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Introduction

In [V1] we introduced the following definition:

Definition Let g be a Lie algebra of holomorphic vector fields. We say that g has
the density property if the Lie subalgebra of g generated by the complete vector fields
in g is dense in g. When the Lie algebra XO(M) of all holomorphic vector fields
on a complex manifold M has the density property, we say that M has the density
property. If (M,ω) is a calibrated complex manifold, i.e., ω is a nondegenerate
holomorphic n-form (n = dimCM) on M , we say that (M,ω) has the volume
density property if the Lie algebra XO(M,ω) of all holomorphic vector fields with
vanishing ω-divergence has the density property.

Recall that a holomorphic vector field X is complete if for every x0 ∈ M , the
solution of the ODE ẋ = X(x), x(0) = x0 is defined for all time, and that divωX :=
(LXω)/ω = (d(Xcω))/ω. Moreover, XO(M) is given the locally uniform topology,
and any subset is given the subspace topology.

As was pointed out in [V1], one of the consequences of the density property for a
Lie algebra g is that given any holomorphic vector field in g, one can approximate
its flow by automorphisms. The first objective of the present article is to exploit
this fact to obtain a precise and very useful result about jets of automorphisms. We
then use this result to prove various corollaries which reveal some of the properties
of (mostly Stein) manifolds with the density and volume density property.

Before we can state our main results, we need a few definitions. We denote
by Autg(M) the subgroup of AutM generated by time-1 maps of complete vector
fields in g, and by Jkg (M) the set of k-jets of local biholomorphisms of the form

ϕtNXN ◦ ... ◦ ϕ
t1
X1

, where N ∈ N, X1, ..., XN ∈ g, ϕtXj is the local flow of Xj , and

t1, ..., tN ∈ R are such that ϕtNXN ◦ ... ◦ ϕ
t1
X1

makes sense. Jk(M)× is the space of

k-jets of biholomorphisms of open subsets of M , Jk(M,ω) is the space of k-jets
of biholomorphisms of open subsets of M whose ω-Jacobian is 1 to order k, and
Aut(M,ω) is the group of automorphisms f of M such that f∗ω = ω. Finally,
jkx(F ) is the k-jet of F at x ∈M , and σ(γ) and τ(γ) are the source and target of a
jet γ. (Slightly more elaborate definitions are given in section 1.) With this, here
are our main results:

Theorem 1 Let g be a Lie algebra of holomorphic vector fields with the density
property. Then for each γ ∈ Jkg (M) there exists Φ ∈ Autg(M) such that

jkσ(γ)(Φ) = γ.

Theorem 2 Let M be a connected Stein manifold, and let K ⊂ M be a compact
set.

(1) If M has the density property and γ ∈ Jk(M)× is a k-jet such that x := σ(γ)
and τ(γ) are not in the O(M)-hull of K, then there exists Φ ∈ Aut(M) such
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that
jkx(Φ) = γ,

and such that jkz (Φ) is as close to jkz (id) as we like for all z ∈ K. Fur-
thermore, we can arrange that jkz (Φ) = jkz (id) for z in some finite subset of
K.

(2) If (M,ω) has the volume density property and γ ∈ Jk(M,ω) is a k-jet such
that x := σ(γ) and τ(γ) are not in the O(M)-hull of K, then there exists
Φ ∈ Aut(M,ω) with the same properties as in 1.

Theorem 1 in the case g = XO(Cn, dz1 ∧ ... ∧ dzn) was proved by Andersén and
Lempert [AL]. Theorem 2 in the case M = Cn is due to Forstnerič [F1], and some
parts of our proof are much the same as his. There are two new ideas here: the
first is that we discover a trick which allows us to reduce to the case of zero jets,
and makes our proof quite economical; the second is that in the absence of exact
formulas provided by shears in Cn, we need a perturbation argument to pass from
an approximate version of the theorem to the precise version.

It is natural to ask for examples of complex manifolds (especially Stein manifolds)
with the density property. While such manifolds will be rare (see especially section
4 below) there are by now quite a few examples. The first example was of course
Cn and (Cn, dz1 ∧ ... ∧ dzn). The author showed in [V1] that given any complex
Lie group G, G × C has the volume density property (with respect to the left
invariant holomorphic volume element) and that if G is moreover Stein, then G×C
has the density property. In [V2] it was shown that one can take G to be much
more general than a complex Lie group; a so called EMV space, which includes
homogeneous spaces but also much more. Finally, in recent work, the author and
A. Toth showed that every complex semisimple Lie group has the density property
[TV].

The organization of the paper is as follows. Section 1 is devoted to the definition
of the objects needed in proving Theorems 1 and 2. Section 2 establishes a lemma
which is crucial in the approximation of flows of completely generated vector fields
by families of automorphisms. In section 3 we prove Theorems 1 and 2, and finally
in section 4 we give a long list of corollaries of our main theorems. In so doing, we
hope to demonstrate that these theorems allow one to establish many results about
(mainly Stein) manifolds with the density property which have been previously
proved in Cn. More importantly, however, Theorems 1 and 2 reveal a lot about the
underlying complex structure of manifolds which support the density property in
many of its various forms.

Acknowledgments. We wish to thank Laszlo Lempert for his very useful com-
ments on an earlier version of this paper, and Mattias Jonsson for helpful and
interesting discussions.

1. Jet spaces associated to Lie algebras

Let M be a complex manifold. To recall, two germs f, g ∈ O(M,M)x,y (the
subscripts indicate that f(x) = g(x) = y) are equivalent if they have the same Tay-
lor expansion to order k, and a k-jet is simply an equivalence class. Let Jk(M)x,y
denote the space of k-jets of germs from x to y, and write

Jk(M)x,∗ :=
⋃
y∈M

Jk(M)x,y and Jk(M) :=
⋃
x∈M

Jk(M)x,∗.
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We note that both of these spaces are actually manifolds. Given a map f from a
neighborhood U of x in M into M , we denote by jkx(f) the induced jet in Jk(M)x,∗
and by jk(f) : U → Jk(M) the map jk(f)(x) := jkx(f).

Definition Let M be a complex manifold.

(1) Let J0(M)×x,y := J0(M)x,y, and for k ≥ 1 let Jk(M)×x,y be the set of all
k-jets [f ] with the property that Df(x) : TxM → TyM is an isomorphism.

(2) Let ω be a holomorphic volume element on M . Then write J0(M,ω)x,y :=
J0(M)x,y and for k ≥ 1 let Jk(M,ω)x,y be the set of all k-jets [f ] such that
the ω-Jacobian determinant Jf of f (defined by f∗ω = Jfω) coincides to
order k with the constant function ϕ(x) ≡ 1.

The jets in Jk(M)×x,y and Jk(M,ω)x,y might be thought of as jets of maps which
satisfy minimal necessary conditions for being automorphisms, namely, one point
conditions on derivatives.

Let g ⊂ XO(M) be a Lie algebra of holomorphic vector fields.

Definition The orbit of g through p ∈ M , denoted Rg(p), consists of all points
q ∈M of the form

q = ϕtNXN ◦ ... ◦ ϕ
t1
X1

(p) (1)

for some N ∈ N, X1, ...XN ∈ g, and t1, ..., tN ∈ R such that (1) makes sense.

Each X ∈ XO(M) induces a vector field pk(X) ∈ XO(Jk(M)) whose flow is
defined by

ϕtpk(X)([f ]) := [ϕtX ◦ f ].

Clearly pk maps complete vector fields to complete vector fields. It is not difficult
to show that pk : XO(M)→ XO(Jk(M)) is a Lie algebra isomorphism, and that(

ϕtpk(X)

)
∗

(pk(Y )) = pk
(
(ϕtX)∗Y

)
.

Definition Let g be a Lie algebra of holomorphic vector fields on a complex manifold
M , and let k ≥ 0 be an integer. Then

Jkg (M)x,∗ := Rpk(g)
(
jkx(idM )

)
,

and

Jkg (M) :=
⋃
x∈M

Jkg (M)x,∗.

We note that when M is Stein, it is easy to show that

JkXO(M)(M)x,∗ = Jk(M)×x,∗ and JkXO(M)(M)x,∗ = Jk(M,ω)x,∗.

However, this is of course false for a general complex manifold, as for example, a
compact manifold would show.
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2. A Useful Lemma

Lemma 2.1.

(1) Let X be a holomorphic vector field on a complex manifold Σ, and suppose
that X is a finite sum of iterated Lie brackets of complete holomorphic
vector fields. Then there exists a family of maps {ψt | t ∈ R} ⊂ Aut(M)
such that (t, x)→ ψt(x) is C1, ψ0 = id, and

d

dt

∣∣∣∣
t=0

ψt = X.

(2) Suppose, moreover, that K ⊂⊂ M is compact, and that ε > 0 is such that
the flow ϕX of X exists on K for a time Iε := [−ε, ε]. Then for any δ > 0
we can choose ψt as in 1 to further satisfy

sup
K×Iε

dist(ψt, ϕ
t
X) < δ.

Proof. Recall (or see [Ar]) that for two vector fields X and Y , one has

ϕtX ◦ ϕtY (x) = ϕtX+Y (x) + o(t) (a)

and

ϕ−tY ◦ ϕ
−s
X ◦ ϕ

t
Y ◦ ϕsX(x) = ϕst[X,Y ](x) + o(s2 + t2) (b)

where o(t) and o(s2 + t2) hold locally uniformly in x ∈ M . Now let s(t) :=

sgn(t)
√
|t|. Setting ψt(x) := ϕ

−
√
|t|

Y ◦ ϕ−s(t)X ◦ ϕ
√
|t|

Y ◦ ϕs(t)X (x) we obtain that

ψt(x) = ϕ
s(t)
√
|t|

[X,Y ] (x) + o(s(t)2 + |t|) = ϕt[X,Y ] + o(|t|).

Since ψt(x) is holomorphic in x, one can use the Cauchy integral formula to show
that (x, t) → ψt(x) is C1. Finally, in view of formulas (a) and (b) it suffices to
prove the result only for the case of a sum and Lie bracket of two complete vector

fields. Hence 1 is proved. To prove 2, one replaces ψt obtained in 1 by ψ
(N)
t/N for N

large enough (where the superscript refers to composition) and appeals to standard
results in the theory of approximation of solutions to ODE (see, e.g., Theorem
2.1.26 in [AM]). �

3. Proofs

Recall that to a Lie algebra g we associated the group Autg(M) of holomorphic
automorphisms of M generated by time-1 maps of all complete vector fields in g.

Our next step is to reduce Theorem 1 to the case of zero jets; k = 0. To this end,
note that since pk : XO(M)→ XO(Jkg (M)) is just an invariant way of collecting X
and its first k derivatives into a single object, it follows from the Cauchy inequalities
that pk is continuous, and hence pk(g) has the density property if and only if g does.

Consider next the map associating to each Φ ∈ Aut(M) an element Φ# ∈
Aut(Jk(M)) defined by

Φ#[f ] = [Φ ◦ f ].

Then

(Autg(M))# = Autpk(g)
(
Jk(M)

)
,

and we are thus reduced to the case k = 0. That is to say, Theorem 1 follows
immediately from the following theorem.
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Theorem 3.1. If a Lie algebra g has the density property, then for all p ∈ M ,
Autg(M) acts transitively on the orbit Rg(p).

Proof. Let q ∈ Rg(p), and take t1, ..., tN , X1, ..., XN such that

q = ϕtNXN ◦ ... ◦ ϕ
t1
X1

(p).

By part 2 of lemma 2.1, there exist automorphisms ψ1, ..., ψN ∈ Autg(M) such

that ψ1 ≈ ϕt1X1
on a neighborhood of p, and ψ1 ≈ ϕ

tj
Xj

on a neighborhood of

ψi−1 ◦ ... ◦ ψ1(p). If the approximations are controlled sufficiently carefully, then
Φ := ψN ◦ ... ◦ψ1 ∈ Autg(M) has the property that q′ := Φ(p) ≈ q. The only thing

left to do is to show that one can perturb Φ to Φ̃ ∈ Autg(M) so that Φ̃(p) = q.
This is done by the following consequence of the inverse function theorem.

Lemma 3.2. Let g ⊂ XO(M) be a Lie algebra of holomorphic vector fields having
the density property, and let p ∈ M . Then there exists N ∈ N and a C1 map
℘ : M × RN →M such that

(1) ℘(·, t) ∈ Autg(M) for each t ∈ RN , and
(2) ℘(p, ·) is a C1 diffeomorphism of a neighborhood Np of 0 ∈ RN onto a

neighborhood Np of p in Rg(p).

Proof. By the orbit theorem, Rg(p) is a manifold, and by the Hermann-Nagano
theorem (see [J] for both of these theorems) there exist X1, ..., XN ∈ g such that
{X1(p), ..., XN (p)} is a basis for Tp(Rg(p)). Since g has the density property, we
may assume that each Xi is generated (in the Lie algebra sense) by complete vector
fields in g. Hence by lemma 2.1 there existN families of automorphisms ψt1, ..., ψ

t
N ∈

Autg(M) such that ψ0
j = idM and d

dt |t=0ψ
t
j = Xj for each 1 ≤ j ≤ N . Then for

the mapping ℘ defined by ℘(q, t1, ..., tN ) := ψtNN ◦ ... ◦ ψ
t1
1 (q) one has

dt℘(p, 0) = (X1(p), ..., XN (p)),

and the result follows from the implicit function theorem. �

Example 1. Consider the Lie algebra g = g2,10 of holomorphic vector fields in C2

which vanish on the z2-axis {z1 = 0}. In [V1] we showed that g has the density
property. It can be verified that the space Jkg (C2)z,∗ consists of the following jets:

(1) (z1 = 0)
(z, w, P1, P2, ..., Pk) ∈ Jkg (C2)z,∗ ⇐⇒
w = z, detP1 6= 0, P1(0, ζ2) = (0, ζ2), and Pj(0, ζ2) = (0, 0) for 2 ≤ j ≤

k.
(2) (z1 6= 0)

(z, w, P1, P2, ..., Pk) ∈ Jkg (C2)z,∗ ⇐⇒
w1 6= 0, and detP1 6= 0.

As a consequence of Theorem 1, we obtain the following fact:

Given any integer N ≥ 3, there exists an automorphism F ∈ AutC2 such that
F (0, z2) = (0, z2), and

F (z1, z2) = (z1, z2)(1 + z1) +O(|z|N ).

This answers a question posed to the author by B. Stensønes.
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We turn our attention now to Theorem 2. Since some of the details are similar
to those of the proof of Theorem 1 and the rest may be found elsewhere in the
literature, we content ourselves with a brief sketch.
Sketch of proof of Theorem 2. The first step is to construct (possibly time de-
pendent) holomorphic vector field whose time-1 map approximately achieves the
conclusion of the theorem, but with a biholomorphic map defined only on a neigh-
borhood of K∪{x}. To do this, one needs to construct time dependent vector fields
on M which behave as needed on x and which are arbitrarily small on K. In the
non-calibrated case this is done, using standard facts about holomorphic convexity,
as follows. Let Ft, t ∈ [−ε, 1 + ε] be a family of holomorphic maps defined in a
small neighborhood of x, such that F0 = id and jkx(F1) = γ. Assume further that

Ft is defined in a neighborhood of K̂O(M), where it is the identity map for all t.
Let

Xt :=
dFt
dt
◦ (Ft)

−1.

Consider the “parameter” vector bundle π : TM×C→M×C, where π(v, t) = (x, t)
whenever v ∈ TxM . Then Xt defines a section θ of π|U : U → (TM × C)|U by
θ(x, t) = (Xt(x), t), where U is a neighborhood of a compact subset L of M × C
defined by

L =
⋃

t∈[0,1]

K ∪ {Ft(x)} × {t}.

By results of Stolzenberg [S], L is O(M × C)-convex, and hence θ can be approxi-
mated, uniformly on L, by a global section η of π (see, for example, theorem 5.6.2
of [H]). Then η(x, t) = (Yt(x), t), so Yt gives a global time-dependent vector field
on M . By construction and the continuous dependence of solutions of ODE on
parameters, the flow Gt of Yt is defined up to time 1, and jkx(G1) ≈ γ, with the
approximation being controllable. For more details in the case where M = Cn (and
which generalize to our case) see, for example, [F1] or [FGS].

In the calibrated case, one also has to deal with the fact that the divergence zero
vector fields do not form an analytic subsheaf of XO. To get around this, one must
use the duality provided by ω: every divergence zero vector field X corresponds to
a closed (n− 1)-form θX := Xcω. Since we need forms which almost vanish on K
and are otherwise specified only in a contractible neighborhood, we may restrict to
exact forms, which are just (n − 2)-forms and hence form a coherent sheaf. From
here on, one proceeds as in the non-calibrated case.

The next step is to lift the problem to Jk(M) using the map pk. An approximate
version of the theorem (i.e., with 1 and 2 being only roughly true) follows, as in the
proof of theorem 3.1, using part 2 of lemma 2.1 and the vector fields constructed
above, and we need only to make corrections. To do the latter, we must use a per-
turbation argument like lemma 3.2, which can be done because we can find enough
vector fields which are small on K. The details, though somewhat cumbersome,
are straightforward.

4. Corollaries

In this section we prove various corollaries of Theorems 1 and 2. Some of the
results are just generalizations of similar results in the case of Cn, but others are
of interest only in this general context.
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The Fatou-Bieberbach Phenomenon. The first consequence of Theorem 1 is
the following.

Corollary 4.1. Let M be a Stein manifold of complex dimension n with the density
property. Then there is an open subset of M which is biholomorphic to Cn.

The proof of this corollary is as follows. Fix p ∈M , and choose Φ ∈ Aut(M) such
that p is an an attracting fixed point for Φ. Such a Φ is guaranteed by Theorem
1. The basin of attraction to p will then be biholomorphic to Cn, as was shown in
the appendix of [RR]. (In their paper, J.-P. Rosay and W. Rudin show this result
in the case where M = Cn, but their proof generalizes easily; one conjugates Φ on
the region of attraction to p to a (contracting) upper triangular map on TpM , and
then the region of attraction is biholomorphic to the tangent space.)

Remark: Note that we have a lot of control over the jets of automorphisms we want.
Thus the full generality of the Rosay-Rudin theorem is not needed, since we can
choose jets which have no resonances, and thus linearize the automorphism on its
basin of attraction. The latter is a classical construction.

In fact, one can get many more results on such “Fatou-Bieberbach” domains.
We shall state here only one result.

Corollary 4.2. Let M be an n dimensional Stein manifold with the density prop-
erty. Then there are infinitely many disjoint domains in M which are biholomorphic
to Cn.

Sketch of proof. We will construct an injective map of M into itself, which has
infinitely many attracting fixed points. Then even though the map may not be
onto, the techniques of Rosay and Rudin apply, and the region of attraction to
each of the fixed points is such a domain.

To this end, let ∅ = K0 ⊂ K1 ⊂ interior K2 ⊂ K2 ⊂ interior K3 ⊂ K3 ⊂ ...
be an increasing sequence of holomorphically convex compact sets, and let pj ∈
Kj\interior Kj−1 (j ≥ 1). Theorem 2, applied inductively, gives us a sequence of
automorphisms {Fj} such that, for each j, Fj has p1, ..., pj as attracting fixed points,
and such that Fj+1 ≈ Fj on Kj , with equality on p1, ..., pj . If the approximation
on each Kj is good enough, then F = limFj exists and is an injective map from M
to M . �

In fact, if in the above sketch we choose another sequence {qj} such that qj ∈
Kj\(interior Kj−1 ∪ pj), and construct Fj with the additional requirement that
Fj(qj) = qj+1, then the limit map F will not be surjective. This is the so-called
“kick out method”, first introduced by Dickson and Esterle [DE]. We thus obtain
a sketch of proof of the following.

Corollary 4.3. Let M be a Stein manifold with the density property. Then there
exist proper open subsets of M which are biholomorphic to M .

Such subsets of M are also a sort of “Fatou-Bieberbach” domains. We note that
when M = Cn, this construction gives a new construction of proper open subsets
of Cn which are biholomorphic to Cn. (This has been exploited in many results of
analytic geometry in Cn.) However, these corollaries show that the two methods
might be “different”. A natural question is whether every Fatou Bieberbach domain
in Cn is the region of attraction of an automorphism. Corollary 4.3 suggests that
the answer might not be very simple.
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If we consider now a calibrated Stein manifold (M,ω) with the volume density
property, the proofs of corollaries 4.1 and 4.2 above break down. However, the
same construction, but without the attracting fixed points, can be used to show
the following.

Corollary 4.4. Let (M,ω) be a calibrated Stein manifold with the volume density
property. Then there exists a proper open subsets of M which is biholomorphic to
M .

One can also construct nondegenerate maps of Cn into a calibrated Stein mani-
fold (M,ω) with the volume density property.

Corollary 4.5. Let (M,ω) be a calibrated Stein manifold of dimension n having
the volume density property. Then there exists a map h : Cn → M such that h∗ω
is not identically zero.

Proof. It follows ([V2], Main Theorem 3) that M × C has the density property.
Hence by corollary 4.1 there is an injective holomorphic map H : Cn+1 →M × C.
The proof is finished by letting h be the restriction of H to the hyperplane which
is mapped to TpM for some p, followed by the projection to M . �

One can also get injective immersions of Cn−1 tangent to any given complex hy-
perplane in TM .

Corollary 4.6. Let (M,ω) be a calibrated Stein manifold of dimension n with the
volume density property, and let Vp ⊂ TpM be a complex hyperplane. Then there
is an injective holomorphic immersion g : Cn−1 →M such that dgp(Cn−1) = Vp.

Proof. Let L : TpM → TpM be a linear map which has Vp as a contracting subspace,
and whose determinant is 1. Then by Theorem 1 there exists Φ ∈ Aut(M,ω)
with Φ(p) = p and DΦ(p) = L. Then the stable manifold W s

p (Φ) associated to
Φ at p has tangent space Vp at p. Because Φ is an automorphism, W s

p (Φ) is
injectively immersed. Now, Φ(W s

p (Φ)) ⊂ W s
p (Φ), p is an attractive fixed point for

the restriction of Φ to W s
p (Φ), and all of W s

p (Φ) is attracted to p by Φ. Hence
the theorem of Rosay and Rudin states that W s

p (Φ) is in fact biholomorphic to

Cn−1. �

A very interesting question, first posed to us by J.-P. Rosay, is whether or not
there is an open subset of C∗×C∗ which is biholomorphic to C2. In [V1] we showed
that (C∗×C∗, (zw)−1dz∧dw) has the volume density property, and hence it follows
that there is a proper open subset of C∗ × C∗ which is biholomorphic to C∗ × C∗.

In connection with the above ideas, we note the following proposition, which in
has been known to J.-P. Rosay for a long time.

Proposition 4.7. Let (M,ω) be a calibrated Stein manifold with the volume density
property, and suppose there exists F ∈ Aut(M) such that the ω Jacobian determi-
nant JF of F has modulus different from 1 at some point p ∈ M , then M has an
open subset biholomorphic to Cn.

The idea of the proof is to use automorphisms with jets in Jk(M,ω) to modify F
so that p becomes an attractive fixed point, and then apply the same dynamical
principle as above.
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Particularly noteworthy here is the fact that the possible nonexistence of open
copies of Cn in calibrated Stein manifolds with the volume density property is a
form of degenerate hyperbolicity. The last proposition shows how this hyperbolicity
(if it exists), as with more conventional hyperbolicity, results in a reduction of the
automorphism group.

Completeness of vector fields. One of the consequences of corollaries 4.1 and 4.6
is that on a Stein manifold with the density or volume density property, all bounded
plurisubharmonic functions are constant. Then the main theorem of [AFR] implies
the following corollary.

Corollary 4.8. Let M be a Stein manifold with the density or volume density
property. Then every R+-complete holomorphic vector field on M is C-complete.

Recall that a holomorphic vector field X is R+-complete (resp. R-complete) if one
can extend the flow of X to all of R+ (resp. R), and that X is C-complete if both
X and iX are R-complete.

Interpolation results. In this paragraph we note that for manifolds with the
density property or volume density property, a given (proper, or closed) complex
submanifold can be modified so as to interpolate any given discrete sequence. For
the proof of the next result in the case M = Cn (which can easily be adapted to
the more general case stated here) see [F1].

Corollary 4.9. Let M be a Stein manifold of C-dimension n ≥ 2 with the density or
volume density property, Σ a Stein manifold of C-dimension r < n, and {γm;m ≥
1} ⊂ Jk(Σ,M) a sequence of k-jets such that {σ(γm)} and {τ(γm)} are discrete
sequences in Σ and M respectively. If Σ admits a proper holomorphic embedding
in M , then there exists a proper holomorphic embedding ϕ : Σ ↪→M such that

jkσ(γm)(ϕ) = γm.

Remark: It is easily seen that the proof also produces the following fact: Given any
pair of discrete sequences {ej} and {fj}, there exists an injective holomorphic map
F : M →M such that F (ej) = fj for all j. We can even specify jets of such an F
at the ej .

In a recent preprint [W], J. Winkelmann has constructed “non-tame sequences”
in any Stein manifold. These can be used, together with corollary 4.9 to construct
non-equivalent embeddings of a given complex manifold Σ into a Stein manifold M
with the density or volume density property, provided one such embedding exists.
Precisely, one has the following.

Corollary 4.10. Let M be a Stein manifold of C-dimension n ≥ 2 with the density
or volume density property, and Σ a Stein manifold of C-dimension r < n such that
there exists a proper holomorphic embedding j : Σ ↪→M . Then there exists another
proper holomorphic embedding j′ : Σ ↪→M such that for any Φ ∈ Aut(M),

Φ ◦ j(Σ) 6= j′(Σ).
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