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ABSTRACT: We give covering theorems in one variable for holo-

morphic functions on the unit disc with k-fold symmetry. In the case

of convex maps we give a generalization, shown to us by D. Minda, to

the case where a2 = . . . = ak = 0. In several variables we determine

the Bloch constant (equivalently the Koebe constant) for convex maps

of Bn with k-fold symmetry, k ≥ 2. We also estimate and in some cases

compute the Bloch constant for starlike maps of Bn with k-fold symme-

try. We compare the Bloch constant with the Koebe constant for such

maps and determine values of n and k for which equality holds.
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1. INTRODUCTION

This paper is the result of an attempt to answer the following

Question: If F : Bn → Cn is a biholomorphic map of the unit ball onto a convex domain

such that dF (0) = I, must F (Bn) contain a ball of radius π/4?

This is the problem of the univalent Bloch constant for convex maps in several vari-

ables. When n = 1 the result is of course true [Sz,Z,M2]. There are at least three

different ways of proving this – a classical proof due to Szegö [Sz], a differential-geometric

proof based on ultrahyperbolic metrics [Z,M2], and a proof based on the growth estimate

|f(z)| ≥ arctan |z| for convex functions with vanishing second coefficient, cf. [Gro,J,F].

(Concerning the third proof, compare the recent work of Bonk [Bo] and the generalization

of Bonk’s distortion theorem to several variables by Liu [Li].)

Some evidence that the answer to the above question in several variables is also affir-

mative is contained in our paper [GV], where the following was proved: if F : Bn → Cn

is a holomorphic map with convex image and dF (0) = I, then any translate of F (Bn)

through a distance less than π/2 has nonempty intersection with F (Bn). This is the sev-

eral variables analog of a theorem of MacGregor [McG], which of course does not require

convex image in one variable.

In this paper we answer the question in the affirmative if f is odd or has k-fold

symmetry (if k > 2 larger constants are obtained), though we are still unable to settle

the general case. Our results go beyond the case of convex maps, however. We begin in

Section 2 with covering theorems for functions on the unit disc with k-fold symmetry, or,

more generally in the convex case, functions with a2 = . . . = ak = 0. (The latter

argument was shown to us by David Minda.) In Section 3 we obtain analogs of the results

with k-fold symmetry for maps from the unit disc into Cn. Our version of the Bloch or

Koebe theorem for convex maps of the unit ball in Cn with k-fold symmetry appears in

Section 4. It is based on a projection argument and a one-variable covering theorem for

the convex hull of the image of a k-fold symmetric function. Some rather unexpected
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results for starlike maps of the ball are obtained in Section 5. The Koebe constant for such

maps, both in the general case and in the presence of k-fold symmetry, was determined

by Barnard, FitzGerald, and Gong [BFG]. For general starlike maps and also in the case

of odd starlike maps we give upper bounds for the Bloch constant which decrease as the

dimension increases and approach the Koebe constant as n→∞. In the k-fold symmetric

case (k ≥ 3) a new phenomenon occurs: the Bloch constant coincides with the Koebe

constant except when k = 3 and n = 2, 3. Finally we have one result for the polydisc

(Section 6) - the Bloch constant for all convex univalent maps can be computed rather

easily using a characterization of such maps due to Suffridge [Su1].

2. ONE-VARIABLE RESULTS

In this section we give covering theorems of Bloch or Koebe type for functions with

k-fold symmetry, i.e. functions such that e−2πi/kf(e2πi/kz) = f(z) where k is a positive

integer. In the convex case we give a generalization, shown to us by David Minda, to the

case where a2 = a3 = · · · = ak = 0. We denote by ∆(p, r) the open disc of centre p and

radius r. The unit disc is denoted by ∆.

Theorem 1.

(i) Suppose f : ∆ → C is univalent with k-fold symmetry and normalized by f ′(0) = 1.

Then f(∆) ⊇ ∆(0, 4−1/k).

(ii) Suppose further that f is convex. Then

f(∆) ⊇ ∆(0, rk) where rk =
∫ 1

0

dt

(1 + tk)2/k
.

Both results are sharp.

Proof: Part (i)follows from the growth estimate

(2.1) |f(z)| ≥ |z|
(1 + |z|k)2/k
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obtained by considering the k-th root transform of f [Neh, pp. 225-226, problem 13]. Part

(ii) is obtained by applying (2.1) to the function h(z) = zf ′(z) and then integrating.

For the first assertion, we see that the results are sharp for each k by considering the

functions

fk(z) = (K(zk))1/k, where K(z) =
z

(1− z)2

is the Koebe function. For the case of convex functions, we see that the functions

(2.2) gk(z) =


z

1−z k = 1
1
2 log 1+z

1−z k = 2∫ z
0

dτ
(1−τk)2/k k ≥ 3

gives sharp results. For k ≥ 3 the map is a (normalized) Riemann map onto a regular

polygon of order k [Neh, p. 196, problem 4]. Note that in all cases we have zg′k(z) = fk(z).

Now we come to Minda’s generalization. First we recall the

Generalized Schwarz Lemma: Suppose φ : ∆→ ∆ is holomorphic, and φ(0) = φ′(0) =

· · · = φ(k−1)(0) = 0. Then

1
k!
|φ(k)(0)| ≤ 1(i)

|φ(z)| ≤ |z|k z ∈ ∆(ii)

Equality holds in (i) or (at a single point) in (ii) iff φ(z) = λzk where λ is a unimodular

constant.

Using this we obtain

Theorem 2. Suppose Ω ⊂ C is a domain, F : ∆→ Ω is a universal covering, f : ∆→ Ω

is holomorphic, and f(0) = F (0). If f ′(0) = · · · = f (k−1)(0) = 0 then

1
k!
|f (k)(0)| ≤ |F ′(0)|(i)

f({z : |z| ≤ r}) ⊆ F ({z : |z| ≤ rk}) 0 < r < 1.(ii)

Equality holds in (i) if and only if f(z) = F (λzk) for some unimodular constant λ. Also

if f(z) ∈ ∂F ({|z| ≤ rk}) for some z such that |z| = r then f(z) = F (λzk) for some

unimodular constant λ.
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Proof: Since F is a covering, there is a holomorphic function φ : ∆ → ∆ with φ(0) = 0

such that F ◦ φ = f . The result now follows from the Generalized Schwarz Lemma.

Remark: The conclusion of the theorem is what would follow from f(z) ≺ F (zk), but

this subordination is not generally valid.

Theorem 3. Suppose that f(z) = z + ak+1z
k+1 + ak+2z

k+2 + · · · is convex univalent in

∆. Then for z ∈ ∆
1

(1 + |z|k)2/k
≤ |f ′(z)| ≤ 1

(1− |z|k)2/k
.

These bounds are sharp and are realized by the functions gk in (2.2).

Proof. Since f is convex univalent, we have

Re

(
zf ′′(z)
f ′(z)

)
> −1, z ∈ ∆.

Hence the function g(z) = zf ′′(z)
f ′(z) is subordinate to G(z) = 1+z

1−z − 1 = 2z
1−z . Now g(0) = 0

and

g(z) =
(k + 1)kzk + · · ·

1 + (k + 1)ak+1zk + · · ·

so g′(0) = · · · = g(k−1)(0) = 0. We conclude from Theorem 2 that g({|z| ≤ r}) ≤ G({|z| ≤

rk}). The latter set is a disc centered on the real axis. Since

G(rk) =
2rk

1− rk
and G(−rk) =

−2rk

1 + rk
,

the centre of this disc is located at 2r2k

1−r2k and its radius is 2rk

1−r2k . Thus for z ∈ ∆,∣∣∣∣g(z)− 2|z|2k

1− |z|2k

∣∣∣∣ ≤ 2|z|k

1− |z|2k

which gives in turn ∣∣∣∣zf ′′(z)f ′(z)
− 2|z|2k

1− |z|2k

∣∣∣∣ ≤ 2|z|k

1− |z|2k∣∣∣∣ |z|2f ′′(z)f ′(z)
− 2z|z|2k

1− |z|2k

∣∣∣∣ ≤ 2|z|k+1

1− |z|2k∣∣∣∣f ′′(z)f ′(z)
− 2z|z|2k−2

1− |z|2k

∣∣∣∣ ≤ 2|z|k−1

1− |z|2k
.
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It suffices to establish the result for z = r > 0. In this case we have∣∣∣∣f ′′(r)f ′(r)
− 2r2k−1

1− r2k

∣∣∣∣ ≤ 2rk−1

1− r2k
.

By integration, ∣∣∣∣log f ′(r) +
1
k

log(1− r2k)
∣∣∣∣ ≤ ∫ r

0

2ρk−1

1− ρ2k
dρ

=
1
k

log
1 + rk

1− rk
.

Since |w| ≤ R implies −R ≤ Rew ≤ R, we obtain

−1
k

log
1 + rk

1− rk
≤ log |f ′(r)|+ 1

k
log(1− r2k) ≤ 1

k
log

1 + rk

1− rk

or
1
k

log
1

(1 + rk)2
≤ log |f ′(r)| ≤ 1

k
log

1
(1− rk)2

or finally
1

(1 + rk)2/k
≤ |f ′(r)| ≤ 1

(1− rk)2/k
.

Corollary. For the class of univalent convex functions of the form f(z) = z+ak+1z
k+1 +

ak+2z
k+2 + · · ·, the Bloch constant coincides with the Koebe constant and has the value

rk =
∫ 1

0
dt

(1+tk)2/k . (In the absence of univalence but with the assumption of k-fold symmetry

the Landau constant has this value.)

Next we give a covering theorem for the convex hull of the image of a map with k-fold

symmetry. This result does not require univalence; however it does not generalize to the

case of maps with a2 = · · · = ak = 0. (Because of this our covering theorem for convex

maps of the unit ball in Cn (Theorem 7) requires a symmetry assumption.)

Theorem 4. Let f : ∆→ C have k-fold symmetry and satisfy f ′(0) = 1. Then f̂(∆) ⊇

∆(0, rk) where ̂ denotes the convex hull.

Proof: (For the case k = 1, the theorem is well-known.) We may assume f̂(∆) 6= C. It

is clear that K = f̂(∆) has k-fold symmetry. Let ω ∈ ∂K be a point of least modulus.
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Then the supporting line at ω must be perpendicular to Oω. (Otherwise we obtain a

contradiction to the choice of ω.) Let M = |ω|. Then f is subordinate to the function

h(z) = M
rk
gk(z) with gk as given in (2.2). Thus h′(0) = M/rk ≥ f ′(0) = 1, so that

M ≥ rk. The proof is complete.

3. RELATED RESULTS FOR MAPS FROM THE UNIT DISC INTO Cn.

The proof of Theorem 4 can be combined with the Hahn-Banach theorem to show

Theorem 5. Let f : ∆ → Cn be a holomorphic map with k-fold symmetry. (Thus

f(0) = 0.) Then the closed convex hull of f(∆) contains the disc {zf ′(0)| |z| ≤ rk}.

The details are omitted (cf. [Gra2, Lemma 4]). This result allows one to improve the

constant in estimates for the Kobayashi metric on convex domains with k-fold symmetry

when the base point is the origin (cf. [Gra1, Gra2]). We recall that the Kobayashi metric

is the nonnegative function on the tangent bundle to a domain Ω defined by

K(p; ξ) = inf{|v| : v ∈ T0(∆) and ∃f : ∆→ Ω holomorphic

such that f(0) = p and df0(v) = ξ}.

Theorem 6. Let Ω be a convex domain in Cn with k-fold symmetry. Let ξ ∈ T0Ω and

let r(0; ξ) denote the radius of the largest disc centered at 0, tangent to ξ, and contained

in Ω. Then

rk
|ξ|

r(0; ξ)
≤ K(0; ξ) ≤ |ξ|

r(0, ξ)
.

Proof: The upper estimate is well-known. To prove the lower one, note that if f : ∆→ Ω

is holomorphic and f(0) = 0, then the k-fold symmetric map

g(z) =
1
k

k∑
j=1

e−2πij/kf(e2πij/kz)

satisfies g(∆) ⊂ Ω, g(0) = 0, and g′(0) = f ′(0). We now apply Theorem 5 and note

that the disc in the conclusion of the theorem must be contained in Ω.
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4. THE BLOCH, LANDAU, AND KOEBE CONSTANTS FOR CONVEX

MAPS OF Bn WITH k-FOLD SYMMETRY.

In this section we determine the Bloch (Landau) constant for normalized univalent

convex maps of Bn with k-fold symmetry, k ≥ 2. It coincides with the Koebe constant for

the same class of maps. (In fact one can relax the requirement of univalence here if one

defines the Koebe constant to be the radius of the largest ball in the image of the map

centered at F (0).) That is, in the presence of the symmetry condition e−2πi/kF (e2πi/kζ) =

F (ζ), ζ ∈ Bn, it suffices to consider balls in F (Bn) which are centered at 0.

We first formulate a Koebe theorem for convex maps which satisfy a weaker symmetry

condition - a k-fold symmetry condition for a particular slice only.

Definition: Let F : Bn → Cn be a holomorphic map such that F (Bn) is convex, F (0) = 0,

and dF (0) = I. F is said to have critical - slice symmetry of order k if there is a point

ω ∈ ∂F (Bn) at minimum distance to 0 such that, on setting a = ω/||ω||, the function

φ(z) =< F (za), a > has symmetry of order k.

Theorem 7. Let F : Bn → Cn have critical-slice symmetry of order k. Then F (Bn) ⊇

Bn(0, rk) where rk =
∫ 1

0
dt

(1+tk)2/k . This result is sharp.

Proof: With notation as in the definition, let πa be the orthogonal projection of Cn

onto the plane Ca. By Theorem 4, φ̂(∆) ⊇ ∆(0, rk). But φ̂(∆) ⊆ πa(F (Bn)), so

πa(F (Bn)) ⊇ ∆(0, rk). Let M be the (unique) supporting hyperplane at ω. Then

a ⊥M . Thus πa(M) is a line, and since πaω = ω, we have |ω| ≥ rk.

The sharpness of the constants follows from the following beautiful result of Roper

and Suffridge [Ro,RS]: if f : ∆ → C is a convex univalent function such that f ′(0) = 1,

then there exists a convex univalent map F : Bn → Cn normalized by dF (0) = I such

that F (z1, 0, . . . , 0) = (f(z1), 0, . . . , 0). (Also if f is k-fold symmetric then so is F .)

Corollary. The Bloch, Landau, and Koebe constants for normalized univalent convex

maps of Bn with k-fold symmetry all coincide and have the value rk(k ≥ 2). In the case
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of the Koebe and Landau constants one can relax the requirement of univalence.

Proof: All that remains to complete the proof is to observe that if Ω ⊂ Cn is a convex

domain with k-fold symmetry and B ⊂ Ω is a ball, then the convex hull of the balls

e2πij/kB, j = 1, . . . , k contains a ball centered at 0 which is at least as large as B.

5. STARLIKE MAPS OF THE UNIT BALL IN Cn.

As in one variable a biholomorphic map F : Bn → Cn such that F (0) = 0 is said to

be starlike if whenever w ∈ F (Bn) then tw ∈ F (Bn) for 0 ≤ t ≤ 1. It is customary to

normalize such maps by requiring that dF (0) = I.

We give an upper bound on the Bloch constant for starlike maps of Bn, n ≥ 2 which

decreases with the dimension and which tends to 1
4 as n → ∞. Of course 1

4 is the value

of the Koebe constant for starlike maps of the ball [BFG]. We also consider starlike maps

with k-fold symmetry. In the odd case, again an upper bound is given which decreases with

the dimension and tends to the Koebe constant for such maps. However in the presence

of higher order symmetry, a new phenomenon appears: the Bloch constant coincides with

the Koebe constant except when k = 3 and n = 2 or 3. This behaviour does not take place

on the polydisc.

Theorem 8. The Bloch constant bn for starlike maps of the unit ball in Cn(n ≥ 2)

satisfies bn <
1
4

(√
n+1√
n−1

)2

.

Proof: Let K(z) = z/(1 − z)2 denote the Koebe function and consider the map ζ 7→

(K(ζ1), . . . ,K(ζn)) in n variables. This map is starlike [BFG] and omits the hyperplanes

wj = − 1
4 , j = 1, . . . , n. It is naturally defined on the unit polydisc but we are considering

the restriction to the unit ball. If there is a ball of radius r in the image of this map, its

centre must be a distance at least r from each of these hyperplanes. Let (c1, . . . , cn) denote

the coordinates of the centre of such a ball. The representation K(z) = − 1
4 + 1

4

(
1+z
1−z

)2

shows that for a given value of |z|, |K(z) + 1
4 | is maximized when z is positive real.
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Conversely for a given value of |K(z)+ 1
4 | (larger than 1

4 ), |z| is minimized when z is positive

real. Hence for the purposes of bounding r above we may assume that c1 = · · · = cn = r− 1
4 .

Solving x
(1−x)2 = r − 1

4 and requiring that x < n−
1
2 gives r < 1

4

(√
n+1√
n−1

)2

.

Theorem 9. The Bloch constant b
(2)
n for odd starlike maps of Bn satisfies

b(2)n <
1
2
n+ 1
n− 1

.

Proof: Consider the map ζ 7→
(

ζ1
1−ζ21

, . . . , ζn

1−ζ2n

)
, i.e. in each variable we have the square

root transform of the Koebe function. Now for the map z 7→ z
1−z2 , if we fix |z| then the

modulus of the image point and (what we really want) its distance from the omitted rays

are maximized when z is real (say positive). The image of the above n-variable map omits

the hyperplanes wj = ±i/2, j = 1, . . . , n. Suppose there is a ball of radius r > 1
2 in the

image of this map. For the purposes of bounding r we may assume that the centre of this

ball is at (c, c, . . . , c) where c > 0. Then r ≤
√
c2 + 1

4 . If we set c = x
1−x2 and require

0 < x < n−
1
2 we obtain r < 1

2
n+1
n−1 .

Theorem 10. The Bloch constant for starlike maps of the ball in Cn with k-fold symmetry

is given by b
(k)
n = 4−1/k when k = 3 and n ≥ 4 and when k ≥ 4 and n ≥ 2. (This is the

value of the Koebe constant for such maps [BFG].)

Proof: We consider the map ζ 7→ Fk(ζ) =
(

ζ1
(1−ζk

1 )2/k , . . . ,
ζn

(1−ζk
n)2/k

)
. This is a starlike

map which covers the ball of radius r−1/k centered at 0 in Cn [BFG]. The one-variable

map z 7→ fk(z) = z
(1−zk)2/k covers a disc of the same radius centered at 0. However for

k ≥ 3, r(fk, w) has a local maximum at 0.

We now treat the cases k = 3 and k > 3 separately. When k = 3 the endpoints of

the three rays omitted by f3 are located at the points 4−
1
3 e2πi`/3, ` = 1, 2, 3, and we must

move a distance 4−
1
3 from 0 to find a nonzero w such that r(f3, w) is as large as 4−

1
3 . To

minimize |z| such that fk(z) is at distance 4−
1
3 from 0 we take z3 to be positive, hence we

may take x > 0. Solving for x from x
(1−x3)2/3 = 4−

1
3 gives x =

(√
2−1√
2+1

) 1
3
. Requiring

that x < n−
1
2 gives n <

(√
2+1√
2−1

) 2
3 ' 3.24. Hence only n = 2, 3 are possible.
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When k > 3 the entire omitted rays of fk come into play rather than just the endpoints.

A point on the positive real axis which is at distance a ≥ 4−
1
k from the nearest omitted

ray must have distance a csc(π/k) from 0. Solving fk(x) = 4−
1
k csc(π/k) and requiring

that 0 < x < n−
1
2 gives

n <

(√
1 + (csc(π/k))k + 1√
1 + (csc(π/k))k − 1

)2/k

.

The right-hand side has the approximate value 1.6 when k = 4 and is clearly a decreasing

function of k. Hence there are no values of n ≥ 2 which satisfy this.

Remark. For the cases k = 3, n = 2, 3 not covered by Theorem 9 we can estimate

the Bloch constant by the method of Theorem 7 and 8. This gives b(3)2 < 0.8340... and

b
(3)
3 < 0.6486... .

6. THE BLOCH CONSTANT FOR CONVEX MAPS OF THE POLYDISC.

The Bloch constant can be determined precisely for univalent convex maps of the

polydisc ∆n using a characterization of such maps due to Suffridge [Su1, Theorem 3]. We

have

Theorem 11. Let F : ∆n → Cn be a univalent map with convex image normalized by

dF (0) = I. Then F (Bn) contains a polydisc each of whose radii is π/4. (Hence it contains

a ball of this radius.) This result is sharp.

Proof: According to Suffridge’s characterization F has the representation

F (ζ) = T (f1(ζ1), f2(ζ2), . . . , fn(ζn))

where T is a non-singular linear transformation and the fj are univalent convex functions

of one variable. Since dF (0) = I, T must be a diagonal matrix, and after absorbing

constants into the fj we may assume that T = I and f ′j(0) = 1, j = 1, . . . , n. Now the

image of each fj contains a disc of radius π/4 so the image of F must contain a polydisc
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of the type described. Sharpness follows by considering an n-tuple of functions of the form

1
2 log 1+z

1−z .
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