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1. Introduction
1.1. Definitions
Throughout this paper, λ denotes the Lebesgue measure on Cn and

ωo = ddc|z|2

the Euclidean Kähler form in Cn, where dc =
√
−1
4 (∂̄ − ∂). Let ϕ ∈

C 2(Cn) be a function, µ a measure in Cn, and p ∈ [1,∞). One can define
the spaces

Lp(e−pϕdµ) and F p(µ, ϕ) := Lp(e−pϕdµ) ∩ O(Cn).

If the measure µ is Lebesgue measure, we simply write

F p(λ, ϕ) =: F p(ϕ).

Similarly one can define

L∞(e−ϕ, µ) = {f ; µ-Ess. Sup.|f |e−ϕ < +∞}
and

F∞(ϕ) := L∞(e−ϕ, µ) ∩ O(Cn).
When the measure µ has reasonable properties F p(µ, ϕ) ⊂ Lp(e−pϕdµ)
(resp. F∞(ϕ) ⊂ L∞(e−ϕ)) is a closed subspace. In particular, we have
for such µ an orthogonal projection L2(e−2ϕdµ) → F 2(µ, ϕ), which is
called the Bergman projection. This projection is an integral operator given
by an integral kernel called the Bergman kernel, here denoted K(z, w̄).
Later we recall basic and well-known properties of the Bergman kernel.

† Partially supported by NSF grant DMS-1001896.



The following class of operators appears in a number of areas of
complex analysis and geometry, as well as in microlocal analysis and in
mathematical physics.

DEFINITION 1.1 (Toeplitz Operator). Let K be the Bergman kernel, i.e.,
the kernel for the orthogonal projection L2(e−2ϕdλ) → F 2(ϕ). For a
positive measure µ in Cn, the operator Tµ defined by

Tµf(z) :=
∫

Cn
K(z, w̄)f(w)e−2ϕ(w)dµ(w),

is called a Toeplitz operator with symbol µ. �

REMARK 1.2. In the present paper, we apply Toeplitz operators only to
holomorphic functions. In other areas of mathematics, such as microlocal
analysis and mathematical physics, the name Toeplitz Operator refers to
the operator Tµ ◦ P , where P : L2(e−ϕdλ) → F 2(ϕ) is the Bergman
projection. While there are probably good reasons to consider the latter
definition, namely that these definitions have good behavior with respect
to composition, such precision will not be important in the present paper.
�

At this stage, we don’t want to say too much about the precise meaning of
this operator. When we impose conditions on the measure µ, we will be
more precise.

DEFINITION 1.3 (Carleson Measure). Let µ be a positive measure on
Cn and fix p ∈ [1,∞). We say µ is Carleson for F p(ϕ) if there exists a
positive constant C such that∫

Cn
|f |pe−pϕdµ ≤ C

∫
Cn
|f |pe−pϕdλ

for all f ∈ F p(ϕ). �

Thus, by definition, µ is Carleson for F p(ϕ) when the inclusion ιµ :
F p(ϕ) ↪→ Lp(e−pϕdµ) is bounded.

DEFINITION 1.4 (Vanishing Carleson Measure). A measure µ is said to
be vanishing Carleson if the inclusion ιµ : F p(ϕ) ↪→ Lp(e−pϕdµ) is a
compact operator. �

Observe that vanishing Carleson measures are Carleson.

The goal of the present paper is to study basic properties of the
Toeplitz operator Tµ in terms of geometric and/or operator-theoretic prop-
erties of the measure µ.
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REMARK 1.5. The above definitions are easily extended to the setting of
sections of holomorphic line bundles on complex manifolds, but such def-
initions are too general for the main results of this paper. Indeed, the main
results of the paper rely on rather strong decay of the Bergman kernel far
from the diagonal. Such decay is not true in the more general setting de-
scribed above, and it is still not understood whether any kind of general
decay result could be formulated. We therefore content ourselves with the
setting of these generalized Bargmann-Fock spaces, hoping to return to the
more general problem in a future publication. �

1.2. Results
The following are the main results of this paper.

THEOREM 1. Let ϕ ∈ C 2(Cn) and assume that mωo ≤ ddcϕ ≤ Mωo
for some positive constants m < M . Fix p ∈ [1,∞). Then the Toeplitz
operator Tµ : F p(ϕ)→ F p(ϕ) with symbol µ is everywhere-defined and
bounded if and only if µ is a Carleson measure.

THEOREM 2. Let ϕ ∈ C 2(Cn) satisfy mωo ≤ ddcϕ ≤ Mωo for some
positive constants m < M . Fix p ∈ [1,∞). Then a Toeplitz operator
Tµ : F p(ϕ) → F p(ϕ) with symbol µ is compact if and only if µ is
vanishing Carleson.

REMARK 1.6. The condition 0 < mωo ≤ ddcϕ ≤ Mωo will often be
denoted simply ddcϕ ' ωo. We emphasize that this notation implies posi-
tive upper and lower bounds. At times we will also consider negative lower
bounds, but we will not use the notation ' in that situation. �

An ingredient in the proofs of these two theorems is a geometric char-
acterization of the Carleson and compact Carleson conditions for a mea-
sure. The geometric characterization of Carleson measures in the Hardy
space is classical, and in the unweighted Bergman space of the disk and the
ball it has been treated more recently by Luecking [Lu-1983] and Duren-
Weir [DW-2007] respectively. Most recently we learned from M. Abate
that he and Saracco [AS-2009] have treated the case of bounded strictly
pseudoconvex domains. The weighted Bergman space of entire functions
was treated by Ortega-Cerdà in [O-1998], where he established Theorem
5.1 of Section 5, which states that if ddcϕ ' ωo then a measure µ is Car-
leson for F p(ϕ) if and only if µ(D(z, 1)) is bounded above by a constant
independent of z. In the same section we show (Theorem 5.2) that a mea-
sure µ is vanishing Carleson if and only if µ(B(z, 1))→ 0 as |z| → ∞.

In view of the geometric characterizations of the Carleson conditions,
it makes sense to inquire whether Tµ is bounded on F∞(ϕ) if and only if µ
is Carleson. This is indeed true, and similar remarks hold for the vanishing

3



Carleson case. Therefore Theorems 1 and 2 hold for p = ∞ when the
Carleson condition is the geometric one.

In Theorems 1 and 2 as well as at other points of the paper, a key
tool we use is an off-diagonal exponential decay property for the Bergman
kernel established by M. Christ [C-1991] in the case n = 1 and by H. Delin
[D-1998] more generally.

The approach to handling weights whose curvature is uniformly com-
parable to the Euclidean metric form was initiated by Berndtsson and Ortega-
Cerdà in [BO-1995], and a number of the techniques we used here were
inspired by this approach. Though the paper [BO-1995] takes place in di-
mension 1, some of the results were extended by Lindholm [L-2001] to
higher dimensions, and others are easy to modify, as we show here.

In Section 6 we recall the definition of the so-called Berezin trans-
form of a measure µ. We will then prove two results that characterize Car-
leson measures and vanishing Carleson measures respectively in terms of
growth properties of their Berezin transforms. Interestingly, the exponen-
tial decay of the Bergman kernel far from the diagonal does not factor into
these theorems, which parses well with the fact that the analogous results
were obtained by Abate and Saracco for strongly pseudoconvex domains
in Cn.

In the case n = 1 and ϕ(z) = |z|2, our results are all contained in
the paper [IZ-2010] of Isralovitz and Zhu, which further explores so-called
Schatten class membership for a Toeplitz operator. As mentioned in that
paper, there is no major difference between n = 1 and n ≥ 2, but there
are in fact rather vast differences when one changes the weight. Indeed, the
Bergman kernel for the specialized weight ϕ(z) = |z|2 is known explicitly,
and has the property

|K(z, w̄)|e−|z|
2−|w|2 = e−

1
2 |z−w|

2
.

But for the class of weights we consider, this quadratic decay is known
not to hold (even in dimension n = 1), and is expected to be very rare
[C-1991]. Fortunately, however, we shall see that such rapid decay is not
necessary.

ACKNOWLEDGMENT. We are very grateful to the anonymous referee,
who has done an excellent job in locating so many typos and errors in the
paper, and has made many suggestions for presentation that have certainly
improved the paper.

2. Weights with Euclidean curvature bounds
In this section we discuss well-known results about local weighted Lp es-
timates for weights ϕ such that ddcϕ is uniformly bounded above. Most of
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the proofs are standard, and at best there are only a few minor innovations
on previous methods.

2.1. Solving the ddc-equation with uniform estimates
The following lemma is fundamental.

LEMMA 2.1. There exists a constant C > 0 with the following property.
Let ω be a C 2-smooth, closed (1, 1)-form on a neighborhood of the closed
unit ball B in Cn, such that

−Mωo ≤ ω ≤Mωo

for some positive constantM . Then there exist a function ψ ∈ C 2(B) such
that

ddcψ = ω and sup
B

(|ψ|+ |dψ|) ≤ CM.

Proof. We assume that ω has compact support in B(0, 2). Suppose first
that n = 1. Then one simply takes

ψ(z) :=
1
π

∫
B(0,2)

log |z − ζ|2ω(ζ).

Note that ω = hωo for some real-valued function h. A standard argument
using integration-by-parts shows that

∂2ψ

∂z∂z̄
= h.

The function ψ is clearly bounded by the constant

M sup
z∈B(0,1)

∫
B(0,2)

∣∣log |ζ − z|2
∣∣ dA

while the derivative is controlled by

M sup
z∈B(0,1)

∫
B(0,2)

dA(ζ)
|z − ζ|

.

Thus we have the stated result.
In higher dimensions, write ω =

∑
i,j ωij̄

√
−1
2 dzi ∧ dz̄j . Then as in

the 1-dimensional case, the function

ψ(z) :=
1
π

∫
B(0,2)

ω11̄(ζ, z2, ..., zn) log |z1 − ζ|2dA(ζ)

then satisfies
∂2ψ

∂z1∂z̄1
= ω11̄.
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From the condition dω = 0, we see that, when either i or j (or both) are
different from 1,

∂2ψ

∂zi∂z̄j
=

1
π

∫
B(0,2)

∂2ω11̄

∂zi∂z̄j
(ζ, z2, ..., zn) log |z1 − ζ|2dA(ζ)

=
1
π

∫
B(0,2)

∂2ωij̄
∂ζ∂ζ̄

(ζ, z2, ..., zn) log |z1 − ζ|2dA(ζ)

= ωij̄(z).

As before, ψ is bounded in C 1-norm by CM . The proof is complete. �

2.2. Uniform local pluriharmonic recentering of weights
COROLLARY 2.2. Let z ∈ Cn and let ϕ ∈ C 2(B(z, 2)) satisfy −Mωo ≤
ddcϕ ≤ Mωo for some positive constant M . Then there exists a function
F ∈ O(B(z, 3/2)) and a constant C > 0 that depends on M but not on
z, such that F (z) = 0 and

sup
B(z,1)

(|ϕ− ϕ(z)− Re F |+ |∇(ϕ− ϕ(z)− Re F )|) ≤ C.

Proof. By translation we may assume z = 0. Apply Lemma 2.1 to the
form ω = ddcϕ to obtain a function ψ such that ddcψ = ddcϕ with the
appropriate C 1-estimates. The function η := ϕ−ϕ(0) +ψ(0)−ψ is then
pluriharmonic, and therefore is the real part of a holomorphic function F .
The imaginary part of F can be taken to be the function

∫ z
0
dcη, and so

vanishes at 0. Then

|ϕ− ϕ(z)− Re F | = |ψ − ψ(0)| ≤ C
for some constant C > 0 depending only on M . �

2.3. Weighted Bergman inequalities
PROPOSITION 2.3 (Weighted Bergman inequalities). Let ϕ ∈ C 2(Cn)
satisfy −Mωo ≤ ddcϕ ≤ Mωo for some positive constant M . Then for
each r > 0 there exists a constant Cr such that if f ∈ F p(ϕ) then

(|f |pe−pϕ)(z) ≤ Cpr
∫
B(z,r)

|f |pe−pϕdλ (1)

and

|∇(|f |pe−pϕ)|(z) ≤ Cpr
∫
B(z,r)

|f |pe−pϕdλ (2)

Proof. Using Corollary 2.2, we may write

|f |e−ϕ = |fe−F |e−ϕ(z)e−ϕ+ϕ(z)+Re F .

Since e−ϕ+ϕ(z)+Re F is bounded in C 1-norm, the proof reduces to the
unweighted case, in which the result is classical. �
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2.4. Slow growth of Bergman functions
COROLLARY 2.4. Let ϕ be as in Proposition 2.3, and let a > 0. Then there
exists ε > 0 with the following property. If z ∈ Cn, f ∈ F p(ϕ), ||f ||p ≤ 1
and |f(z)|e−ϕ(z) ≥ a then |f(w)|e−ϕ(w) ≥ a/2 for all w ∈ D(z, ε).

Proof. Otherwise (2) in Proposition 2.3 is violated. �

2.5. One-point interpolation with uniform Lp estimates
PROPOSITION 2.5 (Uniform 1-point interpolation in F p(ϕ)). Suppose
that ϕ ∈ C 2(Cn) satisfies ddcϕ ' ωo. Then there exists C > 0 such that
for each z ∈ Cn there exists f ∈ F p(ϕ) such that f(z) = eϕ(z) and
||f ||p ≤ C.

Proof. Let z ∈ Cn, and fix a smooth function χ ∈ C∞o (B(z, 2)) taking
values in [0, 1], such that χ|B(z,1) ≡ 1 and |∂̄χ| ≤ 3. Consider the (0, 1)-
form θ(ζ) = eF (ζ)+ϕ(z)∂̄χ(ζ), where F ∈ O(B(z, 2)) vanishes at z and
satisfies the estimate |ϕ− ϕ(z)− Re F | ≤ c for some positive constant c
independent of z. Such an F exists by Corollary 2.2.

Next fix ε > 0 such that ddc(ϕ−ε|·−z|2) ' ωo. Since θ is supported
on a z-centered spherical annulus,∫

Cn

|θ|2e−2(ϕ−ε|·−z|2)

| · −z|2n
dλ ≤ 9ne4ε

∫
1≤|ζ−z|≤2

e2(Re F+ϕ(z)−ϕ)dλ ≤ Co

for some Co > 0. By Hörmander’s Theorem applied to the weight

ϕ− ε| · −z|2 + log | · −z|n,

whose curvature is uniformly strictly positive (with respect to z as well)
there exists u such that ∂̄u = θ and∫

Cn

|u|2e−2(ϕ(ζ)−ε|ζ−z|2)

|ζ − z|2n
dλ(ζ) ≤ C ′ (3)

for some constant C ′ independent of z. In particular, u(z) = 0.
Let

f(ζ) := eϕ(z)+F (ζ)χ(ζ)− u(ζ).

Then f(z)e−ϕ(z) = 1, ∂̄f = 0, and∫
Cn
|f(ζ)|2e−(2ϕ(ζ)−ε|ζ−z|2)dλ(ζ)

.
∫

Cn
|χ(ζ)|2eε|ζ−z|

2−2(ϕ(ζ)−ϕ(z)−Re F (ζ))dλ(ζ)

+
∫

Cn

|u(ζ)|2e−2(ϕ(ζ)−ε|ζ−z|2)

|ζ − z|2n
|z − ζ|2ne−ε|ζ−z|

2
dλ(ζ).
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The first of these integrals is uniformly bounded because eε|ζ−z|
2

and
|ϕ(ζ) − ϕ(z) − Re F | are bounded uniformly in z on the support of χ,
while the second integral is uniformly bounded because of (3) and the
bound r2ne−εr ≤ (2n/ε)2ne−2n.

Now, by (1) of Proposition 2.3 we have the estimate

|f(ζ)|2e−2ϕ(ζ) ≤ |f(ζ)|2e−(2ϕ(ζ)−ε|ζ−z|2)dλ

≤ C

∫
B(ζ,1)

|f |2e−(2ϕ−ε|·−z|2)dλ ≤ C̃,

so that ||f ||∞,ϕ ≤ C for some uniform constant C. This establishes the
case p =∞.

On the other hand, we also have that for any w ∈ Cn

|f(w)|2e−2(ϕ(w)−ε|w−z|2) .
∫
B(w,1)

|f |2e−2(ϕ−ε|·−z|2)dλ ≤ C2

for some constant C independent of w. Therefore∫
Cn
|f |pe−pϕdλ =

∫
Cn

(
|f |2e−(2ϕ−ε|·−z|2)

)p/2
e−

pε
2 |·−z|

2
dλ ≤ CpC1,

and thus ||f ||p,ϕ is bounded uniformly in z, as claimed. �

REMARK 2.6. Note that the constant in Proposition 2.5 bounding ||f ||p,ϕ
is also independent of p ∈ [1,∞). Although we will not need this in-
dependence, it is an example of one of the themes of this paper, namely
p-independence of many conditions; for instance, we will see that the Car-
leson condition, and therefore the boundedness of a Toeplitz operator, does
not depend on p. �

3. The Bergman kernel
Let ϕ : Cn → R be a C 2-smooth weight function such that ddcϕ ' ωo (re-
call Remark 1.6). Then the subspace F 2(ϕ) of L2(e−2ϕdλ) is closed. The
orthogonal projection P : L2(e−2ϕdλ) → F 2(ϕ), called the Bergman
projection, is therefore bounded. The projection P is given by integration
against a kernel K(z, w̄), and by usual Hilbert space theory

K(z, w̄) =
∞∑
j=1

fj(z)fj(w),

where {fj} is any orthonormal basis for F 2(ϕ). If we fix z ∈ Cn then we
can select a basis {gj}j≥2 for the subspace Sz ⊂ F 2(ϕ) of all weighted-
squared-integrable holomorphic functions vanishing at z. The sub-mean
value property for holomorphic functions (or (1) of Proposition 2.3 for
p = 2) shows that evaluation at z is a bounded linear functional (where on
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C we put the norm | · |e−ϕ(z)) and therefore Sz has codimension 1 or 0.
Since ddcϕ ≥ cωo, there are non-vanishing holomorphic functions at any
point z, and therefore F 2(ϕ) = Sz ⊕ Cf1 for some f1 ∈ F 2(ϕ) with
||f1||2,ϕ = 1, unique up to a unimodular constant. We therefore have

K(z, w̄) = f1(z)f1(w) +
∑
j≥2

gj(z)gj(w) = f1(z)f1(w).

We note in particular that

K(z, z̄) = sup
||f ||=1

|f(z)|2,

and that the supremum is actually a maximum. We therefore obtain from
(1) of Proposition 2.3 the following proposition.

PROPOSITION 3.1. There is a constant C > 0 such that

K(z, z̄)e−2ϕ(z) ≤ C
for all z ∈ Cn. Therefore

|K(z, w̄)|e−ϕ(z)−ϕ(w) ≤ C
for all z, w ∈ Cn.

3.1. Off-dagonal estimates for the Bargmann-Fock Bergman kernel
Below we will make extensive use of the following result, due to M. Christ
[C-1991] in the case n = 1 and to H. Delin [D-1998] for n ≥ 2.

THEOREM 3.2 (Christ, Delin). Let ϕ ∈ C 2(Cn) satisfy ddcϕ ' ωo and
letK denote the Bergman kernel, i.e., the integral kernel for the orthogonal
projectionL2(e−2ϕdλ)→ F 2(ϕ). Then there are constants ε, C > 0 such
that for all z, w ∈ Cn,

|K(z, w̄)|e−ϕ(z)−ϕ(w) ≤ Ce−ε|z−w|.

Since it is so central to our paper, we shall give a proof of Theorem 3.2
in Appendix A. Our proof is similar in spirit to Delin’s but is rather more
streamlined. It still makes use of Berndtsson’s key idea about twisted es-
timates for the L2-minimal solution of the ∂̄ equation, which we will also
review in the same appendix for the sake of convenient access.

While Theorem 3.2 gives upper bounds for the Bergman kernel far
from the diagonal, the following easier result gives lower bounds in a small
but uniform neighborhood of the diagonal.

PROPOSITION 3.3. Let ϕ ∈ C 2(Cn) satisfy ddcϕ ' ωo and denote by
K(z, w̄) the kernel of the Bergman projection P : L2(e−2ϕdλ)→ F 2(ϕ).
Then there exist positive constants ε, C1 and C2 such that for each z ∈ Cn
and each w ∈ B(z, ε),

|K(z, w̄)|e−(ϕ(z)+ϕ(w)) ≥ C1|K(z, z̄)|e−2ϕ(z) ≥ C2.
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Proof. As K(z, z̄)e−2ϕ(z) = sup||f ||2=1 |f(z)|2e−2ϕ(z), Proposition 2.5
shows that K(z, z̄)e−2ϕ(z) ≥ Co for some Co > 0 independent of z.
Fixing z now, consider the function F (w) = K(w, z̄)e−ϕ(z). Then F ∈
F 2(ϕ), ||F ||22 = K(z, z̄)e−2ϕ(z) . 1 by Proposition 3.1 and the repro-
ducing property of the Bergman kernel, and |F (z)|e−ϕ(z) ≥ Co. By Corol-
lary 2.4, there exists C, ε > 0 independent of z such that

|F (w)|e−ϕ(w) ≥ C|F (z)|e−ϕ(z)

for all w ∈ B(z, ε). The proof is finished. �

3.2. Boundedness of the Bergman projection on F p(ϕ)
An easy consequence of the off-diagonal decay of the Bergman kernel is
the following result.

PROPOSITION 3.4. Let p ∈ [1,∞]. Then the Bergman projection is bounded
as a map from Lp(e−pϕdλ) to F p(ϕ).

Proof. If p =∞ then for F such that |F |e−ϕ ∈ L∞(Cn) we have

|PF (z)|e−ϕ =
∣∣∣∣∫

Cn
F (w)K(z, w̄)e−2ϕ(w)e−ϕ(z)dλ

∣∣∣∣
≤ ||F ||∞,ϕ

∫
Cn
|K(z, w̄)|e−(ϕ(z)+ϕ(w))dλ(w)

. ||F ||∞,ϕ
∫

Cn
e−ε|z−w|dλ(w) . ||F ||∞,ϕ,

and thus ||PF ||∞,ϕ . ||F ||∞,ϕ. If p ∈ [1,∞) then for F ∈ Lp(e−pϕdλ)
we have∫

Cn

∣∣∣∣∫
Cn
F (w)K(z, w̄)e−2ϕ(w)dλ(w)

∣∣∣∣p e−pϕ(z)dλ(z)

≤
∫

Cn

(∫
Cn
|F (w)|e−ϕ(w)|K(z, w̄)|e−(ϕ(z)+ϕ(w))dλ(w)

)p
dλ(z)

.
∫

Cn

(∫
Cn
|F (w)|e−ϕ(w)e−ε|z−w|dλ(w)

)p
dλ(z)

≤
∫

Cn

((∫
Cn
e−ε|z−·|dλ

)p−1 ∫
Cn
|F |pe−pϕe−ε|z−·|dλ

)
dλ(z)

.
∫

Cn

∫
Cn
|F (w)|pe−pϕ(w)e−ε|z−w|dλ(w)dλ(z)

.
∫

Cn
|F (w)|pe−pϕ(w)dλ(w)

This is what was claimed. �
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3.3. Dense subspaces of Bergman space
Let

F∞0 (ϕ) :=
{
f ∈ F∞(ϕ) ; lim

|z|→∞
|f(z)|e−ϕ(z) → 0

}
.

We begin with the following proposition established by Lindholm in
[L-2001].

PROPOSITION 3.5. Fix ϕ ∈ C 2(Cn) satisfying ddcϕ ' ωo. Then the
following hold.

1. For each f ∈ F∞(ϕ) there is a sequence fj ⊂ F 2(ϕ) such that
fj → f locally uniformly.

2. F∞0 (ϕ) ∩F 2(ϕ) is dense in F∞0 (ϕ).

Proof. Fix f ∈ F∞(ϕ). We are going to find {fj ; j = 1, 2, ...} ⊂ F 2(ϕ)
such that

sup
Cn
|fj − f |e−ϕ → 0 as j →∞.

Let χ ∈ C∞0 (B(0, 1)) satisfy 0 ≤ χ ≤ 1 as well as χ|B(0,1/2) ≡ 1, and
set χj(z) = χ(z/j). Let

fj := P (χjf) and uj := χjf − P (χjf).

Then fj ∈ F 2(ϕ), and uj is the unique solution of the equation ∂̄u =
∂̄χjf whoseL2(e−2ϕdλ)-norm is minimal. By Berndtsson’s Theorem (which
is stated as Theorem A.5 in the appendix) one has the estimate

sup
Cn
|uj |e−ϕ . sup

Cn
(||∂̄χj || · |f |e−ϕ) .

1
j

sup
Cn
|f |e−ϕ → 0.

It follows that for each z ∈ Cn,

|f(z)− fj(z)|e−ϕ(z) ≤ |f(z)− χj(z)f(z)|e−ϕ(z) + sup
Cn
|uj |e−ϕ

≤
∣∣∣(1− χ( zj ))f(z)

∣∣∣ e−ϕ(z) +O(j−1),

from which both conclusions are clearly deduced. �

Since F p(ϕ) ⊂ F∞0 (ϕ) ⊂ F∞(ϕ), the first containment being a
consequence of (1) in Proposition 2.3, one has the following corollary.

COROLLARY 3.6. Fix p ∈ [1,∞) and ϕ ∈ C 2(Cn) satisfying ddcϕ ' ωo.
Then F p(ϕ) ∩F 2(ϕ) is dense in F p(ϕ) and F∞0 (ϕ) ∩F 2(ϕ) is dense
in F∞0 (ϕ).

COROLLARY 3.7. Suppose ϕ ∈ C 2(Cn) and ddcϕ ' ωo. Then for every
p ∈ [1,∞], P |Fp(ϕ) = id .

11



Proof. First suppose p ∈ [1,∞). Let f ∈ F p(ϕ) and let fn ∈ F 2(ϕ)
such that fn → f in F p(ϕ). Since P is bounded on F p(ϕ), Pf =
P (lim fn) = limPfn = lim fn = f .

Next let f ∈ F∞. Consider the sequence fj ⊂ F 2(ϕ) constructed
in the proof of Proposition 3.5, which has the properties that fj → f lo-
cally uniformly and also |f − fj |e−ϕ ≤ ||f ||∞ + O(1/j). Then for each
z ∈ Cn,

|P (f − fn)(z)|e−ϕ(z)

=
∣∣∣∣∫

Cn
(f(w)− fn(w))K(z, w̄)e−2ϕ(w)−ϕ(z)dλ(w)

∣∣∣∣
≤
∫

Cn
|f(w)− fn(w)|e−ϕ(w)e−ε|z−w|dλ(w)

=
∫
|w|≤j

|f(w)− fn(w)|e−ϕ(w)e−ε|z−w|dλ(w)

+
∫
|w|>j

|f(w)− fn(w)|e−ϕ(w)e−ε|z−w|dλ(w)

which tends to 0 as n → ∞, locally uniformly. Thus, since fn ∈ F 2(ϕ)
and is thus reproduced by P , we have

|Pf(z)− f(z)|e−ϕ(z) ≤ |P (f − fn)(z)|e−ϕ(z) + |fn(z)− f(z)|e−ϕ(z).

The right hand side converges to 0 as n→∞, so Pf = f , as claimed. �

3.4. The dual space of F p(ϕ)
Let p ∈ [1,∞) and let q = p/(p−1) be its dual exponent. Given a function
g ∈ F q(ϕ), Hölder’s Inequality implies that the linear functional Ψg :
F p(ϕ)→ C given by

Ψg(f) :=
∫

Cn
fḡe−2ϕdλ (4)

is bounded. Let Ψ : F q(ϕ)→ F p(ϕ)∗ be the map sending g to Ψg .

PROPOSITION 3.8. Let p ∈ [1,∞) and let q = p/(p − 1) be the dual
exponent. The map Ψ : F q(ϕ) → F p(ϕ)∗ is bijective, and moreover
there is a constant C such that C||g||q ≤ ||Ψg|| ≤ ||g||q holds for all
g ∈ F q(ϕ).

Proof. Let us begin with surjectivity. Let ` ∈ F p(ϕ)∗. By Hahn-Banach,
we can extend ` to an element ˜̀∈ Lp(e−pϕdλ)∗ such that ||˜̀|| = ||`||. By
the Riesz Representation Theorem there exists G ∈ Lq(e−qϕdλ) such that

`(f) =
∫

Cn
fḠe−2ϕdλ, f ∈ F p(ϕ).

12



Let g := PG. Then for f ∈ F p(ϕ),∫
Cn
fḡe−2ϕdλ

=
∫

Cn

∫
Cn
f(w)K(z, w̄)G(z)e−2ϕ(z)e−2ϕ(w)dλ(z)dλ(w)

=
∫

Cn
f(z)G(z)e−2ϕ(z)dλ(z),

where the second equality follows from Corollary 3.7. We conclude that
` = Ψg , i.e., Ψ is surjective.

The upper bound ||Ψg|| ≤ ||g||q is an immediate consequence of
Hölder’s Inequality. Of course, the lower bound in the claimed estimate
implies the desired injectivity, so we are done when we establish this lower
bound.

To get the lower bound, fix g ∈ F q(ϕ) ⊂ Lq(e−qϕdλ). Then Ψg

extends to a linear functional Ψ̃g : Lp(e−pϕdλ) → C given by the same
formula (4). By Alaoglu’s Theorem there exists Fg ∈ Lp(ϕ) such that

||Fg||p,ϕ = 1 and
∫

Cn
Fg ḡe

−2ϕdλ = ||g||q,ϕ

Therefore

||Ψg|| ≥
|Ψg(PFg)|
||PFg||p,ϕ

=
||g||q,ϕ
||PFg||p,ϕ

.

But by Proposition 3.4 there exists C > 0 such that

||PFg||p,ϕ ≤ C−1||Fg|| = C−1,

as desired. �

PROPOSITION 3.9. F∞0 (ϕ)∗ = F 1(ϕ). Moreover, the map

Ψ : F 1(ϕ) 7→ F∞0 (ϕ)∗

sending g to Ψg defined by (4) is bijective and satisfies

C||g||1 ≤ ||Ψg|| ≤ ||g||1.

Proof. Let ` ∈ F∞0 (ϕ)∗. We first show that ` = Ψg for some g ∈ F 1(ϕ).
To this end, by (1) of Proposition 2.3 (for very small r and very large |z|)
F 2(ϕ) ⊂ F∞0 (ϕ), and we know that this subset is dense. Restricting ` to
F 2(ϕ), we see from Proposition 3.8 that there exists g ∈ F 2(ϕ) such that
`(f) =

∫
fḡe−2ϕdλ.

Now let h ∈ L∞(e−ϕ) have compact support. Then h is also in
L2(e−2ϕdλ), and since

|Ph(z)|e−ϕ(z) ≤ ||h||∞,ϕ
∫

Supp(h)

e−ε|z−w|dλ(w),

13



Ph ∈ F∞0 (ϕ). We thus have∣∣∣∣∫
Cn
g(z)h(z)e−2ϕ(z)dλ(z)

∣∣∣∣
=
∣∣∣∣∫

Cn

∫
Cn
g(w)K(z, w̄)h(z)e−2ϕ(z)dλ(w)dλ(z)

∣∣∣∣
=
∣∣∣∣∫

Cn
g(z)Ph(z)e−2ϕ(z)dλ(z)

∣∣∣∣
= |`(Ph)| . ||Ph||∞,ϕ . ||h||∞,ϕ.

It follows that in fact g ∈ F 1(ϕ). Finally, if f ∈ F∞0 (ϕ), let fn ∈ F 2(ϕ)
be a sequence such that fn → f in F∞0 (ϕ). Then

|`f − 〈f, g〉 | ≤ |`(f − fn)|+ | 〈fn − f, g〉 | . ||fn − f ||∞,ϕ.

Finally, the upper estimate for ||Ψ|| is again by Hölder’s Inequality.
The lower estimate is obtained as follows. Let g ∈ F 1(ϕ) and take

F :=
{ g
|g|e−ϕ g 6= 0
0 g = 0

Then |F |e−ϕ ∈ L∞(Cn). Let χ be a smooth cutoff function such that
0 ≤ χ ≤ 1, χ(z) = 1 when |z| ≤ 1/2 and χ(z) = 0 when |z| ≥ 1.
Define FR(z) = χ(z/R)F (z) and fR := PFR. Since FR ∈ L2(e−2ϕdλ),
fR ∈ F∞0 (ϕ) and moreover

sup
Cn
|fR|e−ϕ ≤ Co sup

Cn
|FR|e−ϕ = Co.

It follows that, with χR(z) := χ( zR ),

||Ψg||∞ ≥
|Ψg(fR)|

supCn |fR|e−ϕ
≥ 1
Co

∫
Cn
P (χRF )ḡe−2ϕdλ

=
1
Co

∫
Cn
χRFPge

−2ϕdλ ≥ 1
Co

∫
B(0,R/2)

|g|e−ϕdλ,

and letting R→∞ gives the desired estimate. �

4. Compactness in Bergman spaces
In this section we review some of the basic facts about compactness of
operators in the setting of Bergman spaces. We begin with the following
basic proposition.

PROPOSITION 4.1. Let p ∈ [1,∞] and suppose ddcϕ ' ωo. A sequence
{fn} ⊂ F p(ϕ) converges weakly to 0 if and only if n 7→ ||fn||p,ϕ is
bounded and fn → 0 locally uniformly in C.

14



Proof. Let q be the conjugate exponent of p. Suppose first that fn → 0
weakly in F p(ϕ). Let `n := Ψfn . Then {`n} ⊂ F q(ϕ)∗ if p > 1, and if
p = 1 then {`n} ⊂ F∞0 (ϕ)∗. The sequence, being weakly convergent, is
bounded on every element of F q(ϕ) if p > 1 and F∞0 (ϕ) if p = 1, and
therefore by the uniform boundedness principle it is bounded. Since Ψ is
bounded above and below, we see that n 7→ ||fn||p,ϕ is bounded. There-
fore, by (1) of Lemma 2.3, |fn| is locally uniformly bounded, and hence
by Montel’s Theorem there is a convergent subsequence. Since fn → 0
weakly, we must have fn → 0 locally uniformly in Cn.

Conversely suppose n 7→ ||fn||p,ϕ is bounded and fn → 0 locally
uniformly in Cn. Let {fnk} be a subsequence of {fn}. Since Ψ is bounded
above and below, `nk := Ψfnk

is also bounded. By Alaouglu’s Theorem
there is a subsequence fnkj such that `nkj converges to some ` weak∗.
Since Ψ is a bijection, we have ` = Ψg for some g ∈ F p(ϕ). Since
fn → 0 locally uniformly, we must have g ≡ 0. Thus every subsequence of
{fn} has a subsequence that converges weakly to 0. It follows that fn → 0
weakly. �

In particular, we have the following proposition.

PROPOSITION 4.2. Let p ∈ [1,∞] and assume that ϕ satisfies ddcϕ ' ωo.
Let

Fγ(z) := K(z, γ̄)e−ϕ(γ)

and

Hγ(z) :=
K(z, γ̄)

K(γ, γ̄)e−ϕ(γ)
=

Fγ(z)
K(γ, γ̄)e−2ϕ(γ)

.

Then Fγ → 0 and Hγ → 0 weakly in F p(ϕ) as γ →∞.

Proof. By Delin’s Theorem and Proposition 3.3 we have

|Hγ(z)|e−ϕ(z) ≤ C|K(z, γ̄)|e−ϕ(z)−ϕ(γ) ≤ C ′e−ε|z−γ|,
which clearly converges to 0 uniformly on compact sets as γ →∞. More-
over, we have∫

Cn
|Hγ(z)|pe−pϕ(z)dλ(z) .

∫
Cn
e−εp|z−γ|dλ(z) ≤ C

p2n
,

and therefore {Hγ} ⊂ F p(ϕ) is bounded. The modifications for the case
p =∞ are straightforward. �

We end with the following convenient proposition.

PROPOSITION 4.3. Let p ∈ [1,∞] and let X be a Banach space. A linear
operator T : F p(ϕ) → X is compact if and only if for any sequence
{fn} ⊂ F p(ϕ) that is bounded and converges locally uniformly to 0, Tfn
converges to 0 in X .
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Proof. Suppose T is compact and {fn} ⊂ F p(ϕ) is bounded and con-
verges locally uniformly to 0, i.e., fn → 0 weakly in F p(ϕ). If it is not
the case that ‖Tfn‖X → 0, then, by passing to a subsequence if neces-
sary, we may assume there is a δ > 0 such that ‖Tfn‖X ≥ δ. Since T is
compact, there is a subsequence {fnk} such that ‖Tfnk − x‖X → 0 for
some x ∈ X . In particular, Tfnk → x weakly in X . But for any ψ ∈ X∗,
ψ ◦ T ∈ F p(ϕ)∗ and so

ψ(Tfnk) = (ψT )(fnk)→ 0,

and thus Tfnk → 0 weakly. It follows that x = 0, which is a contradiction.
Conversely, if T is not compact, there is a sequence {gn} ⊂ F p(ϕ)

in the unit ball such that {Tgn} has no convergent subsequence. We claim
there exists g ∈ F p(ϕ) and a subsequence gnk converging weakly to g.
Indeed, by Proposition 3.8 (or 3.9 if p = 1) ‖Ψgn‖ ≤ ‖gn‖ ≤ 1. In
other words, {Ψgn} is a bounded sequence in F q(ϕ)∗ if p > 1 and in
F∞0 (ϕ)∗ if p = 1. By Alaoglu’s theorem, there is a subsequence {Ψgnk

}
and Φ ∈ F q(ϕ)∗ (resp. F∞0 (ϕ)∗) such that Ψgnk

→ Φ in the weak-
* topology. By Proposition 3.8 or 3.9 there exists g ∈ F p(ϕ) such that
Φ = Ψg . Then Ψgnk

(h)→ Ψg(h) for all h ∈ F q(ϕ) (resp. F∞0 (ϕ)). By
Proposition 3.8 (resp. 3.9), Φ(gnk) → Φ(g) for all Φ ∈ (F pφ )∗. In other
words, gnk → g weakly in F p(ϕ), as claimed. Therefore the sequence
fk := gnk − g → 0 weakly. But by construction, Tfk has no limit in X .
This completes the proof. �

5. Geometric Characterization of the Carleson conditions
In this section, let ϕ ∈ C 2(Cn) satisfy ddcϕ ' ωo.

5.1. Carleson measures
Recall that, by definition, a positive measure µ is Carleson if the inclusion
ιµ : F p(ϕ) ↪→ F p(ϕ, µ) is bounded.

THEOREM 5.1 (Ortega-Cerdà). Let p ≥ 1 and µ a positive measure in
Cn. The following are equivalent.

(a) The measure µ is Carleson for F p(ϕ).
(b) There exists C > 0 such that µ(B(z, 1)) ≤ C for any z ∈ Cn.
(c) For each r > 0 there exists Cr > 0 such that µ(B(z, r)) ≤ Cr for

any z ∈ Cn.

Proof. It is clear that (b) ⇐⇒ (c). To prove that (b) ⇒ (a), cover Cn
by a countable collection of balls of radius 1 such that each point of Cn
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is contained in at most N balls, for some fixed number N ∼ 2n. On each
such ball B(z, 1), we have∫

B(z,1)

|f |pe−pϕdµ . sup
B(z,1)

|f |pe−pϕ .
∫
B(z,3)

|f |pe−pϕdλ,

and summing over the countable collection of centers z, we have∫
Cn
|f |pe−pϕdµ .

∑
j

∫
B(zj ,1)

|f |pe−pϕdµ

.
∑
j

∫
B(zj ,3)

|f |pe−pϕdλ

.
∫

Cn
|f |pe−pϕdλ.

Finally we prove (a) ⇒ (b). By Proposition 2.5 there is a function f ∈
F p(ϕ) such that f(z) = eϕ(z) and ||f ||p ≤ C for some C > 0 inde-
pendent of z. By the estimate (2) of Proposition 2.3 there exists r > 0
sufficiently small such that for all w ∈ B(z, r), |f(w)|e−ϕ(w) ≥ 1/2. It
follows that

µ(B(z, r)) . 2p
∫
B(z,r)

|f |pe−pϕdµ

≤ 2p
∫

Cn
|f |pe−pϕdµ

. 2p
∫

Cn
|f |pe−pϕdλ

. 2p,

where the Carleson condition is used in the third inequality. The proof is
finished. �

5.2. Vanishing Carleson measures
Recall that, by definition, a positive measure µ is vanishing Carleson if the
inclusion ιµ : F p(ϕ) ↪→ Lp(e−pϕdµ) is compact.

THEOREM 5.2 (Characterization of Vanishing Carleson measures). Let
p ≥ 1, let ϕ ∈ C 2(Cn) satisfy ddcϕ ' ωo, and let µ be a positive measure
in Cn. Then the following are equivalent.

(a) The measure µ is vanishing Carleson for F p(ϕ).
(b) For every ε > 0 there exists R > 0 such that µ(B(z, 1)) ≤ ε for any

z ∈ Cn −B(0, R).
17



Proof. (b) ⇒ (a): First, by (1) of Proposition 2.3 we see that for all f ∈
F p(ϕ)

|f(z)|pe−pϕ(z) .
∫

Cn
1B(z,r)|f(w)|pe−pϕ(w)dλ(w),

and thus∫
Cn
|f(z)|pe−pϕ(z)dµ(z) .

∫
Cn

∫
Cn

1B(z,r)|f(w)|pe−pϕ(w)dλ(w)dµ(z)

=
∫

Cn
|f(w)|pe−pϕ(w)µ(B(w, r))dλ(w)

Let now {fj} ⊂Pp(ϕ) be a sequence converging weakly to 0. By Propo-
sition 4.1, ||fj ||p,ϕ ≤ L for some L > 0, and fj → 0 locally uniformly
in Cn. By Proposition 4.3 it suffices to show that fj → 0 in F p(µ, ϕ).
To this end, let ε > 0 and choose R >> 0 so that µ(D(w, 1)) < ε for
|w| ≥ R. We therefore have that∫

Cn
|fj(z)|pe−pϕ(z)dµ(z)

.
∫
B(0,R)

|fj(w)|pe−pϕ(w)µ(B(w, r))dλ(w) + ε||fj ||p,ϕ

≤ 2Lpε

provided j is sufficiently large. Thus µ is a vanishing Carleson measure.

(a) ⇒ (b): Let γn → ∞ and set Fj(z) := K(z, γ̄j)e−ϕ(γj). Then by
Delin’s Theorem |Fn(z)|e−ϕ(z) ≤ Ce−ε|γn−z| and thus (as we already
pointed out in the proof of Proposition 4.2) ||Fj ||p,ϕ ≤ C for some C > 0
independent of j. Therefore Fj → 0 locally uniformly. By Proposition 4.3
||Fj ||p,ϕ,µ → 0.

Now, by Proposition 3.3 there exist positive constants C1, C2 and ε
such that

|K(z, w̄)|e−ϕ(z)−ϕ(w) ≥ C1|K(z, z̄)|e−2ϕ(z) ≥ C2

for all |z − w| ≤ ε. We therefore have that∫
Cn
|Fn(z)|pe−pϕ(z)dµ(z) = e−pϕ(γn)

∫
Cn
|K(z, γ̄n)|pe−pϕ(z)dµ(z)

≥
∫
B(γn,ε)

|K(z, γ̄n)|pe−pϕ(γn)e−pϕ(z)dµ(z)

≥ Cµ(B(γn, ε))|K(γn, γ̄n)|e−2ϕ(γn)

≥ C ′µ(B(γn, ε)),

and thus µ(B(γn, ε))→ 0 as γn →∞. Since there exists a positive integer
N such that for any p,B(p, 1) is covered byN ballsB(p1, ε), ..., B(pN , ε),
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whose centers pi satisfy |pi| > |p| − 2, say, we find that µ(B(γn, 1))→ 0
as γn →∞. The proof is complete. �

6. Berezin transform
Let µ be a positive measure on Cn. As before, we fix a weight ϕ such that
ddcϕ ' ωo. Denote by K(z, w̄) the Bergman kernel for L2(e−2ϕdλ) →
F 2(ϕ) and let

Bz(w) :=
K(w, z̄)√
K(z, z̄)

.

Using the reproducing property and the Hermitian symmetry of the Bergman
kernel, we find that ∫

Cn
|Bz(w)|2e−2ϕ(w)dλ(w) = 1.

DEFINITION 6.1. The function µ̃ : Cn → [0,+∞] defined by

µ̃(z) := 〈TµBz, Bz〉ϕ

=
∫

Cn

(∫
Cn
K(x, w̄)Bz(w)e−2ϕ(w)dµ(w)

)
Bz(x)e−2ϕ(x)dλ(x)

is called the Berezin transform of the measure µ. �

Again from the reproducing property and the Hermitian symmetry of the
Bergman kernel, we see that

µ̃(z) =
∫

Cn
|Bz(w)|2e−2ϕ(w)dµ(w). (5)

It follows from (5) that for any ε > 0,∫
B(z,ε)

|Bz(w)|2e−2ϕ(w)dµ(w) ≤ µ̃(z). (6)

6.1. Berezin transforms of Carleson measures
From (5) we see that

µ̃(z) ≤ ||ιµ||2,ϕ,
where ιµ : F 2(ϕ) ↪→ F 2(µ, ϕ) is the inclusion. We therefore conclude
that if µ is Carleson for F 2(ϕ) then µ̃ is bounded. Of course, by Ortega-
Cerdà’s Theorem 5.1, we know that µ is Carleson for F 2(ϕ) if and only
if µ is Carleson for F p(ϕ). Therefore we have proved that µ̃ is uniformly
bounded when µ is Carleson.

In fact, the converse is also true, namely, if µ̃ is uniformly bounded
then µ is Carleson. Indeed, if µ̃ is bounded, (6) implies that∫

B(z,ε)

|Bz(w)|2e−2ϕ(w)dµ(w) ≤ C
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for some positive constant C > 0 independent of z. Now, by Proposition
3.3 there exists c, ε > 0 independent of z such that

|K(z, w̄)|e−ϕ(z)−ϕ(w) ≥ c

for all w ∈ B(z, ε). On the other hand, K(z, z̄)e−2ϕ(z) ≤ c−2 possibly
after shrinking c a little. Thus |Bz(w)|2e−2ϕ(w) ≥ c2 for all w ∈ B(z, ε),
and we see that

µ(B(z, ε)) ≤ Co
for some constant Co independent of z. Therefore µ is Carleson by Ortega-
Cerdà’s Theorem 5.1. In summary, we have established the following re-
sult.

THEOREM 6.2. Let ϕ ∈ C 2(Cn) be a weight such that ddcϕ ' ωo. Then
a measure µ is Carleson for F p(ϕ) if and only if its Berezin transform µ̃
is bounded.

6.2. Berezin transforms of vanishing Carleson measures
Berezin transforms of vanishing Carleson measures are characterized by
the following theorem.

THEOREM 6.3. A measure µ is vanishing Carleson if and only if µ̃ van-
ishes at∞.

Proof. Suppose µ is vanishing Carleson, meaning that the inclusion map
ιµ : F 2(ϕ) → F 2(µ, ϕ) is compact. It follows that ιµ(fn) → 0 for any
sequence {fn} converging to 0 weakly in F 2(ϕ). Let zn →∞ is Cn and
consider the functions

fn(w) := Bzn(w) =
K(w, z̄n)√
K(zn, zn)

.

We have already seen that ||Bzn ||2,ϕ = 1, and by Delin’s Theorem

|fn(w)|2 =
|K(zn, w̄)|2e−2ϕ(zn)

K(zn, zn)e−2ϕ(zn)
≤ Ce2ϕ(w)−ε|w−zn|.

Therefore fn → 0 uniformly on compacts. Thus ιµ(fn)→ 0 in F 2(µ, ϕ),
i.e.,

µ̃(zn) =
∫

Cn
|fn(x)|2e−2ϕ(x)dµ(x)→ 0.

Conversely, suppose that µ̃ vanishes at infinity. As in the proof of
Theorem 6.2, we have the estimate

µ(B(z, ε)) . µ̃(z).

Therefore by Theorem 5.2 we see that µ is vanishing Carleson. The proof
is finished. �
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REMARK 6.4. One can define other Berezin-type transforms that achieve
the same results. Indeed, the transform

Bµ(z) :=
∫

Cn
|K(z, w̄)|2e−2ϕ(z)−2ϕ(w)dµ(w)

is of course uniformly comparable to µ̃ by Propositions 3.1 and 3.3. The
transform B seems to us to be the simplest choice, but we have gone with
the first choice because it was used in past works on the subject. �

7. Proofs of the main theorems
7.1. Proof of Theorem 1
Let µ be a Carleson measure. We write

k(z, w̄) := |K(z, w̄)|e−ϕ(z)−ϕ(w).

As an illustration, we begin with the case p = 1. In this case∫
Cn

∣∣∣∣∫
Cn
f(w)K(z, w̄)e−2ϕ(w)dµ(w)

∣∣∣∣ e−ϕ(z)dλ(z)

≤
∫

Cn

(∫
Cn
|f(w)|e−ϕ(w)k(z, w̄)dµ(w)

)
dλ(z)

=
∫

Cn
|f(w)|e−ϕ(w)

(∫
Cn
k(z, w̄)dλ(z)

)
dµ(w)

.
∫

Cn
|f(w)|e−ϕ(w)dµ(w) .

∫
Cn
|f(w)|e−ϕ(w)dλ(w).

The second inequality follows from Delin’s Theorem 3.2, and the last be-
cause µ is a Carleson measure.

Turning to p ∈ (1,∞), let f ∈ F p(ϕ). Then∫
Cn

∣∣∣∣∫
Cn
f(w)K(z, w̄)e−2ϕ(w)dµ(w)

∣∣∣∣p e−pϕ(z)dλ(z)

=
∫

Cn

∣∣∣∣∫
Cn
f(w)e−ϕ(w)K(z, w̄)e−ϕ(z)−ϕ(w)dµ(w)

∣∣∣∣p dλ(z)

≤
∫

Cn

(∫
Cn
|f(w)|e−ϕ(w)k(z, w̄)dµ(w)

)p
dλ(z)

=
∫

Cn

(∫
Cn
|f(w)|e−ϕ(w)k(z, w̄)1/pk(z, w̄)1/qdµ(w)

)p
dλ(z)

≤
∫

Cn

(∫
Cn
|f |pe−pϕk(z, ·̄)dµ

)(∫
Cn
k(z, ·̄)dµ

)p−1

dλ(z).
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Now, since µ is Carleson, Ortega-Cerdà’s Theorem 5.1 implies that the
inclusion ιµ : F 1(ϕ) → F 1(µ, ϕ) is bounded. This boundedness may
then be applied to w 7→ K(w, z̄)e−ϕ(z) to conclude that

∫
Cn
k(z, w̄)dµ(w) .

∫
Cn
k(z, w̄)dλ(w), (7)

and the right side of (7) is finite by Delin’s Theorem 3.2. Moreover,

∫
Cn

(∫
Cn
|f(w)|pe−pϕ(w)k(z, w̄)dµ(w)

)
dλ(z)

=
∫

Cn
|f(w)|pe−pϕ(w)

(∫
Cn
k(z, w̄)dλ(z)

)
dµ(w)

.
∫

Cn
|f |pe−pϕdµ

.
∫

Cn
|f |pe−pϕdλ,

where the second-to-last inequality is again by Delin’s Theorem 3.2, and
the last inequality is from the definition of Carleson measure.

Finally, we treat the case p = ∞. Here we must understand that
a measure µ is Carleson by definition if µ(B(z, 1)) ≤ C for some z-
independent constant C. Assuming µ is Carleson in this sense, we see that
if f ∈ F∞(ϕ) then

sup
z∈Cn

∣∣∣∣∫
Cn
f(w)K(z, w̄)e−2ϕ(w)dµ(w)

∣∣∣∣ e−ϕ(z)

≤ ||f ||∞ sup
z∈Cn

∫
Cn
k(z, w̄)dµ(w)

. ||f ||∞ sup
z∈Cn

∫
Cn
k(z, w̄)dλ(w) . ||f ||∞.

The second inequality is of course (7). Thus Tµ : F p(ϕ) → F p(ϕ) is
well-defined and bounded if µ is Carleson.

Conversely, suppose Tµ : F p(ϕ) → F p(ϕ) is bounded. By the
reproducing property of the Bergman kernel we have the equality

K(z, w̄) =
∫

Cn
K(x, w̄)K(z, x̄)e−2ϕ(x)dλ(x).
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Using this, we have from Proposition 3.3 that

µ(B(z, ε))

.
∫
B(z,ε)

|K(z, w̄)|2e−2(ϕ(z)+ϕ(w))dµ(w)

≤
∫

Cn
K(w, z̄)e−(ϕ(z)+ϕ(w))K(z, w̄)e−(ϕ(z)+ϕ(w))dµ(w)

=
∫

Cn

[
K(w, z̄)e−(ϕ(z)+ϕ(w))(∫
Cn
K(x, w̄)K(z, x̄)e−2ϕ(x)dλ(x)

)
e−(ϕ(z)+ϕ(w))

]
dµ(w)

=
∫

Cn

[(∫
Cn
K(w, z̄)e−ϕ(z)K(x, w̄)e−2ϕ(w)dµ(w)

)
K(x, z̄)e−ϕ(z)e−2ϕ(x)

]
dλ(x)

=
(
Tµ(K(·, z̄)e−ϕ(z)),K(·, z̄)e−ϕ(z)

)
≤ ||TµK(·, z̄)e−ϕ(z)||p||K(·, z̄)e−ϕ(z)||q,

and the rightmost term is bounded independent of z by Delin’s Theorem
3.2 and the boundedness of Tµ. The proof of Theorem 1 is finished. �

7.2. Proof of Theorem 2
Suppose first that Tµ is compact. Let Fz(w) := K(w, z̄)e−ϕ(z) be as in
Proposition 4.2. Then Fz → 0 weakly in F p(ϕ) as z → ∞, and thus by
Hölder’s Inequality we have

|〈TµFz, Fz〉| ≤ ||TµFz||ϕ,p||Fz||ϕ,q → 0

as z →∞. On the other hand,

|〈TµFz, Fz〉|

=
∫

Cn

∫
Cn
K(x, w̄)Fz(w)e−2ϕ(w)Fz(x)e−2ϕ(x)dµ(w)dλ(x)

=
∫

Cn
|Fz(w)|2e−2ϕ(w)dµ(w)

≥
∫
B(z,1)

|Fz(w)|2e−2ϕ(w)dµ(w)

≥ Cµ(B(z, 1)),

and therefore by Theorem 5.2 µ is a vanishing Carleson measure.
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Conversely, suppose µ is vanishing Carleson. As in the Proof of The-
orem 1, if f ∈ F p(ϕ) then∫

Cn
|Tµf |pe−pϕdλ

=
∫

Cn

∣∣∣∣∫
Cn
f(w)e−ϕ(w)k(z, w)dµ(w)

∣∣∣∣p dλ(z)

≤
∫

Cn

(∫
Cn
|f |pe−pϕk(z, ·̄)dµ

)(∫
Cn
k(z, ·̄)dµ

)p−1

dλ(z)

.
∫

Cn

(∫
Cn
|f(w)|pe−pϕ(w)k(z, w̄)dµ(w)

)
dλ(z)

≤ C

∫
Cn
|f(w)|pe−pϕ(w)dµ(w).

(As before, we use the Carleson condition applied to the holomorphic func-
tion w 7→ K(w, z̄)e−ϕ(z) as well as Delin’s Theorem.) In other words,
||Tµ|| ≤ C||ιµ||, where ιµ : F p(ϕ) → F p(µ, ϕ) is the inclusion map.
Since ιµ is compact by hypothesis, Tµ is also compact. The proof of The-
orem 2 is finished. �

REMARK 7.1. Another proof of the compactness of Tµ when µ is vanish-
ing Carleson proceeds as follows. First, for f ∈ F p(ϕ) and g ∈ F q(ϕ) ∩
F 2(ϕ) we have

〈Tµf, g〉 =
∫

Cn

∫
Cn
f(w)K(z, w̄)e−2ϕ(w)dµ(w)g(z)e−2ϕ(z)dλ(z)

=
∫

Cn
f(w)g(w)dµ(w) = 〈f, Tµg〉

This means, with the density of F p(ϕ) ∩F 2(ϕ) taken into account, that
Tµ is compact if and only if it is weak∗-compact. But then if fn → 0
weakly, then the identity 〈Tµfn, g〉 = 〈fn, Tµg〉 shows that Tµfn → 0
weakly, and therefore by Proposition 4.3 Tµ is weak∗-compact. �

Appendix A. Berndtsson’s twisted ∂̄ estimates and
Delin’s Theorem

A.1. Review of the ∂̄-Neumann problem
Let Ω be a pseudoconvex domain with smooth boundary in Cn, and let
ϕ ∈ C 2 be a smooth weight. Assume θ is a (0, 1)-form in L2(λ, ϕ) such
that ∂̄θ = 0. If there is a solution u of the equation ∂̄u = θ such that∫

Ω

|u|2e−ϕdλ < +∞,
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then there is a solution whose L2-norm is minimal. Our goal will be to
estimate this minimal solution.

Since any two solutions u1 and u2 must differ by a holomorphic func-
tion, the solution uo of minimal norm must be orthogonal to the holomor-
phic functions on Ω. It follows, if we ignore the delicate issue of whether
∂̄∗ has closed range (which is the case for the situation we will consider
below), that any solution u of minimal norm is of the form

u = ∂̄∗β

for some (0, 1)-form β, where ∂̄∗ denotes the formal adjoint of ∂̄. Note that
since u has minimal norm, it is unique. Indeed, if u′ is another function
satisfying ∂̄u′ = θ then, since u − u′ is holomorphic and thus orthogonal
to u,

||u′||2 = ||(u′ − u) + u||2 = ||u− u′||2 + ||u||2.
Thus ||u|| = ||u′|| implies that u = u′.

Knowing that a solution is minimal does not say anything directly
about the size of the solution. The key to getting explicit estimates for the
minimal solution u lies in obtaining estimates for the form β. Indeed,

||u||2 = (∂̄∂̄∗β, β) ≤ ||θ|| · ||β||,
so an estimate on β would clearly give an estimate on u. Of course, while
the solution u of minimal norm is unique, the form β such that u = ∂̄∗β is
clearly not unique. To choose the β of minimal norm, we should therefore
choose β such that satisfies

∂̄∂̄∗β = θ and β ⊥ Kernel(∂̄∗).

Since Kernel(∂̄∗)p,q ⊃ Image(∂̄∗p,q+1), the second condition implies that
∂̄β = 0, and therefore β satisfies the equation

�β = θ,

where � = ∂̄∂̄∗ + ∂̄∗∂̄ is the so-called Kohn Laplacian, i.e., the Laplace-
Beltrami operator associated to ∂̄. Conversely, if β satisfies �β = θ then

||∂̄∗∂̄β||2 = (∂̄(∂̄∗∂̄β), ∂̄β) = (∂̄�β, ∂̄β) = (∂̄θ, ∂̄β) = 0,

and thus
||∂̄β||2 = (∂̄∗∂̄β, β) = 0.

One solves the equation �β = θ by way of the so-called Basic Iden-
tity: if ρ : Cn → R is a smooth function such that Ω = ρ−1(−∞, 0),
∂Ω = ρ−1(0) and ||dρ|| ≡ 1 on ∂Ω, then

||∂̄∗α||2 + ||∂̄α||2 =
∫

Ω

∂2ϕ

∂zi∂z̄j
αīαj̄e

−ϕdλ (8)

+||∇α||2 +
∫
∂Ω

∂2ρ

∂zi∂z̄j
αīαj̄e

−ϕdσ
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for all smooth (0, 1)-forms α =
∑
j αj̄dz̄

j satisfying the so-called ∂̄-
Neumann boundary condition∑ ∂ρ

∂zi
αī

∣∣∣∣
∂Ω

≡ 0.

Here σ is the surface area measure on ∂Ω.

REMARK A.1. For completeness of exposition, we note that

∇

∑
j

αj̄dz̄
j

 =
∑
j,k

∂αj̄
∂z̄k

dz̄k ⊗ dz̄j .

We will not, however, use this formula. Only the fact that ||∇α|| ≥ 0 will
matter to us. �

The Basic Identity implies that if Ω is pseudoconvex (so that the last inte-
gral on the right side of (8) is non-negative) and ddcϕ ≥ cωo, then for all
smooth α in the domain of ∂̄∗,

(�α, α) ≥ c||α||2. (9)

The inequality (9) says that � has an inverse. Making this last statement
precise relies on the delicate point of showing that the smooth forms sat-
isfying the ∂̄-Neumann boundary condition are dense in the domain of
the densely defined Hilbert space adjoint of ∂̄. If we accept this density,
a proof of which the reader can find in Hörmander’s paper [H-1965], the
invertibility is easily proved as follows. First, we define the subspace H
of L2(e−ϕdλ) as the Hilbert space closure of all the smooth forms α such
that ||∂̄∗α||2 + ||∂̄α||2 < +∞. The basic estimate (9) says that these forms
are in L2(e−ϕdλ) and that the inclusion H ↪→ L2(e−ϕdλ) is bounded.
Now let α ∈ L2(e−ϕdλ), and define the anti-linear functional

λ(α) := (θ, α).

Then

|λ(α)|2 ≤ ||α||2||θ||2 ≤ ||θ||
2

c
(||∂̄∗α||2 + ||∂̄α||2).

It follows that λ ∈ H∗, and thus by the Riesz Representation Theorem
there exists β ∈ H such that

||β||2H = ||λ||2H∗ ≤
||θ||2

c
and (θ, α) = (∂̄∗β, ∂̄∗α) + (∂̄β, ∂̄α).

The latter equation says that �β = θ. Moreover

||u||2 = ||∂̄∗β||2 = ||β||2H ≤
||θ||2

c
.
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REMARK A.2. A more difficult argument can be used to show that the
solution β of the equation �β = θ is smooth up to the boundary when
this is the case for θ. This smoothness is certainly the most important and
difficult part of the solution of the ∂̄-Neumann problem by Kohn. �

REMARK A.3. Finally, note that since β ∈ H , β lies in the domain of
∂̄∗. In particular, since β is smooth, it satisfies the ∂̄-Neumann boundary
condition. �

A.2. The twisted basic identity
Our next goal will be to estimate the minimal solution u in ways other
than with respect to the L2-norm. The key tool is the twisted basic identity,
which we now describe.

Consider a new weight e−ψ defined as follows: let τ be a positive
smooth function and set

e−ϕ = τe−ψ.

Note that since ∂̄∗ψα = −
∑
i e
ψ ∂(e−ψαī)

∂zi , we have the formula

∂̄∗ϕα = ∂̄∗ψα−
1
τ

∑
i

∂τ

∂zi
αī.

Moreover

∂∂̄ϕ = ∂∂̄ψ − ∂∂̄ log τ = ∂∂̄ψ − ∂∂̄τ

τ
+
∂τ ∧ ∂̄τ
τ2

.

Substituting these two formulas into the Basic Identity (8) gives, after some
straightforward manipulation and replacing ψ with ϕ, the so-called Twisted
Basic Identity:

||
√
τ ∂̄∗ϕα||2 + ||

√
τ ∂̄α||2 =

∫
Ω

(
τ
∂2ϕ

∂zi∂z̄j
− ∂2τ

∂zi∂z̄j

)
αīαj̄e

−ϕdλ

+2Re
∫

Ω

∂̄∗ϕα
∂τ

∂zi
αīe
−ϕdλ (10)

+||
√
τ∇α||2 +

∫
∂Ω

τ
∂2ρ

∂zi∂z̄j
αīαj̄e

−ϕdσ.

Here again, this identity holds for all smooth forms in the domain of ∂̄∗ϕ,
as the reader can verify.

A.3. Berndtsson’s Estimates for the minimal solution
We are now ready to prove the following theorem [B-1997].

THEOREM A.4 (Berndtsson). Let τ : Ω → (0,∞) be a C 2-function and
let A be a symmetric matrix whose entries are functions in Ω such that at
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each point z ∈ Ω, A(z) is positive definite. Assume furthermore that the
matrix (

τ
∂2ϕ

∂zi∂z̄j
− ∂2τ

∂zi∂z̄j
− τAij̄

)
is positive-semi-definite at each point of Ω. Then the solution u of ∂̄u = θ
having minimal norm in L2(e−ϕdλ) satisfies the estimate∫

Ω

τ |u|2e−ϕdλ ≤
∫

Ω

τ |θ|2Ae−ϕdλ.

where
|θ|2A =

∑
ij̄

(A−1)ij̄θīθj̄ .

Proof. Integration-by-parts shows that∫
Ω

∂̄∗ϕα
∑
i

∂τ

∂zi
αīe
−ϕdλ = −

∫
Ω

τ
∑
i

(∂̄∂̄∗ϕα)īαīe
−ϕ + ||

√
τ ∂̄∗ϕα||2,

(there is no boundary term because α satisfies the ∂̄-Neumann boundary
conditions) and thus (10) becomes

2Re
∫

Ω

τ
〈
∂̄∂̄∗ϕα, α

〉
e−ϕdλ+ ||

√
τ ∂̄α||2 = ||

√
τ ∂̄∗ϕα||2 (11)

+
∫

Ω

(
τ
∂2ϕ

∂zi∂z̄j
− ∂2τ

∂zi∂z̄j

)
αīαj̄e

−ϕdλ+ ||
√
τ∇α||2

+
∫
∂Ω

τ
∂2ρ

∂zi∂z̄j
αīαj̄e

−ϕdσ.

(The identity (11) is a twisted version of what has been called the ∂∂̄-
Bochner-Kodaira Identity by Siu in [S-1982].) We now apply the identity
(11) to the form β such that �β = θ. Recalling that ∂̄β = 0 and that
u = ∂̄∗β solves ∂̄u = θ, we have

2Re
∫

Ω

τ 〈θ, β〉 e−ϕdλ

= ||
√
τu||2 +

∫
Ω

(
τ
∂2ϕ

∂zi∂z̄j
− ∂2τ

∂zi∂z̄j

)
βīβj̄e

−ϕdλ (12)

+||
√
τ∇β||2 +

∫
∂Ω

τ
∂2ρ

∂zi∂z̄j
βīβj̄e

−ϕdσ

From the identity (12), the inequality

2Re 〈θ, β〉 ≤
∑
i,j

Aij̄βiβj + |θ|2A
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and the pseudoconvexity of Ω imply the estimate∫
Ω

τ |θ|2Ae−ϕdλ ≥
∫

Ω

τ |u|2e−ϕdλ

+
∫

Ω

∑
ij̄

(
τ
∂2ϕ

∂zi∂z̄j
− ∂2τ

∂zi∂z̄j
− τAij̄

)
βiβj̄e

−ϕdλ.

The hypothesis implies that the right-most integral is non-negative, and
thus the proof is complete. �

A.4. Proof of Theorem 3.2
Fix two points z and w in Cn. In view of Proposition 3.1 we may as-
sume that |z − w| ≥ 4. We fix once and for all a smooth function χ ∈
C∞0 (B(w, 2)) such that 0 ≤ χ ≤ 1, χ|B(w,1) ≡ 1 and |∂̄χ| ≤ 2 pointwise.

Using (1) of Proposition 2.3, we have

|K(z, w̄)|e−ϕ(w)−ϕ(z)

.
∫
B(w,1)

|K(z, ζ̄)|e−ϕ(ζ)−ϕ(z)dλ(ζ)

.

(∫
B(w,1)

|K(z, ζ̄)|2e−2ϕ(ζ)dλ(ζ)

)1/2

e−ϕ(z)

≤
(∫

Cn
|K(z, ζ̄)|2χ(ζ)e−2ϕ(ζ)dλ(ζ)

)1/2

e−ϕ(z)

=
(∫

Cn
(χ(ζ)K(ζ, z̄))K(z, ζ̄)e−2ϕ(ζ)dλ(ζ)

)1/2

e−ϕ(z)

= |P (χK(·, z̄)e−ϕ(z))(z)|1/2e−
1
2ϕ(z),

whereP is the Bergman projection. Now, the function ζ 7→ χ(ζ)K(ζ, z̄)e−ϕ(z)

is smooth compactly supported, and therefore it is in the domain of ∂̄. It
follows that, since χ(z) = 0,

P (χK(·, z̄)e−ϕ(z))(z) = χ(z)K(z, z̄)e−ϕ(z) − u(z) = −u(z),

where u is the solution of the equation ∂̄u = ∂̄(χK(·, z̄)e−ϕ(z)) having
minimal L2-norm. Moreover, since χ ≡ 0 on B(z, 1), u ∈ O(B(z, 1))
and therefore again by (1) of Proposition 2.3,

|u(z)|2e−2ϕ(z) .
∫
B(z,1)

|u|2e−2ϕdλ.

Let τ(ζ) := e−ε|ζ−z|. Then for ε > 0 sufficiently small, τ satisfies the
hypotheses of Berndtsson’s Theorem A.4 with Aij̄ = cδij̄ for some small
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constant c. Indeed,
√
−1∂∂̄τ = ε2τ

√
−1(∂|ζ−z|)∧ (∂̄|ζ−z|)−ετ

√
−1∂∂̄|ζ−z| ≤ ε2τωo,

and since ddcϕ ' ωo,

τddcϕ− ddcτ − cτωo ≥ 0.

(This computation was done in [B-1997].) It follows that

|u(z)|2e−2ϕ(z) .
∫
B(z,1)

|u|2e−2ϕdλ .
∫
B(z,1)

|u|2τe−2ϕdλ

.
∫

Cn
τ |∂̄χ|2|K(·, z̄)|2e−2ϕ(z)−2ϕ(ζ)dλ(ζ).

Observe finally that ∂̄χ is supported on B(w, 2), and for ζ ∈ B(w, 2),
|ζ − z| ≥ |w − z| − 2. Therefore on B(w, 2),

τ ≤ e2ε−ε|z−w|.

Since |K(ζ, z̄)|e−ϕ(ζ)−ϕ(z) . 1 by Proposition 3.1, we obtain the estimate

|u(z)|2e−2ϕ(z) . e−ε|w−z|,

and therefore

|K(z, w̄)|e−ϕ(z)−ϕ(w) ≤ Ce−εo|z−w|

for some constants C and εo that do not depend on z and w. This is pre-
cisely what we wanted to prove. �

A.5. Berndtsson’s Uniform ∂̄ Theorem
Finally, we use the following theorem of Berndtsson.

THEOREM A.5. Suppose ϕ ∈ C 2(Cn) satisfies C−1ωo ≤ ddcϕ ≤ Cωo.
Then there is a constant A, depending only on C and not on ϕ, such that
the for every ∂̄-closed (0, 1)-form θ =

∑n
i,j̄=1 θij̄dz

i ∧ dz̄j satisfying

||θ||∞,ϕ := sup
z∈Cn

n∑
i,j̄=1

|θij̄(z)|e−ϕ(z) < +∞

and

||θ||22,ϕ :=
∫

Cn

n∑
i,j̄=1

|θij̄ |2e−2ϕdλ < +∞

the minimal solution u ∈ L2(e−2ϕdλ) of the equation ∂̄u = θ satisfies the
estimate

sup
Cn
|u|e−ϕ ≤ A||θ||∞,ϕ.
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The result in [B-1997] is more general, considering ϕ for which only
the lower bound ddcϕ ≥ Cωo holds. However, for the more general result
a certain plurisubharmonic capacity associated toϕ appears in the estimate,
and this capacity is uniformly bounded when the curvature of the weight is
also bounded above by a multiple of the Euclidean metric.

References
[AS-2009] Abate, M.; Saracco, A., Carleson measures and uniformly dis-

crete sequences in strongly pseudoconvex domains. arxiv preprint
0909.3568

[B-1997] Berndtsson, B., Uniform estimates with weights for the ∂̄-equation. J.
Geom. Anal. 7 (1997), no. 2, 195 – 215.

[BO-1995] Berndtsson, B.; Ortega Cerdà, J., On interpolation and sampling in
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