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ABSTRACT. The relationship between interpolation and separation properties of hypersurfaces in
Bargmann-Fock spaces over Cn is not well-understood except for n = 1. We present four examples
of smooth affine algebraic hypersurfaces that are not uniformly flat, and show that exactly two of
them are interpolating.

1. INTRODUCTION

DEFINITION 1.1. A weight function ϕ is said to be a Bargmann-Fock weight if there exist positive
constants m and M so that

(1) mωo ≤
√
−1∂∂̄ϕ ≤Mωo.

In this case the space
Bn(ϕ) := O(Cn) ∩ L2(e−ϕdV )

is called a Bargmann-Fock space. The weight ϕ(z) = |z|2 is called the standard Bargmann-Fock
weight, and the corresponding Hilbert space, denoted here simply as Bn, is called the standard, or
classical, Bargmann-Fock space.

A natural problem is to establish a geometric characterization of all analytic subsets of Cn that
are interpolating for the Bargmann-Fock space. Let us be more precise.

Let (X,ω) be a Stein Kähler manifold of complex dimension n, equipped with a holomorphic
line bundle L → X with smooth Hermitian metric e−ϕ, and let Z ⊂ X be a complex analytic
subvariety of pure dimension d. To these data assign the Hilbert spaces

Bn(X,ϕ) :=

{
F ∈ H0(X,OX(L)) ; ||F ||2X :=

∫
X

|F |2e−ϕω
n

n!
< +∞

}
and

Bd(Z, ϕ) :=

{
f ∈ H0(Z,OZ(L)) ; ||f ||2Z :=

∫
Zreg

|f |2e−ϕω
d

d!
< +∞

}
.

Such Hilbert spaces are called (generalized) Bergman spaces. When the underlying manifold is Cn

and the weight ϕ is a Bargmann-Fock weight, the spaces are called (generalized) Bargmann-Fock
spaces.

We say that Z is interpolating if the restriction map

RZ : H0(X,OX(L))→ H0(Z,OZ(L))

induces a surjective map on Hilbert spaces. (One can also ask whether the induced map is bounded,
or injective, or has closed image, etc.) If the induced map

RZ : Bn(X,ϕ)→ Bd(Z, ϕ)

is surjective then one says that Z is an interpolation subvariety, or simply interpolating.
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If n ≥ 2 then even in the most elementary case X = Cn, ω = ωo = ddc|z|2 and ϕ(z) = |z|2
relatively little is known about which subvarieties (and even smooth manifolds) are interpolating.
(By way of contrast the case n = 1 and X = C is rather well-understood; c.f. Section 2.)

The present article focuses on the latter setting, and even more selectively, on the rather restricted
class of smooth affine algebraic hypersurfaces. The basic problem considered in this article is the
following.

Basic Question: What geometric properties characterize interpolating algebraic hypersurfaces
for Bargmann-Fock spaces?

There are sufficient conditions on a hypersurface Z so that it is interpolating for a Bargmann-
Fock space. For example, one has the following theorem, that generalizes a result in [OSV-2006]
about smooth surfaces to the possibly singular case.

THEOREM 1.2. [PV-2016] Let ϕ ∈ C 2(Cn) ∩ PSH(Cn). (For example, ϕ can be Bargmann-Fock
weight, i.e., satisfying (1).) Then every uniformly flat hypersurface Z ⊂ Cn whose asymptotic
upper density D+

ϕ (Z) is less than 1 is an interpolation hypersurface.

We shall recall the definition of the asymptotic upper density in Section 2, in which we will
provide a brief and biased overview of interpolation theory. As for uniform flatness, a smooth
hypersurface Z ⊂ Cn is uniformly flat if there is a constant ε > 0 such that the set

Nε(Z) = {x ∈ Cn ; Bε(x) ∩ Z 6= ∅}
of all points of Cn that are a distance less than ε from Z is a tubular neighborhood of Z. Equiva-
lently, for any pair of distinct points p, q ∈ Z, if Dp and Dq denote the Euclidean complex disks of
radius ε and centers p and q respectively such that Dp ⊥ TZ,p and Dq ⊥ TZ,q , then

Dp ∩Dq = ∅.
REMARK. The notion of uniform flatness was introduced in [OSV-2006], and extended to singu-
lar hypersurfaces in [PV-2016], but since we will not use the latter here, we will not recall the
definition in the singular case. �

In the case of a smooth hypersurface, Theorem 1.2 has a very simple proof which we discovered
in [PV-2016]. We shall recall this proof in the last paragraph of Section 2, after providing a
brief and biased overview of the theory of interpolation, and stating a version of the L2 extension
theorem (Theorem 2.6).

The connection between uniform flatness of a hypersurface Z and the surjectivity of RZ was
shown in [PV-2016] to be somewhat more mysterious than previously believed.

(a) There is a holomorphic embedding C of C in C2 whose asymptotic upper density is zero,
such that C is not uniformly flat but nevertheless it is an interpolation hypersurface.

(b) While uniform flatness is not necessary, it cannot be dropped completely; simple examples
from the 1-dimensional setting can be extended via cartesian product to give examples in
dimension 2 or more.

In part to focus more on the role (or lack of role) of uniform flatness, but also for other reasons,
it is interesting to restrict oneself to the class of algebraic hypersurfaces. Indeed, as we shall recall
in Section 2, every algebraic hypersurface has zero asymptotic upper density. (In this regard, the
examples produced in [PV-2016] to demonstrate (a) and (b) are not algebraic.)

We have not yet succeeded in answering our basic question of characterizing interpolating affine
algebraic hypersurfaces. However, the results we obtained, using techniques that are important and
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interesting in their own right, provide some data for the problem that we believe will be useful in
attacking the basic question.

1.1. Results. Consider the smooth complex curves

C1 := {(x, y) ∈ C2 ; x2y2 = 1} and C2 := {(x, y) ∈ C2 ; xy2 = 1}.
The curve C1 is an embedding of two disjoint copies of C∗ embedded via the maps

Ψ1±(t) := (t−1,±t),
and each of the components C1± = Ψ1±(C∗) is uniformly flat. The curve C2 is a copy of C∗
embedded in C2 via the map

Ψ2(t) := (t−2, t).

Both C1 and C2 are not uniformly flat:
(C1) Let δ > 0. The points p± := (δ−1,±δ) both lie on C1, and the disks perpendicular to C1

at p± intersect at the point I = (δ−1 − δ3, 0); the distance from I tp p± is δ(1 + δ4/4)1/2,
which can be made smaller than any positive number by taking δ sufficiently small.

(C2) Again let δ > 0. The points p± = (δ−2,±δ) both lie on C2, and the disks perpendicular to
C2 at p± intersect at the point I = (δ−1 − δ4/2, 0); the distance from I to p± is computed
to be δ(1 + δ6/4)1/2, which can be made smaller than any positive number by taking δ
sufficiently small.

The first two results we state are the following theorems.

THEOREM 1. Let ϕ ∈ C 2(C2) satisfy (1). Then there exists f ∈ B1(C1, ϕ) such that any holo-
morphic extension F of f to C2 does not lie in B2(ϕ).

THEOREM 2. Let ϕ ∈ C 2(C2) satisfy (1). The image of the restriction RC2 : B2(ϕ)→ B1(C2, ϕ)
is bounded and surjective.

Next consider the smooth complex surfaces

S = {(x, y, z) ∈ C3 ; z = xy2} and Σ = {(x, y, z) ∈ C3 ; z = x2y2}.
The surface S and Σ are both graphs over C2, and hence embed in C3 by the maps

(2) Φ(s, t) := (s, t, st2) and Ψ(s, t) = (s, t, s2t2)

respectively. Unlike the curve C1, both S and Σ are connected.
Like the curves C1 and C2, the surfaces S and Σ are also not uniformly flat. Heuristically

speaking, by intersecting with the planes x = c and letting c → ∞, one obtains more and more
eccentric parabolas. More precisely, for 0 < δ < 1 the disks perpendicular to S at the points
p± := (δ−1,±δ, δ) intersect at the point I := (δ−1 − δ3

2
, 0, δ + δ

2
), and

|I − p±| = |(δ3/2,±δ,−δ/2)| < 2δ.

Thus the neighborhood Nε(S) is not a tubular neighborhood for any constant ε > 0. Similar
considerations apply to Σ.

THEOREM 3. Let ϕ ∈ C 2(C3) satisfy (1). The image of the restriction RS : B3(ϕ) → B2(S, ϕ)
is bounded and surjective.

THEOREM 4. Let ϕ ∈ C 2(C3) satisfy (1). Then there exists f ∈ B2(Σ, ϕ) such that any holomor-
phic extension F of f to C3 does not lie in B3(ϕ).
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One might wonder what feature of the curve C2 makes it interpolating, while C1 is not interpo-
lating. In the case of C1, two points with intersecting small orthogonal disks are always infinitely
far apart in C1, in the sense that they cannot be connected by a path. On the other hand, the curve
C2 is more confusing: the points (δ−2,±δ) are rather far apart on C2, but as it turns out, not far
enough apart.

As for the surface S, any two points with intersecting small orthogonal disks are always very
close together in S, and moreover all such points are confined to a small neighborhood of the line
{y = z = 0}, which is a uniformly flat complex analytic submanifold of C3. It is this feature of S
that makes it manageable.

REMARK 1.3. In [OSV-2006, p.87] a claim was made that “it is not hard to see that” the graph in
Cn of any polynomial in n− 1 variables is uniformly flat. Obviously S is a counterexample to this
claim when n ≥ 3. That being said, curves in C2 that are graphs of polynomials in one complex
variable are uniformly flat. (The curve C2 shows that this is not the case for graphs of rational
functions.) �
1.2. Path to enlightenment. Our struggles with Theorems 1-4 compel us to tell story of our
trajectory in establishing their proofs.

The surface S was the first that we considered, and it came up precisely in the context of Remark
1.3. Our initial expectation was that S would not be interpolating, but we had difficulty writing
down a proof. In the meantime, since the surface S was so hard to understand, we considered the
curve C2 in the hopes that it would provide a more manageable example. We tried in several ways
to prove that C2 was not interpolating, not knowing it was impossible to do so. Eventually we
simplified things even further to the curve C1, and finally we were successful in showing that C1

was not interpolating.
Eventually we realized that S was indeed interpolating, and that the reason had to do with the

fact that the non-flat regions were concentrated near the line {y = z = 0}, which is a small, and
interpolating, subset of C3. This was the key to the proof of Theorem 3.

Yet even after knowing that S is interpolating, we continued to try to show that C2 is not interpo-
lating. The rationale was that, in the plane, if two points on an algebraic curve are very close in the
ambient space, they must be very far apart with respect to the distance induced by the Euclidean
metric on the curve. And this is indeed the case for C2. (We will explain later why having points
that are far apart in the curve but close together in the ambient space could lead to a contradiction
to interpolation.) As it turned out, the pairs of non-flat points were not far enough apart for our
approach to work. So we started to wonder if perhaps C2 was interpolating after all. With this
psychological shift, things changed quickly.

It occurred to us that C2 can be seen as a uniformly flat subset of S, since it is cut out from S by
the plane {z = 1}. We conjectured that perhaps data from C2 could be extended to S. This turned
out to be the case, and from there on it was clear how to extend data from C2 to C2: extend the
data to S, then extend the data on S to C3, and finally restrict to C2 × {1}.

After seeing that, unlike C2, C1 is not connected, we wondered if every smooth connected affine
algebraic hypersurface is an interpolation hypersurface. But by this point we had gained enough
experience so as not to be easily led astray. We realized that, like C2 inside S, the curve C1 is
uniformly flat inside Σ. If Σ were interpolating, then we could extend data from C1 to Σ and then
from Σ to C3, after which restriction to the plane C2 × {1} yields a contradiction to Theorem 1.

Of course, all of these sketches are a little imprecise. As the reader might agree, the details
require considerable care.
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1.3. More ideas behind the proofs. After establishing the tools that are needed, the proof of
Theorem 1 is presented first. The idea is as follows. One constructs a function in B2(C1, ϕ) that
is very large at the point (δ−2, δ) and very small at the point (δ−2,−δ). The function is built using
Hörmander’s Theorem, but there is some subtlety regarding the curvature of the weights. Thus, in
addition to Hörmander’s Theorem, one makes use of a technique– first introduced by Berndtsson
and Ortega Cerdà [BOC-1995]– that is discussed in Section 3.

The next result to be proof is Theorem 3. For its proof, we exploit the L2 Extension Theorem
(Theorem 2.6) to construct our extensions in two different open sets; one large open set where S
is uniformly flat, and another small open set where S is not uniformly flat. There is a difficulty in
extending from the non-uniformly flat subset. This difficulty is overcome by a reduction to extend-
ing functions that vanish along the set where uniform flatness is violated. Finally, Hörmander’s
Theorem is used to patch together these two extensions.

Theorem 2 is deduced from Theorem 3 by again exploiting the L2 Extension Theorem. As we
already mentioned, a simple but important observation is that the curve C2 is the intersection of
S with the plane {z = 1} in C3. If we can extend data from C2 to S, then by Theorem 3 we can
extend the data to C3, and then restrict it to C2 × {1} ∼= C2. Thus the difficulty is to extend from
C2 to S. The key feature is that since the plane C2 × {1} is (uniformly) flat in C3, one suspects
that C2 is uniformly flat when viewed from within S.

Perhaps it should be noted that the most difficult part of proving Theorem 2 is guessing that it,
rather than its converse, is true. The points violating uniform flatness, i.e., (δ−2,±δ), are rather
far apart in C2 (with respect to the Riemannian distance induced by the Euclidean metric on the
surface) but rather close in the ambient space. Therefore any interpolation problem from this pair
of points into the curve C2 can be solved, which means that one can find a function that is very
large at (δ−2, δ) and vanishes at (δ−2,−δ). The extension of such a function would have very large
L2 norm, since its gradient would be huge. However, in order to have good control over the norm
of the extension, one needs a lot of curvature from the curve, and the Bargmann-Fock condition
(1) turned out simply be too much for a connected algebraic curve.

We feel confident enough to make the following conjecture.

CONJECTURE 1.4. A smooth connected affine algebraic curve in C2 is interpolating for any
Bargmann-Fock space.

Finally, Theorem 4 is deduced from Theorem 2 in a manner that is the mirror image of the
deduction of Theorem 1 from Theorem 3. One shows that the curve C2, obtained from Σ by
intersection with the plane C2 × {1}, is interpolating for Σ. If Σ were interpolating for C3 then
the data from C2 could be extended first to Σ and then to C3, and then it could be restricted to
C2 × {1} ∼= C2. The result would contradict Theorem 2.

ACKNOWLEDGMENT. The first author is partially supported by the Young Investigator Award and
by grant F.510/25/CAS-II/2018(SAP-I) from UGC (Govt. of India).

2. BACKGROUND ON ASYMPTOTIC DENSITY, UNIFORM FLATNESS, AND INTERPOLATION

The theory of interpolation from complex analytic hypersurfaces in Cn began its development
in the early 1990s with the work of Kristian Seip and several other collaborators. Seip considered
the problem of interpolation and sampling from 0-dimensional analytic subvarieties in C, giving a
negative answer to the following question that arose in solid state physics:
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Is there a lattice Λ in C such that restriction map RΛ : B1 → Bo(Λ) is a bijection?
Seip showed that in fact there is no closed discrete subset of C for which the restriction map is a
bijection. To prove this non-existence, Seip defined an adaptation, in the Bargmann-Fock space,
of a notion of asymptotic upper and lower densities introduced by Beurling for Hardy spaces. The
definition of the upper density and lower density of a closed discrete subset Γ is

D+(Γ) = lim sup
r→∞

sup
z∈C

#Γ ∩Dr(z)

r2
and D−(Γ) = lim inf

r→∞
inf
z∈C

#Γ ∩Dr(z)

r2

respectively. Clearly the upper density of Γ is always larger than the lower density of Γ. Seip
showed that if RΓ is injective then D−(Γ) > 1 and that if RΓ is surjective then D+(Γ) < 1, thus
obtaining the negative answer to the above question. Seip also showed that if RΓ is surjective then
Γ is uniformly separated in the Euclidean distance in C, and that if RΓ is injective with closed
range then Γ is a finite union of uniformly separated sequences. Conversely, Seip and Wallsten
showed that if Γ is uniformly separated and D+(Γ) < 1 then RΓ is surjective, while if Γ is a finite
union of uniformly separated sequences Γ1, ...,ΓN , such that D−(Γi) > 1 for some i then RΓ is
injective with closed range. Thus a rather complete picture is obtained: see [S-1992, SW-1992].

The results of Seip and Wallstén for the standard Bargmann-Fock space were extended to general
Bargmann-Fock spaces on C by Berndtsson and Ortega Cerdà (sufficiency) [BOC-1995] and by
Ortega Cerdà and Seip (necessity) [OS-1998]. Other domains besides C have been considered, c.f.
for example [S-1993, SV-2008, O-2008, V-2015, V-2016], but the present article focuses on the
Bargmann-Fock situation.

Let Z ⊂ Cn be an analytic hypersurface. For any such hypersurface there exist functions
T ∈ O(Cn) such that dT (p) 6= 0 for at least one p in every connected component of Z. Such a
function T will be called a defining function for Z. Any two defining functions T1 and T2 for Z
are related by T2 = efT1 for some f ∈ O(Cn).

Given a defining function T for Z, for each r > 0 we can define the function

λTr (z) :=
n!

(πr2)n

∫
Br(z)

log |T |2dV = −
∫
Br(z)

log |T |2dV.

Observe that if T̃ = efT is another defining function for Z then

λT̃r = 2Re f + λTr .

It follows that the functions

σZr := log |T |2 − λTr : Cn → R ∪ {−∞} and SZr := |dT |2e−λTr : Z → [0,∞),

called the singularity and the separation function of Z, are independent of the defining function T ,
as is the locally bounded (1, 1)-current

ΥZ
r := ddcλTr =

n!

(πr2)n
1Br(0) ∗ [Z],

called the mass tensor of Z.
Note that the mass tensor is a non-negative Hermitian (1, 1)-form. Its size is therefore governed

by its trace ||ΥZ
r (z)|| given by

||ΥZ
r (z)||ωno := nΥZ

r ∧ ωn−1
o =

ωno
(n− 1)!

−
∫
Br(z)

[Z] ∧ ωn−1
o
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which is the ratio of the area of Z ∩Br(z) to the volume of Br(z). It follows that for any v ∈ Cn

(3) ΥZ
r (z)(v, v̄) ≤ ωo(v, v̄)

(n− 1)!

∫
Cn

[Z] ∧ ωn−1
o .

Next let ϕ ∈ C 2(Cn) be a Bargmann-Fock weight, i.e., a weight satisfying the bounds (1) on its
curvature. One can form the mean weight ϕr ∈ C 2(C2) defined by

ϕr(z) := −
∫
Br(z)

ϕdV.

As we will see below (Lemma 3.1) the weight ϕ can be written in Br(z) in the form

ϕ(ζ) = m||ζ − z||2 + 2Re g(ζ) + ψ(ζ)

for some g ∈ O(Br(z)), and some ψ ∈ C 2(Br(z)) whose C 1-norm is bounded independent of z.
(In Lemma 3.1 we have m||ζ||2 rather than m||ζ − z||2, but the proof is the same.) It follows from
Taylor’s Theorem that

|ϕ(z)− ϕr(z)| =
∣∣∣∣−∫
Br(0)

(ϕ(ζ + z)− ϕ(z))dV (ζ)

∣∣∣∣ ≤ Cr

for some constant Cr that is independent of z. Thus the Hilbert spaces Bn(ϕ) and Bn(ϕr) are
quasi-isometric, as are the Hilbert spaces Bn−1(Z, ϕ) and Bn−1(Z, ϕr).

2.1. Asymptotic Density. We can now generalize the notion of asymptotic upper and lower den-
sities as follows.

DEFINITION 2.1. Let Z ⊂ Cn be a possibly singular analytic hypersurface.
(a) The asymptotic upper density of Z with respect to the Bargmann-Fock weight ϕ is

D+
ϕ (Z) := lim sup

r→∞
sup
z∈Cn

sup
v∈Cn−0

∫
Br(z)

ddc log |T |2(v, v̄)dV∫
Br(z)

ddcϕ(v, v̄)dV
= lim sup

r→∞
sup
z∈Cn

sup
v∈Cn−0

ΥZ
r (v, v̄)

ddcϕr(z)(v, v̄)

(b) The asymptotic lower density of Z with respect to the Bargmann-Fock weight ϕ is

D−ϕ (Z) := lim inf
r→∞

inf
z∈Cn

inf
v∈Cn−0

∫
Br(z)

ddc log |T |2(v, v̄)dV∫
Br(z)

ddcϕ(v, v̄)dV
= lim inf

r→∞
inf
z∈Cn

inf
v∈Cn−0

ΥZ
r (v, v̄)

ddcϕr(z)(v, v̄)

In other words, the upper density D+
ϕ (Z) is the infimum of all positive numbers a such that

ddcϕr −
1

a
ΥZ
r > 0,

while the lower density D−ϕ (Z) is the supremum of all numbers c such that there exists z, v ∈ Cn

satisfying

ddcϕr(z)(v, v̄)− 1

c
ΥZ
r (z)(v, v̄) < 0.

Note that
D−ϕ (Z) ≤ D+

ϕ (Z)

and that either of the densities can be infinite.
In the present article, the following simple proposition is relevant.

PROPOSITION 2.2. If Z is an algebraic hypersurface in Cn then D+
ϕ (Z) = 0.
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Proof. Since an algebraic hypersurface Z of degree d is locally a d-sheeted cover of a complex
hyperplane, the area of Z ∩Br(z) is∫

Br(z)

[Z] ∧ ωn−1
o

(n− 1)!
= O(r2n−2)

uniformly in z. Since ddcϕr(v, v̄) ≥ mr2nωo(v, v̄) the result follows from (3). �

2.2. Uniform flatness. As we already recalled in the introduction, a smooth hypersurface Z ⊂ Cn

is uniformly flat if there is a positive constant ε > 0 such that

Nε(Z) = {x ∈ Cn ; Bε(x) ∩ Z 6= ∅}
(the ε-neighborhood of Z) is a tubular neighborhood of Z. In our previous article [PV-2016] we
established the following result.

PROPOSITION 2.3. [PV-2016, Lemma 4.11] If a smooth hypersurface Z ⊂ Cn is uniformly flat for
each r > 0 the separation function

SZr := |dT |2e−λTr : Z → R+

is bounded below by a positive constant Cr.

In dimension n = 1 the converse of Proposition 2.3 is true as well. And although we suspect it
is the case, we don’t know if the converse is also true in higher dimensions.

2.3. Interpolation and sampling.

DEFINITION 2.4. Let Z be a pure k-dimensional complex subvariety of Cn, and suppose Cn is
equipped with a Bargmann-Fock weight ϕ ∈ C 2(Cn).

(I) We say that Z is an interpolation subvariety if the restriction map

RZ : O(Cn)→ O(Z)

induces a well-defined and surjective map RZ : Bn(ϕ)→ Bk(Z, ϕ).
(S) We say that Z is a sampling subvariety if the restriction map

RZ : O(Cn)→ O(Z)

induces a well-defined and injective map RZ : Bn(ϕ)→ Bk(Z, ϕ) whose image is closed.

In connection with interpolation, we have already mentioned Theorem 1.2 for hypersurfaces.
For k < n− 1 very little is known about interpolation. The most interesting case is k = 0, which
would be most useful in applications. (There are some partial results in [OSV-2006], but these
results are not decisive.) It is known to experts that if k = 0 and n > 1 then it is certainly not
density that governs whether or not a sequence of points is interpolating (or for that matter, sam-
pling). Nevertheless, the density does have to be somewhat constrained. An interesting necessary
condition was introduced in [L-1997], and very recently improved in [GHOR-2018].

The following simple proposition is very useful.

PROPOSITION 2.5 (Bounded interpolation operators). Let Z ⊂ Cn be a complex subvariety and
let ϕ ∈ C 2(Cn). If the restriction

RZ : Bn(ϕ)→ Bn−1(Z, ϕ)

is surjective then there is a bounded section I : Bn−1(Z, ϕ)→ Bn(ϕ) of RZ .
8



Proof. We define
I : Bn−1(ϕ,Z)→ Bn(ϕ)

by letting I(f) be the extension of f having minimal norm in Bn(ϕ). Equivalently, if we let IZ

denote the sheaf of germs of holomorphic functions vanishing on Z, and write

JZ(ϕ) := H0(Cn,IZ) ∩Bn(ϕ),

then I(f) is the unique extension of f to Bn(ϕ) such that∫
C
I(f)Ge−ϕdV = 0 for all G ∈ JZ(ϕ).

By the Closed Graph Theorem the section I : Bn−1(Z, ϕ)→ Bn(ϕ) is bounded if it has closed
graph. To show the latter, let fj → f in Bn−1(Z, ϕ) and let I(fj) → F in Bn(ϕ). Then for each
G ∈ JZ one has ∫

Cn
FGe−ϕdV = lim

j→∞

∫
Cn
I(fj)Ge

−ϕdV = 0.

By the weighted Bergman inequality (proposition 3.3) the L2 norm controls the L∞`oc norm for
holomorphic functions, and hence by Montel’s Theorem the two limits are, perhaps after passing
to subsequences, locally uniform. It follows immediately that F is an extension of f . Hence
F = I(f), and the proof is complete. �

We end this subsection by noting that a subvariety is a sampling set if and only if∫
Cn
|F |2e−ϕωno .

∫
Zreg

|F |2e−ϕωko .
∫
Cn
|F |2e−ϕωno

holds for all F ∈ Bn(ϕ). In the case of a smooth hypersurface, [OSV-2006] establishes a com-
panion result to Theorem 1.2 the generalizes the positive direction of the sampling theorems es-
tablished in generalized Bargmann-Fock spaces over C established by Berndtsson, Ortega Cerdà
and Seip. Surely there is also an analogue for singular, uniformly flat hypersurfaces, but the details
have not been worked out.

2.4. L2 extension after Ohsawa and Takegoshi. Among the most sophisticated and useful set of
results in complex analysis and geometry is the collection of theorems on L2 extension that have
come to be known as extension theorems of Ohsawa-Takegoshi type. The name derives from the
first fundamental result regarding L2 extension in several complex variables, which was established
by Ohsawa and Takegoshi in their celebrated article [OT-1987]. Since that time, new proofs and
extensions of the original result have been established by many authors, too numerous to state here.
The following version, established by the second author in [V-2008], will be a convenient version
for our purposes.

THEOREM 2.6. Let X be a Stein manifold with Kähler metric ω, and let Z ⊂ X be a smooth
hypersurface. Assume there exists a section T ∈ H0(X,OX(LZ)) and a metric e−λ for the line
bundle LZ → X associated to the smooth divisor Z, such that e−λ|Z is still a singular Hermitian
metric, and

sup
X
|T |2e−λ ≤ 1.

Let H → X be a holomorphic line bundle with singular Hermitian metric e−ψ such that e−ψ|Z is
still a singular Hermitian metric. Assume there exists s ∈ (0, 1] such that

(4)
√
−1(∂∂̄ψ + Ricci(ω)) ≥ (1 + ts)

√
−1∂∂̄λZ

9



for all t ∈ [0, 1]. Then for any section f ∈ H0(Z,OZ(H)) satisfying∫
Z

|f |2e−ψ

|dT |2ωe−λ
dAω < +∞

there exists a section F ∈ H0(X,OX(H)) such that

F |Z = f and
∫
X

|F |2e−ψdVω ≤
24π

s

∫
Z

|f |2e−ψ

|dT |2ωe−λ
dAω.

L2 extension theorems for higher codimension subvarieties also exist. If the subvariety is cut
out by a section of some vector bundle whose rank is equal to the codimension, with the section
being generically transverse to the zero section, then the result is very much analogous to Theorem
2.6. For general submanifolds or subvarieties the result requires more normalization.

The reader will notice that Theorem 2.6 does not mention uniform flatness, and that density is
not explicitly stated here. However, the result does address both issues in a slightly more hidden
way. The issue of density is captured by the curvature conditions, while uniform flatness, or rather
the absence of requiring uniform flatness, is dealt with by introducing the denominator |dT |2ωe−λ
in the norm on the hypersurface. The following proof of Theorem 1.2 provides a nice illustration.

Proof of Theorem 1.2. In Theorem 2.6 let X = Cn, ψ = ϕ and ω = ωo. Fix any T ∈ O(Cn)
whose zero locus is Z, such that dT (z) 6= 0 for all z ∈ Z. Set

λ(z) =
1

VolBr(0)

∫
Br(0)

log |T (z − ζ)|2dV (ζ).

Choose s ∈ (0, 1] such that D+
ϕ (Z) < 1

1+s
. Then by definition 2.1 the curvature hypothesis (4) is

satisfied, and thus we see that for any f ∈ O(Z) such that

(5)
∫
Z

|f |2e−ϕ

SZr
dAωo < +∞

there exists F ∈ O(Cn) such that

F |Z = f and
∫
Cn
|F |2e−ϕdAωo < +∞.

Since Z is uniformly flat, Proposition 2.3 implies that every f ∈ Bn−1(Z, ϕ) satisfies (5), and thus
Theorem 1.2 is proved. �

REMARK 2.7. Note that something slightly stronger than Theorem 1.2 is proved. In fact, the
bounded extension operator guaranteed by Proposition 2.5 is rather uniformly bounded. Its norm
is bounded by a constant that depends only on the density D+

ϕ (Z) and on the separation constant

sup{ε > 0 ; Uε(Z) is a tubular neighborhood},
or equivalently, the lower bound on the separation function. �

3. THE QUIMBO TRICK

A basic principle in the study of generalized Bargmann-Fock spaces is that, locally, general-
ized Bargmann-Fock weights differ from standard Bargmann-Fock weights (i.e., weights that are
quadratic polynomials and whose (therefore constant) curvature is strictly positive) by a harmonic
function and a bounded term. The basic result used to establish this decomposition is the following

10



lemma, which is a minor generalization of a technique first introduced by Berndtsson and Ortega-
Cerdá in dimension 1 in [BOC-1995]. The technique has since affectionately come to be known as
the QuimBo Trick.

LEMMA 3.1. There exists a constant C > 0 with the following property. Let ω be a continuous
closed (1, 1)-form on a neighborhood of the closed unit polydisk Dk in Ck, such that

−Mωo ≤ ω ≤Mωo

for some positive constant M . Then there exists a function ψ ∈ C 2(Dk) such that

ddcψ = ω and sup
Dk

(|ψ|+ |dψ|) ≤ CM.

By scaling, one sees that in the polydisk of radius (R, ..., R) one has the same estimate with M
replaced by MR2. However, if the radii of the polydisk are not all the same, one can get a better
estimate.

3.1. Normalization of the weights.

LEMMA 3.2. There exists a constant C > 0 with the following property. Let ϕ ∈ C 2(Ck × C)
satisfy

mddc|z|2 ≤ ddcϕ ≤Mddc|z|2

for some positive constants m and M . Then for each r ∈ (0, 1] and each polydisk Dk
R(0) b Ck

with polyradius R = (R1, ..., Rk) ∈ (0,∞]k and center 0 there exists a plurisubharmonic function
ψ = ψR,r ∈ C 2(Dk

R(0) × Dr(0)) and a holomorphic function g = gR,r ∈ O(Dk
R(0) × Dr(0))

satisfying

ϕ = m| · |2 + ψ + 2Re g and sup
DkR(0)×Dr(0)

|ψ|+ |dψ| ≤ C · (M −m)
(
r log e

r
+ r
)
,

where C is a universal constant independent of the weight ϕ, the radius r and the polyradius R.

Proof. Let ω = ddc(ϕ−m| · |2). Then 0 ≤ ω ≤ (M −m)ωo. Suppose χ : R→ R≥0 is a smooth
function equal to 1 on [−1, 1] and 0 outside (−2, 2). Now define ψ : Dk

R(0)×Dr(0) → R by the
formula

ψ(z1, ..., zk+1) =
1

π

∫
|ζ|<2r

χ

(
ζ

r

)
ωk+1k+1(z1, z2, ..., zk, ζ) log |zk+1 − ζ|2dA(ζ),

It is well-known that ddcψ = ω on Dk
R(0) × Dr(0). It follows that the function ϕ −m| · |2 − ψ

is pluriharmonic on the simply connected set DR(0)k × Dr(0), and thus equals 2Re g for some
g ∈ O(DR(0)k ×Dr(0)). Hence in particular, ψ ∈ C 2(Dk

R(0)×Dr(0)).
The bound on |ψ| follows from an obvious estimate. As for the bound on |dψ|, notice that

∂ψ

∂zk+1
(z, zk+1) =

1

π

∫
|ζ|<2r

χ

(
ζ

r

)
ωk+1k+1(z1, z2, ..., zk, ζ)

dA(ζ)

zk+1 − ζ
,
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which is estimated using polar coordinates in ζ centered at zk+1 ∈ Dr(0). As for the other partial
derivatives, for 1 ≤ j ≤ k we have

∂ψ

∂zj
(z, zj) =

1

π

∫
|ζ|<2r

χ

(
ζ

r

)
∂

∂zj
ωk+1k+1(z1, z2, ..., zk, ζ) log |zk+1 − ζ|2dA(ζ)

=
1

π

∫
|ζ|<2r

χ

(
ζ

r

)
∂

∂ζ
ωjk+1(z1, z2, ..., zk, ζ) log |zk+1 − ζ|2dA(ζ)

= − 1

π

∫
|ζ|<2r

χ

(
ζ

r

)
ωjk+1(z1, z2, ..., zk, ζ)

dA(ζ)

zk+1 − ζ

− 1

π

∫
|ζ|<2r

1

r
χ
′
(
ζ

r

)
ωjk+1(z1, z2, ..., zk, ζ) log |zk+1 − ζ|2dA(ζ),

where the second equality follows because ∂ω = 0 and the third equality is obtained via integration
by parts. Since ω ≤ (M −m)ω0, |ωjk+1| ≤M −m, and the proof is complete. �

of Lemma 3.1.

PROPOSITION 3.3. Let ϕ ∈ C 2(Cn) be a smooth weight function such that

(6) −Mωo ≤ ddcϕ ≤Mωo

for some positive constant M . Then for each r > 0 there exists a constant Cr depending on r and
M such that if F ∈ Bn(ϕ) then for any z ∈ Cn

(7) (|F |2e−ϕ)(z) ≤ Cr

∫
Bnr (z)

|F |2e−ϕdV

and

(8)
∣∣d(|F |2e−ϕ)

∣∣ (z) ≤ Cr

∫
Bnr (z)

|F |2e−ϕdV

Proof. By rescaling and translating, we may assume that r = 1 and z = 0. By Lemma 3.1 applied
to the form ω = ddc(ϕ− ϕ(0)) = ddcϕ there exists a function ψ such that

ddcψ = ddcϕ and sup
B
|ψ|+ |dψ| ≤ Co

for some positive constant Co. It follows from the equation that ψ − ψ(0) − ϕ + ϕ(0) = 2Re G
for some holomorphic function G whose real part vanishes at 0. The imaginary part of G can be
chosen arbitrarily; for example we can take it to be

∫ z
0
dc(ψ − ϕ), where the integral is over any

curve in B originating at 0 and terminating at z. This choice yields the property G(0) = 0. Thus
we have

sup
B
|ϕ− ϕ(0) + 2Re G|+ |d(ϕ+ 2Re G)| ≤ |ψ(0)|+ sup

B
|ψ|+ |dψ| ≤ 2Co.

We therefore have
|F |2e−ϕ = |FeG|2e−ϕ(0)e−ϕ+ϕ(0)−2Re G

Since the last factor is bounded, it can be eliminated from consideration, and we are reduced to
the unweighted case (for the holomorphic function FeG). The unweighted case is an elementary
exercise in complex analysis (with a number of solutions), and is left to the reader. �
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REMARK 3.4. Note that the proof of Proposition 3.3 yields a slightly more general fact: if Ω ⊂ Cn

is an open set and F ∈ O(Ω) satisfies∫
Ω

|F |2e−ϕdV < +∞

where ϕ ∈ C 2(Ω) satisfies −Mωo ≤ ddcϕ ≤ Mωo only in Ω, then (7) and (8) hold for any z ∈ Ω
and r ∈ (0,∞) such that Br(z) ⊂ Ω. �

3.2. Interpolation sequences in C are uniformly separated. In Section 2 (more precisely, in
the first paragraph on Page 6) we noted that interpolation sequence in Bargmann-Fock spaces are
uniformly separated. Let us recall the proof from [OS-1998].

Let ϕ be a Bargmann-Fock weight on C and let Γ ⊂ C be a closed discrete subset such that

RΓ : B1(ϕ)→ B0(Γ) :=

{
f : Γ→ C ;

∑
γ∈Γ

|f(γ)|2e−ϕ(γ) < +∞

}
is surjective. Now choose γo, γ1 ∈ Γ distinct. The function f : Γ 3 γ 7→ eϕ(γo)/2δγo,γ has norm

||f ||2 = |f(γo)|2e−ϕ(γo) = 1.

By Proposition 2.5 there exists F ∈ B1(ϕ) such that ||F ||2 ≤ C where C is independent of f
(hence of γo). It follows that

1

|γo − γ1|
=

∣∣∣∣ |f(γo)|2e−ϕ(γo) − |f(γ1)|2e−ϕ(γ1)

|γo − γ1|

∣∣∣∣
=

∣∣∣∣ 1

γ1 − γo

∫ 1

0

d

dt
|f(γo + t(γ1 − γo))|2e−ϕ(γo+t(γ1−γo))dt

∣∣∣∣
≤ sup

C

∣∣d(|f |2e−ϕ)
∣∣ .

By (8) of Proposition 3.3, |γo − γ1| & ||F ||−2 ≥ C−1, which is what we wanted to show.

4. PROOF OF THEOREM 1

We begin by considering the case of the standard Bargmann-Fock space, and then extend the
proof to the general case. Even in the standard case we were not able to write down a simple,
explicit example of a function in B1(C1) that has no extension in B2. We require L2 methods to
construct our function.

4.1. The standard Bargmann-Fock space.

4.1.1. Reduction. The strategy of our proof consists in seeking a function f ∈ B1(C1) for which
any holomorphic extension would violate (8) of Proposition 3.3. (See Paragraph 3.2 for the case
of sequences in C.) With this general goal in mind, let T±1 , T1 ∈ O(C2) be defined by

T±1 (x, y) = xy ∓ 1, T1(x, y) = T−1 (x, y)T+
1 (x, y) = x2y2 − 1,

which cut out the curves C1+, C1− and C1 = C1+ ∪ C1−:

C1± := {T1± = 0} and C1 = {T1 = 0}.
Then C1+ ∩ C1− = Ø.
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We shall construct a function gδ ∈ O(C1+) such that

(9) |gδ(δ−1, δ)|−(δ−2+δ2) ∼ 1 and
∫
C1+

|gδ|2e−|·|
2

ωo ≤ C/
√
δ

for some constant C > 0 independent of δ. Assuming for the moment that such a function has
been found, if we define the function fδ ∈ O(C1) by

fδ(z) =

{
gδ(z), z ∈ C1+

0 , z ∈ C1−
,

then

|fδ(1
δ
, δ)|−(

1
δ2

+δ2) ∼ 1, |fδ(1
δ
, δ)|−(

1
δ2

+δ2) = 0 and
∫
C1

|fδ|2e−|·|
2

ωo ≤ C/
√
δ,

and in particular fδ ∈ B1(C1). To prove Theorem 1 by contradiction, suppse there exists F ∈ B2

extending fδ. Since the square norm of fδ is bounded by C/
√
δ, Proposition 2.5 says one can find

Fδ ∈ B2 such that ||Fδ||2 ≤ C̃/
√
δ for some constant C̃ independent of δ. But then by (8) of

Proposition 3.3

1

2δ
=
|F (δ, δ−1)|2e−(δ2+δ−2) − F (−δ, δ−1)|2e−(δ2+δ−2)

2δ

=
1

2δ

∫ 1

−1

d

ds

(
|Fδ(δ−1, sδ)|2e−ϕ(δ−1,sδ)

)
ds

≤ sup
C2

∣∣d(|Fδ|2e−ϕ)
∣∣ ≤ Ĉ/

√
δ,

where the constant Ĉ is independent of δ. The desired contradiction is thus obtained by taking δ
sufficiently small.

4.1.2. Conclusion of the proof in the standard Bargmann-Fock space. It remains only to pro-
duce the g = gδ on C1+ satisfying (9). We shall define a function close to gδ on a large but finite
open subset of C1+, and then approximately extend the example to all of C1+ using Hörmander’s
Theorem, thus obtaining gδ.

We work on C∗, after using the parametrization

(10) ν : C∗ 3 t 7→ (t, t−1) ∈ C1+

of C1+. Our L2 norm is then∫
C1+

|g|2e−|·|2ωo =

∫
C∗
|f(t)|2e−|t|2−|t|−2

(1 + |t|−4)dA(t),

where f = ν∗g. Note that for the weight ϕo(t) := |t|2 + |t|−2 − log(1 + |t|−4),

∂2ϕo
∂t∂t̄

= 1 + |t|−4 − 4|t|2

(1 + |t|4)2
=
|t|12 + 3|t|4(|t|2 − 1)2 + 2|t|6 + 1

|t|4(1 + |t|4)2
,

which is positive,→ 1 as |t| → ∞ and→∞ as |t| → 0. Thus

ddcϕo ≥ codd
c|t|2
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for some positive constant co. Moreover, there exists a compact subset K b C (necessarily con-
taining the origin) such that

(11) ddcϕo ≤ 2ddc|t|2 for t ∈ C∗ −K.
Now fix δ ∈ (0, 1), keeping in mind that we will let δ → 0. To find a function f such that
|f(1/δ)|2e−δ2e−δ−2 ∼ 1 for some δ << 1, one need only worry about the factor e−δ−2 , which is
extremely small. A natural choice is

fo(t) = et
2/2,

which satisfies |fo(1/δ)|2e−δ
2
e−δ

−2
= e−δ

2 . Unfortunately the function

|fo(t)|2e−ϕo(t) = eRe t2−|t|2−|t|−2

(1 + |t|−4) = e−2(Im t)2e−|t|
−2

(1 + |t|−4),

while locally integrable near the origin in C, is not integrable in a neighborhood of {∞}, where
it is asymptotically e−2(Im t)2 . Thus we are going to take the function χfo, where χ is a cut-off
function to be described shortly, and then correct this function using Hörmander’s Theorem.

Consider the vertical strip

(12) Sδ :=
{
t ∈ C ; |Re t− 1

δ
| ≤ 3

4
√
δ

}
⊂ C∗.

Take a function χ ∈ C∞o (Sδ) such that

0 ≤ χ ≤ 1, χ(t) ≡ 1 for |Re t− 1
δ
| ≤ 1

2
√
δ

and sup
Sδ

|dχ| ≤ 5
√
δ.

(Such a function can be chosen to depend only on Re t, for instance.)
The function χfo satisfies ∫

C∗
|χfo|2e−ϕodA ≤ Cδ−1/2

for some constant C that does not depend on δ. Moreover,∫
C∗
|∂̄χfo|2e−ϕodA ≤ sup |dχ|2

∫
Supp(χ)

|fo|2e−ϕodA ≤ C
√
δ.

By Hörmander’s Theorem there exists a function u such that

∂̄u = ∂̄χfo and
∫
C∗
|u|2e−ϕodA ≤ A

√
δ.

Note in particular that
u ∈ O({t ; |Re t− δ−1| < 1/(2

√
δ)}.

Moreover, if δ is small enough then by (11) and the proof of Proposition 3.3 (c.f. Remark 3.4)

|u(δ−1)|2e−δ2−δ−2

= |u(δ−1)|2e−ϕo(δ−1)(1 + δ4)−1 ≤ C
√
δ.

(This estimate is established by estimating |u(δ−1)|2e−ϕ(δ−1) by its L2 norm over the disk of radius
1 and center 1/δ using the QuimBo Trick.) Hence the function

f := χfo − u
satisfies ∫

C∗
|f |2e−ϕo . δ−1/2 and |f(δ−1)|2e−δ2−δ−2 ∼ (1 +

√
δ)e−δ

2 ∼ 1

Letting
gδ(t, t

−1) := f(t)
15



provides the function satisfying (9), and hence proves Theorem 1 in the standard case. �

4.2. The general case. The passage to the general case involves using the QuimBo Trick in the
form of Lemma 3.2 to reduce to a situation that is very similar to the standard case. In particular,
we will be brief when stating estimates in this setting that are very similar to those of the standard
case.

First we normalize the weight ϕ in the bidisk

D2
δ :=

{
(x, y) ∈ C2 ; |x| < 2/δ , |y| < 1

}
via Lemma 3.2. Thus we have functions ψδ ∈ C 2(D2

δ) and hδ ∈ O(D2
δ) such that

ϕ = m| · |2 + ψδ + 2Re hδ and ||ψδ||C 1 ≤ C

for some constant C independent of δ. In particular, this relation holds on

S̃δ ⊂ D2
δ ,

where (compare (12))

S̃δ := ν(Sδ) =
{

(t, 1/t) ; |Re t− 1
δ
| ≤ 3

4
√
δ

}
.

Again, pulling back by ν, we work on C∗, where the L2 norm is∫
C∗
|f(t)|2e−ϕ(t,t−1)(1 + |t|−4)dA(t).

This time, however, the weight ϕo(t) = ϕ(t, t−1)− log(1 + |t|−4) could fail to be positively curved
if m is sufficiently small. We therefore need to choose a weight for which Hörmander’s Theorem
can be applied, and that still provides the right estimates. With this in mind, we let

η(t) := ϕ(t, t−1)− m

2
|t|−2.

Then
ddcη(t) ≥ m

2
ν∗ωo ≥

m

2
ddc|t|2

and
e−ϕ(t,t−1)(1 + |t|−4) = e−η(t)(1 + |t|−4)e−

m
2
|t|−2 ≤ Cme

−η(t)

for some constant Cm.
Now let χ ∈ C∞o ([0, 3/4)) have the property that 0 ≤ χ ≤ 1, χ(r) ≡ 1 for 0 ≤ r ≤ 1

2
and

|χ′| ≤ 5. Define
f̃(t) := χ(

√
δ|Re t− δ|)χ(δ|Im t|)egδ(t,t−1)+mt2/2.

Then by Lemma 3.2,∫
C∗
|f̃ |2e−ϕodA .

∫
S̃δ

em(Re t2−|t|2)−m
2
|t|−2

dA(t) . δ−1/2,

where the last estimate is proved as in the standard case. Also, since∣∣∣∂̄ (χ(
√
δ|Re t− δ|)χ(δ|Im t|)

)∣∣∣2 . δ · 1S̃δ ,

we have ∫
C∗
|∂̄f̃ |2e−ηdA . δ

∫
S̃δ

em(Re t2−|t|2)−m
2
|t|−2

dA(t) . δ1/2.
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By Hörmander’s Theorem there exists a smooth function u such that

∂̄u = ∂̄f̃ and
∫
C∗
|u|2e−ϕodA .

∫
C∗
|u|2e−ηdA = O(δ1/2).

Since u is holomorphic in a neighborhood of δ−1, as in the standard case we have (via Remark 3.4)

|u(δ−1)|2e−ϕ(δ,δ−1) . δ1/2.

It follows that the function

f(t, t−1) := χ(
√
δ|Re t− δ|)χ(δ|Im t|)egδ(t,t−1)+mt2/2 − u(t)

is holomorphic and satisfies

|f(δ−1, δ)|2e−ϕ(δ−1,δ) ∼ 1 and
∫
C+

|f |2e−ϕωo . δ−1/2.

As in the standard case, f has no extension in B2(ϕ) as soon as δ is small enough. The proof of
Theorem 1 is complete. �

5. PROOF OF THEOREM 3

Throughout this section we make use of the ‘graph embedding’ Φ : S ↪→ C3 defined by (2).

5.1. Asymptotics of the norm from the L2 extension theorem. Consider the L2 Extension The-
orem 2.6 in the following situation. We take X = C3, Z = S, T (x, y, z) := z − xy2, ϕ as in the
hypotheses of Theorem 3, i.e., satisfying (1), s = 1 and λ defined by

(13) λ(x, y, z) :=
1

Vol(BR(0))

∫
BR(x,y,z)

log |T (ξ, η, ζ)|2dV (ξ, η, ζ).

Notice that λ is plurisubharmonic, i.e., ddcλ ≥ 0. As we saw in the proof of Proposition 2.2, given
any ε > 0, there exists R sufficiently large such that

ddcλ ≤ εωo.

Hence the curvature hypothesis (4) of Theorem 2.6 is satisfied if we take R >> 1. We fix R from
here on.

It follows that for any f ∈ O(S) satisfying

(14)
∫
S

|f |2e−ϕ

|dT |2ωoe−λ
ω2
o < +∞

there exists F ∈ B3(ϕ) such that F |S = f . (There is also an estimate for the B3(ϕ)-norm of F in
terms of the norm (14) of f , but this estimate is not important to us.)

Now, dT = dz − y2dx− 2xydy, so

|dT |2ωo = 1 + 4|xy|2 + |y2|2.

LEMMA 5.1. There exists C > 0 such that
1

C
(1 + |x|2 + |y|2 + 4|xy|2 + |y|4) ≤ eλ(x,y,xy2) ≤ C(1 + |x|2 + |y|2 + 4|xy|2 + |y|4).
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Proof. We have

λ(x, y, xy2) =
6

π3R6

∫
BR(0)

log |ζ + xy2 − (ξ + x)(η + y)2|2dV (ξ, η, ζ)

=
6

π3R6

∫
BR(0)

log |ζ − ξη2 − (x · η2 + y · 2ξη + xy · 2η + y2 · ξ)|2dV (ξ, η, ζ)

≤ 6

π3R6

∫
BR(0)

log
(
|ζ|+ |ξη2|+ |(η2, 2ξη, 2η, ξ)| · |(x, y, xy, y2)|

)2
dV (ξ, η, ζ)

≤ 6

π3R6

∫
BR(0)

log
(

2R3 + 2R2
√
|x|2 + |y|2 + 4|xy|2 + |y2|2

)2

dV (ξ, η, ζ)

= log
(
|x|2 + |y|2 + 4|xy|2 + |y2|2

)
+

6

π3R6

∫
BR(0)

log

(
2R3√

|x|2 + |y|2 + 4|xy|2 + |y2|2
+ 2R2

)2

dV (ξ, η, ζ).

Thus if (x, y) is outside a ball of radius R then the second term is small. For (x, y, xy2) such that
(x, y) is inside the ball of radius R, λ is already bounded.

To obtain the opposite inequality, one proceeds as follows. First, note that

λ(x, y, xy2) ≥ 6

π3R6

∫
BR(0)

log(|(x · η2 + y · 2ξη + xy · 2η + y2 · ξ)| − |ζ − ξη2|)2dV (ξ, η, ζ).

The region of BR(0) where

(|(x, y, 2xy, y2) · (η2, 2ξη, η, ξ)| − |ζ − ξη2|)2 < 1

is of no concern to us, since log |t| is locally integrable near t = 0. Thus we may focus on the
region B+ ⊂ BR(0) where (|(x, y, 2xy, y2) · (η2, 2ξη, η, ξ)| − |ζ − ξη2|)2 ≥ 1 at the cost of
subtracting some possibly large but fixed constant (depending only on R). We may also assume
that |x|2 + |y|2 ≥ R7. The aforementioned region contains the set

CR(x, y) :=
{

(ξ, η, ζ) ∈ BR(0) ; |(x, y, 2xy, y2) · (η2, 2ξη, η, ξ)| ≥ 1
2
||(x, y, 2xy, y2)||

}
,

and CR(x, y) has positive volume in BR(0) uniformly in R. It follows that

λ(x, y, xy2) ≥ MR

∫
CR(x,y)

log(1
2
||(x, y, 2xy, y2)|| − |ζ − ξη2|)2dV (ξ, η, ζ)

= MRVol(CR(x, y)) log(1 + |x|2 + |y|2 + 4|xy|2 + |y|4)

+MR

∫
C(x,y)

log

(
1
2
− 1 + 2|ζ − ξη2|√

1 + ||(x, y, 2xy, y2)||2

)2

dV (ξ, η, ζ)

≥ Co log(1 + |x|2 + |y|2 + 4|xy|2 + |y|4),

and the proof is complete.
�

By Lemma 5.1 we have∫
S

|f |2e−ϕ

|dT |2ωoe−λ
ω2
o ≤

∫
S

|f |2e−ϕ

(1 + 4|xy|2 + |y|4)
(1 + |x|2 + |y|2 + 4|xy|2 + |y|4)ω2

o
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If we now use our parametrization Ψ2 : C 3 (x, y) 7→ (x, y, xy2) ∈ S, we find that

Ψ∗2
ω2
o

2
= (1 + 4|xy|2 + |y|4)dV (x, y),

and therefore

(15)
∫
S

|f |2e−ϕ

|dT |2ωoe−λ
ω2
o ≤ 2

∫
C2

|f(x, y, xy2)|2e−ϕ(x,y,xy2)(1+ |x|2 + |y|2 +4|xy|2 + |y|4)dV (x, y).

The norm on the right hand side of (15) is larger than the H2(S, ϕ)-norm, obtained when the
weight factor (1 + |x|2 + |y|2 + 4|xy|2 + |y|4) is replaced by the weight factor (1 + 4|xy|2 + |y|4).
The factors become incomparable if y = 0 and x is very large. Of course, uniform flatness fails
only on a neighborhood of the line

Lo := {(x, y, z) ∈ S ; y = 0}
near∞. More precisely, for any δ > 0 the set

Sδ := S ∩ Ωδ

is uniformly flat in C3, where

Ωδ = {(x, y, z) ∈ C3 ; |y| > δ}.
Note that Ωδ, being a product of pseudoconvex domains, is pseudoconvex (and hence the L2-
extension theorems apply to it).

5.2. Reduction.

PROPOSITION 5.2. Let ϕ ∈ C 2(C3) be a Bargmann-Fock weight, i.e., a weight satisfying (1).
Then for each h ∈ B1(Lo, ϕ) there exists H ∈ B3(ϕ) such that H|Lo = h.

Proof. One simply applies Theorem 1.2 twice. Since Lo is a uniformly flat hypersurface with upper
density 0 in C2 ∼= P1 = {(x, y, z) ∈ C3 ; z = 0}, there exists h̃ ∈ B2(P1, ϕ) such that h̃|Lo = h.
And since P1 is a uniformly flat hypersurface with upper density 0 in C3, there exists H ∈ B3(ϕ)

such that H|P1 = h̃. Since Lo ⊂ P1, H|Lo = h̃|Lo = h. �

PROPOSITION 5.3. The restriction map RS : B3(ϕ)→ B2(S, ϕ) is bounded.

REMARK. Note that if S were uniformly flat then Proposition 5.3 would be a consequence of a
well-known fact. But although S is not uniformly flat, it is not far from being so. �

Sketch of proof of Proposition 5.3. Let F ∈ B3(ϕ). Using the sub-mean value property (7) we
can estimate the integral of |F |2 over S with respect to the measure e−ϕω2

o by the integral over
the union of all disks of radius ε and center on S that are perpendicular to S. Away from some
neighborhood of the line Lo these disks will be mutually disjoint. Near the line Lo each point of
C3 is in at most two such disks. Hence the integral of |F |2 over S is bounded by 2||F ||2 times the
constant from the sub-mean value property. �

For any f ∈ B2(S, ϕ) Proposition 5.2 yields a function H ∈ B3(ϕ) such that H|Lo = f |Lo .
It follows that the function g := f − H|S ∈ O(S) vanishes along Lo, and by Proposition 5.3
g ∈ B2(S, ϕ). Thus it suffices to extend functions g ∈ B2(S, ϕ) that vanish along Lo.

5.3. Extension of functions in B2(S, ϕ) that vanish along Lo.
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5.3.1. Extension away from Lo. We can apply the L2 Extension Theorem 2.6 with X = Ωδ,
Z = Sδ, and with T , s = 1, ϕ and λ as in Subsection 5.1. In Sδ we have

|dT |2ωoe
−λ ≥ C

1

1 + |x|2+|y|2
1+4|xy|2+|y|4

≥ C
1

1 + 4|x|2+|y|2
1+δ2(4|x|2+|y|2)

≥ Cδ2

1 + δ2

Hence for any f ∈ B2(S, ϕ) one has∫
Sδ

|f |2e−ϕ

|dT |2ωoe−λ
ω2
o ≤ Coδ

−2

∫
Sδ

|f |2e−ϕω2
o ,

So we find a function Fδ ∈ O(Ωδ) such that

Fδ|Sδ = f |Sδ and
∫

Ωδ

|F |2e−ϕdV < +∞.

This argument applies to all f ∈ B2(S, ϕ), and not just those f that vanish along Lo.

5.3.2. Division by y in B2(S, ϕ). Consider the domain

Ω̃δ := {(x, y, z) ∈ C3 ; |y| < 2δ}

and the surface S̃δ := S ∩ Ω̃δ.

LEMMA 5.4. Fix δ > 0. If h ∈ O(S) and yh ∈ B2(S, ϕ) then h ∈ B2(S, ϕ).

Proof. We work in C2 after pulling back by the embedding Φ. Then f ∈ B2(S, ϕ) means that the
L2 norm ∫

C2

|f(x, y)|2e−ϕ(x,y,xy2)(1 + 4|xy|2 + |y|4)dV (x, y)

is finite. Thus the hypothesis yh ∈ B2(S, ϕ) means that∫
C2

|yΦ∗h|2e−Φ∗ϕ(1 + 4|xy|2 + |y|4)dV (x, y) < +∞

and thus there exists A > 0 such that for any R > 2δ∫
DR(0)

∫
|y|≤2δ

|yΦ∗h(x, y)|2e−Φ∗ϕ(x,y)(1 + 4|xy|2 + |y|4)dA(y)dA(x) ≤ A.

By Lemma 3.2 (with m = 0) there exist functions

g ∈ O(DR(0)×D2δ(0)×D4δ2R(0)) and ψ ∈ C 2(DR(0)×D2δ(0)×D4δ2R(0))

such that
ϕ = ψ + 2Re g and |ψ| ≤ C

on DR(0)×D2δ(0)×D4δ2R(0). Note that the constant C depends on δ but not on R.
Now, by elementary complex analysis there exists a universal constant co so that for any entire

holomorphic function f ∈ O(C2)∫
|y|≤2δ

|Φ∗(he−g)(x, y)f(x, y)|2dA(y) ≤ co

∫
δ≤|y|≤2δ

|Φ∗(he−g)(x, y)f(x, y)|2dA(y).

20



Applying this estimate with f(x, y) equal to 1, 2xy and y2 yields∫
DR(0)

∫
|y|≤2δ

|Φ∗h(x, y)|2e−Φ∗ϕ(x,y)(1 + 4|xy|2 + |y|4)dA(y)dA(x)

≤ eC
∫
DR(0)

∫
|y|≤2δ

|Φ∗(e−gh)(x, y)|2(1 + 4|xy|2 + |y|4)dA(y)dA(x)

≤ coe
C

∫
DR(0)

∫
δ≤|y|≤2δ

|Φ∗(e−gh)(x, y)|2(1 + 4|xy|2 + |y|4)dA(y)dA(x)

≤ coe
C

δ2

∫
DR(0)

∫
δ≤|y|≤2δ

|yΦ∗(e−gh)(x, y)|2(1 + 4|xy|2 + |y|4)dA(y)dA(x)

≤ coe
2C

δ2

∫
DR(0)

∫
|y|≤2δ

|yΦ∗h(x, y)|2e−Φ∗ϕ(x,y)(1 + 4|xy|2 + |y|4)dA(y)dA(x)

≤ coe
2CA

δ2
.

Since A, C and co are independent of R, yh ∈ B2(S̃δ, ϕ), as claimed. �

5.3.3. Extension near Lo. Let g ∈ B2(S, ϕ) vanish along Lo. Then by the Nullstellensatz and
Lemma 5.4 g = yg̃ for some g̃ ∈ B2(Sδ, ϕ).

We can apply the L2 Extension Theorem 2.6 in this setting as well, and obtain an extension of
f |S̃δ to Ω̃δ we must show that ∫

S̃δ

|g|2e−ϕ

|dT |2ωoe−λ
ω2
o < +∞.

Pulling back to C2 via the parametrization Φ, we need to show that∫
C

∫
D2δ(0)

|g(x, y, xy2)|2e−ϕ(x,y,xy2)(1 + |x|2 + |y|2 + 4|xy|2 + |y|4)dA(y)dA(x) < +∞.

But ∫
C

∫
D2δ(0)

|g(x, y, xy2)|2e−ϕ(x,y,xy2)(1 + |x|2 + |y|2 + 4|xy|2 + |y|4)dA(y)dA(x)

=

∫
C

∫
D2δ(0)

|g(x, y, xy2)|2e−ϕ(x,y,xy2)(1 + 4|xy|2 + |y|4)dA(y)dA(x)

+

∫
C

∫
D2δ(0)

|g̃(x, y, xy2)|2e−ϕ(x,y,xy2)(|xy|2 + |y|4)dA(y)dA(x).

Since g and (by Lemma 5.4) g̃ are both in B2(S̃δ, ϕ), the last two integrals are finite. Consequently
Theorem 2.6 yields F̃δ ∈ O(S̃δ) such that

F̃δ|S̃δ = f |S̃δ and
∫

Ω̃δ

|F̃δ|2e−ϕdV < +∞.
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5.3.4. Patching together the two extensions Fδ and F̃δ. Fix a function χ ∈ C∞o ([0,∞)) such
that χ(t) = 1 if 0 ≤ t ≤ δ, χ(t) = 0 if t ≥ 2δ, and |χ′| ≤ 2/δ. Let

F̃ (x, y, z) := (1− χ(|y|))Fδ(x, y, z) + χ(|y|)F̃δ(x, y, z)

= Fδ(x, y, z) + χ(|y|)(F̃δ(x, y, z)− Fδ(x, y, z)).

Then F̃ ∈ C∞(C3) ∩ O({(x, y, z) ; δ ≤ |y| ≤ 2δ}), F̃ |S = f , and∫
C3

|F̃ |2e−ϕdV < +∞.

We wish to correct F̃ by subtracting from it a function u ∈ C∞(C3) such that

∂̄u = ∂̄F̃ , u|S ≡ 0 and
∫
C3

|u|2e−ϕdV < +∞.

Consider the weight

ψ = ϕ+ log |T |2 − λ,

where λ is given by (13). Then

(16) − ϕ ≤ −ψ and ∂∂̄ψ ≥ ∂∂̄ϕ− ∂∂̄λ ≥ m

2
ωo

for R > 0 sufficiently large. Note also that on Ωδ ∩ Ω̃δ the difference F̃δ − Fδ is holomorphic and
vanishes on S. It follows that

F̃δ − Fδ = T · h

for some h ∈ O(Ωδ ∩ Ω̃δ) which evidently satisfies

(17)
∫

Ωδ∩Ω̃δ

|F̃δ − Fδ|2e−ψdV =

∫
Ωδ∩Ω̃δ

|h|2e−ϕ+λdV.

We claim that the integral (17) is finite. To establish this claim, note that in Ωδ the surface S is
uniformly flat. Thus by the proof of Lemma 3.2 in [OSV-2006] there exist εδ > 0 and Mδ > 0

such that Uεδ(Sδ ∩ S̃δ) is a tubular neighborhood of Sδ ∩ S̃δ and

(18) λ(x, y, z) ≥ log |T (x, y, z)|2 −Mδ

for all (x, y, z) ∈ Ωδ ∩ Ω̃δ − Uεδ/2. Now,∫
Ωδ∩Ω̃δ

|h|2e−ϕ+λdV ≤
∫

Ωδ∩Ω̃δ−Uεδ (Sδ∩S̃δ)
|h|2e−ϕ+λdV +

∫
Uεδ (Sδ∩S̃δ)

|h|2e−ϕ+λdV.

From (18) we see that∫
Ωδ∩Ω̃δ−Uεδ (Sδ∩S̃δ)

|h|2e−ϕ+λdV ≤ eMδ

∫
Ωδ∩Ω̃δ

|Th|2e−ϕdV

≤ 2eMδ

(∫
Ω̃δ

|F̃δ|2e−ϕdV +

∫
Ωδ

|Fδ|2e−ϕdV
)
< +∞.
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On the other hand, once again by the method of proof of [OSV-2006, Lemma 5.3]∫
Uεδ (Sδ∩S̃δ)

|h|2e−ϕ+λdV .
∫
Uεδ (Sδ∩S̃δ)−Uεδ/2(Sδ∩S̃δ)

|h|2e−ϕ+λdV

≤ eMδ

∫
Uεδ (Sδ∩S̃δ)−Uεδ/2(Sδ∩S̃δ)

|Th|2e−ϕdV

≤ 2eMδ

(∫
Ω̃δ

|F̃δ|2e−ϕdV +

∫
Ωδ

|Fδ|2e−ϕdV
)
< +∞,

which establishes the finiteness of (17).
Next, observe that∫

C3

|∂̄F̃ |2e−ψdV =

∫
C3

|∂̄χ(|y|)|2|Fδ − F̃δ|2e−ψdV

≤ C

δ2

∫
Ωδ∩Ω̃δ

|F̃δ − Fδ|2e−ψdV < +∞.

By Hörmander’s Theorem, (16) and the regularity of ∂̄ there exists u ∈ C∞(C3) such that

∂̄u = ∂̄F̃ and
∫
C3

|u|2e−ϕdV ≤
∫
C3

|u|2e−ψdV < +∞.

The finiteness of the second integral together with the smoothness of u implies that u|S ≡ 0. Thus
we have a function

F := F̃ − u ∈ B3(ϕ)

such that F |S = F̃ |S = f . The proof of Theorem 3 is complete.

6. PROOF OF THEOREM 2

6.1. Extension from C2 to S. Without necessarily explicitly mentioning it, we shall identify C2

with C2 × {1} = S ∩ {z = 1}. In this section we prove the following result.

THEOREM 6.1. Let ϕ ∈ C 2(C2) satisfy the Bargmann-Fock curvature condition (1), and define

ϕ̃(x, y, z) := ϕ(x, y) + ε|z − 1|2.

Then for each f ∈ B1(C2, ϕ) there exists g ∈ B2(S, ϕ̃) such that g|C2 = f .

The approach is to apply the L2 Extension Theorem 2.6. However, there is some work to be
done before the application of Theorem 2.6 is possible. Of course, we will take X = S, ω = ωo|S
and Z = C2, but the rest of the data is perhaps not as obvious.

6.1.1. Step 1: (Defining section and metric for the defining line bundle). Let us start with
the function T ∈ O(S) that cuts out C2. The premise is that C2 is uniformly flat in S, and the
rationale is that this is so because C2 ⊂ C2 × {1} is obtained from S ⊂ C3 by intersection with
the hyperplane {z = 1}. If we pursue this clue, we should try

T (x, y, z) := z − 1.
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Continuing with our view of C2 are the intersection of S with a plane in C3, in our search for the
weight λ we should exploit the idea used in Paragraph 2.4 in the proof of Theorem 1.2. That is to
say, we should set

λr(x, y, z) :=
1

πr2

∫
Dr(z)

log |ζ − 1|2dA(ζ).

Since this is the same defining data as one uses for a plane in C3, one sees that there is a constant
Lr > 0 such that

(19) |dT (x, y, 1)|2ωoe
−λr(1) ≥ Lr

for all (x, y) ∈ C2. (This fact can of course easily be verified directly as well.) Moreover the
curvature of λr is non-negative and bounded above by 1

r2
ddc|z|2, which can be made as small as

we like by taking r sufficiently large but fixed.

6.1.2. Step 2: (Weight modification). Since ddcλr ≥ 0, Theorem 2.6 can be applied with the
weight ϕ̃ if there exists δ > 0 so that

(20) ddcϕ̃+ Ricci(ωo|S) ≥ (1 + δ)ddcλr

everywhere on S.
Since S is a complex submanifold of C3, the curvature of ωo|S can be (and in fact is) smaller that

the restriction to S of the curvature of ωo. The condition (20) might not be satisfied even for some
weights ϕ satisfying the Bargmann-Fock curvature bound (1). (As it turns out, (20) is satisfied for
weights ϕ satisfying (1) with m large enough.) We therefore need to modify the weight ϕ̃ slightly.

To see things more clearly, it is useful to parametrize the surface S by the map Φ defined by (2).
On the other hand, it is also useful not to attach oneself too much to this parametrization. First,
note that

ωo|S = Φ∗ωo = ddc(|s|2 + |t|2 + |st2|2).

An easy computation shows that

(ωo|S)2 = (1 + |2st|2 + |t2|2)ddc|s|2 ∧ ddc|t|2.
Letting Ξ(s, t) = (2st, t2), we see that

Ricci(ωo|S) = Ξ∗(ddc(− log(1 + |z1|2 + |z2|2)))

is the pullback by Ξ of the curvature of the Euclidean metric on O(−1) → P2 in the affine chart
Uo ∼= C2 ⊂ P2. Now,

ddc(− log(1 + |z|2)) =
(1 + |z|2)

√
−1dz∧̇dz̄ −

√
−1z̄ · dz ∧ z · dz̄

(1 + |z|2)2
≤ 2
√
−1dz∧̇dz̄
1 + |z|2

≤ 2ωo|S,

where dz∧̇dz̄ = dz1 ∧ dz̄1 + dz2 ∧ dz̄2 and z∧̇dz̄ = z∧̇dz̄+ z∧̇dz̄ and z̄ · dz = z1dz̄1 + z2dz̄2, etc.
Therefore if ϕ satisfies the Bargmann-Fock curvature condition with m > 2 then one can already
apply the L2 Extension Theorem 2.6 to the weight ψ(x, y, z) = ϕ(x, y) +m|z|2.

There is, however, another modification that allows us to use the extension theorem. Namely,
we let

ψ(x, y, z) := ϕ(x, y) + ε|z − 1|2 − µ(x, y) + log(1 + |2xy|2 + |y2|2),

where

µ(x, y) =
1

πr2

∫
Dr(x)

log(1 + |2ξy|2 + |y2|2)dA(ξ).
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By the sub-mean value property for subharmonic functions

log(1 + |2xy|2 + |y2|2) ≤ µ(x, y).

And along the curve C2

sup
(x,y)∈C2

µ(x, y)− log(1 + |2xy|2 + |y2|2)

= sup
t∈C∗

1

πr2

∫
Dr(0)

log
1 + |2(ξ + t2)t−1|2 + |t|−4

1 + |2t|2 + |t|−4
dA(ξ).

For |t| large

1 + |2(ξ + t2)t−1|2 + |t|−4

1 + |2t|2 + |t|−4
. r2,

while for |t| ∼ 0

1 + |2(ξ + t2)t−1|2 + |t|−4

1 + |2t|2 + |t|−4
. 1,

and hence there exists Ar such that

µ(x, y)− log(1 + |2xy|2 + |y|4) ≤ Ar for all (x, y) ∈ C2.

By taking r sufficiently large we can ensure that ddcµ is as small as we like.
Now, in C3 we have

ddcψ = ddcϕ+ εddc|z − 1|2 − ddcµ+ ddc(log(1 + |Ξ(x, y)|2))

≥ (m− ε)ddc(|x|2 + |y|2) + εddc|z − 1|2 + ddc(log(1 + |Ξ(x, y)|2)).

Therefore on the surface S we have

ddcψ + Ricci(ωo|S)− (1 + δ)ddcλr ≥ (m− ε)ddc(|x|2 + |y|2) + εddc|z − 1|2 − (1 + δ)ddcλr,

and the right hand side is non-negative if one takes r sufficiently large.

Proof of Theorem 6.1. Let f ∈ B1(C2, ϕ). Then∫
C2

|f |2e−ψ

|dT |2ωoe−λr
ωo ≤

eAr

Lr

∫
C2

|f |2e−ϕωo < +∞.

By Theorem 2.6 there exists g ∈ B2(S, ψ) such that

g|C2 = f.

Since ψ ≤ ϕ̃, g ∈ B2(S, ϕ̃), as desired. �

6.2. Extension from S to C3. By Theorem 3 there exists F̃ ∈ B3(ϕ̃) such that

F̃ |S = g.
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6.3. Restriction from C3 to C2 × {1}. Let F (x, y) := F̃ (x, y, 1). Then∫
C2

|F (x, y)|2e−ϕ(x,y)dV (x, y) =

∫
C2

|F̃ (x, y, 1)|2e−ϕ(x,y)dV (x, y)

≤ ε

π

∫
C3

|F̃ (x, y, z)|2e−ϕ(x,y)−ε|z−1|2dV (x, y, z),

which shows that F ∈ B2(ϕ). Finally,

F |C2 = F̃ |C2×{1} = g|C2×{1} = f,

and the proof of Theorem 2 is complete. �

6.4. Postscript: the non-flat pairs of C2 are too close together. Theorem 2 was utterly surpris-
ing to us. We fully expected that the curve C2 would not be interpolating for any Bargmann-Fock
weight on C2. Indeed, we noted that the points (δ−2,±δ) were very close together in C2 but quite
far apart in C2, so we expected to be able to find a function that is large at (δ−2, δ) and vanishes at
(δ−2,−δ). The problem with the latter goal is that it is vague; particularly, the quantitative meaning
of the word ‘large’ is here crucial. To show that C2 is not interpolating, one would need to find, for
all δ > 0 sufficiently small, functions fδ ∈ B1(C2, ϕ) satisfying

(21) |fδ(δ−2, δ)|2e−ϕ(δ−2,δ) = 1, fδ(δ
−2,−δ) = 0 and δ||fδ||2 ≤ r

for some r < 1 independent of δ. Indeed, such functions would contradict (8) of Proposition 3.3.
We were able to construct functions fδ satisfying the first two conditions of (21), but the best

estimate we could find for such functions is

||fδ||2 ∼ δ−2.

Unable to find functions satisfying (21), we reluctantly had to admit to ourselves that perhaps C2

is, after all, interpolating.

7. PROOF OF THEOREM 4

As mentioned in the introduction, the Proof of Theorem 4 is the reflection of that of Theorem 2.

7.1. Extension from C1 to Σ.

THEOREM 7.1. Let ϕ ∈ C 2(C3) satisfy the Bargmann-Fock curvature condition (1) Then for each
f ∈ B1(C2, ϕ) there exists g ∈ B2(Σ, ϕ) such that g|C2 = f .

Proof. We use the same function T (x, y, z) = z − 1 and λr as in the proof of Theorem 6.1.
For the surface Σ we use the parametrization Ψ(s, t) = (s, t, s2t2). The metric induced on Σ by

the Euclidean metric is then

ωo|Σ = Ψ∗ωo = ddc(|s|2 + |t|2 + |s2t2|),
and

(ωo|Σ)2 = (1 + |2st2|2 + |2ts2|2)ddc|s|2 ∧ ddc|t|2.
Thus

Ricci(ωo|Σ) = −Π∗ddc log(1 + |z1|2 + |z2|2),

where Π(s, t) = (2st2, 2ts2) = 2st(s, t).
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To apply the L2 extension theorem, we again need to rid ourselves of the negative curvature
contributed by Ricci(ωo|Σ). As with the surface S, we use a modified weight

ψ(x, y, z) := ϕ(x, y, z)− ν(x, y, z) + log(1 + 4|zx2|+ 4|zy2|),

where

ν(x, y, z) =
4!

π2r4

∫
Br(x,y)

log(1 + 4|zξ2|+ 4|zη2|)dV (ξ, η).

By the sub-mean value property

log(1 + 4|zx2|+ 4|zy2|) ≤ ν(x, y, z),

Along the curve C1

sup
(x,y,z)∈C2×{1}

ν(x, y, z)− log(1 + 4|zx2|+ 4|zy2|)

= sup
(x,y)∈C2

4!

π2r4

∫
Br(0)

log
1 + 4|ξ + x|2 + 4|η + y|2

1 + 4|x2|+ 4|y2|
dV (ξ, η)(22)

= sup
t∈C∗

4!

π2r4

∫
Br(0)

log
1 + 4|ξ + t|2 + 4|η + t−1|2

1 + 4|t|2 + 4|t|−2
dV (ξ, η),

and again the last expression is bounded, as one can check by looking near t = 0 and t = ∞.
Lastly, by taking r >> 1 we can guarantee that ddcν is as small as we like.

Now, log(1 + 4|zx2|+ 4|zy2|) = log(1 + |2yx2|2 + |2xy2|2) on the surface Σ, and hence

ddcψ + Ricci(ωo|S) = ddcϕ− ddcν.

It follows that

ddcψ + Ricci(ωo|S)− (1 + δ)ddcλr ≥ (m− ε)ddc(|x|2 + |y|2 + |z|2)− (1 + δ)ddcλr,

for some small ε, and the latter is positive as long as r is sufficiently large, which we have assumed
is the case.

Now let f ∈ B1(C1, ϕ). Then by (19) and (22)∫
C2

|f |2e−ψ

|dT |2ωoe−λr
ωo .

∫
C2

|f |2e−ϕωo.

By Theorem 2.6 there exists g ∈ B2(Σ, ψ) such that

g|C1 = f.

Therefore, g ∈ B2(Σ, ϕ), as desired. �

7.2. End of the proof of Theorem 4. To achieve our contradiction, suppose Σ is interpolating
with respect to some Bargmann-Fock weight function ϕ ∈ C 2(C3).

Let f ∈ B1(C1, ϕ). By Theorem 7.1 there exists g ∈ B2(Σ, ϕ̃) such that g|C1 = f . Since
ϕ̃ ≥ ϕ, g ∈ B2(Σ, ϕ). By our hypothesis there exists F̃ ∈ B3(ϕ) such that F |Σ = g, and hence
F̃ |C1 = f . Since ϕ is a Bargmann-Fock weight, for each (x, y) ∈ C2 ϕ(x, y, ·) is a Bargmann-Fock
weight in C. Hence by (7) of Proposition 3.3

|F̃ (x, y, 1)|2e−ϕ(x,y,1) .
∫
C
|F̃ (x, y, z)|2e−ϕ(x,y,z)dA(z).
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Let Integration over (x, y) ∈ C2 with respect to Lebesgue measure yields∫
C2

|F̃ (x, y, 1)|2e−ϕ(x,y,1)dV (x, y) .
∫
C3

|F̃ (x, y, z)|2e−ϕ(x,y,z)dV (x, y, z) < +∞.

Letting F (x, y) := F̃ (x, y, 1), we find that F |C1 = f and F ∈ B2(ϕ(·, ·, 1)). In other words,

RC1 : B2(ϕ(·, ·, 1))→ B1(C1, ϕ(·, ·, 1))

is surjective. Since ϕ(·, ·, 1) is also a Bargmann-Fock weight, Theorem 1 is contradicted. �

7.3. Postscript: the crucial difference between S and Σ. As mentioned in the second-to-last
paragraph of Subsection 1.2 of the introduction, the proof of Theorem 4 by contradiction to Theo-
rem 1 came to us relatively quickly by that point in our research. Nevertheless, we wondered why
we couldn’t just repeat the proof of Theorem 3 for the surface Σ in place of S. Since our proof of
Theorem 4 is indirect, it does not help one understand what precisely goes wrong in the proof of
Theorem 3 when S is replaced by Σ.

As we see it, the difficulty is by trying to imitate the step appearing in Paragraph 5.3.3. In the
case of S, the uniform non-flatness is concentrated along the line Lo, and for this line we have a
nice L2 extension theorem. But in the case of Σ the non-flat points concentrate along the variety
Λo = {xy = 0, z = 0}. The union {|x| < δ} ∪ {|y| < δ} ⊂ C3 is not pseudoconvex, and it is
one of the standard exercises relating to Hartogs’ Phenomenon that taking the pseudoconvex hull
of this set increases its size significantly. It is here that our method breaks down.

Of course, at the end of the day there is no way to remedy this problem. Indeed, Theorem 4, and
not its opposite, is true.
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