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ABSTRACT. We establish sufficient conditions for extension of weighted-L2 holomorphic functions
from a possibly singular hypersurface W to the ambient space Cn. The L2-norms we use are the
so-called generalized Bargmann-Fock norms, and thus there are restrictions on the singularities of
W as well as the density of W . Our sufficient conditions are that W has density less than 1 and is
uniformly flat in a sense that extends to singular varieties the notion of uniform flatness introduced
in [OSV-2006]. We present an example of Ohsawa showing that uniform flatness is not necessary
for extension in the singular case, and find an example showing that, for rather different reasons,
uniform flatness is also not necessary in the smooth case. The latter answers in the negative a
question posed in [OSV-2006].

INTRODUCTION

In this article we consider the problem of extending, from an analytic hypersurface W in Cn,
holomorphic functions that are square-integrable with respect to some ambient weight, in such
a way that the extension is also square-integrable with respect to the same weight. When the
hypersurface is smooth and uniformly flat, the result we present here was proved in [OSV-2006]:
If W is uniformly flat and the density of W is less than 1 then extension is possible. (See Sections
2 and 3 for the definition of uniform flatness and of density respectively.) On the other hand, if W
is singular then in general extension is not possible. The precise— by which we mean necessary
and sufficient— conditions for such extension on a possibly singular hypersurface are not even
conjectured.

Below we extend the notion of uniformly flat hypersurface to a possibly singular hypersurface.
The notion places strong restrictions on the singularities of the hypersurface, among other things.
We show that the results of [OSV-2006] extend to the case of uniformly flat singular varieties.

To state our results precisely, we introduce some notation. Let ω :=
√
−1
2
∂∂̄|z|2 denote the

Kähler form associated to the Euclidean metric. To a smooth function ϕ : Cn → R we associate
the Hilbert space

H (Cn, ϕ) := O(Cn) ∩ L2(e−ϕ) =

{
f ∈ O(Cn) ;

∫
Cn
|f |2e−ϕωn < +∞

}
.

Let W be a possibly singular complex analytic hypersurface. To ϕ and W we associate the Hilbert
space

H(W,ϕ) :=

{
f ∈ O(W ) ;

∫
Wreg

|f |2e−ϕωn−1 < +∞

}
.

The different letters H and H stress that in the latter case, the weight ϕ is defined on the entire
ambient space Cn that contains W . We emphasize that, by definition, a function is holomorphic
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on W if each point x ∈ W has a neighborhood U in Cn and a holomorphic function f̃ ∈ O(U)

such that f̃ |W = f . Since W ⊂ Cn is a closed analytic subset, we may even take U = Cn.
Let us denote by RW : H (Cn, ϕ) → H(W,ϕ) the map that sends F ∈ H (Cn, ϕ) to its

restriction to W . In general, this restriction map is not bounded. For example, when n = 1, RW

is bounded if and only if W is a finite union of uniformly separated sequences. But we will not
discuss the boundedness of RW in this article; our main concern is with the surjectivity of RW .

In section 2 we define the notion of uniformly flat complex analytic hypersurface W and in
Section 3 the upper density D+

ϕ (W ) of a hypersurface with respect to a weight ϕ. The notions of
uniform flatness and upper density were defined for smooth hypersurfaces in [OSV-2006]. Here
we introduce modifications of both definitions to the case of possibly singular varieties.

We can now state our first main result.

THEOREM 1. Let ϕ : Cn → R be a C 2-smooth function satisfying

(1) εω ≤
√
−1∂∂̄ϕ ≤ Cω

for some positive constants ε andC, and letW ⊂ Cn be a possibly singular, uniformly flat complex
hypersurface such that D+

ϕ (W ) < 1. Then RW : H (Cn, ϕ)→ H(W,ϕ) is surjective.

In fact we will show that if W is smooth and uniformly flat then condition (1) can be dropped
completely. We therefore conjecture that the same is true for Theorem 1.

The method used to prove Theorem 1 has two parts, the second of which bears similarity to
the work in [OSV-2006]. The first part, which concerns local extension with estimates near the
singularities, therefore constitutes one of the main contributions of this paper.

The second main contribution of the present paper is to show that the conditions of Theorem 1
are not necessary; especially, uniform flatness need not hold in general. We show this by example.
In the case of singular W , we present an example told to us by Ohsawa. In the smooth case, we
find a new example that took us rather by surprise when we first discovered it. The example is the
content of Theorem 2 below.

The examples we find suggest that the kinds of separation conditions we expect to constrain
extension are “in the large”, rather than local. The exact condition, which must reduce to the
necessary condition of uniformly separated sequence in the case where W is zero-dimensional,
remains undiscovered so far as the authors know.

ACKNOWLEDGMENT. Thanks to Bo Berndtsson, Laszlo Lempert, Jeff McNeal, Takeo Ohsawa,
Quim Ortega, Stas Ostrovsky and Andrew Young for many stimulating discussions. The second
author about the first example in Section 5 from Takeo Ohsawa at Oberwolfach in April 2009.
He is grateful to Professor Ohsawa for telling him this example, and to the MFO for providing a
stimulating environment.

1. WEIGHTED MEAN-VALUE INEQUALITIES

In what follows, we will repeatedly use the following result.

LEMMA 1.1. [BO-1995, Li-2001] Let ϕ be a plurisubharmonic function on the unit ball Bk in Ck

such that
√
−1∂∂̄ϕ ≤ Mω for some M > 0. Then there exist a positive constant K, depending

only on M, and a holomorphic function on G ∈ O(1
2
Bk) such that G(0) = 0 and

sup
Bk(0,1/2)

|ϕ− ϕ(0)− 2Re G| ≤ K.

Moreover, if ϕ depends smoothly on a parameter, then so does G.
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Lemma 1.1 shows that for each z ∈ Cn and r > 0 there is a function Gz ∈ O(B(z, r)) such that

Gz(w) = ϕ(w)− ϕ(z) + ψz(w)

where ψz(w) is bounded on B(z, r) and Gz(z) = ψz(z) = 0. By averaging over B(z, r) we see
that, with

ϕr(z) = −
∫
B(z,r)

ϕ(ζ)ωn(ζ),

we have the estimate
|ϕ(z)− ϕr(z)| ≤ Cr.

It follows that H (Cn, ϕ) = H (Cn, ϕr) and H(W,ϕ) = H(W,ϕr) in the sense that the identity
map is a bounded vector space isomorphism. We will use this uniform comparison between ϕ and
ϕr constantly and often without mention.

We will also need some uniform and C 1 estimate for weighted-L2 holomorphic functions in Cn.
These estimates, the first of which often also goes by the name weighted Bergman inequality, might
be thought of as weighted analogues of the Cauchy estimates for a function and its derivative.

LEMMA 1.2. [OS-1998, Li-2001] Let ψ be a function satisfying

−Cω ≤
√
−1∂∂̄ψ ≤ Cω.

Then there is a constant K > 0 such that for any F ∈H (Cn, ψ),

sup
Cn
|F |2e−ψ ≤ K

∫
Cn
|F |2e−ψωn(2)

and

sup
Cn
|d(|F |e−

1
2
ψ)r| ≤ K

(∫
Cn
|F |2e−ψωn

)r/2
.(3)

Strictly speaking, (2) was probably not explicitly proved in the literature when n ≥ 2, but a slight
modification of the proof of Lemma 1.1 in [Li-2001] can be used to obtain C 1-estimates for the
function ψz(w) above, and thus generalize the proof of [OS-1998] to higher dimensions. For
details, the reader can see, for example, [SV-2012, Lemma 2.1]

2. UNIFORM FLATNESS

We extend to possibly singular hypersurfaces the notion of uniform flatness introduced for
smooth hypersurfaces in [OSV-2006].

DEFINITION 2.1. (i) For a subset A ⊂ Cn and a positive number ε, we define

Uε(A) := {x ∈ Cn ; dist(x,A) = inf
a∈A
|x− a| < ε}

(ii) Let Y ⊂ Cn be a smooth complex hypersurface with boundary. If ε : Y → (0,∞) is a
continuous function, the union

Nε(Y ) :=
⋃
y∈Y

{
y + t df(y)

|df(y)| ; t ∈ C and |t| < ε(y), (f) = OY,y
}

is said to be a tubular neighborhood of Y if it is diffeomorphic to a neighborhood of the
zero section in the normal bundle of Y . �
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In the rest of the paper, the function ε in the definition of Nε(Y ) will always be constant.
Our goal in this section is to extend to certain singular varieties the notion of uniform flatness

introduced in [OSV-2006] for smooth hypersurfaces in Cn. To motivate our definition, let us recall
the notion of uniformly flat smooth hypersurfaces.

DEFINITION 2.2 (Uniform flatness. Smooth case[OSV-2006]). A smooth hypersurface W ⊂ Cn

is said to be uniformly flat if there exists a positive constant εo such that Uεo(W ) = Nεo(W ). �

We take this opportunity to remind the reader of the following proposition describing the basic
properties of uniformly flat smooth hypersurfaces. We remind the reader of the notation

DW (w, εo) := TW,w ∩B(w, εo)⊕ {v ∈ TCn,w ; ∂f(w)v = 1 and |v| < εo}.

PROPOSITION 2.3. [OSV-2006, Proposition 3.2] Let W ⊂ Cn be a uniformly flat hypersurface
and let εo be a constant such that Uεo(W ) = Nεo(W ). Then the following hold.

(G) Assume n ≥ 2. Then for all w ∈ W , W ∩DW (w, εo) is given as a graph y = f(x), over
TW,w ∩B(w, εo), of a function f : TW,w ∩B(w, εo)→ C satisfying

(4) |f(w + x)| ≤ |x|
2

εo
.

Here DW (w, εo) denotes the union of the disks with centers on TW,w ∩B(w, εo) and radius
εo that are orthogonal to TW,w ⊂ Cn.

(A) For each R > 0 there exists a constant CR > 0 such that for all z ∈ Cn

Area(W ∩B(z,R)) ≤ CR.

In extending the notion of uniform flatness to the singular setting, we aim to achieve the following:
(i) Away from the singular locus of W , the notion of uniform flatness should be the same as

for general smooth varieties in Cn, and
(ii) near the singular locus, the hypersurface should look like a finite number of uniformly flat

smooth hypersurfaces intersecting pairwise-transversely, and the transversality should be
uniform. The local notion of uniform flatness will be the graph property (G).

With these comments in mind, we propose the following definition.

DEFINITION 2.4 (Uniform flatness). A singular analytic variety W is said to be uniformly flat if
there are numbers εo > 0 and a > 1 with the following properties.

(R) The set Nεo(W − Uaεo(Wsing)) is a tubular neighborhood of the smooth hypersurface with
boundary W − Uaεo(Wsing) in Cn.

(S) For each p ∈ Wsing the set W ∩ B(p, εo) is a union of smooth hypersurfaces W1, ...,WNp

each of which is given as the graph of a function on its tangent space with the property (4).
Moreover,

(SN ) Np ≤ ε−1
o for all p, and

(SA) the angle at p between any two of the Wi lies in [εo, π − εo]. �

REMARK 2.5. Note that Np ≤ n when W has only simply normal crossing singularities. �

REMARK 2.6. At one point, we had hoped to use the following definition of uniform flatness: a
singular analytic variety W was to be uniformly flat if there are positive numbers εo and a such
that the following holds. For any 0 < ε < εo, the set

Nε(W − Uaε(Wsing))
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is a tubular neighborhood of the smooth hypersurface with boundary W − Uaε(Wsing) in Cn.
So far, we have been unable to prove that this notion of uniform flatness is the same as the one

we have taken above. The more natural, but possibly less general, definition is the one made in this
remark. It would be nice to decide whether the two definitions are the same. �

The following are two important consequences of uniform flatness that we will use in the sequel.
These properties follow easily from Proposition 2.3 and the definition of uniform flatness.

LEMMA 2.7. Let W ⊂ Cn be a uniformly flat hypersurface, and let εo and a be as in the definition
of uniform flatness. Then the following hold.

(G) Assume n ≥ 2. Let BW,w(εo) := TW,w ∩ B(w, εo). Then for all w ∈ W − U(a+1)εo(Wsing),
W ∩ Nεo(BW,w(εo)) is given as a graph over BW,w(εo) of a function f : BW,w(εo) → C
satisfying

|f(w + x)| ≤ |x|
2

εo
.

(A) For each R > 0 there is a constant CR > 0 such that for all z ∈ Cn,

Area(W ∩B(z,R)) ≤ CR.

3. DENSITY

DEFINITION 3.1. Let T ∈ O(Cn) be a holomorphic function such that W = T−1(0) and dT is
nowhere zero on Wreg. (That is to say, T generates the ideal of functions vanishing on W .) For
any z ∈ Cn and any r > 0 consider the (1,1)-form

ΥW
r (z) :=

1

2π

n∑
i,j̄=1

(
−
∫
B(z,r)

∂2 log |T |2

∂ζ i∂ζ̄j
ωn(ζ)

)√
−1dzi ∧ dz̄j.

The (1, 1)-form ΥW
r (z) is called the total density tensor of W . �

REMARK 3.2. Note that the total density tensor is identical in form to the total density tensor
for smooth uniformly flat hypersurfaces introduced in [OSV-2006]; the only thing different is that
we no longer assume that W is smooth. As was pointed out then, the definition of ΥW

r (z) is
independent of the choice of the function T defining W . Moreover, if [W ] denotes the current of
integration over W then ΥW

r is the average of [W ] in a ball of center z and radius r:

ΥW
r = [W ] ∗

1B(0,r)

Vol(B(0, r))
,

where 1A denotes the characteristic function of a set A and ∗ is convolution. �

A useful concept in the study of interpolation and sampling for a smooth hypersurface with
respect to strictly plurisubharmonic weights is that of density of the hypersurface. The definition
given in [OSV-2006], which we now recall, extends immediately to the setting of possibly singular
hypersurface.

DEFINITION 3.3. Assume ϕ is strictly plurisubharmonic. The number

Dr(W ; z) := sup

{
ΥW
r (z)(v, v)√

−1∂∂̄ϕr(z)(v, v)
; v ∈ TCn,z − {0}

}
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is called the density of W in the ball of radius r and center z. The upper density of W is

D+
ϕ (W ) := lim sup

r→∞
sup
z∈Cn

Dr(W ; z).

The lower density of W is
D−ϕ (W ) := lim inf

r→∞
inf
z∈Cn

Dr(W ; z).

(We will not use D−ϕ (W ) in the present article.) �

As stated, the upper and lower densities are well-defined only for strictly plurisubharmonic
functions. However, one can reformulate the definition as follows.

D+
ϕ (W )) = inf

{
α ≥ 0 ;

√
−1∂∂̄ϕr − 1

α
ΥW
r ≥ 0 for all r >> 0

}
and

D−ϕ (W ) = sup{γ ≥ 0 ; γ
√
−1∂∂̄ϕr(z)−ΥW

r (z) 6≥ 0 for all z ∈ Cn and all r >> 0}.
These equivalent formulations of the upper and lower densities make sense for ϕ that are plurisub-
harmonic but not necessarily strictly plurisubharmonic.

Thus for example, D+
ϕ (W ) < 1 if and only if there exists a constant δ > 0 such that for all

r >> 0, √
−1∂∂̄ϕr ≥ (1 + δ)ΥW

r .

4. PROOF OF THEOREM 1

Part of our proof of Theorem 1 resembles the method of proof used in [OSV-2006]. The twisted
Bochner-Kodaira technique used in [FV-2007] cannot be used directly to prove Theorem 1 when
W is not smooth. We will illustrate this claim in Paragraph 4.2.

4.1. A singular function. As is usual in the L2 approach of extension, we need to produce a
function that is singular on W . The function we choose is a tried-and-true one (see [OSV-2006,
FV-2007]), but we contribute one new insight to the definition.

DEFINITION 4.1. We define the function

sr(z) = log |T (z)|2 −−
∫
B(z,r)

log |T (ζ)|2ω
n

n!
(ζ),

where T ∈ O(Cn) be a holomorphic function such that W = {T = 0} and dT is not identically
zero on W . �

REMARK 4.2. Note that the function sr depends only on W , and not on the generator T of the
ideal IW of germs of holomorphic functions vanishing on W . �

Definition 4.1 and the Poincaré-Lelong Identity yield the following proposition.

PROPOSITION 4.3. Let sr be as in Definition 4.1. Then
√
−1

2π
∂∂̄sr = [W ]− [W ] ∗

1B(0,r)

Vol(B(0, r))
= [W ]−ΥW

r .

The proof can be found in [OSV-2006] where the following lemma was also established.

LEMMA 4.4. The function sr has the following properties.
(a) It is non-positive.
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(b) For each r, ε > 0 there is a constant Cr,ε such that if dist(z,W ) ≥ ε, then sr(z) ≥ −Cr,ε.
(c) The function e−sr is not integrable at any open subset that intersects W .

REMARK 4.5. The function sr is the logarithm of the length of a defining section T of the (trivial)
line bundle associated to W , measured with a metric constructed from T , namely e−ψT , where

ψT (z) := −
∫
B(z,r)

log |T (ζ)|2ω
n(ζ)

n!
.

Note that the curvature of e−ψT is
√
−1∂∂̄ψT = ΥW

r , which depends only on W . �

REMARK 4.6. We have not missed the dependence of ψT on the radius r. In our work, this
dependence will be irrelevant as soon as r is sufficiently large, but how large an r is needed depends
on W . Perhaps this dependence is important in other considerations. �

4.2. The smooth case. In [V-2007], the following L2-extension theorem was proved.

THEOREM 4.7. Let X be a Stein manifold with Kähler form ω, Z ⊂ X a smooth hypersurface,
e−η a singular Hermitian metric for the holomorphic line bundle associated to the smooth divisor
Z, and T a holomorphic section of this line bundle such that Z = {T = 0}. Assume that e−η|Z is
still a singular Hermitian metric, and that

sup
X
|T |2e−η = 1.

Let H → X be a holomorphic line bundle with singular Hermitian metric e−κ whose curvature√
−1∂∂̄κ is non-negative in the sense of currents. Suppose also that

√
−1∂∂̄κ+ Ricci(ω) ≥ (1 + δ)

√
−1∂∂̄η

for some positive number δ. Then for each section f ∈ H0(Z,H) satisfying∫
Z

|f |2e−κ

|dT |2e−η
ωn−1

(n− 1)!
< +∞

there is is a section F ∈ H0(X,H) such that

F |Z = f and
∫
X

|F |2e−κω
n

n!
≤ C

δ

∫
Z

|f |2e−κ

|dT |2e−η
ωn−1

(n− 1)!
,

where the constant C is universal.

REMARK 4.8. Theorem 4.7 can be easily extended to the case of singular Z with essentially the
same proof, provided that integration over Z is replaced by integration over Zreg. �

Theorem 4.7 looks rather similar to Theorem 1, except for the denominator |dT |2e−η used on
the subvariety Z. In fact, let us take X = Cn, Z = W , ω =

√
−1
2
∂∂̄|z|2, κ = ϕ and

η(z) := ψT (z) = −
∫
B(z,r)

log |T |2ωn.

If we define1

ρr := e
1
2
sr

1Note that ρr is not differentiable at W , but |∂ρr|2 is well-defined on W and therefore on Cn.
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and

H(W,ϕ) :=

{
f ∈ O(W ) ;

∫
Wreg

|f |2e−ϕ

|∂ρr|2
ωn−1 < +∞

}
,

then we have the following theorem.

THEOREM 4.9. LetW be a singular hypersurface in Cn and ϕ a plurisubharmonic function in Cn.
Suppose D+

ϕ (W ) < 1. Then the restriction mapRW : H (Cn, ϕ)→ H(W,ϕ) is surjective.

OPEN PROBLEM 4.10. Is the converse of Theorem 4.9 true under the additional assumption (1)?

As the next lemma shows, Theorem 1 follows from Theorem 4.7 when W is smooth (and uni-
formly flat), and in fact the latter is more general than the former in the case of smooth W , since
the curvature hypotheses on ϕ are weaker.

LEMMA 4.11. If W is smooth and uniformly flat then there is a constant Cr such that

inf
x∈W
|∂ρr(x)|2 ≥ Cr.

Proof. We choose a point z ∈ W , and we will show that there is a lower bound for |∂ρr(z)|2 that
does not depend on z. To this end, let us first fix T ∈ O(W ) such that W = {T = 0} and dT |W is
never zero.

Now, one can write

|∂ρr(z)|2 = |dT (z)|2 exp

(
−−
∫
B(z,r)

log |T |2ωn
)

= |dT (z)|2 exp

(
−−
∫
B(z,a)

log |T |2ωn
)
× exp

((
−
∫
B(z,a)

−−
∫
B(z,r)

)
log |T |2ωn

)
.

The two factors in the last line are both independent of the choice of function T that cuts out W .
For the first factor, we need only use a function that cuts out W in B(z, a), while for the second
factor we may use a function that cuts out W in B(z, r). We make choices for each factor, so as to
obtain universal lower bounds.

Let us begin with the left factor, which takes place over B(z, a). By using the function T =
y − f(x) given by Proposition 2.3(G) representing the graph of W near the point z in question we
get a uniform lower bound for the first factor. To have such a defining function, it suffices by the
uniform flatness hypothesis to take a sufficiently small but independent of z.

Let us now turn to the second factor. Of course, this factor is bounded above by 1, because of
the increasing property of (pluri)subharmonic averages, but we are interested in a lower bound. To
obtain the latter, we proceed as follows. Consider the closed positive (1, 1)-current

ΥW
a (x) :=

√
−1

2π
∂∂̄−
∫
B(0,a)

log |T (ζ + x)|2ωn(ζ) = [W ] ∗
1B(0,a)

Vol(B(0, a))
(x).

The trace of ΥW
a (x) is Area(W ∩ B(x, a)), and therefore by Proposition 2.3(A), ΥW

a is bounded
above by a multiple of the Euclidean metric, the multiple depending only on a. Below we are
going to consider balls of the form B(x, a) as we let x vary in B(z, r), and therefore we want to
work in B(z, 2r) for the moment. From the proof of Lemma 1.1 (for example, in [Li-2001]) we
deduce that for r > 0 there is a (plurisubharmonic) function u = uz,a,r such that

√
−1∂∂̄u = ΥW

a

in B(z, 2r) and
sup

B(z,r+2a)

|u| ≤ Aa,r,
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where Aa,r is independent of z.
Now, the function h(x) := u(x)− −

∫
B(x,a)

log |T |2ωn is pluriharmonic in B(z, 2r), and therefore
with H ∈ O(B(z, 2r)) such that h := 2Re H , we have

u(x) = −
∫
B(x,a)

log |TeH |2ωn, x ∈ B(z, r + a).

Letting To := TeH , we have∣∣∣∣−∫
B(x,a)

log |To|2ωn
∣∣∣∣ ≤ Aa,r, x ∈ B(z, r + a).

By the sub-mean value property, we have

log |To(x)|2 ≤ −
∫
B(x,a)

log |To|2ωn ≤ Aa,r,

and thus setting T1 := Toe
−1

2
Aa,r we have a function T1 ∈ O(B(z, r+a)) such that log |T1(x)|2 ≤ 0

for all x ∈ B(z, r + a), and therefore

−
∫
B(x,r)

− log |T1|2 ≥ 0.

Moreover,

−
∫
B(z,a)

log |T1|2ωn ≥ −
∣∣∣∣−∫
B(z,a)

log |T1|2ωn
∣∣∣∣ ≥ −2Aa,r.

The proof is complete. �

REMARK 4.12. Lemma 4.11 clearly fails for non-smooth W . It is for this reason that we said we
could not use the method of [FV-2007] to prove Theorem 1 in the non-smooth case. Even more,
when W is singular it is in fact the case that the spaces H(W,ϕ) and H(W,ϕ) are different. Thus
the two results 1 and 4.9 discuss extension from two completely different spaces of holomorphic
functions. �

Notice that our proof of Theorem 1 when W is smooth requires only that the weight ϕ be
plurisubharmonic, and does not need the stronger positivity hypothesis (1). On the other hand, in
the proof of Theorem 1 for the general case, we will use the strong curvature hypothesis (1). We
see no reason at the moment why Theorem 1 cannot be extended to the case of weights that are
only plurisubharmonic, and thus state the following conjecture.

CONJECTURE 4.13. Theorem 1 holds for any plurisubharmonic weight ϕ such that D+
ϕ (W ) < 1.

We now turn our attention to the singular case. As already indicated, we will use the approach,
taken in [OSV-2006], of locally extending the data from W , and then patching together the local
extensions using Hörmander’s Theorem.

4.3. Local extensions. Let f ∈ H(W,ϕ) be the function to be extended.

THEOREM 4.14. There exists a covering of W by a locally finite collection of balls {Bα} each
having radius r ∈ [εo/2, (a+ 1)εo], with the following additional properties.

(1) There is a number N having the property that each point of Cn is contained in at most N
balls.
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(2) Write fα = f |W∩Bα . Then for each α, there exists Fα ∈ O(Bα) such that Fα|W∩Bα = fα
and ∫

B′α

|Fα|2e−ϕωn ≤ C

∫
Wreg∩Bα

|f |2e−ϕωn−1,

where B′α is a ball with the same center as Bα and with radius λr for some λ ∈ (0, 1)
independent of α, and the constant C is independent of j.

We now embark on the proof of Theorem 4.14. We begin by dispensing with the uniformity of
the number N of open balls containing any point. To this end, it is clear that locally such a number
N obviously exists, and by uniform flatness the picture locally is the same everywhere.

Next, observing that by the uniform flatness hypothesis we can cover W by open balls Bα of
a fixed radius (which we may shrink a few times below) such that for each α, W ∩ Bα is a finite
union of smooth hypersurfaces cut out by holomorphic functions T1, ..., Tk where k = kα ≤ N
for some positive integer N independent of α. By the definition of uniform flatness, particularly
Property (S) of Definition 2.4, as well as Property (G) of Lemma 2.7, we may assume, perhaps
after decreasing the radius of the balls Bα if necessary, that

(5)
1

C
≤ |dTj(z)| ≤ C, z ∈ Bα

for some constant C > 0 independent of α and j. Indeed, since the Tj are holomorphic, the result
follows from a simple application of the Cauchy estimates to the function whose graph is cut out
by Tj .

Uniform flatness also means that the angles between the unit vectors orthogonal to the Wi at
the origin are uniformly bounded away from zero (the uniformity being with respect to α). For
our purposes, this property takes the following form: there exists a constant C̃ independent of the
center of Bα, such that for all 1 ≤ i 6= j ≤ k,

(6) |dTj(v)| ≥ C̃|v| for all v ∈ T 1,0
Wi
− {0}.

We have the following lemma.

LEMMA 4.15. Define the variety

Wα :=
⋃

1≤j≤k

{Tj = 0} ⊂ Bα.

Suppose 0 ∈ Wα is a singular point, and that F ∈ O(B) vanishes on Wα. Then for any multiindex
I = (i1, ..., ij−1) such that 1 ≤ i` ≤ k, F is divisible by the product Ti1 · ... · Tij−1

.

Proof. It suffices to prove that
F

T1 · · ·Tk
∈ O(Bα).

Indeed, if F
T1···Tk

is holomorphic, and we could then eliminate any undesired factor T` in the de-
nominator simply by multiplying by T`.

To prove the holomorphicity of the latter, observe that F
T1···Tk

is holomorphic at all the smooth
points of Wα, i.e., the points of Wi where Tj 6= 0 for all j 6= i. Since F

T1···Tk
is clearly holomorphic

away from Wα, it follows that the poles of F
T1···Tk

are contained in the set of points of Wα where at
least two of the Tj vanish. But since any two branches of Wα intersect transversally, the polar set

10



of F
T1···Tk

is contained in a subvariety of codimension at least 2. On the other hand, the polar set of
F

T1···Tk
is a divisor, and therefore it must be empty. �

For ease of notation, we now drop the subscript α and work on a fixed ball B, whose center we
may assume, without loss of generality, is the origin.

LEMMA 4.16. Let g : Wj → C be a holomorphic function such that g
T1·...Tj−1

∈ O(Wj). Then

there exist positives constant C < 1
εo

and Ĉ independent of the center of B such that, with Bk,εo

denoting the ball whose center is the center of B and whose radius is (1− Cεo)k times that of B,

(7)
∫
Wj∩Bj−1,εo

|g|2e−ϕ

|T1 · · ·Tj−1|2
ωn−1 ≤ Ĉ

∫
Wj

|g|2e−ϕωn−1.

Proof. By Lemma 1.1 we may assume, upon replacing g by geG for an appropriate holomorphic
function G defined on a neighborhood of the closure of B, that ϕ = 0.

Suppose first that j = 2. We can assume without loss of generality (perhaps after slightly
shrinking the ball B at the outset by a small factor independent of the center of B) that W2 is
the unit ball with coordinates given by T1, z

2, ..., zn−1. Uniform flatness renders all of the scaling
uniform in the center of B. Let P ∈ B satisfy |P | = 1− 2εo. If |T1(P )| ≥ εo

2n+1 then

|g(P )|
|T1(P )|

≤ 2n+1

εo
|g(P )|.

On the other hand, if |T1(P )| < εo
2n+1 then by the Cauchy formula we have∣∣∣∣ g(P )

T1(P )

∣∣∣∣ =
1

2π

∣∣∣∣∣
∫
|T1−T1(P )|= εo

2n

g(T1, z
2(P ), ..., zn−1(P ))

T1(T1 − T1(P ))
dT1

∣∣∣∣∣
≤ 1

2π

∫
|T1−T1(P )|= εo

2n

|g(T1, z
2(P ), ..., zn−1(P ))|

|T1 − T1(P )|2
(

1− |T1(P )|
|T1−T1(P )|

) |dT1|

≤ 1

2π

∫
|T1−T1(P )|= εo

2n

2|g(T1, z
2(P ), ..., zn−1(P ))|
|T1 − T1(P )|

|dT1|
|T1 − T1(P )|

≤ 2n+1

εo
sup{|g(T1(Q), z2(P ), ..., zn−1(P )))| ; |T1(Q)− T1(P )| ≤ 2−nεo}.

Thus
|g(P )|
|T1(P )|

≤ 2n+1

εo
sup{|g(Q)| ;

√
|T1(Q)− T1(P )|2 + |z′(Q)− z′(P )|2 ≤ 2−nεo},

where z′ = (z2, ..., zn−1). By the maximum principle,

sup
B1,2εo∩W2

|g|
|T1|
≤ sup

B1,εo∩W2

|g|.

From these sup-norm estimates the result easily follows, and we have the case j = 2. If we write

g

T1 · · ·Tj−1

=
g/(T2 · · ·Tj−1)

T1

,

the remaining cases follow by induction. �
11



Proof of Theorem 4.14. Let
fi := f |Wi

.

Consider first the function f1. By (6) we have∫
W1

|f1|2e−ϕ

|dT1|2
ωn−1 .

∫
W1

|f1|2e−ϕωn−1 < +∞.

By Theorem 4.7 with η = 0 and ω the Euclidean metric in Cn, there exists a holomorphic extension
F1 of f1 to B such that ∫

B

|F1|2e−ϕωn .
∫
W1

|f1|2e−ϕωn−1.

Let F 1 := F1, and notice that

F 1|W1 = f1 and
∫
B

|F1|2e−ϕωn .
∫
W∩B

|f |2e−ϕωn−1.

We now argue by induction. Suppose we have found F j−1 ∈ O(B) such that

F j−1|Wi
= fi for 1 ≤ i ≤ j − 1

and ∫
B

|F j−1|2e−ϕωn .
∫
B∩W

|f |2e−ϕωn−1.

Consider the function
f ∗j := fj − F j−1|Wj

.

We observe that for each 1 ≤ i ≤ j − 1,

(8) f ∗j |Wi
= fj|Wi

− fi|Wj
= 0.

The last equality follows because f is assumed to have a local extension to a neighborhood of
W ∩B in B. It follows from Lemma 4.15 that

(9)
f ∗j∏j−1
i=1 Ti

∈ O(Wj − ((W1 ∩Wj) ∪ ... ∪ (Wj−1 ∩Wj)))

extends holomorphically to Wj , and thus by Lemma 4.16 the extension satisfies the estimate

(10)
∫
Wj∩Bj,εo

|f ∗j |2e−ϕ

|T1 · · · · · Tj−1|2|dTj|2
ωn−1 .

∫
Wj

|f ∗j |2e−ϕωn−1 < +∞.

By Theorem 4.7 there exists a holomorphic function F ∗j ∈ O(Bj,ε) such that

F ∗j |Wj
= f ∗j and

∫
Bj,ε

|F ∗j |2e−ϕ

|T1 · · · · · Tj−1|2
ωn .

∫
W

|f |2e−ϕωn−1.

In particular, F ∗j |Wi
= 0 for all 1 ≤ i < j. Let

F j := F j−1 + F ∗j .

Then for 1 ≤ i < j,
F j|Wi

= F j−1|Wi
= fi.

moreover,
F j|Wj

= F j−1|Wj
+ F ∗j |Wj

= fj.
12



Finally, ∫
Bj,ε
|F j|2e−ϕωn .

∫
Bj−1,ε

|F j−1|2e−ϕωn +

∫
Bj,ε
|F ∗j |2e−ϕωn

.
∫
Bj,ε
|F j−1|2e−ϕωn +

∫
Bj,ε

|F ∗j |2e−ϕ

|T1 · · · · · Tj−1|2
ωn

.
∫
W∩B

|f |2e−ϕωn−1.

By induction on j we obtain the existence of a function F := F k ∈ O(B) which evidently satisfies
the desired conclusions. This completes the proof. �

Now that we have found our local extensions with good bounds, we patch them together.

4.4. The patching process. We begin with the balls Bα and functions Fα of Theorem 4.14. We
can assume that our open cover {Bα} is such that

Bα = B(wα, 2aαε) and
⋃
j

B(wα, aαε) ⊃ W.

Here aα = a if wα ∈ Wsing and aα = 1 if wα ∈ Wreg. For simplicity of exposition, let

B̂α := B(wα, aαε)

be the notation for the ‘half-balls’. We assume the index α begins at 1, and add the set

Bo = B̂0 := Cn − (Uε(W ) ∪ Uaε(Wsing))

to the open cover, to obtain an open cover of Cn. We let F0 = 0. Then we fix a partition of unity
{φα} subordinate to the cover {B̂α}, which we will assume has the property∑

α

|dφα|2 ≤ C.

We seek a global holomorphic function F such that

F |W = f and
∫
W

|F |2e−ϕωn < +∞.

To this end, let
Gαβ = Fα − Fβ ∈ O(B̂α ∩ B̂β).

Let us set

(11) ψ := ϕr + sr.

We have

Gαβ|W∩B̂α∩B̂β ≡ 0 and
∫
B̂α∩B̂β

|Gαβ|2e−ψωn .
∫
Wreg∩Bα∩Bβ

|f |2e−ϕωn−1.

The vanishing of the restriction is obvious, and the inequality is established in exactly the same
way as in the proof of Lemma 4.3 in [OSV-2006]. We also take this opportunity to observe that

(12)
√
−1∂∂̄ψ ≥

√
−1∂∂̄ϕr −ΥW

r = δ′
√
−1∂∂̄ϕr + (1− δ′)ϕr −ΥW

r ≥ δ′ω

for some δ′ > 0 sufficiently small.
13



We claim that there are functions Gα ∈ O(B̂α) such that

(13) Gα|W∩Bα ≡ 0,

∫
B̂α

|Gα|2e−ϕωn .
∫
Wreg∩Bα

|f |2e−ϕωn−1 and Gα ∈ O(B̂α).

The functions
G̃α :=

∑
β

Gαβφβ

have the first two of the properties (13). Moreover, we have

∂̄(G̃α − G̃β) = ∂̄Gαβ = 0 on B̂α ∩ B̂β,

and thus we can define the global ∂̄-closed (0, 1)-form

H = ∂̄G̃α =
∑
β

Gαβ∂̄φβ on B̂α.

We calculate that ∫
Cn
|H|2e−ψωn .

∑
αβ

∫
B̂α∩B̂β

|Gαβ|2|dφβ|2ωn

.
∑
αβ

∫
Wreg∩Bα∩Bβ

|f |2e−ϕωn−1

.
∫
Wreg

|f |2e−ϕωn−1.

Since the right side is finite, Hörmander’s Theorem (which, in view of (12), may be used) provides
a function u satisfying

∂̄u = H and
∫
Cn
|u|2e−ϕωn−1 ≤

∫
Cn
|u|2e−ψωn−1 < +∞

The second estimate implies that u|W ≡ 0. The functions

Gα := G̃α − u

are therefore holomorphic and satisfy (13), and the function

F := Fα −Gα on B̂α

satisfies

F |W = f and
∫
Cn
|F |2e−ϕωn < +∞.

The proof of Theorem 1 is thus complete. �

5. NON-UNIFORMLY FLAT HYPERSURFACES MAY HAVE EXTENSION

In this last section, we give a negative answer to the question of whether uniform flatness is
necessary for the surjectivity of RW . In fact, there are two cases one should treat separately. The
first case is that of singular hypersurfaces, and the second that of smooth hypersurfaces.
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5.1. Non-necessity for singular hypersurfaces. The content of this section is an observation of
Ohsawa [O-2009] to the effect that the restriction map RW : H (Cn, ϕ) → H(W,ϕ) may be
surjective even if W is not uniformly flat. In fact, let W = {T = 0} be a hypersurface with an
isolated singularity at 0, i.e.,

T (z) = dT (z) = 0 ⇐⇒ z = 0.

Let f ∈ H(W,ϕ). Then there is a polynomial P ∈ C[z1, ..., zn] such that∫
Wreg

|f − P |2

|dT |2
e−ϕωn−1 < +∞.

Assume now that

D+
ϕ (W ) < 1 and

∫
Cn
|P |2e−ϕωn < +∞

(which holds, for example, if W is algebraic and ϕ(z) = |z|2). Then Theorem 4.9 implies that
there is a function Fo ∈H (Cn, ϕ) such that

Fo|W = f − P |W .
It follows that F := Fo + P is the desired extension.

5.2. Non-necessity for smooth hypersurfaces. The main result of this section is the following
theorem.

THEOREM 2. The embedded smooth curve

W := {(x, y) ∈ C2 ; xy sin y = 1} ↪→ C2

is not uniformly flat, but nevertheless RW : H (C2, | · |2)→ H(W, | · |2) is surjective.

Near the points (0, 2πn) for n ∈ Z with |n| >> 0, the curve W looks a lot like the curve

Vn := {(x, y) | x(y − 2πn) =
1

2πn
.

From this approximation of W by such model curves, it follows immediately that W is not uni-
formly flat. On the other hand, the model curve Vn ‘converges’, as |n| → ∞, to a singular curve
which, by Theorem 1, induces a surjective restriction map. Thus if we can establish some continu-
ity in the extension process, we will be able to prove the claimed surjectivity of RW .

The approach is to begin by establishing the desired continuity in the model case, and then
patching together perturbations of the model extensions.

5.2.1. The model case. The continuity of the extension process we seek in this model case may
be expressed by saying that there is an extension operator Es : H(Ws, | · |2)→H (C2, | · |2) whose
square norm

||Es||2 = sup

{∫
C2

|Esf |2e−|·|
2

ω2

∣∣∣∣ ∫
Ws

|f |2e−|·|2ω = 1

}
is bounded independent of s. The extension operator in question is going to be the extension of
minimal norm. To bound this operator, we need any extension operator with the desired bounds.

We now define an extension operator that works. Consider the map

j : C∗ → Ws; t 7→ (t, st−1).
15



We pull back functions and integrals on Ws to functions and integrals on C∗. If we have f ∈
H(W, | · |2) then with

j∗f(t) =
∑
j∈Z

ajt
j

we have

||f ||2 =

∫
C∗

(∑
j,k∈Z

aj ākt
j t̄k

)
(1 + |s|2|t|−4)e−(|t|2+|s|2|t|−2)

√
−1

2
dt ∧ dt̄ =

∑
j∈Z

|aj|2Cj,|s|,

where

Cj,|s| = π

∫ ∞
0

r2j(1 + |s|2r−4)e−(r2+|s|2r−2)rdr.

We will need lower bounds for the constants Cj,|s|. For positive j, it is easy to estimate these
constants, and the symmetry of the curve Ws will give us a handle on the case of negative j.

LEMMA 5.1. The constants Cj,|s| have the following properties.

(i) For j ≥ 0 and |s| sufficiently small, Cj,|s| ≥ π
2
(j!).

(ii) For all j and s, Cj,|s| = |s|−2jC−j,|s|.

Proof. First, let j ≥ 0. Then

Cj,|s| ≤ π

∫ ∞
0

r2j+1e−r
2

dr + π

∫ ∞
0

(r2je−r
2

)e−|s|
2/r2 |s|2

r3
dr

≤ π(j!) +
π

2
jje−j

∫ ∞
0

e−udu

≤ 2π(j!)

Thus by the Dominated Convergence Theorem,

lim
|s|→0

Cj,|s| = π(j!),

and Property (i) is proved. Property (ii) is obtained by substituting r 7→ |s|/r in the integral. �

We now define the extension of f to be the holomorphic function F given by the Taylor series

F (x, y) = a0 +
∑
n>0

(anx
n + s−na−ny

n),

where

j∗f(t) =
∑
n∈Z

ant
n.

16



Note that j∗F = j∗f so that F extends f , and that

||F ||2 :=

∫
C2

|F (x, y)|2e−(|x|2+|y|2)

√
−1

2
dx ∧ dx̄ ∧

√
−1

2
dy ∧ dȳ

=

∫ ∞
0

∫ ∞
0

∫ 2π

0

∫ 2π

0

(a0 +
∑
n>0

(ane
√
−1nθrn + s−na−ne

√
−1nφρn))×

(ā0 +
∑
m>0

(āme
−
√
−1mθrm + s̄−mā−me

−
√
−1mφρm))dθdφe−r

2

rdre−ρ
2

ρdρ

= 4π2

∫ ∞
0

∫ ∞
0

(
|a0|2 +

∑
n>0

|an|2r2n + |s|−2n|a−n|2ρ2n

)
e−r

2

rdre−ρ
2

ρdρ

= π2

(∑
n≥0

|an|2n! +
∑
n<0

|an|2|s|2n(−n)!

)
≤ 2π

∑
n∈Z

Cn,|s||an|2 = 2π||f ||2.

The inequality is of course a consequence of Lemma 5.1. We have thus proved the following
lemma.

LEMMA 5.2. There exists a positive number ro such that for 0 < |s| < ro, the minimal extension
operator Es : H(Ws, | · |2)→H (C2, | · |2) satisfies

||Es|| ≤
√

2π.

5.2.2. Clipping and translating the model. Let c = (a, b) ∈ C2 and ε > 0. Define

Ws(ε; c) :=
{

(x, y) ∈ C2 ; (x− a)(y − b) = s and max(|x− a|, |y − b|) < ε
}
⊂ ∆2

c(ε),

where ∆2
c(ε) = {(x, y) ∈ C2 ; max(|x− a|, |y− b|) < ε}. We will now modify the calculation for

the model to show the following.

LEMMA 5.3. For each f ∈ O(Ws(ε; c)) there exists F ∈ O(∆2
c(ε)) such that

F |Ws(ε;c) = f and
∫

∆2
c(ε)

|F (z)|2e−|z|2dV (z) ≤ 2π

∫
Ws(ε;c)

|f(z)|2e−|z|2ω(z).

Proof. To begin, we translate Ws(ε; a) to the origin with the change of variables

ζ = (ξ, η) = (x− a, y − b) = z − c.
Then ∫

Ws(ε;c)

|f(z)|2e−|z|2ω(z) =

∫
Ws(ε;0)

|f(ζ + c)eζ·c−
1
2
|c|2|2e−|ζ|2ω(ζ).

Thus the function
fc(ζ) = f(ζ + c)eζ·c−

1
2
|c|2

is square integrable on the part of the model Ws contained in ∆2
0(ε). An extension of this function

to a function Fc that is square integrable on ∆2
0(ε) would then lead to the extension

F (z) = Fc(z − c)e−ζ·c+
1
2
|c|2 ,

and the latter is square integrable on ∆2
c(ε). Thus we have reduced to the situation c = 0.
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The remainder of the proof proceeds in a manner directly analogous to the proof of Lemma
5.2, except that we work inside the bidisk ∆2

0(ε). Ws(ε; 0) is now parameterized by an annulus
Aε,|s| = {|s|/ε < |t| < ε}2 but the parameterization is still the same map, namely

t 7→ (t, s/t).

The integrals to be estimated, instead of being over the entire plane, are now constrained to lie in
Aε,|s|, but the integrands are rather concentrated in this annulus anyway. We leave it to the reader
to check that if

j∗f(t) =
∑
n∈Z

ant
n

then ∫
Ws(ε;0)

|f |2e−|z|2 =
∑
n∈Z

Cn,|s|(ε)|an|2

where

Cj,|s|(ε) = π

∫ ε

|s|/ε
r2j(1 + |s|2r−4)e−(r2+|s|2r−2)rdr.

Since Cj,|s|(ε) is increasing and bounded in ε, we can apply the dominated convergence theorem
to see that

lim
|s|→0

Cj,|s|(ε) = Cj,0(ε) := πe−ε
2

j∑
k=0

j!

k!
ε2k.

We therefore have the lower bound

Cj,|s|(ε) ≥ 2Cj,0(ε)

for all sufficiently small |s|, and we calculate that the square of the L2-norm of the extension

F (x, y) = a0 +
∑
n>0

(anx
n + s−na−ny

n)

of f to ∆2
0(ε) is

||F ||2 =

∫
∆2

0(ε)

|F (z)|2e−|z|2dV (z) = π

(∑
n≥0

|an|2Cn,0(ε) +
∑
n<0

|an|2|s|2nCn,0(ε)

)
≤ 2π||f ||2

The proof is complete. �

5.2.3. The local picture near the approximate singularities of W. Since W is the zero set of
the holomorphic function g(x, y) = xy sin(y)− 1, we need to examine W near the points (0, nπ),
n ∈ Z, where, at least for |n| large, it greatly resembles a translate of the modelWs for s = (−1)n+1

nπ
.

LEMMA 5.4. There is a positive constant ε > 0 and injective holomorphic maps ψn defined on a
small disk centered at the origin and satisfying sup|ζ|<ε |dζ − (−1)n+1dψn(ζ)| = O(ε) uniformly
in n for |n| sufficiently large, such that

W ∩∆2
(0,nπ)(ε) =

{
(x, y) ; xψn(y − nπ) = (−1)n+1

nπ

}
∩∆2

(0,nπ)(ε).

2Note that we must have ε2 > |s|, but this must be the case if Ws(ε; 0) 6= ∅
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Proof. Let

ψn(z) =
(z + nπ) sin(z + nπ)

nπ
=

(z + nπ)(−1)n+1 sin z

nπ
.

Then ∣∣(−1)n+1 dψn
dz
− 1
∣∣ ≤ | sin z|

|n|π
+
|z cos z|
|n|π

+ | cos z − 1|.

The right side of the estimate is clearly controlled in a neighborhood |z| < ε by a constant that
is uniform in |n| >> 0. It follows from the proof of the implicit function theorem that, for
some ε > 0, ψn is a local diffeomorphism in a neighborhood |z| < ε of 0, and we can choose ε
independent of n provided |n| is sufficiently large. The proof is finished. �

5.2.4. End of the proof of Theorem 2. Let ε > 0 be as in Lemma 5.4. Outside the open set

U :=
⋃
n∈Z

∆2
(0,nπ)(ε)

W is uniformly flat in the sense of Definition 2.4. We may assume, perhaps after shrinking ε > 0
slightly, that there is an open cover of some neighborhood of W in C2 by open sets Uj that are
either of the form ∆2

(0,nπ)(ε) or are balls Bpj(ε) of radius ε and center pj , and in the latter case
W ∩ Bpj(ε) is the graph, over its tangent space at pj , of a function bounded by a small quadratic
as in Property (F1) of Lemma 2.7. Moreover, we can assume that the number of elements of this
cover containing any one point is bounded independent of the point.

For the neighborhoods ∆2
(0,nπ)(ε) we have local extension of our datum f with L2-bounds inde-

pendent of n. Indeed, by using Lemma 5.4 we may reduce to the model case, in which the claim
is a consequence of Lemma 5.3. On the other hand, for those neighborhoods Bp(ε) we have such
uniform L2 extensions for the same reason as in the proof of Theorem 1.

Finally we would like to apply the patching technique to extend f to a function F ∈ O(Cn) with
the estimate ∫

Cn
|F |2e−|z|2ωn .

∫
W

|f |2e−|z|2ωn−1.

This extension is done in exactly the same way as in Subsection 4.4, as soon as we prove the
following proposition.

PROPOSITION 5.5. For the curve W of Theorem 2, D+
|·|2(W ) = 0.

Proof. Geometrically, the density of W is the maximum, over all directions v ∈ S3, of the number
of intersection points of W ∩ Bp(r) with the average straight line ` parallel to v, divided by the
area of the disk `∩Bp(r). The average is taken over the lines. We find that ΥW

r (z) = O(r−1). �

Thus the proof of Theorem 2 is complete. �

5.3. Something must take the place of uniform flatness. Uniform flatness cannot be completely
done away with even if the hypersurface in question is smooth. For example, in dimension 1 it is
known to be necessary, and by taking a product, we can easily find examples of hypersurfaces with
density less than 1 such that the restriction map RW : H (Cn, ϕ)→ H(W,ϕ) is not surjective.

EXAMPLE 5.6. Consider the sequence {zj}j≥2 ⊂ C defined by

z2k = k2, z2k+1 = k2 − k−1.
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Let

W = {(zj, w) ∈ C2 ; w ∈ C, j = 2, 3, 4, ...}.

Then the area of W ∩ B(x, r) = o(r3) so that the density of W is zero. But we claim that the
restriction map RW : H (Cn, ϕ)→ H(W,ϕ) is not bounded surjective.

To prove this, we argue by contradiction. Suppose, then, that RW : H (Cn, ϕ) → H(W,ϕ) is
bounded and surjective. Define the locally constant function fk ∈ O(W ) by

fk(z2k, w) = e
1
2
|z2k|2 and f(zj, w) = 0, j 6= 2k, w ∈ C.

Then ∫
W

|fk(z, w)|2e−(|z|2+|w|2)ω =

∫
C
e−|w|

2√−1dw ∧ dw̄ = π < +∞.

Since the restriction map is bounded surjective, there exists Fk ∈ O(C2) such that

Fk|W = fk and
∫
C2

|Fk|2e−|z|
2−|w|2dV (z, w) ≤ πC

for some constant C > 0 independent of k. By the sub-mean value property,∫
C
|Fk(z, 0)|2e−|z|2dA(z) ≤ 1

π

∫
C

(∫
C
|Fk(z, w)|2e−|z|2dA(z)

)
e−|w|

2

dA(w) ≤ C.

It follows from Cauchy’s formula that, for r ≥ 2 and k sufficiently large,

k2 =

∣∣∣∣ F (z2k, 0)

z2k − z2k+1

∣∣∣∣2 e−|z2k|2 =
1

4π2

∣∣∣∣∣
∫
|ζ−z2k|=r

F (ζ, 0)e(z22k−ζz2k)

(ζ − z2k)(ζ − z2k+1)
dζ

∣∣∣∣∣
2

e−|z2k|
2

≤ er
2

4π2r2(r − k−1)2

(∫
|ζ−z2k|=r

|F (ζ, 0)|e
1
2
|z2k|2−Re (ζz2k)−1

2
|ζ−z2k|2dθ

)2

=
er

2

4π2r2(r − k−1)2

(∫
|ζ−z2k|=r

|F (ζ, 0)|e−
1
2
|ζ|2dθ

)2

≤ er
2

2πr2(r − k−1)2

∫
|ζ−z2k|=r

|F (ζ, 0)|2e−|ζ|2dθ,

where ζ = z2k + re
√
−1θ, in the second step we have used |ζ − z2k+1| ≥ |ζ − z2k| − k−1, and

in the last step we have used the Cauchy-Schwarz Inequality. Multiplying both sides by 2π(r −
k−1)2r3e−r

2
dr, using the inequality r − k−1 ≥ 1, and integrating over r ∈ [2,∞), we have

2πk

∫ ∞
2

r3e−r
2

dr ≤
∫
|ζ−z2k|≥2

|F (ζ, 0)|2e−|ζ|2dA(ζ) ≤
∫
C
|Fk(ζ, 0)|2e−|ζ|2dA(ζ) ≤ C.

The desired contradiction is obtained as soon as k is large enough. �

It would be interesting to find the right necessary geometric condition on hypersurfaces W for
the surjectivity of RW . It seems that the conditions should not be too local in nature, as uniform
flatness seems to be.
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