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1. Introduction

The goal of this paper is to establish sufficient conditions for a uniformly separated set on
a finite Riemann surface to be interpolating or sampling for a generalized Bergman space of
holomorphic functions on that surface.

Let us fix an open Riemann surface X. Much of the geometry used in the statements and
proofs of our results arises from potential theory on X. If X is hyperbolic, then X admits
a Green’s function, while if X is parabolic, then X admits a so-called Evans Kernel. (See
Section 2 for definitions.) After a normalization of the latter, both objects are unique, and
we refer to either as the extremal fundamental solution E(z, ζ).1 Associated to this extremal
fundamental solution is a distance ρ(z, ζ) = eE(z,ζ), and we denote by Dε(z) the ε-disk with
respect to this distance. The geometry and potential theory we use in this paper is discussed
in greater detail in Section 2

To a conformal metric g = e−ψ|dz|2 on X, a smooth function ϕ : X → R and a discrete
subset Γ ⊂ X, uniformly separated with respect to the distance ρ above, we associated the
following two Hilbert spaces:

B2
X = B2

X(ϕ, g) :=

{
h ∈ O(X) ; ||h||2 :=

∫
X

|h|2e−ϕdAg < +∞
}

and

B2
Γ = B2

Γ(ϕ, g) :=

{
(sγ)γ∈Γ ;

∑
γ∈Γ

|sγ|2e−ϕ(γ)Ag(Dσ(γ)) < +∞

}
,

where O(X) denotes the set of holomorphic functions on X,

Ag(S) =

∫
S

e−ψ
√
−1
2
dz ∧ dz̄ and σ = σ(Γ) = 1

4
inf
γ 6=γ′

ρ(γ, γ′).

Definition 1.1. Let X be an open Riemann surface with extremal fundamental solution
E, let ϕ be a weight function and g a conformal metric, and let Γ be a discrete set such that
σ(Γ) > 0.

(1) We say that Γ is an interpolation set if for every (sγ) ∈ B2
Γ there exists F ∈ B2

X such
that for all γ ∈ Γ, F (γ) = sγ.

The second author is partially supported by NSF grant DMS0400909 .
1For the sake of brevity, we have been slightly inaccurate. In the parabolic case, we will end up selecting

an Evans kernel for a partial compactification of our Riemann surface. See the remark in the first paragraph
of Section 2 below.
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(2) We say that Γ is a sampling set if there is a constant M such that for all F ∈ B2
X ,

1

M
||F ||2 ≤

∑
γ∈Γ

|F (γ)|2e−ϕ(γ)Ag(Dε(γ)) ≤M ||F ||2.

The potential theoretic data that X comes equipped with gives rise to a special conformal
metric eν |dz|2 which we call the fundamental metric (see Definition 2.3) and which plays a
key role in our results.

Let

RX :=

{
1 X is hyperbolic

+∞ X is parabolic

Definition 1.2. (1) For each locally integrable function f : [0, RX) → [0,∞) and each
r ∈ (0, RX), let cr := 2π

∫ r
0
tf(t)dt and define ξr(z, ζ) by

ξr(z, ζ)e−ν
√
−1dζ ∧ dζ̄ =

1

cr
f(ρz(ζ))1Dr(z)(ζ)dρz(ζ) ∧ ∗dρz(ζ),

where 1A denotes the characteristic function of a set A.
(2) For a conformal metric g = e−ψ|dz|2 on X, we set

τψ = eν−ψ.

(3) The relative curvature of the metric g = e−ψ|dz|2 is the (1, 1)-form

Θψ = ∆ψ − τ−1
ψ ∆τψ

(4) A metric g = e−ψ|dz|2 on a Riemann surface is admissible if the function

D2
ψ :=

eψ

τψ

∣∣∣∣∂τψ∂z
∣∣∣∣2

is uniformly bounded on X.
(5) To every uniformly separated sequence (see section 4 for the definition) we associate

the upper and lower densities

D+
f (Γ) := lim sup

r→RX
sup
z∈X

∑
γ∈Γ

π
2
ξr(γ, z)

(eν(∆ϕ+ Θψ)) (z)
,

and

D−f (Γ) := lim inf
r→RX

inf
z∈X

∑
γ∈Γ

π
2
ξr(γ, z)

(eν(∆ϕ+ Θψ)) (z)
.

Our main results can now be stated as follows.

Theorem 1. Let X be a finite open Riemann surface with fundamental metric e−ν |dz|2 and
admissible metric g = e−ψ|dz|2. Let ϕ be a weight function on X such that, for some c > 1,
1
c
≤ eν∆ϕ ≤ c and eν(∆ϕ + Θψ) ≥ 1

c
. Then every uniformly separated sequence Γ ⊂ X

satisfying D+
f (Γ) < 1 is an interpolation sequence.

For the case of sampling, we must place an additional constraint on the metric g beyond
admissiblity, namely that g is dominated by a multiple of the fundamental metric.
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Theorem 2. Let X be a finite open Riemann surface with fundamental metric e−ν |dz|2 and
an admissible metric g = e−ψ|dz|2 such that e−ψ ≤ Ce−ν for some constant C > 0. Let ϕ be
a weight function on X such that, for some c > 1, 1

c
≤ eν∆ϕ ≤ c and eν(∆ϕ+Θψ) ≤ c. Then

every uniformly separated sequence Γ ⊂ X satisfying D−f (Γ) > 1 is a sampling sequence.

Theorems 1 and 2 are generalizations, to the case of open finite Riemann surfaces, of the
celebrated results of Seip and Seip-Wallstén [Seip-92, Seip-93, SW-92], who proved these

theorems for the Bargmann-Fock space, of entire holomorphic functions in L2(e−|z|
2
) and the

Bergman space, of square integrable holomorphic functions on the unit disk. The theorems
of Seip et al. were generalized by Berndtsson and Ortega-Cerda [BO-95] to more general
weights. Berndtsson and Ortega-Cerdà also gave different proofs, using L2 methods. In this
paper, we employ the L2 approach as well. In more general contexts, Ohsawa has studied
interpolation problems for L2 sections of holomorphic vector bundles on Stein manifolds
[O-94, O-01], using L2 methods.

The main point of the present paper is to demonstrate the key role that the potential
theory and geometry of the fundamental metric of a Riemann surface play in the study of
interpolation and sampling on that Riemann surface. The use of finite Riemann surfaces, as
opposed to more general Riemann surfaces, is to establish certain bounds for the fundamental
metric, and other related potential theoretic objects. We do not know whether these needed
bounds hold in complete generality.

Acknowledgment. We are grateful to John D’Angelo, Jeff McNeal, Quim Ortega-Cerdà
and Eric Schippers for interesting discussions.
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2. Analytic geometry of Riemann surfaces

Extremal fundamental solutions. We write

∆ :=
√
−1∂∂̄

for the Laplace operator (with complex analytic normalization). Let δζ denote the Dirac
mass at ζ. The following definition is standard.

Definition 2.1. The Green’s function G : X × X → [−∞, 0) on a Riemann surface X is
the function with the following properties.

(a) For each ζ ∈ X, ∆zG(z, ζ) = π
2
δζ(z).

(b) If H : X × X → [−∞, 0) is a function with property (a), then H(z, w) ≤ G(z, w)
whenever z 6= w.

It is well-known that the Green’s function is symmetric.

Recall that an open Riemann surface is said to be hyperbolic if it admits a bounded
subharmonic function and parabolic otherwise. It is well known that a Riemann surface has
a Green’s function if and only if it is hyperbolic. Property (b) guarantees that the Green’s
function is unique.

Definition 2.2. An Evans kernel on a Riemann surface X is a symmetric function S :
X ×X → [−∞,+∞) with the following properties.

(a) For each ζ ∈ X, ∆zS(z, ζ) = π
2
δζ(z).

(b) For each r ∈ R and p ∈ X, the level set {ζ ∈ X ; S(ζ, p) = r} is compact and
non-empty.

An open Riemann surface admits an Evans kernel if and only if it is parabolic (see [N-67]
or page 352 of [NS-70]). Moreover, after prescribing (with somewhat limited possibility) the
logarithmic singularity at infinity, the Evans kernel is unique up to an additive constant.

We shall use the notation E : X×X → [−∞, logRX) to denote either the Green’s function
or some chosen Evans kernel, depending on whether the Riemann surface is hyperbolic or
parabolic, respectively.

Remark. In fact, this is not precisely what we will do. Below we will deal only with finite
Riemann surfaces. If such a surface X is parabolic, then it is a compact Riemann surface
with a finite number of points removed. Thus there is a compact Riemann surface X̃ and
points γ1, ..., γN such that X = X̃ − {γ1, ..., γN}. We will take the Evans kernel not for X,
but for some X̃ − γj for some j. Thus if the surface has only one puncture, then we have no
choice, but if the surface has multiple punctures, we choose one of these punctures to define
our kernel.

We shall refer to E as the extremal fundamental solution for X.
Using the extremal fundamental solution, we define

ρz(ζ) := eE(z,ζ), Dε(z) := {ζ ∈ X ; ρz(ζ) < ε} and Sε(z) = ∂Dε(z).
4



The fundamental metric.

Definition 2.3. The fundamental metric e−ν |dz|2 is given by the formula

e−ν(z)dz ∧ dz̄ = lim
ζ→z

∂ρz(ζ) ∧ ∂̄ρz(ζ).

Note that any solution of the equation

∆zE(z, ζ) = πδz(ζ)

locally has the form
E(z, ζ) = log |z − ζ|+ h(z, ζ)

for some function h(z, ζ) that is Harmonic in z. If E is symmetric, then so is h and thus h
is also harmonic in ζ.

Now,

∂ρz(ζ) = ρz(ζ)

(
−(z̄ − ζ̄)

2|z − ζ|2
+
∂h(z, ζ)

∂ζ

)
dζ

= eh(z,ζ)

(
−(z̄ − ζ̄)

2|z − ζ|
+ |z − ζ|∂h(z, ζ)

∂ζ

)
dζ.

It follows that
ν(z) = −2h(z, z) + 2 log 2.

Green’s Formula and mean values. Recall that on a Riemann surface with a conformal
metric e−ψ|dz|2, the Hodge star operator simplifies somewhat when expressed in analytic
coordinates z = x +

√
−1y: if f is a real-valued function, α = α1dx + α2dy is a real 1-form

and θdx ∧ dy is a real 2-form, then one has

∗f = fdAg = e−ψfdx ∧ dy
∗(α1dx+ α2dy) = −α2dx+ α1dy

∗(θdx ∧ dy) = eψθ.

Using these formulas, we have 2∆ = d ∗ d, and Green’s formula can be written

2

∫
D

f∆h− h∆f =

∫
∂D

f ∗ dh− h ∗ df.(1)

Let X be an open Riemann surface and Y ⊂⊂ X an open connected subset whose bound-
ary consists of finitely many smooth Jordan curves. It is well known that the Green’s function
GY for Y exists and is continuous up to the boundary. Moreover, the exterior derivative
d(GY (ζ, ·)) is also continuous up to the boundary.

Remark. One can construct the Green’s function GY from the extremal fundamental solu-
tion E of X as follows. Since Y has smooth boundary, the Dirichlet Problem of harmonic
extension from the boundary can be solved on Y . We then take GY (ζ, z) := E(ζ, z)−hζ(z),
where hζ is the harmonic function in Y that agrees with E(ζ, ·) on the boundary of Y .

We write Hr,ζ(z) := GDr(ζ)(ζ, z). In fact, the function Hr,ζ has a particularly simple form
in terms of the extremal fundamental solution E:

(2) Hr,ζ(z) = E(z, ζ)− log r, z ∈ Dr(ζ).

Moreover, in this case we don’t need to assume that r is a regular value of ρζ .
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Putting D = Dr(z) and h = Hr,z in (1) and using the definition of Green’s function, we
obtain the following lemma.

Lemma 2.4. Let r < RX and ζ ∈ X. Then

(3) 2πf(z) =

∫
Sr(z)

f ∗ dEz +

∫
Dr(z)

Hr,z∆f.

In particular, if f is subharmonic, then

(4) f(z) ≤ 1

2π

∫
Sr(z)

f ∗ dEz

with equality when f is harmonic.

Let ξr be as in Definition 1.2. Then for any function F , we have∫
X

F (w)ξr(z, w)e−ν(w)
√
−1dw ∧ dw̄ =

1

cr

∫
Dr(z)

Ff(ρz)dρz ∧ ∗dρz

=
1

cr

∫ r

0

tf(t)

(∫
St(z)

F ∗ dEz
)
dt.

Thus, in view of (4) of Lemma 2.4, we have the following Lemma.

Lemma 2.5. If h is subharmonic then

h(z) ≤
∫
X

ξr(z, w)h(w)e−ν(w)
√
−1dw ∧ dw̄(5)

with equality if h is harmonic.

Ohsawa’s L2 estimates for ∂̄. In our proof of the interpolation theorem, we require a
theorem for solving ∂̄ with certain L2 estimates. The theorem we need is slightly sharper
than Hörmander’s Theorem, due to Ohsawa.

Theorem 2.6 (Ohsawa). Let X be a Riemann surface with conformal metric e−ψ|dz|2,
V → X a holomorphic line bundle with smooth Hermitian metric e−ϕ, and τ a positive
function. Suppose that for some ε, δ > 0,

eψ
(
τ∆(ϕ+ ψ)−∆τ − ε |∂τ |

2

τ

)
≥ δ.

Then there exists a constant C = Cδ,ε such that for any V -valued (0, 1)-form α satisfying∫
X

e−ϕ
√
−1ᾱ ∧ α < +∞,

the equation ∂̄U = α has a solution satisfying∫
X

|U |2 e
−ϕ

τ
dAg ≤ C

∫
X

e−ϕ
√
−1ᾱ ∧ α.

In the case of Riemann surfaces there is a short proof of Ohsawa’s theorem. Since a short
proof is not easily accessible in the literature, we shall give one here.
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Proof of Ohsawa’s Theorem. Let us first endow V → X with the Hermitian metric e−ξ =
τe−ϕ. With

∇̄(hdz̄) := (hz̄ + ψz̄h)dz̄⊗2

denoting the covariant ∂̄ derivative, a straightforward calculation shows that
The formal adjoints ∂̄∗ of ∂̄ and ∇̄∗ of ∇̄ are given by

(6) ∂̄∗(hdz̄) = −eψ
(
∂h

∂z
− ∂ξ

∂z
h

)
and ∇̄∗(hdz̄⊗2) = −eψ

(
∂h

∂z
− ∂ξ

∂z
h

)
dz̄.

Using these, another calculation shows that

∂̄∂̄∗β − ∇̄∗∇̄β = eψ∆(ξ + ψ)β,

and thus one has the identity

(7) ||∂̄∗β||2 = ||∇̄β||2 + (eψ∆(ξ + ψ)β, β), β ∈ A 0,1
0 (X).

Now,

(8) ∆ξ = ∆ϕ− 1

τ
∆τ +

√
−1

∂τ ∧ ∂̄τ
τ 2

,

and formula (6) implies that

(9) ∂̄∗ξ (hdz̄) = ∂̄∗ϕ(hdz̄)− 1

τ

∂τ

∂z
h.

Substituting (8) and (9) into the identity (7), we obtain

||∂̄∗ϕβ||2ξ = ||∇̄β||2ξ +
(
eψ
{

∆(ϕ+ ψ)− ∆τ
τ

+ |∂τ |2
τ2

}
β, β

)
ξ

−|| 〈∂τ,β〉
τ
||2ξ + 2Re

(
∂̄∗ϕβ,

〈∂τ,β〉
τ

)
ξ

= ||∇̄β||2ξ +
(
eψ
{

∆(ϕ+ ψ)− ∆τ
τ

}
β, β

)
ξ

+ 2Re
(
∂̄∗ϕβ,

〈∂τ,β〉
τ

)
Substituting e−ξ = τe−η, we have the so-called twisted Bochner-Kodaira Identity:

||
√
τ ∂̄∗ϕβ||2ϕ = ||

√
τ∇̄β||2ϕ +

(
eψ {τ∆(ϕ+ ψ)−∆τ} β, β

)
ϕ

(10)

+2Re
(
∂̄∗ϕβ, 〈∂τ, β〉

)
ϕ

The Cauchy-Schwarz inequality applied to the last term of (10) then shows that for any
ε > 0 we have

(1 + ε−1)||
√
τ ∂̄∗ϕβ||2ϕ ≥

(
eψ
{
τ∆(ϕ+ ψ)−∆τ − ε |∂τ |

2

τ

}
β, β

)
ϕ
.(11)

Letting Tf := ∂̄(
√
τf), we can rewrite (11) as

||T ∗β||2ϕ ≥ Cε

(
eψ
{
τ∆(ϕ+ ψ)−∆τ − ε |∂τ |

2

τ

}
β, β

)
ϕ
.(12)

Suppose now that for some ε > 0 there is a δ > 0 such that one has

eψ
(
τ∆(ϕ+ ψ)−∆τ − ε |∂τ |

2

τ

)
≥ δ.
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The from (12) and the fact that smooth compactly supported (0, 1)-forms are dense in the
domain of T ∗, we obtain

||T ∗β||2ϕ ≥ C||β||2ϕ.(13)

A standard Hilbert space argument yields a function f such that

Tf = α

with the estimate ∫
X

|f |2e−ϕdAg ≤ C||α||2ϕ.(14)

Letting U =
√
τf completes the proof. �

3. Examples

The Euclidean plane. Consider the Euclidean complex plane (X, g) = (C, |dz|2). The
generalized Bergman space in this situation is

BF 2 =

{
h ∈ O(C) ; ||h||2ϕ :=

∫
C
|h|2e−ϕdm < +∞

}
,

where dm is Lebesgue measure in the plane, and

Bf2 =

{
(sγ) ⊂ C ; ||(sγ)||2ϕ :=

∑
γ∈Γ

|sγ|2e−ϕ(γ) < +∞

}
.

The space BF 2 is sometimes called generalized Bargmann-Fock space. When ϕ(z) = |z|2
we obtain the classical Bargmann-Fock space.

The plane is a parabolic Riemann surface. The Evans kernel in C is unique, up to an
additive constant, and is given by E(z, ζ) = log |z − ζ| if we require E(0, 1) = 0. Thus
ρz(ζ) = |z − ζ| and the disks Dσ(z) are simply the Euclidean disks |z − ζ| < σ. A simple
calculation shows that

√
−1∂ρz(ζ) ∧ ∂̄ρz(ζ) =

1

2
dρz(ζ) ∧ ∗dρz(ζ) =

√
−1

4
dζ ∧ dζ̄,

and thus the fundamental metric is just a multiple of the Euclidean metric.
The upper and lower densities are given by

D+
f (Γ) = lim sup

r→∞
sup
z∈C

∑
Γ∩Dr(z)

f(|z − γ|)
2∆ϕ

∫ r
0
tf(t)dt

and

D−f (Γ) = lim inf
r→∞

inf
z∈C

∑
Γ∩Dr(z)

f(|z − γ|)
2∆ϕ

∫ r
0
tf(t)dt

.

If we choose as our locally integrable function f the constant function, we recover the
results of [BO-95]. However, by making other choices, we can get other sufficient conditions
that, although not necessary, might be of use in some applications.

For the sake of simplicity, we will consider in the following examples only the classical
Bargmann-Fock space.
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Example 3.1. (i) Let f(t) = e−t. Then Γ is interpolating if for all r >> 0,

sup
z∈C

∑
Γ∩Dr(z)

e−|z−γ| < 2

and sampling if for all r >> 0,

inf
z∈C

∑
Γ∩Dr(z)

e−|z−γ| > 2.

Integration by parts, together with a standard argument shows that Γ is interpolating
if

sup
z∈C

∫ ∞
0

#(Γ ∩Ds(z))
ds

es
< 2

and sampling if

inf
z∈C

∫ ∞
0

#(Γ ∩Ds(z))
ds

es
> 2.

(ii) Let fa := 1[0,a]. We then obtain:

If a > 1/
√

2 and every disk of radius a contains at most one member of Γ, then Γ
is interpolating.

If a < 1/
√

2 and every disk of radius a contains at least one member of Γ, then Γ
is sampling.

The disk. The unit disk D is a hyperbolic Riemann surface. Its Green’s function is

E(z, ζ) = log |φz(ζ)|, where φz(ζ) =
z − ζ
1− z̄ζ

is the standard involution. Thus ρz(ζ) = |φz(ζ)| and the disks Dσ(z) are the well-known
pseudo-hyperbolic disks. Standard calculations show that

|dρz(ζ)|2 =

∣∣∣∣ 1− |z|2

(1− z̄ζ)2

∣∣∣∣2 =
(1− ρz(ζ)2)2

(1− |ζ|2)2
,

so we have ν(ζ) = − log 4 + log(1− |ζ|2)2.
We endow D with the metric g = (1− |z|2)−1|dz|2, and thus obtain

τψ = 1
4
(1− |z|2), D2

ψ = 1
4
|z|2

and

eνΘψ =
1

4
(1− |z|2)2(∆ψ − τ−1

ψ ∆τ−1
ψ )

=
(1− |z|2)2

4
(−(1− |z|2)−2 + (1 + |z|2)−1) =

−|z|2

4
.

We also have

Ag(Dσ(γ)) = Cσ(1− |γ|2).

Thus our Hilbert spaces are

B2
ϕ :=

{
h ∈ O(D) ;

∫
D
|h|2e−ϕ dm

(1− |z|2)
< +∞

}
9



and

B2
ϕ :=

{
(sγ) ;

∑
γ∈Γ

|sγ|2e−ϕ(γ)(1− |γ|2) < +∞

}
.

Finally, we let
ϕ := ϕo − log(1− |z|2), ∆ϕo > 0.

Observe that

∆ϕ+ Θψ = ∆ϕo +
1

(1− |z|2)2
− |z|

2

4
≥ ∆ϕo > 0.

Thus the densities are given by

D+
f (Γ) = lim sup

r→1
sup
z∈D

∑
ρz(γ)<r

f(ρz(γ))(1− ρz(γ)2)2

((1− |z|2)2∆ϕo(z) + (1− |z|2))
∫ r

0
tf(t)dt

,

and

D−f (Γ) = lim inf
r→1

inf
z∈D

∑
ρz(γ)<r

f(ρz(γ))(1− ρz(γ)2)2

((1− |z|2)2∆ϕo(z) + (1− |z|2))
∫ r

0
tf(t)dt

.

If we take

f(t) =
− log t

(1− t2)2
1h1

2
, 1
”,

we find that Theorems 1 and 2 recover the results from [BO-95].
Again for the sake of illustration we will consider below only the classical unweighted

Bergman space, which is obtained by setting ϕ = − log(1− |z|2).

Example 3.2. (i) Letting f = 1, we see that Γ is interpolating if

sup
z∈D

∑
(1− ρz(γ)2)2 < 1

and sampling if

inf
z∈D

∑
(1− ρz(γ)2)2 > 1.

(ii) Letting f(t) = (1− t2)−2, we see that Γ is interpolating if

lim sup
r→1

sup
z∈D

#(Γ ∩Dr(z))

Ahyp(Dr(z))
< 1

and sampling if

lim inf
r→1

inf
z∈D

#(Γ ∩Dr(z))

Ahyp(Dr(z))
> 1,

where

Ahyp(Dr(z)) =
1

2π

∫
Dr(z)

dm(z)

(1− |z|2)2

denotes hyperbolic area of Dr(z).
(iii) Let fa := 1[0,a]. We then obtain:

If δ > 1√
2

and Γ has at most one point in every disk of radius δ, then Γ is interpo-

lating.
If δ < 1√

2
and every disk of radius δ contains at least one member of Γ, then Γ is

sampling.
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4. Finite Riemann surfaces

Definition and construction of finite Riemann surfaces. Recall that a finite Riemann
surface is a two dimensional compact manifold with boundary, possibly with a finite number
of points removed.

There are two types of finite Riemann surfaces. One type has boundary having only
punctures and no one dimensional components, while the other type also has at least one
smooth codimension-1 boundary component. The first type of is always parabolic (unless it
has no punctures, in which case it is compact) while the second type is always hyperbolic.

An alternate description of a finite Riemann surface X can be given as follows: X is
a (not necessarily compact) manifold with compact boundary, and in addition X can be
decomposed as

X = Xcore ∪
N⋃
j=1

Uj,

where Xcore is a compact manifold with smooth boundary, and each Uj is biholomorphic to
a punctured disk whose outer boundary is one of the smooth boundary curves of Xcore. (Of
course, Xcore may have some other boundary components that do not meet one of the Uj.)
The Uj correspond to the punctures.

While every finite Riemann surface with no one dimensional boundary is obtained from a
compact Riemann surface by removal of a finite number of points, there is an almost equally
simple way to construct hyperbolic finite Riemann surfaces; simply take a compact Riemann
surface and remove a finite number of smooth Jordan curves so that the resulting surface as
two components. Then either component is a finite Riemann surface, and one can further
remove any finite number of points.

In fact, all finite Riemann surfaces are of this type. Indeed, we can fill in the punctures
complex analytically (since they are just punctured disks) to obtain a compact Riemann
surface with boundary

X̃ = Xcore ∪
N⋃
j=1

Uj,

and then form the so-called double of X̃. For more on this well-known construction see, for
example, [SS-54].

Analytic-geometric properties of finite Riemann surfaces.

Theorem 4.1. Let X be a finite Riemann surface with extremal fundamental solution E.
Then for each sufficiently small σ ∈ (0, RX) there is a constant C = Cσ such that for all
z ∈ X and all ζ ∈ Dσ(z) the following estimate holds.

1

C
≤ eν(ζ)|∂ρz(ζ)|2 ≤ C.(15)

Remark. As we have already pointed out, locally one has

E(z, ζ) = log |ζ − z|+ h(z, ζ),

and thus ρz(ζ) = |z − ζ|eh(z,ζ). Differentiation then gives

∂ρz(ζ) =
ζ − z
|ζ − z|

eh(z,ζ)

(
1

2
+ (z − ζ)∂ζh(z, ζ)

)
,

11



so that 4e−ν(ζ) = e2h(ζ,ζ) and

(16) eν(ζ) |∂ρz(ζ)|2 = e2(h(z,ζ)−h(ζ,ζ))

∣∣∣∣1 + 2(ζ − z)
∂h(z, ζ)

∂ζ

∣∣∣∣2 .
In particular, the right hand side of (16) is well defined, since this is the case for the left
hand side.

Proof of theorem 4.1. We shall break up the proof into the hyperbolic and parabolic case.

(The case of bordered Riemann surfaces.) We realize X as an open subset of its double Y .
Since X = X∪∂X is compact, it suffices to bound the right hand side of (16) in a set U ∩X,
where U is a coordinate chart in Y . For coordinate charts whose closure lies in the interior
X, it is clear that this can be done. Indeed, if U ⊂⊂ X and z, ζ ∈ U , then h is a smooth
function that is harmonic in each variable separately, and ρz(ζ) � |ζ − z| uniformly on U .
Thus by taking σ sufficiently small, we obtain the estimate (15) for all z ∈ U and ζ ∈ Dσ(z).
We thus restrict our attention to the boundary.

There are two types of boundary points; zero dimensional and one dimensional. However,
the Green’s function ignores isolated zero dimensional boundary components, since they have
capacity zero. (In particular, the distance ρz fails to be proper when there are punctures.)
Thus we may assume that there are no punctures.

Let U ⊂ Y be a coordinate neighborhood of a boundary point x ∈ ∂X. By taking U
sufficiently small, we may assume that U is the unit disk in the plane, that U ∩ X lies in
the upper half plane and that ∂X lies on the real line. It follows that the Green’s function
is given by

E(z, ζ) = log |z − ζ| − log |z̄ − ζ|+ F (z, ζ),

where F (z, ζ) is smooth and harmonic in each variable on a large open set containing the
closure of U . Indeed, the Green’s function for the upper half plane is log |z− ζ| − log |z̄− ζ|.
The regularity of F then follows from the construction of Green’s functions on finite Riemann
surfaces using harmonic differentials on the double. (See [SS-54], §4.2.) It follows that in U ,

2
∂h(z, ζ)

∂ζ
= − 1

z̄ − ζ
+ 2

∂F (z, ζ)

∂ζ
and ρz(ζ) ≥ C

|z − ζ|
|z̄ − ζ|

.

Thus ∣∣∣∣2(ζ − z)
∂h(z, ζ)

∂ζ

∣∣∣∣ ≤ |z − ζ||z̄ − ζ|
+ 2|z − ζ|

∣∣∣∣∂F (z, ζ)

∂ζ

∣∣∣∣
≤ C
|z − ζ|
|z̄ − ζ|

≤ C ′ρz(ζ),

where the constant C ′ depends only on the neighborhood U . The proof in the hyperbolic
case is thus complete.

(The case of compact Riemann surfaces with punctures.) Let E be the chosen extremal
fundamental solution of X. Fix p ∈ X and choose r so large that the set X − Dr(z) is
a union of punctured disks U1, ..., UN . We may think of each Uj as sitting in C, with the
puncture at the origin.

12



Since Dr(z) ⊂⊂ X, each x ∈ Dr(z) has a neighborhood U for which the expression (16) is
bounded above and below by positive constants, depending only on U , whenever ρz(ζ) < σ
for some sufficiently small σ again depending only on U . Indeed, in any such neighborhood
the function h is very regular, and ρz(ζ) is uniformly comparable to |z − ζ|.

Next, for all but one of the punctures, our kernel is again regular by our choices. (See the
remark in the first paragraph of Section 2.) Thus we may focus on the one puncture where
we have a singularity, which we call Uj.

For z, ζ ∈ Uj, the Evans kernel has the form

E(z, ζ) = log |z − ζ| − log |ζ|+ F (z, ζ),(17)

where F (z, ζ) is smooth across the origin (see [NS-70]). Indeed, using the method of con-
structing harmonic differentials with prescribed singularities (see [SS-54] §2.7) we can con-
struct a function with the right singularities, defined everywhere on X̄. Such a function
clearly can be written in the form (17) near the puncture. Thus by the uniqueness of the
Evans kernel for a surface with a single puncture, this function must differ from E by a
constant.

It follows that in U ,

h(z, ζ)− h(ζ, ζ) ∼ 1, 2
∂h(z, ζ)

∂ζ
= −1

ζ
+
∂F (z, ζ)

∂ζ

and

ρz(ζ) ≥ C
|z − ζ|
|ζ|

.

Thus ∣∣∣∣2(ζ − z)
∂h(z, ζ)

∂ζ

∣∣∣∣ ≤ |z − ζ||ζ|
+ 2|z − ζ|

∣∣∣∣∂F (z, ζ)

∂ζ

∣∣∣∣
≤ C
|z − ζ|
|ζ|

≤ C ′ρz(ζ),

where again the constant C ′ depends only on the neighborhood U . The proof of Theorem
4.1 is thus complete. �

Proposition 4.2. Let X be a finite Riemann surface. Then there exists a constant C such
that, for sufficiently small σ > 0 and all z ∈ X,

sup
w∈Dσ(z)

exp

(
4

π

∫
D2σ(z)

−G(w, ζ)e−ν(ζ)

)
(18)

≤ C inf
w∈Dσ(z)

exp

(
4

π

∫
D2σ(z)

−G(w, ζ)e−ν(ζ)

)
< +∞,

where G is the Green’s function for the domain D2σ(z).

Sketch of proof. Once again we can use compactness properties of finite surfaces. The finite-
ness of the integrals in question is easy, since extremal fundamental solutions have only a
logarithmic singularity, and are thus locally integrable. Thus we restrict ourselves to esti-
mating near the boundary.

13



The local analysis used in the proof of Theorem 4.1 shows that, near the boundary, the
disks Dσ(z) are simply connected and that the metric e−ν is equivalent to the Poincaré metric
of the disk in the hyperbolic case, and the metric |z|−2|dz|2 in the parabolic case.

The hyperbolic case follows from the fact that the Green’s function G(w, ζ) is comparable
to the Green’s function of the disk. In the parabolic case it is easier to work with the com-
plement of the unit disk rather than the punctured disk. Then the metric e−ν is comparable
to the Euclidean metric, the Green’s function G(w, ζ) is comparable to the Green’s function
of the plane, and the necessary estimate follows as in the Euclidean case. This completes
the sketch of proof. �

Lemma 4.3. Let X be a finite Riemann surface. Let σ > 0 be a fixed, sufficiently small
constant. If ϕ is a function for which eν∆ϕ is bounded above and below by positive constants,
then there is a constant C = Cσ such that, for all z ∈ X and all w ∈ Dσ(z),

exp

(
4

π

∫
D2σ(z)

−G(w, ζ)∆ϕ(ζ)

)
≤ C(19)

Proof. By Theorem 4.1, Proposition 4.2 and the boundedness of ∆ϕ, it suffices to prove the
result when ∆ϕ(ζ) = dρz(ζ) ∧ ∗dρz(ζ) and w = z. In this case, it is easy to show that the
integral is equal to 8σ2. �

The next result we will need is a global version of the Cauchy estimates on a Riemann
surface with Riemannian metric.

Proposition 4.4. Let X be a finite Riemann surface and let g be a conformal metric for X.
Then for every σ ∈ [0, RX) and ε > 0 there exists a constant Cε,σ such that for any x ∈ X
the following Cauchy estimates hold.

(20) sup
Dε(x)

|h|2 ≤ Cε,σ

∫
Dσ(x)

|h|2dAg,

and

(21) sup
Dε(x)

|∂ρx|−2|h′|2 ≤ Cε,σ

∫
Dσ(x)

|h|2dAg.

To establish Proposition 4.4, we need the following lemma.

Lemma 4.5. Let X be a finite Riemann surface. Then for every x ∈ X there exists a function
Kx : X ×X → R such that the following hold for any σ ∈ [0, RX):

(1) In the sense of distributions, ∆zK
x(z, ζ) = π

2
δz(ζ) for all z, ζ ∈ Dσ(x).

(2) For every ε < σ/4 there exists a constant Cε,σ such that for any x ∈ X the following
estimates hold:

sup
z∈Dε(x)

∫
Vσ(x)

eψ
∣∣∣∣∂ρx∂ζ ∂Kx(z, ζ)

∂ζ

∣∣∣∣2 ≤ Cε,σ(22)

sup
z∈Dε(x)

|∂ρx(z)|−2

∫
Vσ(x)

eψ|∂ρx|2
∣∣∣∣∂2Kx(z, ζ)

∂z∂ζ

∣∣∣∣2 ≤ Cε,σ(23)

Here Vσ(x) := Dσ(x)−Dσ/2(x).
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Sketch of proof. In the case of a bordered Riemann surface with a finite number of punctures,
one can find a function Kx that does not depend on the point x. This is done as follows.
Let Y be the double of X, and fix any smooth distance function on Y . We let Xε be the
set of all x ∈ Y that are a distance less than ε from X. For ε sufficiently small, Xε −X is
a finite collection of annuli whose inner boundaries form the boundary of X. We may take
for our Cauchy-Green kernel the Green’s function of Xε. We leave it to the reader to check
that the relevant estimates hold.

In the case of an N -punctured compact Riemann surface, one decomposes X as

X = Xcore ∪
N⋃
j=1

Uj,

where Xcore is a bordered Riemann surface, and each Uj is a neighborhood of a puncture
biholomorphic to the punctured disk. Each surface in the union has a Cauchy-Green kernel
by the construction in the bordered Riemann surface case, and thus we are done. �

Proof of Proposition 4.4. Let f ∈ C∞0 (Dσ(x)) and writeKx
z (ζ) = Kx(z, ζ). Applying formula

(1) with h(ζ) = Kx
z (ζ), we obtain

π

2
f(z) =

∫
Dσ(x)

Kx
z d∂̄f =

∫
Dσ(x)

∂̄f ∧ ∂Kx
z .

Now let ε < σ/4 and let χ ∈ C∞0 ([0, 3σ/4)) be such that

χ|[0, σ/2] ≡ 1 and sup |χ′| ≤ 5

σ
.

If h ∈ O(Dσ(x)), then with z ∈ Dε(x) we have

h(z) =

∫
Dσ(x)

hχ′(ρx)∂̄ρx ∧ ∂Kx
z .(24)

An application of the Cauchy-Schwarz inequality and the estimate (22) gives the inequality
(20), while differentiation of (24) followed by an application of the Cauchy-Schwarz inequality
and the estimate (23) gives inequality (21). �

Remark. Note that were it not for the requirement that Cε,σ be independent of x, Propo-
sition 4.4 would follow without (22) and (23).

Discrete subsets in finite Riemann surfaces. Let X be an open Riemann surface. Our
work on sampling and interpolation sequences requires the notion of the separation of a
sequence. For a measurable subset A ⊂ X, let

Dr(A) = {w ∈ X ; w ∈ Dr(a) for some a ∈ A}.
We define two separation conditions on a sequence Γ, both of which are given in terms of
the distance induced by the extremal fundamental solution.

Definition 4.6. Let Γ ⊂ X be a discrete set.

(1) The separation constant of Γ is the number

σ(Γ) := sup{r ; Dr(γ) ∩Dr(γ
′) = ∅},

and say that Γ is uniformly separated if σ(Γ) > 0.
15



(2) We say Γ is sparse if there is a positive constant Nr,ε, depending only on 0 < r, ε <
RX , such that the number of points of Γ lying in the set Dr(Dε(z)) is at most Nr,ε

for all z ∈ X.

In both the complex plane and the unit disk, the triangle inequality allows one to estimate
the diameter of a set Dε(Dr(a)) in terms of ε and r, and thus show that a uniformly separated
sequence is sparse.

Such an diameter estimate can always be found if it is allowed to depend on the base
point a. This situation can be made uniform when X is a finite Riemann surface. As
in the proofs of Theorem 4.1 and Propositions 4.2 and 4.4, we can take advantage of the
compactness in the picture. In particular, we have uniform estimates if we have them in
neighborhoods of the boundary. But on the boundary, the potential theory of X is either
like that (near the boundary) of the upper half plane or (near infinity) of the plane, where
we know, from triangle inequalities in those cases, that the needed estimates hold. We thus
have the following proposition.

Proposition 4.7. In a finite Riemann surface X every uniformly separated sequence is
sparse.

Remark. We do not know whether Proposition 4.7 holds if one removes the finiteness
condition.

5. Compact Riemann surfaces

Cohomological criterion for interpolation and sampling. Let X then be a compact
Riemann surface and let V → X be a holomorphic line bundle. We denote by Vx the fiber
of V over x ∈ X. Then Γ is interpolating if and only if the evaluation map

H0(X,L) 3 s 7→
∑
γ∈Γ

s(γ) ∈
⊕
γ∈Γ

Vγ(25)

is surjective, and sampling if and only if (25) is injective.
Let Λ be the line bundle corresponding to the effective divisor Γ. One can understand the

situation completely using the short exact sequence of sheaves

0→ OX(L⊗ Λ∗)→ OX(L)→
⊕
γ∈Γ

Vγ → 0,

where Vγ(U) = Vγ if γ ∈ U and Vγ(U) = 0 if γ 6∈ U . Passing to the long exact sequence, we
have that

0→ H0(X,L⊗ Λ∗)
i0−→H0(X,L)

eΓ−→
⊕
γ∈Γ

Vγ
δ0−→H1(X,L⊗ Λ∗)

i1−→H1(X,L)→ ...

We see that e is injective if and only if Image(i0) = {0} and surjective if and only if i1 is
injective, i.e., Image(δ0) = {0}. We then have the following proposition.

Proposition 5.1. Let X be a compact Riemann surface of genus g, Γ ⊂ X a finite subset
and L→ X a holomorphic line bundle.

(1) If #Γ < deg(L) + 2− 2g, then Γ is interpolating.
(2) If #Γ > deg(L), then Γ is sampling.
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Proof. To establish 1, note that by Serre duality, h1(X,L⊗Λ∗) = h0(X,KX ⊗Λ⊗L∗), and
the latter vanishes if

#Γ + 2g − 2− deg(L) = deg(KX ⊗ Λ⊗ L∗) < 0.

Similarly, if deg(L)−#Γ = deg(L⊗ Λ∗) < 0, then h0(X,L⊗ Λ∗) = 0. �

Analytic proof of Proposition 5.1(1). Part (1) of Proposition 5.1 can also be proved
using Theorem 2.6. Because it is similar to the proof of our main interpolation theorem, we
sketch this method here.

Analytic proof of Proposition 5.1.1. Let
∑
vγ ∈

⊕
Vγ. First, observe that there is a smooth

section η of L such that η(γ) = vγ for all γ ∈ Γ. In fact, by the usual cutoff method, we can
take η supported near Γ and holomorphic in a neighborhood of Γ.

Fix a conformal metric e−ψ|dz|2 on X. Let τ be the canonical section of Λ corresponding
to the divisor Γ. By the degree hypothesis, there is a metric e−ϕ for the line bundle L⊗ Λ∗

such that the curvature
√
−1∂∂̄(ϕ + ψ) of L ⊗ Λ∗ ⊗ K∗X is strictly positive on X. Then

e−ϕ/|τ |2 is a singular metric for L such that the curvature current of e−(ϕ+ψ)/|τ |2 is still
strictly positive on X. Moreover, since η is holomorphic in a neighborhood of Γ, we have∫
X
|∂̄η|2|τ |−2e−ϕ < +∞. By Hörmander’s Theorem there is a section u of L such that ∂̄u = ∂̄η

and
∫
X
|u|2|τ |−2e−(ϕ+ψ) < +∞. But since τ vanishes on Γ, so does u. Thus σ = η − u is

holomorphic and solves the interpolation problem. �

Remark. We note that if e−ϕ is a metric for a holomorphic line bundle L, then

deg(L) =
1

4π

∫
X

∆ϕ.

This fact shows the resemblance between Proposition 5.1 and our main theorems.

6. Functions and singular weights

A local construction of a holomorphic function. In the proofs of Theorems 1 and 2
we will need, for each γ ∈ Γ, a holomorphic function defined in a neighborhood of γ and
satisfying certain global estimates. For reasons that will become clear later, the size of
this neighborhood cannot be taken too small. As a consequence, we must overcome certain
difficulties presented by the topology of the neighborhood.

Lemma 6.1. Let X be a finite open Riemann surface. Assume eν∆ϕ is bounded above and
below by positive constants. Let Γ be a uniformly separated sequence. Then there exists a
constant C = CΓ > 0 and, for each γ ∈ Γ, a holomorphic function Fγ ∈ O(Dσ(γ)) such that
Fγ(γ) = 0 and for all z ∈ Dσ(γ),

(26)
1

C
e−ϕ(γ) ≤

∣∣e−ϕ+2Fγ
∣∣ ≤ Ce−ϕ(γ).

Proof. Let G be the Green’s function for the domain D2σ(γ). Consider the function

Tγ(z) :=
1

π

∫
D2σ(γ)

−G(z, ζ)∆ϕ(ζ).

By Green’s formula, we have that

2Tγ(z) = −ϕ(z) +
1

2π

∫
S2σ(γ)

ϕ(ζ) ∗ dζG(z, ζ).
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We claim that the harmonic function

hγ :=
1

2π

∫
S2σ(γ)

ϕ(ζ) ∗ dζG(z, ζ)

has a harmonic conjugate, i.e., it is the real part of a holomorphic function. Indeed, if C is
a Jordan curve in Dr(γ), then∫

C
∗dhγ(z) =

1

2π

∫
S2σ(γ)

ϕ(ζ) ∗ dζ
(∫
C
∗dzG(z, ζ)

)
.(27)

Since S2σ(γ) ∩ C = ∅, the function z 7→ G(z, ζ) is harmonic and thus ∗dzG(z, ζ) is a closed
form. It follows that the term in the parentheses on the right hand side of (27) depends
only on the homology class [C] ∈ H1(X,Z). Since H1(X,Z) is discrete and ∗dzG(z, ζ) is
continuous in ζ, we see that the right hand side of (27) vanishes, as claimed.

Let

Hγ := hγ +
√
−1

∫ z

γ

∗dhγ

be the holomorphic function whose real part is hγ, and let Fγ := Hγ −Hγ(γ). We have

|ϕ(γ)− ϕ(z) + 2Re Fγ(z)| = 2 |Tγ(γ)− Tγ(z)| ≤ 2|Tγ(γ)|+ |Tγ(z)|.
Taking exponentials and applying Lemma 4.3 completes the proof. �

A function with poles along Γ. For z, ζ ∈ X and r < RX , let

I(ζ, z) =

∫
X

ξr(ζ, w)E(w, z)e−ν(w)
√
−1dw ∧ dw̄

=
1

cr

∫ r

a

tf(t)

(∫
St(ζ)

E(w, z) ∗ dEζ(w)

)
dt.

Since E is a fundamental solution to the Laplacian,

eν(z)∆zI(ζ, z) =
π

2

∫
X

ξr(ζ, w)δz(w) =
π

2
ξr(ζ, z).

Next it follows from (5) that, since E(·, z) is subharmonic, E(ζ, z) ≤ I(ζ, z) and, since E(·, z)
is harmonic in the region {w ∈ X : ρζ(w) > r}, E(ζ, z) = I(ζ, z) if ρz(ζ) > r. Moreover, in
view of (2), an application of (3) shows that

1

2π

∫
St(ζ)

E(w, z) ∗ dEζ(w) = E(z, ζ)− 1Dt(z)(ζ) (E(z, ζ)− log t) .

We see that

I(ζ, z) =
2π

cr

(
log(ρz(ζ))

∫ ρz(ζ)

0

tf(t)dt+

∫ r

ρz(ζ)

tf(t) log tdt

)
if ρz(ζ) < r. Note that ∣∣∣∣ 1

cr

∫ r

ρz(ζ)

tf(t) log(t)dt

∣∣∣∣ ≤ Dr,

where Dr depends only on r. We then have

|I(ζ, z)| ≤ Krρz(ζ) |log(ρz(ζ))|+Dr

18



for all z, ζ ∈ X satisfying ρz(ζ) < r. Since the expression on the right hand side is bounded
by a constant that depends only on r, we have

|I(ζ, z)| ≤ Cr(28)

whenever ρz(ζ) < r.
Let Γ be a discrete sequence. We define the function

vr(z) =
∑
γ∈Γ

(E(γ, z)− I(γ, z)) .

By the preceding remarks, vr(z) ≤ 0 and

vr(z) =
∑

γ∈Γ∩Dr(z)

(E(γ, z)− I(γ, z)) .

Moreover,

eν∆vr =
π

2

∑
γ∈Γ

(eνδγ − ξr(γ, ·)).(29)

Writing

XΓ,ε :=

{
z ∈ X ; min

γ∈Γ
ργ(z) > ε

}
,

we have the following lemma.

Lemma 6.2. Let Γ be a sparse, uniformly separated sequence and let ε ≤ σ(Γ). The function
vr is uniformly bounded on XΓ,ε. Moreover, vr satisfies the following estimate: if γ ∈ Γ and
ργ(z) < σ, then

|vr(z)− log ργ(z)| ≤ Cr,ε.(30)

Proof. Let z ∈ XΓ,ε. Since Γ is sparse, there are at most N = Nr,0 members of Γ, say
γ1, . . . , γN , lying in Dr(z), and so

|vr(z)| ≤
N∑
j=1

(|E(γj, z)|+ |I(γj, z)|) ≤
N∑
j=1

(|log(ρz(γj))|+ Cr) .

Note that the number N does not depend on z. Since ε < ρz(γj) < r, the term involving
the logarithm has a bound that depends only on ε and r. We thus see that vr is uniformly
bounded on XΓ,ε.

Let γ ∈ Γ. Since Γ is sparse, there are at most N = Nr,ε elements of Γ that lie in
Dr(Dε(γ)). We write Γ ∩ Dr(Dε(γ)) = {γ1, . . . , γN}, where γ1 = γ. Again, N does not
depend on z. Then

|vr(z)− log ρz(γ)| ≤

(
N∑
j=2

|E(γj, z)|+
N∑
j=1

|I(γj, z)|

)
+ |E(γ, z)− log ρz(γ)|.

The first sum is bounded because σ(Γ) < ρz(γj) < r for j = 2, . . . , N . The second sum is
bounded by (28), and the third term vanishes. This completes the proof of the lemma. �
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A function with bumps along Γ. Let

dAE,γ(ζ) := dργ(ζ) ∧ ∗dργ(ζ) and AE,γ(D) :=

∫
D

dAE,γ.

Given a distribution f , we consider its regularization

1

AE,γ(Dε(z))

∫
Dε(z)

fdAE,γ

using the area element dAE,γ, where γ ∈ Γ.
Observe that

AE,γ(Dε(γ)) =

∫
Dε(γ)

dργ ∧ ∗dργ =

∫
Dε(γ)

ργdργ ∧ ∗dE(γ, ·)

=

∫ ε

0

t

(∫
St(γ)

∗dE(γ, ·)
)
dt = 2π

∫ ε

0

t dt = πε2.(31)

Consider the function

vr,ε(z) = t
∑
γ∈Γ

1

πε2

∫
Dε(γ)

(E(ζ, z)− I(ζ, z)) dAE,γ(ζ)

where 0 << t < 1.

Lemma 6.3. The function vr,ε has the following properties.

(1)

eν(z)∆vr,ε(z) = t
∑
γ∈Γ

1

2ε2
eν(z)|dργ(z)|21Dε(z)

−t
∑
γ∈Γ

1

2ε2

∫
Dε(γ)

ξr(·, z)dAE,γ.

In particular,

lim
ε→0

eν∆vr,ε =
π

2
t
∑
γ∈Γ

(eνδγ − ξr(γ, ·))

in the sense of distributions.
(2) There exists a positive constant Cr,ε such that

z ∈ X ⇒ −Cr,ε ≤ vr,ε(z) ≤ 0(32)

and for any γ ∈ Γ,

ργ(z) < ε ⇒
∣∣∣∣ vr,ε(z)− t

πε2

∫
Dε(γ)

E(ζ, z)dAE,γ(ζ)

∣∣∣∣ ≤ Cr,ε(33)

Proof. 1. The formula for the Laplacian is a straightforward calculation, and the limit is a
standard consequence of the regularization of currents.

2. Since E(ζ, z) = I(ζ, z) whenever ρz(ζ) > r, we have, in view of formula (31),

vr,ε(z) =
∑

γ∈Dε(Dr(z))

t

πε2

∫
Dε(γ)

(E(ζ, z)− I(ζ, z)) dAE,γ(ζ).
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Choose γ ∈ Γ. Since Γ is sparse, there exist γ1, ..., γN ∈ Γ− {γ} such that for all z ∈ Dε(γ)

vr,ε(z) =
t

πε2

∫
Dε(γ)

(E(ζ, z)− I(ζ, z)) dAE,γ

+
N∑
j=1

t

πε2

∫
Dε(γj)

(E(ζ, z)− I(ζ, z)) dAE,γj

Moreover, N is independent of γ, and depends only on r and ε. It follows that∣∣∣∣vr,ε(z)− t

πε2

∫
Dε(γ)

E(·, z)dAE,γ
∣∣∣∣

≤ t

πε2

∫
Dε(γ)

|I(·, z)|dAE,γ +
N∑
j=1

t

πε2

∫
Dε(γj)

(|E(·, z)|+ |I(·, z)|) dAE,γj .

We have estimates for I(ζ, z) as in the proof of Lemma 6.2, and since, by uniform separation,
ρz(ζ) > σ for any ζ ∈ Dε(γj), we can estimate the right hand side by a constant that
depends only on r. This proves (33), and (32) follows from (33), Lemma 6.2 and the fact
that vr ≤ 0. �

Lemma 6.4. For any z ∈ Dε(γ),

1

AE,γ(Dε(γ))

∫
Dε(γ)

E(z, ζ)dAE,γ(ζ) ≤ log
1

ε
+

1

2
.(34)

Proof. Observe that if z ∈ Dε(γ) and t ∈ (0, ε], then∫
St(γ)

∗dζE(z, ζ) =

∫
Dt(γ)

dζ ∗ dζE(z, ζ) = 2π1Dt(γ)(z) ≤ 2π.

Applying Green’s formula (1) with f = E(z, ·) and h = E(γ, ·), we obtain∫
St(γ)

E(z, ζ) ∗ dζE(γ, ζ) =

∫
St(γ)

E(γ, ζ) ∗ dζE(z, ζ).

We thus have

−
∫
Dε(γ)

log ρzdργ ∧ ∗dργ = −
∫ ε

0

t

(∫
St(γ)

E(z, ζ) ∗ dζE(γ, ζ)

)
dt

= −
∫ ε

0

t

(∫
St(γ)

E(γ, ζ) ∗ dζE(z, ζ)

)
dt

= −
∫ ε

0

t log t

(∫
St(γ)

∗dζE(z, ζ)

)
dt

≤ −2π

∫ ε

0

t log tdt = πε2

(
1

2
− log ε

)
.

The lemma now follows from (31). �
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7. Proof of Theorem 1

Let (sγ) ∈ B2
Γ(ϕ, g). We first construct a smooth function η ∈ L2(X, e−ϕdAg) that

interpolates (sγ). To this end, let χ ∈ C∞0 ([0, σ)) satisfy

0 ≤ χ ≤ 1, χ|[0, σ/2] ≡ 1 and |χ′| ≤ 3

σ
.

We define

η(z) :=
∑
γ∈Γ

χ ◦ ργ(z)sγe
Fγ(z),

where Fγ is as in Lemma 6.1. Observe that η(γ) = sγ for all γ ∈ Γ, and that∫
X

|η|2e−ϕdAg =
∑
γ∈Γ

|sγ|2
∫
Dσ(γ)

|χ ◦ ργ|2
∣∣e2Fγ−ϕ

∣∣ dAg
≤ C

∑
γ∈Γ

|sγ|2e−ϕ(γ)Ag(Dσ(γ)) < +∞.

Next we wish to correct η by adding to it a function U that lies in L2(X, e−ϕdAg) and
vanishes along Γ. The so-called Hörmander-Bombieri-Skoda technique is to solve the equa-
tion ∂̄U = ∂̄η with singular weights, using Theorem 2.6. We will use the singular weight
ϕ̃ := ϕ+ vr. Lemma 6.2 implies that ϕ̃ is comparable to ϕ on the support of ∂̄η, which lies
in Vσ(γ) := Dσ(γ)−Dσ

2
(γ). One computes that

∂̄η =
∑
γ∈Γ

χ′(ργ)∂̄ργsγe
Fγ .(35)

and thus we then have the estimate∫
X

|∂̄η|2τψe−ϕ̃ ≤
C

σ2

∑
γ∈Γ

|sγ|2e−ϕ(γ)

∫
Vσ(γ)

|∂̄ργ|2τψ

≤ C

σ2

∑
γ∈Γ

|sγ|2e−ϕ(γ)

∫
Dσ(γ)

eν |∂̄ργ|2e−ψ

≤ C ′
∑
γ∈Γ

|sγ|2e−ϕ(γ)

∫
Dσ(γ)

e−ψ

< +∞,

where the first inequality follows from Lemma 6.1 and the second to last inequality follows
from (15).

Since D+
f (Γ) < 1, there exist r < RX and δ > 0 such that

eν(∆ϕ̃+ Θψ) = eν(∆ϕ+ Θψ) + eν∆vr

≥ eν(∆ϕ+ Θψ)

(
1−

∑
γ∈Γ

π
2
ξr(·, γ)

eν(∆ϕ+ Θψ)

)
> δeν(∆ϕ+ Θψ),
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where the first inequality follows from (29). It follows from the admissibility of the metric
e−ψ|dz|2 that for ε > 0 sufficiently small there exists δ > 0 such that

eν

(
∆ϕ̃+ ∆ψ − ∆τψ

τψ
− ε

τ 2
ψ

∣∣∣∂τψ∂z ∣∣∣2
)

= eψ
(
τψ(∆ϕ̃+ ∆ψ)−∆τψ −

ε

τψ

∣∣∣∂τψ∂z ∣∣∣2) > δ.

By Ohsawa’s Theorem 2.6, there is a function U ∈ L2(X, e−ϕ̃dAg) ⊂ L2(X, e−ϕdAg) such
that ∂̄U = ∂̄η. Moreover, since e−ϕ̃ ∼ 1

|z−γ|2 for z sufficiently close to γ, we see that U(γ) = 0

for all γ ∈ Γ. Thus the function

f := η − U ∈ B2
X(ϕ, g)

interpolates (sγ), and the proof of Theorem 1 is complete.

8. Proof of Theorem 2

Let ϕ̂ := ϕ+ vr,ε.

Lemma 8.1. Let g = e−ψ|dz|2 be an admissible metric. For each h ∈ B2
X(ϕ̂, g),∫

X

|h|2e−ϕ̂eν (∆ϕ̂+ Θψ) dAg ≥ 0.(36)

Proof. Consider the function S = |h|2e−(ϕ̂+ψ). Then

∆S

S
= ∆ logS +

1

S2
|∂S|2 =

1

S2
|∂S|2 + ∆ log |h|2 −∆(ϕ̂+ ψ)

and thus
eν∆S ≥ −Seν∆(ϕ̂+ ψ).

We claim that ∫
X

eν∆S dAg =

∫
X

S∆τψ.

To prove the claim, let z0 ∈ X. Take λ ∈ C∞0 ([0, 1/2]) such that λ(t) ≡ 1 for 0 ≤ t ≤ 1/4,
and put

χa(r) := λ(r2(1− a)).

Then ∫
X

e−(ψ−ν)∆S =

∫
X

τψ∆S

= lim
a↗1

∫
X

τψχa ◦ ρz0∆S

= lim
a↗1

∫
X

S∆ (τψ · (χa ◦ ρz0))

= lim
a↗1

∫
X

S
(
(∆τψ)χa ◦ ρz0 + (∂τψ) ∧ ∂̄(χa ◦ ρz0)

+(∂̄τψ) ∧ ∂(χa ◦ ρz0) + τψ∆(χa ◦ ρz0)
)

= lim
a↗1

∫
X

S ((∆τψ)χa ◦ ρz0 + τψ∆(χa ◦ ρz0)) ,
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where the third equality follows from Stokes’ Theorem. Now,

lim
a↗1

∫
X

Sτψ∆(χa ◦ ρz0)

= lim
a↗1

∫
X

Sτψ
(
χ′′a(ρz0)|∂ρz0|2 + χ′a(ρz0)∆ρz0

)
= lim

a↗1

∫
X

Sτψ

(
χ′′a(ρz0) +

χ′a(ρz0)

ρz0

)
|∂ρz0|2

= lim
a↗1

∫
X

|h|2e−ϕ̂
(
χ′′a(ρz0) +

χ′a(ρz0)

ρz0

)
eν |∂ρz0 |2dAg = 0,

where the last equality follows from (15) and the definition of χa. Thus we have∫
X

τψ∆S =

∫
X

S∆τψ,

as claimed. Now, ∫
X

S∆τψ = Seν
(

∆τψ
τψ

)
dAg.

It follows that∫
X

Seν(∆ϕ̂+ Θψ)dAg =

∫
X

Seν
(
∆(ϕ̂+ ψ)− ∆τ

τ

)
dAg

=

∫
X

Seν∆(ϕ̂+ ψ)dAg −
∫
X

eν∆SdAg ≥ 0.

The proof is complete. �

Conclusion of the proof of Theorem 2. Let h ∈ B2
X(ϕ, g). By Lemma 6.3,

eν(z)(∆ϕ̂+ Θψ)(z) = eν(z)(∆ϕ+ Θψ)(z) + eν(z)∆vr,ε(z)

= eν(z)(∆ϕ+ Θψ)(z)

(
1− t

∑
γ∈Γ

1

2ε2

∫
Dε(γ)

ξr(ζ, z)

eν(z)(∆ϕ+ Θψ)(z)
dAE,γ(ζ)

+t
∑
γ∈Γ

1

ε2

eψ(z)|∂ργ(z)|2

eν(z)(∆ϕ+ Θψ)(z)
1Dε(γ)(z)

)
.

Applying the hypotheses D−f (Γ) > 1, the admissibility and g and the estimate (15), we see
therefore that, for t sufficiently close to 1, there exist r, δ, C > 0 such that

eν(∆ϕ̂+ Θψ) ≤ −teν(∆ϕ+ Θψ)

(
δ − C

∑
γ∈Γ

e2ψ 2

ε2
1Dε(γ)

)
.(37)
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We then apply Lemma 8.1 to get

∫
X

|h|2e−ϕdAg ≤
∫
X

|h|2e−ϕ̂dAg

≤ C

∫
X

eν(∆ϕ+ Θψ)|h|2e−ϕ̂dAg

≤ C ′
∑
γ∈Γ

2

ε2

∫
Dε(γ)

eν(∆ϕ+ Θψ)|h|2e−ϕ̂dAg

≤ C ′′
∑
γ∈Γ

2

ε2

∫
Dε(γ)

|h|2e−ϕ̂dAg

≤ C ′′′
∑
γ∈Γ

2

ε2+2t

∫
Dε(γ)

|h|2e−ϕdAg,

where the first inequality follows from Lemma 6.3, the third inequality follows from integra-
tion of (37) together with Lemma 8.1 and the last inequality follows from Lemmas 6.3 and
6.4. Now,

∫
Dε(γ)

|h|2e−ϕdAg =

∫
Dε(γ)

|he−Fγ |2e−ϕ+2ReFγdAg

≤ Ce−ϕ(γ)

∫
Dε(γ)

|he−Fγ |2dAg

≤ C ′Ag(Dε(γ))e−ϕ(γ)

(
|h(γ)|2+ε2 sup

Dε(γ)

∣∣(he−Fγ )′∣∣2
|∂ργ|2

)
≤ C ′Ag(Dε(γ))e−ϕ(γ)

×
(
|h(γ)|2 + ε2Cε,σ

∫
Dσ(γ)

|he−Fγ |2dAg
)

≤ C ′Ag(Dσ(γ))e−ϕ(γ)|h(γ)|2

+ε2C ′′Ag(Dε(γ))

∫
Dσ(γ)

|h|2e−ϕdAg,

where the first and last inequalities follow from Lemma 6.1, the second inequality follows
from Taylor’s theorem, and the third inequality from the Cauchy estimate (21).

Next, since e−ψ ≤ Ce−ν for some C > 0, we see by Theorem 4.1 that

Ag(Dε(γ)) ≤ C

∫
Dε(γ)

e−ν ≤ Co

∫
Dε(γ)

|∂ργ|2 = πCoε
2
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for all sufficiently small ε and some C independent of γ, where the last equality follows from
(31). We thus obtain∫

X

|h|2e−ϕdAg

≤
∑
γ∈Γ

(
C1

ε2+2t
|h(γ)|2e−ϕ(γ)Ag(Dσ(γ)) + C2ε

2−2t

∫
Dσ(γ)

|h|2e−ϕdAg
)

≤
∑
γ∈Γ

(
C1

ε2+2t
|h(γ)|2e−ϕ(γ)Ag(Dσ(γ))

)
+ C2ε

2−2t

∫
X

|h|2e−ϕdAg.

By taking ε sufficiently small, we obtain the left hand side of the sampling inequality in
Definition 1.1(2). For the right hand side of the sampling inequality, we argue as follows.∑

γ∈Γ

|h(γ)|2e−ϕ(γ)Ag(Dσ(γ)) =
∑
γ∈Γ

|h(γ)e−Fγ(γ)|2e−ϕ(γ)Ag(Dσ(γ))

≤ Cσ2
∑
γ∈Γ

e−ϕ(γ)

∫
Dσ(γ)

|he−Fγ |2dAg

≤ C ′
∑
γ∈Γ

∫
Dσ(γ)

|h|2e−ϕdAg

≤ C ′′
∫
X

|h|2e−ϕdAg,

where the first inequality follows from (20), the second from Lemma 6.1 and the third from
the definition of the separation constant. This proves Theorem 2. �
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