | Jw, fiw" f
completes the proof. O

Since the upper regularization of the lim sup of a uniformly bounded sequence of plurisubhar-
monic functions is plurisubharmonic (see, e.g., [H-90, Theorem 1.6.2]), we essentially have the
following corollary.
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COROLLARY 8. The function

AU (2) := lim sup lim sup A,(gm) (y)

Yy—x k—oo

1s locally the sum of a plurisubharmonic function and a smooth function.

Proof. One need only observe that the function Ay is obtained from a singular metric on the line

bundle m(Kx + Z + E) (this singular metric e~ will be described shortly) by multiplying by a
fixed smooth metric of the dual line bundle. 0

Consider the singular Hermitian metric e %" for m(Kx + Z + E) defined by

e—n<m) —A<m) —nme—m(’yz—l—'yE).

This singular metric is given by the formula

o™ (@) — exp (— lim sup lim sup H,(gm) (y)) )

y— k—oo
where
e oA —m(vtm)
The curvature of e‘“;cm) is thus
Nm No 1
V=1005™ = —8alog22] (m.k.0)2 — L V100y
/=1 j=1
1 _
> —E\/—maw

We claim next that the curvature of e™" is non-negative. To see this, it suffices to work locally.
Then we have that the functions

1
m) L
+ kw
are plurisubharmonic. But
lim sup lim sup /1§g ™) + ¢ = lim sup lim sup K,; ™) — m),
Yy—x k—o00 Yy—x k—o00

It follows that (™ is plurisubharmonic, as desired.

4.2. The metric for Kx + Z + E; Proof of Theorem 1. Let ¢, be constants, chosen so €, \, 0
sufficiently rapidly that the sum

o0
Z Emefﬂ(m Z exp(Lx™ +logepn,).
m=1

converges everywhere on X (to a metric for —(Kx + Z + E)). It is possible to find such constants
since, by Proposition 7, each x(™) is locally uniformly bounded from above. (The lower bound
™ > 0 is trivial.) Moreover, by elementary properties of plurisubharmonic functions, x is

plurisubharmonic. Indeed, for any r € N, the function
= log Z exp(;- ™) 4+ log Em)

is plurisubharmonic, and ¥, k. It follows that k = sup, ¢, is plurisubharmonic. (Again, see
[H-90, Theorem 1.6.2].)Thus e™" is a singular Hermitian metric for Kx + Z + E with non-negative
curvature current.

9



Observe that, after identifying K with (Kx + Z)|Z by dividing by dT,
Al 1 & 0,0
m,(cm)\Z = log Z lsém)|2 + Z logz \U](-m’ ’ )|2.
=1 j=1

-1
Thus we obtain e_"(m>|Z = ( éV:’*i |s§m)]2> . It follows that
1
o m 2/m
Soerem (S0 157 2)

In view of the short discussion following the proof of Proposition 3, the metric e " satisfies the
conclusions of Theorem 1. The proof of Theorem 1 is thus complete. ([l

e "Z =

K
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