
BERGMAN INTERPOLATION ON FINITE RIEMANN SURFACES.
PART II: POINCARÉ-HYPERBOLIC CASE
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ABSTRACT. We formulate the Bergman-type interpolation problem on finite open Riemann surfaces covered
by the unit disk. Our version of the interpolation problem generalizes Bergman-type interpolation problems
previously studied by Seip, Berntsson, Ortega Cerdà, and a number of other authors. We then prove sufficient
conditions for a sequence to be interpolating. When the curvature of the weight in question is bounded in an
appropriate sense, we show that the sufficient conditions are almost necessary, but not quite. The results extend
work of Ortega Cerdà, who resolved the case in which the boundary of the surface is pure 1-dimensional.
Our version of the interpolation problem effectively changes the geometry of the underlying space near the
0-dimensional boundary components, or punctures, thereby linking in a crucial way with the previous article in
this two-part series.

INTRODUCTION

In this sequel to our paper [V-2015], we continue our investigation of interpolation in Bergman spaces
over finite Riemann surfaces. Recall that for an open Riemann surface X with conformal metric ω and
weight function ψ, we defined the so-called (generalized) Bergman space

H 2(X, e−ψω) :=

{
g ∈ O(X) ;

∫
X
|g|2e−ψω < +∞

}
.

In [V-2015] we defined another Hilbert space that measures the size of data along a closed discrete subset
Γ ⊂ X . In the present article, we change this Hilbert space slightly. To define this slightly modified Hilbert
space, we first recall that the pointwise injectivity radius of x ∈ X is the number

ιω(x) := sup {r > 0 ; Dω
r (x) is contractible} ,

where Dω
r (x) denotes the set of all points whose ω-geodesic distance to x is less than r. We define

ι̂ω(x) := min(ιω(x), 1),

and let

Aω(x) :=

∫
Dι̂ω(x)(x)

ω

be the ω-area of the disk Dι̂ω(x)(x). Finally, given a closed discrete subset Γ ⊂ X , we set

`2(Γ, e−ψ) :=

f : Γ→ C ;
∑
γ∈Γ

|f(γ)|2e−ψ(γ)Aω(γ) < +∞

 .

REMARK. When (X,ω) is asymptotically flat, which was the case in [V-2015], the areas Aω(γ) are uni-
formly bounded above and below by a positive constants, and thus, from the point of view of the interpolation
problem, our definitions here are essentially generalizations of those of [V-2015]. There are, of course, other
possible generalizations, but this natural definition allows us to prove rather strong results. �

We say that Γ is an interpolation sequence (for the weight function ψ and conformal metric ω) if the restric-
tion map

RΓ : H 2(X, e−ψω)→ `2(Γ, e−ψ)
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is surjective. For a given triple (X,ω, ψ), the goal is to characterize interpolation sequences Γ in terms of
geometric properties of Γ, preferably expressed using the metric ω and the weight function ψ.

In the present article, we focus on finite open Riemann surfaces X whose universal cover is the unit disk
(such Riemann surfaces were called Poincaré-hyperbolic in [V-2011]), and which have smooth bound-
ary consisting of compact, 1-dimensional boundary components (which we call border curves) and 0-
dimensional boundary components (which we call punctures). Every such Riemann surface (or more gener-
ally, every Riemann surface covered by the disk) possesses a unique metric ωP of curvature −4, which we
call the Poincaré metric (hence the name ”Poincaré-hyperbolic”).

The main result of the paper is the following theorem.

THEOREM 1. Let X be a finite open Riemann surface covered by the disk, with its Poincaré metric ωP . Let
ϕ ∈ C 2(X) be a weight function satisfying the following conditions: there exist positive constants m and
M such that

(?) each puncture pj is an isolated boundary point of an open set Pj ⊂ X that is biholomorphic to the
punctured disk, such that

4ωP (ζ) +mωjc(ζ) ≤ ∆ϕ(ζ) ≤Mωjc(ζ), ζ ∈ Pj ,

where ωjc is the cylindrical metric in Pj , and
(B) each border curve Cj is the outer boundary of an open set Aj that is biholomorphic to an annulus,

such that
mωP (ζ) ≤ ∆ϕ(ζ)− 2ωP (ζ) ≤MωP , ζ ∈ Aj .

Let Γ ⊂ X be a closed discrete subset. Then the restriction map RΓ : H 2(X, e−ϕωP ) → `2(Γ, e−ϕ) is
surjective if

(i+) Γ is uniformly separated, and
(ii+) the asymptotic upper density D+

ϕ (Γ) of Γ is strictly less than 1.
Conversely, if RΓ is surjective, then

(i-) Γ is uniformly separated, and
(ii-) D+

ϕ (Γ) ≤ 1, and if moreover X has no isolated boundary components then D+
ϕ (Γ) < 1.

A few remarks regarding the precise meaning of some of the terms in Theorem 1 are in order.
(a) The cylindrical metric in C∗ is some constant multiple of the metric ωc(z) = (2|z|2)−1

√
−1dz∧dz̄.

In a Riemann surfaceX covered by the disk, one has special coordinates near punctures; coordinates
that are adapted to the hyperbolic geometry of X inherited from the cover (cf. Section 4.1). In these
coordinates, the cylindrical metric is given by the same formula.

(b) Uniform separation of a closed discrete subset is measured with respect to the geodesic distance of
the cylindrical metric near the punctures, and of the Poincaré metric near the border curves.

(c) As in the prequel to this article, the asymptotic upper density D+
ϕ (Γ) is the least upper bound of

certain weighted densities of points of Γ in large geodesic disks (for the hyperbolic metric, except
near the puncture, in which case the disks are geodesic for the cylindrical metric), the least upper
bound being taken with respect to the centers of these disks. Later in the introduction we will give
a slightly imprecise version of the definition, and the precise definition will be given in Section 4,
after the definition of density has been given for the punctured disk.

(d) Since ϕ is smooth, there exists a smooth, positive (1, 1)-form Θ on X such that ∆ϕ ≥ −Θ.
As crucially observed by Ortega Cerdà in [O-2008], since Γ is closed and discrete, defining (and comput-

ing) the density reduces to doing so near the boundary of X . In fact, the density remains unchanged if one
discards any finite subset of the sequence in question. Therefore it essentially suffices to define density for
the Poincaré disk and the Poincaré punctured unit disk. The case of the Poincaré disk has been well-studied,
but to the author’s knowledge the case of the Poincaré punctured disk has not been directly considered in
interpolation problems until now.
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If X has no punctures (and therefore at least one border curve), Theorem 1 is due to Ortega Cerdà
[O-2008]. We shall discuss Ortega Cerdà’s theorem in more detail in Subsection 4.2. In our previous work
[SV-2008] with A. Schuster, we allowed punctures, but our results carried cumbersome hypotheses which
implied, in particular, that our sequences did not accumulate at the punctures. Essentially, punctures were
omitted in [O-2008], and were restrictive in [SV-2008], because the Green’s function was used to define
density, and Green’s functions do not see isolated boundary points, as the latter are irregular for the Dirichlet
problem. To some extent, the present article and its predecessor [V-2015] emerged from a desire to study
interpolation along sequences that could accumulate on the punctures.

REMARK. The special case where X has at least one puncture but no border curves can almost be derived,
with some work, from the main result of [V-2015]. The proof there is very similar to the proof here, but
in the present article, we can weaken somewhat the requirements on our weight functions, because the
hyperbolic geometry of the punctures lets us make use of a technique introduced by Donelly and Fefferman
[DF-1983], and further developed by Ohsawa in a number of articles ( See also [B-1996]). The technique of
Donnelly-Fefferman-Ohsawa will be presented, in its most general form, in Subsection 1.4. �

There are two important special cases of Theorem 1, namely when X = D is the unit disk, and X = D∗
is the punctured disk. The case of the unit disk, in which condition (?) of Theorem 1 is vacuous, was treated
by a number of authors. The first results are found in the work of K. Seip in the unweighted (and also the
standardly weighted) Bergman disk [Seip-93]. Berndtsson and Ortega Cerdá [BO-1995] were the first to
treat the weighted case, for which they proved sufficiency. (Berndtsson and Ortega Cerdà did not give an
explicit definition of asymptotic density in their paper, but it is effectively defined there.) To the author’s
knowledge, necessity seems never to have been completely written down in the case of the unit disk with
general weights, though in the work [OS-1998] of Ortega Cerdá and Seip there is an essentially complete
sketch of how to do it. We have therefore decided to provide complete details here, where we mostly follow
the ideas of Ortega Cerdá and Seip, with only minor modifications that suit our own taste; we consider this
part of the work to be essentially known.

To the author’s knowledge, the case of the punctured disk has never been considered before the present
article. In fact, the punctured disk case contains nearly all the ideas needed to handle the general case.
Roughly speaking, a closed discrete subset of D∗ can be written as a union of two sequences, the first of
which only accumulates at the outer boundary, or border, of D∗, and the second of which accumulates only
at the puncture. This decomposition is not unique, but the notions of uniform separation and of upper density
are both independent of the decomposition.

Near the border, a sequence in D∗ looks very much like a sequence in D, so its upper density can be
defined, after a small amount of care, as though the sequence is indeed a sequence in D. However, near the
puncture, the geometry one must consider is determined by our definition of the `2-spaces of functions on
the sequence. The rather natural definition we have chosen provides a geometry near the puncture that is
very much like the cylindrical geometry considered in [V-2015]. We import the definition of density near the
puncture from the cylindrical case, though because cylindrical geometry is essentially flat and our spaces are
negatively curved, formulating the definition of density for sequences near the puncture requires more care
than was needed near the border. Finally, the density of the sequence Γ is defined as the maximum of the
density near the puncture and the density near the border. As we mentioned earlier, the density of a sequence
is unchanged if we throw away finitely many points of the sequence, and this is the reason why the upper
density is independent of the decomposition of the sequence into border-supported and puncture-supported
subsequences.

Defining the density in the general case is now more clear. The sequence Γ is decomposed into a finite
part, and a union of ”tails”. Each tail, i.e., subsequence which accumulates near at most one boundary
component, has an upper density, and this upper density is like the upper density in the disk if the boundary
component is 1-dimensional, and like the upper density in the cylinder if the boundary component is 0-
dimensional. The upper density is then the maximum of the finite number of upper densities thus obtained.
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To establish the sufficiency of the conditions of Theorem 1 for interpolation, we actually prove a stronger
result, which we call strong sufficiency. The result we obtain is stronger in the sense that we do not require
the weight functions to be smooth, or to have Laplacian that is bounded from above. We do require the
strictly positive lower bound near the boundary, which was not always the case in [V-2015]. The reason,
vaguely speaking, is that there is at present no sharp L2 extension theorem in the setting of manifolds
that admit non-trivial functions with self-bounded gradient, i.e., in which one can apply the technique of
Donnelly-Fefferman-Ohsawa, discussed in Subsection 1.4. We hope to return to the sharp L2 extension
problem on another occasion.

The article is organized as follows.
In Section 1 we recall some background and establish notation that will be followed in the rest of the

article. In particular, we discuss metrics of constant negative curvature, and then recall the L2 extension
theorem, the Donnelly-Fefferman-Ohsawa Technique, some results on weights with bounded Laplacian in
the unit disk, and the Poisson-Jensen Formula.

In Section 2 we state and prove Theorem 1 in the case of the unit disk. As previously mentioned, this is our
own take on what is essentially work of Berndtsson, Ortega Cerdà and Seip. But perhaps most importantly,
we precisely formulate the asymptotic upper density for the unit disk.

In Section 3, which is the longest section of the article, we state and prove Theorem 1 in the case of the
punctured disk. In this section, we develop the most important parts of the article: the cylindrical geometry
of the puncture, the decomposition of sequences into those supported near the border and near the puncture,
and all the related technical machinery that is needed to treat the two types of sequences, and to glue together
data obtained from these subsequences into data for the entire sequence.

In Section 4, we begin by recalling some geometry of the ends of a finite Riemann surface with punctures.
We then have all the tools we need to complete the proof of Theorem 1, but before doing so we discuss the
special case proved by Ortega Cerdà, where X has no punctures. We then turn our attention to the proof of
Theorem 1. First, we define the asymptotic upper density. Then we establish necessity. Finally we prove a
strong sufficiency theorem as in the cases of the disk and the punctured disk, and show how it implies the
weaker form of sufficiency required for the completion of the proof of Theorem 1.

The article ends with a short section that remarks on the equivalence of our interpolation problem with
the Shapiro-Shields interpolation problem.

ACKNOWLEDGMENT. I am grateful to Henri Guenancia, Long Li, Jeff McNeal, Quim Ortega Cerdà and
Alex Schuster for many stimulating conversations both past and present, and without which this work would
not have come to be. I am also grateful to the anonymous referee for very useful and interesting remarks. �

1. BACKGROUND

Let X be a Riemann surface. We write dc =
√
−1
2 (∂̄ − ∂), and denote by

∆ := ddc =
√
−1∂∂̄

the Laplace operator (so normalized). Note that our Laplacian sends functions to (1, 1)-forms (or currents,
if the functions are only locally integrable). We denote by φz the disk involution sending 0 to z:

φz(ζ) :=
z − ζ
1− z̄ζ

.

The function
(z, w) 7→ |φz(w)| = |φw(z)|

is called the pseudohyperbolic distance between z and w in D. We denote by

Dr(z) := {ζ ∈ D ; |φz(ζ)| < r}

the pseudohyperbolic disk of radius r and center z.
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1.1. Complete metrics of constant negative curvature. Recall that if ω is a smooth conformal metric,
expressed in local coordinates z as ω = e−ψ(z)

√
−1
2 dz ∧ dz̄, then the curvature R(ω) of ω is defined as the

(global) (1, 1)-form
R(ω) = ∂∂̄ψ.

We say the curvature is constant (resp. positive, negative) if the (globally defined) function
√
−1R(ω)

ω
= 2eψ

∂2ψ

∂z∂z̄
: X → R

(sometimes also called the curvature, or Gaussian curvature) is constant (resp. positive, negative). It is
well-known that every Riemann surface admits a complete conformal metric of constant curvature. This
curvature is positive if and only if X = P1, 0 if and only if X is covered by the complex plane, and negative
if and only if X is covered by the disk. Thus no open Riemann surface has a complete metric of constant
positive curvature, and an open Riemann surface X has a complete flat metric if and only if X = C or
X = C∗. Up to homothety, in C there is a unique flat metric. In C∗ the complete flat metric is unique up to
a constant multiple. In the hyperbolic case, things are even better. If X is covered by the unit disk, then X
has a unique metric of constant curvature −4, as we now recall.

1.1.1. Existence and uniqueness of the hyperbolic metric. On the unit disk, one has the Poincaré metric

ωP :=

√
−1dz ∧ dz̄

2(1− |z|2)2
=

√
−1

2
∂∂̄ log

1

1− |z|2
,

which is complete and has constant negative curvature equal to −4. The Poincaré metric has the additional
feature that Aut(D) ⊂ Isom(ωP ). It follows that if X is a Riemann surface with covering map π : D→ X ,
then the group of deck transformations Gπ ⊂ Aut(D) consists of isometries of ωP , and thus we can push
ωP forward to X by π, obtaining a metric that we continue to denote by ωP , and also call the Poincaré
metric. We note that the metric ωP is complete on X . Explicitly,

ωP (dπ(z)ξ, dπ(z)ξ) =
|dz(ξ)|2

2(1− |z|2)2
.

REMARK 1.1. Sometimes the Riemann surface X may itself be an open subset of another Riemann surface
Y that is covered by the unit disk. In this case, there may be unnecessary confusion in the notation ωP .
Thus, when we need to specify the surface as well, we may write ωXP for the Poincaré metric of X . �

Finally, ωP is the only metric of constant curvature −4. Indeed, if ω1 and ω2 are two complete metrics
of constant negative curvature −c on X , we may lift them to the unit disk via π, and if they are equal on D,
then they are equal on X . Thus we might as well assume X = D. Write

ωi = eui
√
−1

2
dz ∧ dz̄, i = 1, 2.

The remainder of the proof is due to Ahlfors [A-1938]. We want to show that u1 = u2, and by symmetry
it suffices to show that u1 ≤ u2. To establish the latter, let fr : Dr(0) → D; z 7→ z/r and write v =

f∗r u2 +log r2. Observe that the metric ev
√
−1
2 dz∧dz̄ = f∗r ω2 has constant negative curvature−c onDr(0),

and it is also complete there. On the other hand, ω1, while having curvature −c on Dr(0), is of course not
complete there.

Let E ⊂ Dr(0) be the open set of all points where u1 > v. Set h := u1 − v. We have

∆h = c(eu1 − ev)
√
−1

2
dz ∧ dz̄.

It follows that h is subharmonic on E, and therefore cannot take its maximum in any interior point of E in
Dr(0). It must thus assume its maximum on the boundary of E. But at a boundary point of E that lies in
Dr(0), we must have u1 = v by continuity, so the maximum is not achieved in the interior of Dr(0). On the
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other hand, on the circle ∂Dr(0), h = −∞ because the metric f∗r ω2 is complete in Dr(0) while the metric
ω1 is not. It follows that E is empty, and therefore u1 ≤ v. Letting r → 1, we see that u1 ≤ u2, as desired.

1.2. Hyperbolic and pseudohyperbolic distance of D. Recall that the ωP -geodesic distance between two
points z, w ∈ D is

distP (z, w) =
1

2
log

1 + |φz(w)|
1− |φz(w)|

,

Indeed, since Aut(D) ⊂ Isom(ωP ), for an appropriate θ ∈ R we have

distP (z, w) := distP (e
√
−1θφz(z), e

√
−1θφz(w)) = dist(0, |φz(w)|).

And since the geodesics emanating from the origin are rays,

dist(0, r) =

∫ r

0

dt

1− t2
=

1

2
log

1 + r

1− r
.

It follows that the so-called pseudohyperbolic distance ρ(z, w) := |φz(w)| satisfies

|φz(w)| = e2distP (z,w) − 1

e2distP (z,w) + 1
= tanh (distP (z, w)) .

In particular, the hyperbolic distance is monotonically increasing in the pseudohyperbolic distance, and the
ratio of the two distances converges to 1 as the pair of points comes together.

1.3. The L2 extension theorem. Since the work of Ohsawa and Takegoshi [OT-1987], there have been
many statements and proofs (as well as applications) of theorems on L2 extension of holomorphic functions
and sections of holomorphic line bundles. We will make use of the following version, proved by the author
in [V-2008].

THEOREM 1.2. Let (X,ω) be a Stein Kähler manifold, and let Z ⊂ X be a smooth hypersurface. Assume
there exists a section T ∈ H0(X,LZ) and a metric e−λ for the line bundle LZ → X associated to the
smooth divisor Z, such that e−λ|Z is still a singular Hermitian metric, and

sup
X
|T |2e−λ ≤ 1.

Let H → X be a holomorphic line bundle with singular Hermitian metric e−ψ such that e−ψ|Z is still a
singular Hermitian metric. Assume that

√
−1(∂∂̄ψ + Ricci(ω)) ≥

√
−1∂∂̄λZ

and
√
−1(∂∂̄ψ + Ricci(ω)) ≥ (1 + δ)

√
−1∂∂̄λZ

for some positive constant δ ≤ 1. Then for any section f ∈ H0(Z,H) satisfying∫
Z

|f |2e−ψ

|dT |2ωe−λ
dAω < +∞

there exists a section F ∈ H0(X,H) such that

F |Z = f and
∫
X
|F |2e−ψdVω ≤

24π

δ

∫
Z

|f |2e−ψ

|dT |2ωe−λ
dAω.
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1.4. The theorem of Donnelly-Fefferman-Ohsawa. Let (X,ω) be a Kähler manifold, L→ X a holomor-
phic line bundle with singular Hermitian metric e−ϕ, and Ω ⊂⊂ X a pseudoconvex domain with smooth
boundary. Suppose there are positive functions τ and A on Ω with τ C 2-smooth. One has the following
well-known identity. (See, for example, [V-2008].)

THEOREM 1.3 (Twisted basic estimate). For any L-valued (0, 1)-form β in the domain of ∂̄∗ψ on Ω one has
the estimate ∫

Ω
(τ +A)|∂̄∗ψβ|2e−ψdVω +

∫
Ω
τ |∂̄∗ψβ|2e−ψdVω

≥
∫

Ω

〈{
τ(∂∂̄ψ + Ricci(ω))− ∂∂̄τ − ∂τ ∧ ∂̄τ

A

}
β, β

〉
e−ψdVω.

The twisted basic estimate is obtained from the Bochner-Kodaira Identity∫
Ω
|∂̄∗ϕβ|2e−ϕdVω +

∫
Ω
|∂̄β|2e−ϕdVω =

∫
Ω

〈{
∂∂̄ϕ+ Ricci(ω)

}
β, β

〉
e−ϕdVω

+

∫
Ω
|∇̄β|2e−ϕdVω +

∫
∂Ω

〈
{∂∂̄ρ}β, β

〉
e−ϕ

dS

|∂ρ|2

by substituting e−ϕ = τe−ψ, using the non-negativity of the last two terms, and applying the Cauchy-
Schwarz Inequality. Of course, the Bochner-Kodaira Identity only makes sense for continuous forms, and it
is proved for smooth forms in the domain of ∂̄∗ϕ. But since the latter are dense in the graph norm, after we
use the pseudoconvexity of Ω, it suffices to prove the twisted basic estimate for smooth forms.

If we take τ = e−η and A = τ
ν for some smooth function η and positive constant ν, then we have the

following estimate: for all L-valued (0, 1)-forms β in the domain of ∂̄∗ψ,

1 + ν

ν

∫
Ω
e−η|∂̄∗ψβ|2e−ψdVω +

∫
Ω
e−η|∂̄β|2e−ψdVω

≥
∫

Ω
e−η

〈{
∂∂̄ψ + Ricci(ω)) + ∂∂̄η − (1 + ν)∂η ∧ ∂̄η

}
β, β

〉
e−ψdVω.(1)

With the estimate (1), we can now prove the following theorem, due to Ohsawa, which is an analogue for ∂̄
of a theorem proved by Donelly-Fefferman for the exterior derivative d.

THEOREM 1.4 (Donnelly-Fefferman, Ohsawa). Let (X,ω) be a Stein Kähler manifold, L→ X a holomor-
phic line bundle with singular Hermitian metric e−ψ, η ∈ W 1,2

`oc (X) a function, ν a positive number, and Θ
a non-negative, almost everywhere positive (1, 1)-form such that

(2)
√
−1(∂∂̄ψ + Ricci(ω) + ∂∂̄η − (1 + ν)∂η ∧ ∂̄η) ≥ Θ.

Then for any L-valued ∂̄-closed (0, 1)-form α satisfying∫
X
eη|α|2Θe−ψdVω < +∞

there exists a measurable section u of L such that

∂̄u = α and
∫
X
eη|u|2e−ψdVω ≤

ν + 1

ν

∫
X
eη|α|2Θe−ψdVω.

Proof. By standard approximation methods, we can replace X by a smoothly bounded pseudoconvex do-
main Ω ⊂⊂ X , and assume that e−ψ and η are smooth functions. With these reductions, consider the linear
functional

L (∂̄∗ψβ) :=

∫
Ω
〈β, α〉 e−ψdVω
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defined on the subspace
Image(∂̄∗ψ) := {∂̄∗ψβ ; β ∈ Domain(∂̄∗ψ)}.

Since α ∈ Kernel(∂̄), it is orthogonal to the image of ∂̄∗ψ (the formal adjoint of ∂̄ acting on L-valued
(0, 2)-forms), and thus it suffices to restrict L to ∂̄∗ψβ for β ∈ Kernel(∂̄). But for such β, we have

L (∂̄∗ψβ) ≤
(∫

Ω
eη|α|2Θe−ψdVω

)∫
Ω
e−η 〈{Θ}β, β〉 e−ψdVω

≤ ν + 1

ν

(∫
Ω
eη|α|2Θe−ψdVω

)∫
Ω
e−η|∂̄∗ψβ|2e−ψdVω.

Therefore L is continuous. Extending by 0 in Image(∂̄∗ψ)⊥ and using the Riesz Representation Theorem,
we find a section U of L such that∫

Ω
e−η(∂̄∗ψβ)Ūe−ψdVω =

∫
Ω
〈β, α〉 e−ψdVω and

∫
Ω
e−η|U |2e−ψdVω ≤

ν + 1

ν

∫
Ω
eη|α|2Θe−ψdVω.

The first of these says that ∂̄(e−ηU) = α. If we let u = e−ηU then we have

∂̄u = α and
∫

Ω
eη|u|2e−ψdVω ≤

ν + 1

ν

∫
Ω
eη|α|2Θe−ψdVω.

This completes the proof. �

In the case of the Poincaré unit disk, we can take η = log 1
1−|z|2 to obtain the following result, which is

stated (in a slightly different but equivalent form) and proved in [BO-1995], where it is attributed to Ohsawa.

THEOREM 1.5. Let ϕ : D→ [−∞,∞) be upper semi-continuous and satisfy
√
−1∂∂̄ϕ ≥ (2(1 + ν) + c)ωP

for some positive numbers ν and c. Then for any (0, 1)-form α on D satisfying∫
D
|α|2ωP e

−ϕωP < +∞

there exists a locally integrable function u such that

∂̄u = α and
∫
D
|u|2e−ϕωP ≤

ν + 1

cν

∫
D
|α|2ωP e

−ϕωP

In the case of the Poincaré punctured disk (D∗, ωP ), we obtain the following result.

THEOREM 1.6. Let ϕ : D∗ → [−∞,∞) be upper semi-continuous and satisfy
√
−1∂∂̄ϕ ≥ (2(1 + ν) + c)ωP

for some positive numbers ν and c. Then for any (0, 1)-form α on D∗ satisfying∫
D∗
|α|2ωP e

−ϕωP < +∞

there exists a locally integrable function u such that

∂̄u = α and
∫
D∗
|u|2e−ϕωP ≤

ν + 1

cν

∫
D∗
|α|2ωP e

−ϕωP

Proof. In Theorem 1.4 let X = D∗, L = O, η = − log log |z|−2 and ψ = ϕ+ η. Then

2ωP =
√
−1∂∂̄η =

√
−1∂η ∧ ∂̄η,

and thus
∂∂̄ψ + Ricci(ωP ) + ∂∂̄η − (1 + ν)∂η ∧ ∂̄η = ∂∂̄ϕ− 2(1 + ν)ωP ≥ cωP .

Letting Θ := cωP completes the proof. �
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REMARK. Note that Hörmander’s Theorem implies these results if c ≥ 2, but not otherwise. �

In Section 4 we will extend extend theorems 1.5 and 1.6 to general finite open Riemann surfaces covered
by the unit disk (cf. Theorem 4.3).

1.5. Weights with bounded Laplacian in (D, ωP ). We recall some well-known material that will be used
in the proof of Theorem 1.

We begin with a result on a solution of Poisson’s Equation with locally uniform estimates. A proof can
be found in [SV-2014].

LEMMA 1.7. For each 0 < r < 1 there exists a constant C = Cr > 0 with the following property. For any
(1, 1)-form θ ∈ C 2(C) satisfying

−MωP ≤ θ ≤MωP ,

there exists u ∈ C 2(Dr(0)) such that

∆u = θ and sup
Dr(0)

(|u|+ |du|ωP ) ≤ CM.

As a corollary, we have following result, established in [BO-1995] (see also [SV-2014]).

LEMMA 1.8. Let ϕ ∈ C 2(D) satisfy
−MωP ≤ ∆ϕ ≤MωP

for some positive constant M . Then for each r ∈ (0, 1) there is a positive constant Cr such that for any
z ∈ D there is a holomorphic function F satisfying

F (z) = 0, |2Re F (ζ)− ϕ(ζ) + ϕ(z)| ≤ Cr, and |2Re dF (ζ)− dϕ(ζ)|ωP ≤ Cr
for all ζ ∈ Dr(z).

Lemma 1.8 gives the following generalizations of Bergman’s inequality. (See [OS-1998] for a proof.)

PROPOSITION 1.9. Let ϕ ∈ C 2(D) satisfy

−MωP ≤ ∆ϕ ≤MωP .

Then for each r ∈ (0, 1) there exists Cr = Cr(M) such that for all f ∈H 2(D, e−ϕωP ),
(a)

|f(z)|2e−ϕ(z) ≤ Cr
∫
Dr(z)

|f |2e−ϕωP ,

and
(b)

|d(|f |2e−ϕ)|ωP (z) ≤ Cr
∫
Dr(z)

|f |2e−ϕωP .

COROLLARY 1.10. Let ϕ be a weight function as in Proposition 1.9. If Γ is a finite union of uniformly
pseudohyperbolically separated sequences then for each r ∈ (0, 1) there exists a constant Cr = Cr(M)
such that for all f ∈H 2(D, e−ϕωP ),

(a) ∑
γ∈Γ

|f(γ)|2e−ϕ(γ) ≤ Cr
∑
γ∈Γ

∫
Dr(γ)

|f |2e−ϕωP ≤ C̃r
∫
D
|f |2e−ϕωP ,

and
(b) ∑

γ∈Γ

|d(|f |2e−ϕ)(γ)| ≤ Cr
∑
γ∈Γ

∫
Dr(γ)

|f |2e−ϕωP ≤ C̃r
∫
D
|f |2e−ϕωP .

9



1.6. Poisson-Jensen Formula. In the proof of necessity of Theorem 2.1, we shall make use of the following
weighted analogue of the well-known Poisson-Jensen Formula, which gives weighted counts of the number
of zeros of a holomorphic function in a large pseudohyperbolic disk. To formulate it, we denote the Green’s
function for the unit disk D with pole at z by

Gz(ζ) := log |φz(ζ)|,

and the pseudohyperbolic disk of radius r by

Dr(z) := {ζ ∈ D ; G(z, ζ) < log r}.

THEOREM 1.11 (Poisson-Jensen Formula). Fix a weight function ψ ∈ C 2(D). Let f ∈ O(D), let z ∈ D,
and let r ∈ (0, 1). Let a1, ..., aN be the (possibly not distinct) zeros of f inDr(z), and assume that f(z) 6= 0,
and that there are no zeros of f on the boundary of the pseudohyperbolic disk Dr(z). Then

1

π

∫
∂Dr(z)

log(|f |2e−ψ)dcGz = log(|f(z)|2e−ψ(z)) +
N∑
j=1

log
r2

|φaj (z)|2
− 1

2π

∫
Dr(z)

log
r2

|φz|2
∆ψ.

Proof. Recall that dc =
√
−1
2 (∂̄ − ∂), so that ddc = ∆. Let

Kz(ζ) := Gz(ζ)− log r and H(ζ) = log

 |f(ζ)|2e−ϕ(ζ)∏N
j=1

|φai (ζ)|2
r2

 .

By Stokes’ Theorem we have

(3)
∫
∂Dor(z)

HdcKz −Kzd
cH =

∫
Dor(z)

H∆Kz −Kz∆H.

Now, dcKz = dcGz , Kz|∂Dor(z) ≡ 0 and ∆Kz = πδz . It follows that

1

π

∫
∂Dor(z)

log |f |2e−ϕdcGz = log |f(z)|2e−ϕ(z) +
N∑
j=1

(
log

r2

|φai(z)|2
+ 2

∫
∂Dor(z)

Kajd
cGz

)

− 1

π

∫
Dor(z)

log
r

|φz(ζ)|
∆ϕ(ζ).

But since Kz|∂Dor(z) ≡ 0, and application of (3) with H = Kaj gives∫
∂Dor(z)

Kajd
cGz =

∫
Dor(z)

Kaj∆Kz −Kz∆Gaj = Kaj (z)−Kz(aj) = 0,

and thus the result follows. �

2. INTERPOLATION IN (D, ωP )

We write
Ar := {ζ ∈ C ; 1/2 < |ζ| < r}.

In this section, we prove the following special case of Theorem 1.

THEOREM 2.1. Let ϕ ∈ C 2(D) be a weight function satisfying

mωP ≤ ∆ϕ− 2ωP ≤MωP

for some positive constants m and M , and let Γ ⊂ D be a closed discrete subset. Then the restriction map
RΓ : H 2(D, e−ϕωP )→ `2(Γ, e−ϕ) is surjective if and only if

(i) Γ is uniformly separated with respect to the geodesic distance of ωP , and
10



(ii) the upper density

D+
ϕ (Γ) := lim sup

r→1
sup
z∈D

2π
∫
φz(Ar) log r2

|φz(ζ)|2 δγ(ζ)∫
Dr(z)

log r2

|φz(ζ)|2 (∆ϕ(ζ)− 2ωP (ζ))
< 1.

REMARK 2.2. Since Dr(z) = φz(Dr(0)) and Aut(D) ⊂ Isom(ωP ), the functions Aω are constant. �

It is useful to define the pseudohyperbolic separation radius

RΓ := inf

{
|φγ1(γ2)|

2
; γ1, γ2 ∈ Γ, γ1 6= γ2

}
of Γ, which is of course positive if and only if Γ is uniformly separated in the pseudohyperbolic distance.

2.1. Weights and density. We begin with the following proposition.

PROPOSITION 2.3. Let ϕ ∈ C 2(D) be a weight function satisfying

−MωP ≤ ∆ϕ ≤MωP

for some positive constant M , and let

ϕr(z) :=
1

ar

∫
Dr(z)

ϕ(ζ) log
r2

|φz(ζ)|2
ωP (ζ) =

1

ar

∫
Dr(0)

ϕ(φz(ζ)) log
r2

|ζ|2
ωP (ζ),

where

ar :=

∫
Dr(0)

log
r2

|ζ|2
ωP (ζ).

Then
−MωP ≤ ∆ϕr ≤MωP ,

and there is a constant Cr > 0 such that for all z ∈ D,

(4) |ϕ(z)− ϕr(z)| ≤ Cr.
In particular, the identity map defines bounded linear isomorphisms

H 2(D, e−ϕωP ) �H 2(D, e−ϕrωP ) and `2(Γ, e−ϕ) � `2(Γ, e−ϕr).

Proof. The bounds on ∆ϕr are obvious from the second integral representation of ϕr. Next, since all the
conditions are invariant under action by Aut(D), it suffices to prove the estimates (4) for z = 0. But at the
origin, this estimate follows easily from the Euclidean case, which was done in [V-2015]. �

Let Γ ⊂ D be a closed discrete subset. Choose any function T ∈ O(D) such that Ord(T ) = Γ, and, with

(5) cr =

∫
Ar

log
r2

|ζ|2
ωP (ζ), r ∈ (1/2, 1),

we set

λTr (z) =
1

cr

∫
Ar

log |T (φz(ζ))|2 log
r2

|ζ|2
ωP (ζ) =

1

cr

∫
φz(Ar)

log |T (ζ)|2 log
r2

|φz(ζ)|2
ωP (ζ).

PROPOSITION 2.4. Let the notation be as above.
(a) The functions σΓ

r : D→ [0,∞) and SΓ
r : Γ→ (0,∞) defined by

σΓ
r (z) = |T (z)|2e−λTr (z) and SΓ

r (γ) := |dT (γ)|2ωP e
−λTr (γ),

as well as the (1, 1)-form
ΥΓ
r := ∆λTr ,

are independent of the choice of T . Moreover, for each r ∈ (0, 1) and z ∈ D (and in the case of
SΓ
r (z), z ∈ Γ) the three quantities σΓ

r (z), SΓ
r (z) and ΥΓ

r (z) depend only of the finite setDr(z)∩Γ in
11



the sense that we may use any function T ∈ O(Dr(z)) satisfying Ord(T ) = Γ∩Dr(z) to determine
these three quantities.

(b) σΓ
r ≤ 1.

(c) For any γ ∈ Γ and any z ∈ DRoΓ
(γ) such that |φγ(z)| > ε, we have the estimate

σΓ
r (z) ≥ Crε2.

On the other hand, 1
σΓ
r

is not locally integrable in any neighborhood of any point of Γ.
(d) One has the formula

(6)
ΥΓ
r (z)

2ωP (z)
=

2π

cr

∑
γ∈φz(Γ)∩Ar

log
1

|φz(γ)|2
.

The proof is directly analogous to the corresponding proposition in [V-2015], and is left to the reader.

2.2. Sufficiency. In this section we prove the following result.

THEOREM 2.5. Let ϕ ∈ C 2(D) be a weight function satisfying

mωP ≤ ∆ϕ− 2ωP ≤MωP

for some positive constants m and M . Let Γ ⊂ D be uniformly separated in the pseudohyperbolic distance,
and assume D+

ϕ (Γ) < 1. Then the restriction map RΓ : H 2(D, e−ϕωP )→ `2(Γ, e−ϕ) is surjective.

In fact, we shall prove a slightly stronger result.

THEOREM 2.6 (Strong sufficiency). Let ϕ ∈ L1
`oc(D) be a subharmonic weight function satisfying

∆ϕ− 2ωP ≥ mωP
for some positive constant m. Let Γ ⊂ D be uniformly separated in the pseudohyperbolic distance, and
assume

∆ϕ− 2ωP ≥ (1 + ε)ΥΓ
r

for some positive number ε. Then the restriction map RΓ : H 2(D, e−ϕωP )→ `2(Γ, e−ϕ) is surjective.

In view of Proposition 2.3, Theorem 2.5 follows from Theorem 2.6.

2.2.1. Local extensions. We shall need the following lemma.

LEMMA 2.7. Let r ∈ (0, 1/2) and z ∈ D, and let ϕ be a subharmonic function in the unit disk satisfying

∆ϕ ≥ 2ωP .

Then there exists a holomorphic function gz ∈ O(Dr(z)) such that

gz(z) = eϕ(z)/2 and
∫
Dr(z)

|gz|2e−ϕωP ≤ 32πr2.

Proof. Note that if ϕ(z) = −∞ then we can take gz ≡ 0, so we assume from here on out that ϕ(z) 6= −∞.
Let ψ(ζ) = ϕ(ζ) + log 1

1−|φz(ζ)|2 . Note that on Dr(z),

ψ(ζ) ≤ ϕ(ζ) + log
1

1− r2
.

We apply Theorem 1.2 with X = Dr(z), T (ζ) = φz(ζ)
r , λ ≡ 0 and δ = 1. Since

|dT (z)|2ωP e
−λ(z) = r−2 and

√
−1∂∂̄ψ + Ricci(ωP ) =

√
−1∂∂̄ϕ− 2ωP ≥ 0 = 2∆λ,

there exists a function gz ∈ O(Dr(z)) such that

gz(z) = eϕ(z)/2 and
∫
Dr(z)

|gz|2e−ψωP ≤ 24πr2.
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But then
3

4

∫
Dr(z)

|gz|2e−ϕωP ≤ (1− r2)

∫
Dr(z)

|gz|2e−ϕωP ≤
∫
Dr(z)

|gz|2e−ψωP ≤ 24πr2.

The proof is thus complete. �

2.2.2. Global extension: The proof of Theorem 2.6. Let δ < RΓ be a positive constant. Suppose we are
given data f ∈ `2(Γ, e−ϕ). For each γ ∈ Γ, let gγ ∈ O(Dδ(γ)) be a function such that

gγ(γ) = eϕ(γ)/2 and
∫
Dδ(γ)

|gγ |2e−ϕωP ≤ 32π.

Such gγ exist by Lemma 2.7. Now let χ ∈ C∞(R) be a decreasing function satisfying

χ(x) = 1 for x ≤ 1
2 , χ(x) = 0 for x ≥ 1, and |χ′(x)| ≤ 3 for all x.

Consider the function
F̃ (ζ) :=

∑
γ∈Γ

f(γ)e−ϕ(γ)/2gγ(ζ)χ
(
δ−2|φγ(ζ)|2

)
.

Then
F̃ ∈ C∞(D) and F̃ |Γ = f.

By Lemma 2.7 and the definition of RΓ,∫
D
|F̃ |2e−ϕωP ≤

∑
γ∈Γ

|f(γ)|2e−ϕ(γ)

∫
Dδ(γ)

|gγ |2e−ϕωP ≤ 32π||f ||2,

so that F̃ ∈ L2(D, e−ϕωP ). We now correct F̃ to be holomorphic and still interpolate f . We compute that
the (automatically ∂̄-closed) (0, 1)-form

α(ζ) := ∂̄F̃ (ζ) =
∑
γ∈Γ

f(γ)e−ϕ(γ)/2gγ(ζ)χ′
(
δ−2|φγ(ζ)|2

) φz(ζ)φ′z(ζ)

δ2
dζ̄.

We therefore seek a solution u of the equation ∂̄u = α that lies in L2(D, e−ϕωP ) and vanishes along Γ. To
this end, consider the weight function

ψ = ϕ+ log σΓ
r ,

where σΓ
r is as in Proposition 2.4. Note that χ′(x) = 0 for |x| ≤ 1/2 and that

|dφz|2ωP = (1− |φz|2)2 ≤ 1.

Then by the definition of RΓ and Property (c) of Proposition 2.4,∫
D
|α|2ωP e

−ψωP =
∑
γ∈Γ

|f(γ)|2e−ϕ(γ)

∫
Dδ(γ)

|gγ(ζ)|2e−ψ(ζ)
∣∣χ′ (δ−2|φγ(ζ)|2

)∣∣2 |φz(ζ)|2|dφz(ζ)|2ωP
δ4

ωP

≤ 9Crδ
−4
∑
γ∈Γ

|f(γ)|2e−ϕ(γ)

∫
Dδ(γ)

|gγ(ζ)|2e−ϕ(ζ)ωP < +∞.

Since

∆ψ − 2ωP ≥
1

1 + ε

(
∆ϕ− 2ωP − (1 + ε)ΥΓ

r

)
+

ε

1 + ε
(∆ϕ− 2ωP ) ≥ mε

1 + ε
ωP ,

Theorem 1.5 gives us a function u such that

∂̄u = α and
∫
D
|u|2e−ψωP < +∞.
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By the smoothness of α and the interior ellipticity of ∂̄, u is smooth. By Property (c) of Proposition 2.4, in
particular the non-integrability of e−ψ along Γ, u|Γ ≡ 0. Furthermore, by (b) of Proposition 2.4,∫

D
|u|2e−ϕωP ≤

∫
D
|u|2e−ψωP < +∞.

Finally, set F = F̃ − u. Then F ∈ O(D), F |Γ = f , and∫
D
|F |2e−ϕωP ≤ 2

(∫
D
|F̃ |2e−ϕωP +

∫
D
|u|2e−ϕωP

)
< +∞.

This completes the proof of Theorem 2.6. �

2.3. Necessity. In this section we complete the proof of Theorem 2.1 by proving the following theorem.

THEOREM 2.8. Let ϕ ∈ C 2(D) be a weight function satisfying

mωP ≤ ∆ϕ− 2ωP ≤MωP

for some positive constants m and M , and let Γ ⊂ D be a closed discrete set. If

RΓ : H 2(D, e−ϕωP )→ `2(Γ, e−ϕ)

is surjective, then Γ is uniformly separated in the hyperbolic distance, and D+
ϕ (Γ) < 1.

REMARK 2.9. As mentioned in the introduction, our proof of Theorem 2.8 is an adaptation to the unit disk
of the work [OS-1998] of Ortega Cerd-̀Seip in the case of the Euclidean plane. �

2.3.1. Interpolation constant. As we explained in [V-2015] for the analogous case of the complex plane, if
RΓ : H 2(D, e−ϕωP )→ `2(Γ, e−ϕ) is surjective, then by the Closed Graph Theorem the so-called minimal
extension operator EΓ : `2(Γ, e−ϕ) → Kernel(RΓ)⊥ ⊂ H 2(D, e−ϕωP ) is continuous, and moreover has
minimal norm among all extension operators. The norm

AΓ := ||EΓ||

of this minimal extension operator is called the interpolation constant of Γ.

2.3.2. Necessity of uniform separation. Suppose Γ ⊂ D is an interpolation sequence, and let γ1, γ2 ∈ Γ be
any two distinct points. The function f : Γ→ C defined by

f(γ1) = e−ϕ(γ1)/2 and f(γ) = 0, γ ∈ Γ− {γ1},

lies in (the unit sphere of) `2(Γ, e−ϕ), and thus F := EΓ(f) ∈H 2(Γ, e−ϕωP ) satisfies

|F (γ1)|2e−ϕ(γ1) = 1, |F (γ2)|2e−ϕ(γ2) = 0, and
∫
D
|F |2e−ϕωP ≤ A 2

Γ .

Consider the functions

g := F ◦ φγ1 ∈ O(D) and ψ := ϕ ◦ φγ1 ∈ C 2(D).

Since φγ1 is an isometry of ωP , the weight ψ and ϕ satisfy the same curvature bounds. Moreover,

|g(0)|2eψ(0) = 1, |g(φγ1(γ2))|2e−ψ(φγ1 (γ2)) = 0 and
∫
D
|g|2e−ψωP =

∫
D
|F |2e−ϕωP ≤ A 2

Γ .

By Proposition 1.9(b), there is a universal constant C > 0 such that

|φγ1(γ2)|−1 =

∣∣∣∣∣ |g(0)|2eψ(0) − |g(φγ1(γ2))|2e−ψ(φγ1 (γ2))

0− φγ1(γ2)

∣∣∣∣∣ ≤ CA 2
Γ .

Thus Γ is uniformly separated.
14



2.3.3. Uniform interpolation at a point.

LEMMA 2.10. Let ϕ : D→ [−∞,∞) be an upper semicontinuous weight function satisfying

∆ϕ− 2ωP ≥ cωP
for some positive constant c. Then there exists a constant C > 0, depending only on c and not on ϕ such
that for all z ∈ D there exists F ∈H 2(D, e−ϕωP ) satisfying

|F (z)|2e−ϕ(z) = 1 and
∫
D
|F |2e−ϕωP ≤ C.

Proof. Since the density of the one point sequence Γ := {z} is zero, the result follows from Theorem 2.6.
(The uniformity of the constant, though not explicitly stated in Theorem 2.6, follows from its proof.) �

2.3.4. Perturbation of interpolation sequences. As in [V-2015], in order to estimate the density of the se-
quence we shall perturb our interpolation sequence in two ways: a small perturbation of the points of Γ, and
the addition of a point to Γ. In the hyperbolic disk, the estimates are slightly better than their Euclidean kin,
owing to the existence of a bounded entire function that realizes a zero of multiplicity 1 at a given point.

PROPOSITION 2.11 (Small perturbation). Let ϕ ∈ C 2(D) satisfy

−MωP ≤ ∆ϕ ≤MωP

for some positive constant M . Let Γ = {γ1, γ2, ...} ⊂ D be an interpolation sequence with separation
radius RΓ. Suppose Γ′ = {γ′1, γ′2, ...} ⊂ D is another sequence, and there is a δ ∈ (0,min(A −1

Γ , RΓ))
such that

sup
i∈N
|φγi(γ′i)| ≤ δ2.

Then Γ′ is also an interpolation sequence, and its interpolation constant is at most

CAΓ

1− δAΓ
,

where C is independent of Γ and ϕ (but depends on M ).

Proof. Using the method of proof of the uniform separation of an interpolation sequence, together with
Corollary 1.10(b), if F ∈H 2(D, e−ϕωP ) we find that

(7)
∞∑
j=1

∣∣∣|F (γj)|2e−ϕ(γj) − |F (γ′j)|2e
−ϕ(γ′j)

∣∣∣ . δ2

∫
D
|F |2e−ϕωP .

The rest of the proof proceeds in the same way as that of Proposition 2.11 of [V-2015], which is itself a
minor adaptation of Lemma 6 in [OS-1998]. �

PROPOSITION 2.12 (Adding a point). Assume mωP ≤ ∆ϕ − 2ωP ≤ MωP for some positive constants
m and M . Let Γ be an interpolation sequence, and let z ∈ D − Γ satisfy infγ∈Γ |φz(γ)| > δ. Then the
sequence Γz := Γ∪{z} is also an interpolation sequence for H 2(D, e−ϕωP ), and its interpolation constant
is bounded above by some constant K which depends only on m, Γ and δ, and in particular, not on z.

Proof. It suffices to show that there exists F ∈H 2(D, e−ϕωP ) satisfying

F (z) = eϕ(z)/2 and F |Γ ≡ 0

with appropriate norm bounds. To this end, write

ψz := ϕ− m

2

(
log

1

1− |φz|2

)
.

15



Since ∆ψz − 2ωP ≥ m
2 ωP , Lemma 2.10 provides us with a function G ∈H 2(D, e−ψzωP ) such that

G(z) = eϕ(z)/2 and
∫
D
|G|2e−ψzωP ≤ C,

where C does not depend on z or Γ (and in fact depends only on m).
Now, since ψz ≤ ϕ, by Corollary 1.10(a) we have the estimate∑

γ∈Γ

|G(γ)|2e−ϕ(γ)

|φz(γ)|2
.

1

δ2

∑
γ∈Γ

∫
DRΓ

(γ)
|G|2e−ψzωc .

1

δ2
.

Since Γ is an interpolation sequence for H 2(D, e−ϕωP ), there exists H ∈H 2(D, e−ϕωP ) such that

H(γ) =
G(γ)

φz(γ)
, γ ∈ Γ, and

∫
D
|H|2e−ϕωP .

A 2
Γ

δ2
.

Let F ∈ O(D) be defined by
F (ζ) := G(ζ)− φz(ζ)H(ζ).

Then
|F (z)|2e−ϕ(z) = |G(z)|2e−ϕ(z) = 1, and F (γ) = G(γ)− φz(γ)H(γ) = 0

for all γ ∈ Γ. Finally,(∫
D
|F |2e−ϕωP

)1/2

≤
(∫

D
|G|2e−ϕωP

)1/2

+

(∫
D
|H(ζ)|2|φz(ζ)|2e−ϕ(ζ)ωc(ζ)

)1/2

≤
(∫

C
|G|2e−ψzωc

)1/2

+

(∫
C
|H(ζ)|2e−ϕ(ζ)ωo(ζ)

)1/2

≤ C(1 + AΓ)

δ
,

as desired. �

2.3.5. Estimate for the density of an interpolation sequence. We wish to estimate the density of the inter-
polation sequence Γ at an arbitrary point z ∈ D. Suppose first that infγ∈Γ |φγ(z)| < min(A −1

Γ , RΓ). By
Proposition 2.11, we may replace the nearest point γo of Γ to z with the point z, and obtain a new interpo-
lation sequence Γ1

z := (Γ − {γo}) ∪ {z}. On the other hand, if infγ∈Γ |φγ(z)| ≥ min(A −1
Γ , RΓ), then by

Proposition 2.12 the sequence Γ2
z = Γ ∪ {z} is also an interpolating sequence. In both cases, the interpola-

tion constant remains under control, i.e., it is independent of z. Let us write Γz for either of the interpolation
sequences Γ1

z or Γ2
z that arise.

Since Γz is an interpolation sequence, there is a function F ∈H 2(D, e−ϕωP ) such that

F (z) = eϕ(z)/2, F |Γz−{z} ≡ 0, and ||F || . AΓ.

By the Poisson-Jensen Formula 1.11 applied to f = F and ψ = ϕ− log 1
1−|φz |2 , we have∫

φz(Ar)
log

r2

|φz(ζ)|2
δΓ ≤

∫
Dr(z)

log
r2

|φz(ζ)|2
(∆ϕ(ζ)− 2ωP (ζ)) +

1

π

∫
∂Dr(z)

log(|F |2e−ψ)dcGz.

An application of Proposition 1.9(a), with disks of pseudohyperbolic radius 1/2 centered at any point of
∂Dr(z), yields the estimate∫

φz(Ar)
log

r2

|φz(ζ)|2
δΓ ≤

∫
Dr(z)

log
r2

|φz(ζ)|2
(∆ϕ(ζ)− 2ωP (ζ)) + log

1

(1− r2)
+ C,

and thus, since

(8)
1

cr

∫
φz(Ar)

log
r2

|φz(ζ)|2
δΓ ≤

1

cr

∫
Dr(z)

log
r2

|φz(ζ)|2
(∆ϕ(ζ)− 2ωP (ζ)) + C

for some constant C that is independent of r and z.
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The estimate (8) shows us that the density of Γ is at most 1. But we can slightly perturb Γ to increase
its density at z, with the perturbation still an interpolation set. Indeed, by Proposition 2.11, we may move
all the points of Γ a pseudo-hyperbolic distance at most a sufficiently small number δ towards z, and the
resulting sequence will still be interpolating, with interpolation constant controlled by that of the original
sequence Γ. To this end, choose δ > 0 sufficiently small according to Proposition 2.11, and consider the
sequence

Γδz :=

{
φz

(
δ − |φz(γ)|
1− δ|φz(γ)|

φz(γ)

|φz(γ)

)
; γ ∈ Γ

}
.

(Recall that φz is an involution.) Writing

γ′ := φz

(
|φz(γ)| − δ
1− δ|φz(γ)|

φz(γ)

|φz(γ)

)
,

we have

|φγ(γ′)| =
∣∣∣∣φφz(γ)

(
|φz(γ)| − δ
1− δ|φz(γ)|

φz(γ)

|φz(γ)|

)∣∣∣∣ = δ|φz(γ)|.

It follows that the new sequence Γδz has the following property: If we enumerate Γ = {γ1, γ2, ....} then there
is an enumeration Γδz = {γ′1, γ′2, ...} such that

sup
i∈N
|φγi(γ′i)| ≤ δ.

It follows from Proposition 2.11 that Γδz is also interpolating, with interpolation constant controlled by that
of Γ. Therefore (8) holds with Γδz in place of Γ. By changing variables in the integrals according to the
transformation

ζ 7→ φz

(
r − δ

r(1− rδ)
φz(ζ)

)
=: u,

a straightforward calculation finds that for r ∼ 1,∫
φz(Ar)

log
r2

|φz(ζ)|2
δΓ ≤

∫
Dr(z)

log
r2

|φz(ζ)|2
(∆ϕ(ζ)− 2ωP (ζ))−mC1crδ

for some positive constantC1 that is independent of z, r and δ1. (Here we have used that ∆ϕ−2ωP ≥ mωP ;
the constant cr shows up because it is the hyperbolic area of Ar, which in turn is asymptotic to the hyperbolic
area of Dr(z).) It follows that

D+
ϕ (Γ) ≤ 1− C1mδ

M
< 1.

This completes the proof of Theorem 2.1. �

3. INTERPOLATION IN (D∗, ωP )

3.1. Some elementary geometry of (D∗, ωP ).

1Strictly speaking, this transformation changes the weight function ϕ. However, the new weight function satisfies the same
hypotheses, and in particular the same curvature bounds, so the result holds for the original weight as well: see the analogous
comment in [V-2015].
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3.1.1. Universal covers. We fix the universal covering map p : D→ D∗ defined by

p(x) = e
x+1
x−1 ,

and denote by Gp ⊂ Aut(D) the deck group of p. We shall also have occasion to consider the upper half
plane representation of the universal cover. Letting

P : C→ C∗; z 7→ e
√
−1z and H := {z ∈ C ; Im z > 0},

we fix the covering map
PH := P |H : H→ D∗,

and then the deck group is cyclic group generated by the translation G(z) = z + 2π. Of course,

p(x) = P
(√
−11+x

1−x

)
.

REMARK 3.1. Observe also that P : C→ C∗; z 7→ e
√
−1z is the universal cover for C∗. �

3.1.2. Distance and area. We denote by dP the geodesic distance on D∗ induced by the Poincaré metric

ωP =

√
−1dz ∧ dz̄

2|z|2(log 1
|z|2 )2

of D∗. One can calculate that if arg(z/w) = 0 then

(9) dP (z, w) =
1

2

∣∣∣∣log log
1

|z|2
− log log

1

|w|2

∣∣∣∣ ,
while if |θ − φ| ≤ π,

dP

(
re
√
−1θ, re

√
−1σ
)

=
|θ − σ|
2 log 1

r

.

When the points z and w are sufficiently close together, we can find a disk in D∗ that contains them both
and is the biholomorphic image of a disk in D, via the universal covering map. Since the latter is a local
isometry, the distance between the two points in question is the distance between their pre-images in the
aforementioned disk.

Note that, at least for z close to the origin, the injectivity radius of ωP at z, defined to be the largest r
such that Ḋr(z) is contractible, is

ιP (z) =
π

2 log 1
|z|2

.

Recall from the introduction that ι̂ωP (z) = min(ιP (z), 1). We can compute the area of the disk Ḋι̂ωP (z)(z).
Indeed, since the universal covering map p : D→ D∗ is a local isometry, p−1(ḊιP (z)(z)) is a disjoint union
of hyperbolic disks in D of radius ιP (z), with each disk centered at exactly one point of the sequence
p−1(z) ⊂ D. Now, the Poincaré metric (of the unit disk) is invariant under the automorphism group. Thus,
in the notation of the introduction,

AωP (z) :=

∫
Ḋι̂ωP (z)(z)

ωP =

∫
|ζ|<tanh(ι̂ωP (z))

√
−1dζ ∧ dζ̄

2(1− |ζ|2)2
=

π(tanh(ι̂ωP (z)))2

1− (tanh(ι̂ωP (z)))2
.

It follows that for each c ∈ (0, 1) there exists a constant Cc > 0 with the property that

(10) C−1
c

1

(log 1
|z|2 )2

≤ AωP (z) ∼ Cc
1

(log 1
|z|2 )2

, 0 < |z| ≤ c,

and
C−1
c ≤ AωP (z) ≤ Cc, c < |z| < 1.

18



3.2. Sequences in D∗. In view of the dichotomy of the growth rate of AωP , it is reasonable to split up the
interpolation problem into two parts. To this end, we make the following definition.

DEFINITION 3.2. We say that a sequence Γ1 ⊂ D∗ is supported near the puncture of D∗ if there exists a
positive constant c < 1 such that |γ| ≤ c for all γ ∈ Γ1, and that Γ2 ⊂ D∗ is supported near the border of
D if there exists a positive constant c < 1 such that |γ| > c for all γ ∈ Γ2. �

Note that, near the border of D∗, the geometry is that of the hyperbolic unit disk. On the other hand, near
the puncture the geometry is really quite different, as we now show.

3.2.1. Geometrically blowing up the puncture into a Euclidean cylinder. Let Γ ⊂ D∗ be a closed discrete
subset that is supported near the puncture of D∗. In view of the estimate (10) for AωP , the Hilbert space
`2(Γ, ϕ) is quasi-isometric to the Hilbert space

l2(Γ, e−ϕ) :=

f : Γ→ C ;
∑
γ∈Γ

|f(γ)|2e−ϕ(γ)

(log 1
|γ|2 )2

< +∞

 .

Thus a sequence Γ supported near the puncture is an interpolation sequence if and only if the restriction map
RΓ : H 2(D∗, e−ϕωP )→ l2(Γ, e−ϕ) is surjective.

Now let
ψ(ζ) := ϕ(ζ) + 2 log log

1

|ζ|2
.

Then
e−ϕωP = e−ψωc,

where

ωc(ζ) =

√
−1dζ ∧ dζ̄

2|ζ|2
is (the restriction to D∗ of) the cylindrical metric for C∗, which was studied in [V-2015]. We therefore have

H 2(D∗, e−ϕωP ) = H 2(D∗, e−ψωc) and l2(Γ, e−ϕ) =

f : Γ→ C ;
∑
γ∈Γ

|f(γ)|2e−ψ(γ) < +∞

 ,

so the interpolation problem for sequences that are supported near the puncture is almost the same as the
interpolation problem on the cylinder (C∗, ωc). The latter problem was considered in [V-2015], where we
obtained necessary and sufficient conditions for interpolation. With the cylindrical characterization in mind,
and with the computation

∆ψ = ∆ϕ− 4ωP = (∆ϕ− 2ωP )− 2ωP ,

it is clear that the condition ∆ϕ ≥ (2 + m)ωP , which was sufficient for the case of the disk, will not work
in the punctured disk. We must ask that the weight ϕ further satisfy an inequality at least as strong as

∆ϕ ≥ 4ωP

in some neighborhood of the origin in D∗. (In fact, there is a typically stronger density condition, which we
will state shortly.)

REMARK 3.3. In the cylindrical interpolation problem studied in [V-2015], we had a somewhat stronger
requirement, namely that ∆ψ ≥ εωc everywhere (in C∗). However, since we are working on D∗ rather than
C∗, we have at our disposal both hyperbolic geometry and the technique of Donnelly-Fefferman-Ohsawa,
and these will allow us to glue together extended data near the puncture and near the border of D∗. �

3.3. Weight averages and density of sequences supported near the border. Since the geometry of the
interpolation problem near the border is that of the hyperbolic unit disk, we begin by using hyperbolic
geometry to define the density of a sequence supported near the border.
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3.3.1. Singularities along a sequence supported near the border. Let Γ ⊂ D∗ be a sequences supported
near the border. We can view Γ as a subset of D and, as such, define the functions σΓ

r : Γ → R and
SΓ
r : Γ → R+, as well as the (1, 1)-form ΥΓ

r , as in Proposition 2.4. These functions are all obtained after
choosing T ∈ O(D) with Ord(T ) = Γ and setting

λTr (z) :=
1

cr

∫
Ar

log |T (ϕz(ζ))|2 log
r2

|ζ|2
ωD
P (ζ),

where cr is defined by (5). Of course, Proposition 2.4 applies to these objects.
In order to indicate that we are working near the border of D∗, rather than in D, we shall write

σb,Γr := σΓ
r , Sb,Γr := σΓ

r and Υb,Γ
r := ΥΓ

r .

We emphasize that, even though we are studying a problem on D∗, we are using functions T that are
holomorphic across the origin.

3.3.2. Logarithmic means. Let ϕ ∈ C 2(D∗) be a smooth weight function. The function ϕ is not necessarily
smooth across the puncture, so it is necessary to modify it near the puncture. This is easily done as follows:
let hc : [0, 1] → [0, 1] be a smooth, increasing function such that h|[0,c/2] ≡ 0 and h|[c,1] ≡ 1, where
c ∈ (0, 1). Define the c-truncated logarithmic mean of ϕ as

ϕr,c(z) := (hcϕ)r =
1

ar

∫
Dr(z)

hc(|ζ|)ϕ(ζ) log
r2

|φz(ζ)|2
ωD
P (ζ).

Note that if, in the set 0 < c/2 ≤ |z| < 1 the weight function ϕ satisfies the curvature estimates

−MωP ≤ ∆ϕ ≤MωP ,

then

−MωP ≤ ∆ϕc,r ≤MωP in all of D.

It follows from Proposition 2.3 that |hc(z)ϕ(z)− ϕc,r(z)| ≤ C̃r. In particular, we have the estimate

|ϕ(z)− ϕc,r(z)| ≤ Cr for c ≤ |z| < 1,

where Cr is independent of z (though it does depend on c and the constant M ).

3.3.3. Density of a closed discrete subset supported near the border of D∗. Let Γ ⊂ D∗ be a sequence
supported near the border. Viewing Γ as a sequence in D, we define the upper density of Γ to be

Db+
ϕ (Γ) := inf

{
α ; ∀ ro ∈ (c, 1) ∃ r ∈ (ro, 1) such that α∆ϕc,r ≥ ΥΓ

r

}
.

Since the sequence is supported near the border, the inequality α∆ϕc,r ≥ ΥΓ
r will hold if it holds near the

border of D∗. Thus the definition of Db+
ϕ (Γ) is independent of the choice of c ∈ (0, 1).

REMARK 3.4. If ϕ is a smooth weight in D then Db+
ϕ (Γ) is just the upper density D+

ϕ (Γ) of the sequence Γ
defined in (ii) of Theorem 2.1. �

3.4. Weight averages and density of sequences supported near the puncture. In view of Paragraph
3.2.1, the geometry of the interpolation problem near the puncture is cylindrical. We therefore adapt the
ideas of [V-2015] to define weight averages and density of sequences supported near the puncture.
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3.4.1. Singularities along a sequence supported near the puncture. For a locally integrable function h in
the Euclidean annulus Ar(z) of inner radius 1 and outer radius r > 1, and center z ∈ C, we define

Ahr (z) :=
1

cr

∫
Ar(z)

h(ζ) log
r2

|ζ − z|2
ωo(ζ) =

1

cr

∫
Ar(0)

h(z − ζ) log
r2

|ζ|2
ωo(ζ),

where ωo denotes the Euclidean metric in C. Note that if h is 2π-periodic, then so is Ahr .
Let Γ ⊂ D∗ be a closed discrete subset supported near the puncture. There exists T ∈ O(C∗) ⊂ O(D∗)

such that Ord(T ) = Γ. As in [V-2015], we define the covered logarithmic mean λ̌Tr : C∗ → R of log |T |2
by

P ∗λ̌Tr := AP
∗(log |T |2)

r .

Evidently the function AP
∗(log |T |2)

r is 2π-periodic, so λ̌Tr is well-defined.

DEFINITION 3.5. The function λ̌Tr is called a potential function for Γ. �

The following proposition was proved in [V-2015].

PROPOSITION 3.6. Let Γ ⊂ D∗ be a closed discrete subset that is supported near the puncture, and choose
T ∈ O(C∗) such that Ord(T ) = Γ.

(a) The functions σr : C∗ → [0,∞) and Sr : Γ→ (0,∞) defined by

σΓ
r (z) = |T (z)|2e−λ̌Tr (z) and SΓ

r (γ) = |dT (γ)|2ωP e
−λ̌Tr (γ),

and the (1, 1)-form

ΥΓ
r := ∆λ̌Tr

are independent of the choice of T .
(b) σΓ

r ≤ 1.
(c) For any γ̃ ∈ Γ̃ := P−1(Γ), any r such that Γ̃ ∩Do

r(γ̃) = {γ̃}, and ε ∈ (0, r), and any z ∈ Do
r(γ̃)

such that |γ̃ − z| > ε, we have the estimate

σΓ
r (P (z)) ≥ Crε2.

On the other hand, 1
σΓ
r

is not locally integrable in any neighborhood of any point of Γ.
(d) One has the formula

(11)
∆λ̌Tr (z)

2ωc(z)
=

1

cr

∑
γ̃∈P−1(Γ)∩Aor(q)

log
r2

|γ̃ − q|2
,

where q ∈ P−1(z) is any point.

In order to indicate that we are working near the puncture of D∗, rather than in C∗, we shall write

σ∗,Γr := σΓ
r , S∗,Γr := σΓ

r and Υ∗,Γr := ΥΓ
r .

3.4.2. ε-extended Logarithmic means and ε-extended covered means. Let τ be a locally integrable weight
function on H. For a given small positive number ε, the function

τε(z) = τ(z + ε)

is defined on the closure of H in C. We then define

τ+
ε (z) :=

{
τε(z), z ∈ H
τε(z̄), z ∈ C−H .
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Observe that if aωo ≤ ∆τ ≤ bωo for any a, b ∈ R, then the same is true for τ+
ε (as a current). In particular,

if τ is subharmonic then so is τ+
ε . We can then define the logarithmic mean of τ+

ε as was done in [V-2015]:

τ+
ε,r(z) :=

∫
Dor(0)

τ+
ε (z − ε− ζ) log

r2

|ζ|2
ωo(ζ).

Observe that, for Im z > r + ε, we have

∆τ+
ε,r(z) =

(∫
Dor(0)

∂2τ

∂ζ∂ζ̄
(z − ζ) log

r2

|ζ|2
ωo(ζ)

)
2ωo(z) =

(∫
Dor(z)

∂2τ

∂ζ∂ζ̄
(ζ) log

r2

|z − ζ|2
ωo(ζ)

)
2ωo(z).

Now suppose τ is 2π-periodic in H, i.e.,

τ(z + 2π) = τ(z), z ∈ H.

Then τ+
ε is 2π-periodic in C, and therefore so is τ+

ε,r.
Finally, if ψ is a locally integrable function in D∗, then ψ̃ := P ∗Hψ is 2π-periodic in H, and thus ψ̃+

ε,r is
2π-periodic in C. Therefore there exists a locally integrable function µε,r(ψ) on C∗ such that

P ∗µε,r(ψ) = ψ̃+
ε,r.

DEFINITION 3.7. The function µε,r(ψ) is called the ε-extended covered mean of ψ. �

REMARK 3.8. Note that

|z| < e−(r+ε) ⇒ µε,r(ψ)(z) = µr(ψ)(z),

where µr(Ψ) is the covered mean of a function Ψ on C∗, as defined in [V-2015]. (The definition of µr is
local on C∗, so it makes sense to talk about µr(Ψ)(z) for a function Ψ that is only defined in D∗ and not on
all of C∗, so long as the point z ∈ D∗ is sufficiently close to the origin.) �

3.4.3. Density of a closed discrete subset supported near the puncture. Finally, we introduce the following
definition.

DEFINITION 3.9. Let Γ ⊂ D∗ be a closed discrete subset supported near the puncture, let ϕ ∈ L1
`oc(D∗) be

an upper semi-continuous weight function satisfying

∆ϕ ≥ 4ωP ,

and let µε,r(ψ) be the ε-shifted covered mean of ψ.The number

D∗+ϕ (Γ) = inf
{
α ;∀ro ∈ (0,∞) ∃ r > ro such that α

√
−1∂∂̄µε,r(ϕ+ 2 log log 1

|z|2 ) ≥ ΥΓ
r

}
is called the puncture density of Γ. �

If one unwinds the definitions, one sees that the puncture density of Γ with respect to ϕ is simply the
density of P−1(Γ) in C, with respect to (ϕ + 2 log log 1

|z|2 )+
ε . Since the density of a sequence supported

near the puncture is computed using disks whose center converges to the puncture, the definition of D∗+ψ (Γ)

is independent of the choice of ε > 0. Thus if the sequence Γ ⊂ D∗ is supported near the puncture, then
D∗+ψ (Γ) is just the cover density of Γ ⊂ C∗, computed with respect to the weight ψ := ϕ+ 2 log log 1

|z|2 , in
the sense of [V-2015].

3.5. Statement of the interpolation theorem in (D∗, ωP ).
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3.5.1. Density and uniform separation of sequences. We have seen that the geometry of the interpolation
problem near the puncture is cylindrical, whereas near the border, it is hyperbolic. As such, we define
density and uniform separation in terms of these geometries.

DEFINITION 3.10. For a closed discrete subset Γ ⊂ D∗ and a number a ∈ (0, 1), write

Γ∗a := {γ ∈ Γ ; |γ| ≤ a} and Γba := {γ ∈ Γ ; |γ| > a}.
(i) For a weight function ϕ ∈ C 2(D∗) satisfying the curvature inequalities

(a) ∆ϕ− 2ωP ≥ 0, and
(b) there exists c ∈ (0, 1) such that, for all 0 < |ζ| < c, ∆ϕ(ζ) ≥ 4ωP (ζ),

the upper density of Γ is the number

Ḋ+
ϕ (Γ) := inf

a∈(0,1)
max(Db+

ϕ (Γba), D
∗+
ϕ (Γ∗a)),

where Db+
ϕ (Γ) and D∗+ϕ (Γ) are as in Paragraph 3.3.3 and Definition 3.9 respectively.

(ii) The sequence Γ ⊂ D∗ is said to be uniformly separated if the non-negative numbers

R∗Γ :=
1

2
inf{dc(γ, µ) ; γ, µ ∈ Γ∗a, γ 6= µ} and RbΓ :=

1

2
inf{dP (γ, µ) ; γ, µ ∈ Γba, γ 6= µ}

are positive. �

Here
dc(z, w) := | log z − logw| =

√
(log |z/w|)2 + (arg z − argw)2

is the cylindrical distance, i.e., the geodesic distance for ωc in C∗.

REMARK 3.11. Clearly the uniform separation of Γ is independent of a. In fact, because the densities are
realized asymptotically near the boundary of D∗, the number Ḋ+

ϕ (Γ) is also independent of a. �

Finally, we have the following lemma.

LEMMA 3.12. Let Γ ⊂ D∗ be a uniformly separated sequence that is supported near the puncture, and let
T ∈ O(D∗) be a function such that Ord(T ) = Γ. Then, with λ̃Tr denoting the function defined in Paragraph
3.4.1, the sequence Γ is uniformly separated if and only if for each r > 0 there exists Cr > 0 such that

sup
Γ
|dT |2e−λ̃Tr ≥ Cr.

The proof of Lemma 3.12 is the same as that of Proposition 2.7 in [V-2015].

3.5.2. Statement of the interpolation theorem.

THEOREM 3.13. Let ϕ ∈ C 2(D∗) be a weight function satisfying the following conditions: there exists a
constant c ∈ (0, 1), and positive constants m and M , such that

(B) for all c ≤ |ζ| < 1, mωP (ζ) ≤ ∆ϕ(ζ)− 2ωP (ζ) ≤MωP (ζ), and
(?) for all 0 < |ζ| < c, mωc(ζ) ≤ ∆ϕ(ζ)− 4ωP (ζ) ≤Mωc(ζ).

Let Γ ⊂ D∗ be a closed discrete subset. Then the restriction map

RΓ : H 2(D∗, e−ϕωP )→ `2(Γ, e−ϕ)

is surjective if
(i+) Γ is uniformly separated, and

(ii+) Ḋ+
ϕ (Γ) < 1.

Conversely, if RΓ is surjective then
(i-) Γ is uniformly separated, and

(ii-) Ḋ+
ϕ (Γ) ≤ 1. More precisely, Db+

ϕ (Γ) < 1 and D∗+ϕ (Γ) ≤ 1.
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3.6. Sufficiency. As in the case of the unit disk, we begin with the proof that Conditions (i+) and (ii+) of
Theorem 3.13 are sufficient to guarantee the surjectivity of the restriction map

RΓ : H 2(D∗, e−ϕωP )→ `2(Γ, e−ϕ).

THEOREM 3.14. Let ϕ ∈ C 2(D∗) satisfy conditions (B) and (?). Let Γ ⊂ D∗ be uniformly separated, and
assume Ḋ+

ϕ (Γ) < 1. Then the restriction map RΓ : H 2(D∗, e−ϕωP )→ `2(Γ, e−ϕ) is surjective.

3.6.1. Strong sufficiency. In fact, we are going to prove a somewhat stronger result.

THEOREM 3.15. Let ϕ be a subharmonic weight function on D∗ satisfying

∆ϕ− 2ωP ≥ mωP , and ∆ϕ(ζ)− 4ωP (ζ) ≥ mωc(ζ)

for some positive constant m, with the second inequality holding for 0 < |ζ| < c for some c ∈ (0, 1). Let
Γ ⊂ D∗ be uniformly separated, and write Γ = Γ1 ∪ Γ2, where |γ| > c for γ ∈ Γ1 and |γ| < c for γ ∈ Γ2.
Suppose there exist ε > 0 and r ∈ (0, 1) such that

∆ϕ− 2ωP ≥ (1 + ε)Υb,Γ1
r in D∗,

and
∆ϕ− 4ωP ≥ (1 + ε)Υ∗,Γ2

r on the set {z ∈ C ; 0 < |z| < c}.
Then the restriction map RΓ : H 2(D∗, e−ϕωP )→ `2(Γ, e−ϕ) is surjective.

Theorem 3.15 is proved in three parts. In the first part, one solves the interpolation problem for sequences
supported near the border. In the second part, one interpolates the data supported near the puncture with
a function that is holomorphic across the puncture, i.e., a positive distance away from the Border. This
second step follows from the work in [V-2015]. Finally these two interpolation functions are glued together
to complete the proof.

THEOREM 3.16 (Strong sufficiency: border case). Let ϕ ∈ L1
`oc(D∗) be a subharmonic weight function

satisfying
∆ϕ− 2ωP ≥ mωP

for some positive constant m. Let Γ ⊂ D∗ be uniformly separated and supported near the border, and
assume

∆ϕ− 2ωP ≥ (1 + ε)Υb,Γ
r

for some positive number ε. Then the restriction map RΓ : H 2(D∗, e−ϕωP )→ `2(Γ, e−ϕ) is surjective.

Proof. Since Γ is supported near the border, there exists a constant δ > 0 such that the pseudohyperbolic
disks {Dδ(γ) ; γ ∈ Γ} are pairwise-disjoint and contractible. By Lemma 2.7 there exist holomorphic
functions {gγ ∈ O(Dδ(γ) ; γ ∈ Γ} such that

gγ(γ) = eϕ(γ)/2 and
∫
Dδ(γ)

|gγ |2e−ϕωP ≤ Cδ, γ ∈ Γ,

where Cδ is a universal constant, and in particular, independent of γ. (Note that Lemma 2.7 is formulated in
the unit disk, but since the sequence Γ is supported near the border, the same proof works for the punctured
disk.)

Fix a datum f ∈ `2(Γ, e−ϕ) to be extended, i.e.,∑
γ∈Γ

|f(γ)|2e−ϕ(γ) < +∞.

Let χ ∈ C∞(R) be a decreasing function satisfying

χ(x) = 1 for x ≤ 1
2 , χ(x) = 0 for x ≥ 1, and |χ′(x)| ≤ 3 for all x.
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Consider the function
F̃ (ζ) :=

∑
γ∈Γ

f(γ)e−ϕ(γ)/2gγ(ζ)χ
(
δ−2|φγ(ζ)|2

)
.

Then
F̃ ∈ C∞(D∗) and F̃ |Γ = f.

By Lemma 2.7, ∫
D∗
|F̃ |2e−ϕωP ≤

∑
γ∈Γ

|f(γ)|2e−ϕ(γ)

∫
Dδ(γ)

|gγ |2e−ϕωP ≤ Cδ||f ||2,

so that F̃ ∈ L2(D∗, e−ϕωP ). We now correct F̃ to be holomorphic and still interpolate f . Thus we seek a
solution u of the equation

∂̄u = α := ∂̄F̃

that lies in L2(D, e−ϕωP ) and vanishes along Γ. To this end, consider the weight function

ψ = ϕ+ log σb,Γr .

Note that χ′(x) = 0 for |x| ≤ 1/2 and that

|dφz|2ωP = (1− |φz|2)2 ≤ 1.

We compute that

α(ζ) =
∑
γ∈Γ

f(γ)e−ϕ(γ)/2gγ(ζ)χ′
(
δ−2|φγ(ζ)|2

) φz(ζ)φ′z(ζ)

δ2
dζ̄.

Thus by Property (c) of Proposition 2.4,∫
D∗
|α|2ωP e

−ψωP =
∑
γ∈Γ

|f(γ)|2e−ϕ(γ)

∫
Dδ(γ)

|gγ(ζ)|2e−ψ(ζ)
∣∣χ′ (δ−2|φγ(ζ)|2

)∣∣2 |φz(ζ)|2|dφz(ζ)|2ωP
δ4

ωP

.
∑
γ∈Γ

|f(γ)|2e−ϕ(γ)

∫
Dδ(γ)

|gγ(ζ)|2e−ϕ(ζ)ωP < +∞.

Since

∆ψ − 2ωP ≥
1

1 + ε

(
∆ϕ− 2ωP − (1 + ε)ΥΓ

r

)
+

ε

1 + ε
(∆ϕ− 2ωP ) ≥ mε

1 + ε
ωP ,

Theorem 1.6 gives us a function u such that

∂̄u = α and
∫
D∗
|u|2e−ψωP < +∞.

By the smoothness of α and the interior ellipticity of ∂̄, u is smooth. By Property (c) of Proposition 2.4, in
particular the non-integrability of e−ψ along Γ, u|Γ ≡ 0. Furthermore, by (b) of Proposition 2.4,∫

D∗
|u|2e−ϕωP ≤

∫
D∗
|u|2e−ψωP < +∞.

Finally, set F = F̃ − u. Then F ∈ O(D∗), F |Γ = f , and∫
D∗
|F |2e−ϕωP ≤ 2

(∫
D∗
|F̃ |2e−ϕωP +

∫
D∗
|u|2e−ϕωP

)
< +∞.

This completes the proof of Theorem 3.16. �
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THEOREM 3.17 (Strong sufficiency: puncture case). Let ϕ ∈ L1
`oc(D∗) be a subharmonic weight function.

Let Γ ⊂ D∗ be uniformly separated and supported near the puncture, and assume

∆ϕ− 4ωP ≥ (1 + ε)Υ∗Γr

for some positive number ε. Fix c ∈ (0, 1) such that Γ ⊂ {0 < |z| < c}. Then for each f : Γ→ C satisfying∑
γ∈Γ

|f(γ)|2 e−ϕ(γ)

(log 1
|γ|2 )2

< +∞

there exists F ∈ O({0 < |z| < c+1
2 }) such that

F |Γ = f and
∫
{0<|z|< c+1

2
}
|F |2e−ϕωP < +∞.

Proof. Let f ∈ `2(Γ, e−ϕ) be the datum to be extended. By Lemma 3.12,∑
γ∈Γ

|f(γ)|2 e−ϕ(γ)

(log 1
|γ|2 )2

1

|dT (γ)|2e−λ̃Tr (γ)
< +∞.

We are going to use the L2 Extension Theorem 1.2. In the notation of that theorem, we choose the data
X = {z ∈ C ; 0 < |z| < c+1

2 }, ψ = ϕ + 2 log log 1
|z|2 , λ = λ̃Tr , and ω = ωc, the restriction to X of the

cylindrical metric in C∗. Thus by L2 Extension Theorem there exists F ∈ O(X) such that

F |Γ = f and
∫
X
|F |2e−ϕωP < +∞.

This completes the proof. �

Proof of Theorem 3.15. Let f ∈ `2(Γ, e−ϕ) be the datum to be extended. Choose β > 0 such that, with
Wr,δ := {ζ ∈ C ; r − δ ≤ |ζ| ≤ r + δ},

Γ ∩Wc,β = ∅.
We set

Γb := {γ ∈ Γ ; |γ| > c} and Γ∗ := {γ ∈ Γ ; |γ| < c},
which are supported near the border and puncture respectively. Associated to these sequences, we have
functions σb,Γbr and σ∗,Γ∗r , and (1, 1)-forms

Fix χ ∈ C∞o (Wc,β) such that 0 ≤ χ ≤ 1, χ|Wc,β/2
≡ 1, and |χ′| ≤ 3

β . We define the function

ηΓ :=

{
(1− χ(ζ)) log σ∗,Γ∗r (ζ) + C(|ζ|2 − 1) |ζ| ≤ c
(1− χ(ζ)) log σb,Γbr (ζ) + C(|ζ|2 − 1) |ζ| ≥ c

.

Then for C sufficiently large,

(i) e−η
Γ

is not locally integrable at any point of Γ, but is smooth everywhere else,
(ii) ηΓ ≤ 0 on D∗, and
(ii) there is a continuous, positive (1, 1)-form θ on C such that θ ≤ Cωo and

∆ηΓ = θ − 1{|·|<c}
(
Υ∗,Γ∗r

)
− 1{|·|>c}Υ

b,Γb
r .

Now, by Theorems 3.16 and 3.17, there exist

F b ∈H 2(D∗, e−ϕωP ) and F ∗ ∈H 2({0 < |z| < c}, e−ϕωP )

such that
F b|Γb = f |Γb and F ∗|Γ∗ = f |Γ∗ .

Let
F̃ := 1{|·|<c}(1− χ)F ∗ + 1{|·|>c}(1− χ)F b.
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Then F̃ ∈ L2(D∗, e−ϕωP ) is smooth, holomorphic in D∗ −Wc,β , and satisfies

F̃ |Γ = f.

The (0, 1)-form α := ∂̄F̃ is smooth, and supported in Wc,β . Thus, since F ∗ and F b are square integrable
on their domains, ∫

D∗
|α|2ωP e

−ϕ−ηΓ
ωP < +∞.

Now,

∆(ϕ+ ηΓ)− 2ωP =
1

1 + ε

(
∆ϕ− 2ωP −

(
1{|·|<c}

(
2ωP + Υ∗,Γ∗r

)
+ 1{|·|>c}Υ

b,Γb
r

))
+

2

1 + ε
· 1{|·|<c}ωP + θ +

ε

1 + ε
(∆ϕ− 2ωP )

≥ mε

1 + ε
ωP .

By Theorem 1.6 and the interior elliptic regularity of ∂̄ there exists u ∈ L1
`oc(D∗, e−ϕ−η

Γ
ωP ) ∩ C∞(D∗)

such that

∂̄u = α and
∫
D∗
|u|2e−ϕωP ≤

∫
D∗
|u|2e−ϕ−ηΓ

ωP < +∞.

It follows that u|Γ ≡ 0, and that, with F := F̃ − u, F |Γ = f . Finally,∫
D∗
|F |2e−ϕωP ≤ 2

∫
D∗
|F̃ |2e−ϕωP +

∫
D∗
|u|2e−ϕωP < +∞.

The proof of Theorem 3.15 is complete. �

Proof of Theorem 3.14. The conditions on the weight ϕ allows us to apply the construction of Paragraph
3.3.2 to the weight ϕ to obtain a weight that has the same asymptotic growth as ϕ near the border of D∗.

Near the puncture, we apply the construction of Paragraph 3.4.2 to the weight ϕ to obtain a weight that
has the same asymptotic growth as ϕ near the puncture. (This is the case because ωP is locally finite near
the origin.)

We therefore have two regularized weights, ϕ1 and ϕ2, with the same asymptotics as ϕ near the border
and puncture respectively. Now take a function χ ∈ C∞(D) such that 0 ≤ χ ≤ 1, χ(z) ≡ 1 for |z| ≤ c,
and χ(z) ≡ 0 for |z| ≥ c+1

2 . Consider the weight function

ψ = (1− χ)ϕ1 + χϕ2.

Then H 2(D∗, e−ϕωP ) and H 2(D∗, e−ψωP ) are quasi-isomorphic Hilbert spaces, as are `2(D∗, e−ϕ) and
`2(D∗, e−ψ).

Now, the dentsity conditions for ϕ imply that ψ satisfies the hypotheses of Theorem 3.15, and thus the
restriction map

RΓ : H 2(D∗, e−ψωP )→ `2(D∗, e−ψ)

is surjective. Since the identity maps

H 2(D∗, e−ϕωP )→H 2(D∗, e−ψωP ) and `2(D∗, e−ϕ)→ `2(D∗, e−ψ)

are bounded linear isomorphisms, the restriction map

RΓ : H 2(D∗, e−ϕωP )→ `2(D∗, e−ϕ)

is also surjective. This completes the proof of Theorem 3.14 �
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3.7. Necessity. We shall now state and prove the converse of Theorem 3.14.

THEOREM 3.18. Let ϕ ∈ C 2(D∗) satisfy conditions (B) and (?). Let Γ ⊂ D∗ be a closed discrete subset,
and assume that the restriction map RΓ : H 2(D∗, e−ϕωP )→ `2(Γ, e−ϕ) is surjective. Then

(i) Γ is uniformly separated, and
(ii) Db+

ϕ (Γ) < 1 and D∗+ϕ (Γ) ≤ 1.

To prove Theorem 3.18, we split Γ as a disjoint union of two sequences Γ∗ and Γb, defined by

Γ∗ =
{
γ ∈ Γ ; |γ| < 1

2

}
and Γb =

{
γ ∈ Γ ; |γ| ≥ 1

2

}
.

It is clear that if Γ is an interpolation sequence then so are Γ∗ and Γb. The sequence Γ∗ behaves a lot
like an interpolation sequence for (C∗, ωc, ϕ+ 2 log log |z|−2), while the sequence Γb behaves a lot like an
interpolation sequence for (D, ωP , ϕ). This will be our guiding principle as we proceed.

3.7.1. Interpolation constant. As in Paragraph 2.3.1, when RΓ : H 2(D∗, e−ϕωP )→ `2(Γ, e−ϕ) is surjec-
tive, the minimal extension operator EΓ : `2(Γ, e−ϕ) → Kernel(RΓ)⊥ ⊂ H 2(D∗, e−ϕωP ) is continuous,
and has minimal norm among all bounded extension operators. The norm

AΓ := ||EΓ||

is again called the interpolation constant of Γ.

3.7.2. Uniform separation. Let Γ be an interpolation sequence. We aim to show that Γ is uniformly sepa-
rated in the sense of Definition 3.10(ii).

Fix γ ∈ Γ. As usual, we begin by choosing F ∈H 2(D∗, e−ϕωP ) such that

F (µ) = eϕ(γ)/2δγµ, µ ∈ Γ, and ||F || ≤ AΓ.

Now the proof breaks up into two cases, depending on whether γ ∈ Γb or γ ∈ Γ∗.

(i) In the first case, we can find a disk of center γ and pseudohyperbolic radius δ (viewed as a subset of
the disk), that lies in the set |z| > 1/4, with δ independent of γ ∈ Γb. Note that the metrics ωD∗

P and
ωD
P are quasi-isometric in the region { 1/4 ≤ |z| < 1}. An application of Proposition 1.9(b), as in

the Paragraph 2.3.2, shows that for all µ ∈ Γ, |φµ(γ)| ≥ co > 0.
(ii) In the second case, where γ ∈ Γ∗, we will imitate the proof of uniform separation for C∗ carried out

in [V-2015]. To this end, we again let ψ(z) = ϕ(z) + 2 log log 1
|z|2 . Recall that our covering map

P : H 3 ζ 7→ e
√
−1ζ ∈ D∗

is the restriction of the standard covering map P : C→ C∗, and also satisfies

P ∗ωc = ωo.

We fix δ > 0 sufficiently small that for each µ ∈ Γ∗ the disk Dc
δ(µ) := {z ∈ C∗ ; dc(µ, z) < δ}

(a) lies in D∗, and
(b) is the biholomorphic image under P of a Euclidean disk Do

δ(z) ⊂ H.
Using Proposition 1.5(b) in [V-2015] (which is the Euclidean analogue of Proposition 1.9(b) above)
we deduce that, in the universal cover H of D∗, the preimage of any point of Γ∗ − {γ} under P is a
uniform positive distance away from γ. It follows that dc(γ, µ) ≥ co > 0 for some positive constant
co independent of γ.

Thus Γ is uniformly separated. �
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3.7.3. Density estimates. Now that we have established uniform separation, we move on to estimate the
density of interpolation sequences.

In the rest of this paragraph, we fix a weight function ϕ ∈ C 2(D∗) satisfying the conditions (?) and (B)
of Theorem 3.13, and let Γ ⊂ D∗ be a closed discrete subset. We also set

ψ = ϕ+ 2 log log
1

| · |2
.

We begin with the obvious observation that if the restriction map

RΓ : H 2(D∗, e−ϕωP )→ `2(Γ, e−ϕ)

is surjective then the restriction maps

R∗Γb : H 2(D∗, e−ϕωP )→ `2(Γb, e−ϕ) and R∗Γ∗ : H 2(D∗, e−ψωc)→ `2c(Γ
∗, e−ψ)

are surjective. While we could try to adapt our arguments in the disk and the cylinder to the present setting,
we prefer to use the density estimates of those cases directly. To do so, we establish the surjectivity of the
restriction map on closely related spaces.

THEOREM 3.19. Let Γ ⊂ D∗ be uniformly separated and supported near the border. Choose a radial
function χ ∈ C∞(D) with 0 ≤ χ ≤ 1, χ(z) = 0 for |z| < c/2 and χ(z) = 1 for |z| ≥ c, where c ∈ (0, 1) is
such that γ ∈ Γ⇒ |γ| ≥ c. Let

ϕ̂(z) = χ(z)ϕ(z) + C|z|2,
with C chosen so large that ∆ϕ̂ ≥ (m+ 2)ωP for some positive number m. If the restriction map

RΓ : H 2(D∗, e−ϕωP )→ `2(Γ, e−ϕ)

is surjective, then the restriction map

RΓ : H 2(D, e−ϕ̂ωP )→ `2(Γ, e−ϕ)

is surjective.

Proof. Let f ∈ `2(Γ, e−ϕ) with ||f || = 1. By hypothesis, there exists F ∈ H 2(D∗, e−ϕωP ) such that
F |Γ = f , and in fact, we can take ||F || ≤ AΓ.

Fix a decreasing function h : (−∞,∞)→ [0, 1] such that h(x) = 1 for x < 0, h(x) = 0 for x > 2 + 2R
and |h′(x)| ≤ 1/2R. Let

ξ(z) = h

(
log log

1

|z|2
− log log

1

c2

)
.

Then

ξ|Γ ≡ 1 and
∣∣∂̄ξ∣∣2

ωP
= 4

(
h′
(

log log
1

|z|2
− log log

1

c2

))2

≤ R−2.

Now, the function ξF , although not globally holomorphic, interpolates f , and is holomorphic on the set
|z| ≥ c, but only smooth on D. Observe that α := ∂̄ξF satisfies∫

D
|α|2ωP e

−ϕ̂ωP ≤ R−2

∫
D∗
|F |2e−ϕωP .

Since ∆ϕ̂ ≥ (m+ 2)ωP , Theorem 1.5 gives us a function u ∈ L2(D, e−ϕ̂ωP ) such that

∂̄u = α and

∫
D
|u|2e−ϕ̂ωP ≤

A 2
Γ

R2m
.

Since u is holomorphic on |z| ≥ c, it must be small on Γ when R is large. If we fix R sufficiently large, then
we obtain a function F1 := ξF − u ∈H 2(D, e−ϕ̂ωP ) such that∑

γ∈Γ

|F1(γ)− f(γ)|2e−ϕ(γ) ≤ 1

2
||f ||2 =

1

2
.
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(Here one uses Corollary 1.10(a) and uniform separation.)
Let f0 = f and f1 := F1|Γ − f . We continue the procedure inductively. Assuming we have found a

function Fj ∈H 2(D, e−ϕ̂ωP ) such that

||Fj ||2 ≤
C

2j−1
and

∑
γ∈Γ

|Fj(γ)− fj−1(γ)|2e−ϕ(γ) ≤ 1

2j
,

let fj := fj−1 − Fj |Γ. Repeating the above procedure, we find Fj+1 such that

||Fj+1||2 ≤
C

2j
and

∑
γ∈Γ

|Fj+1(γ)− fj(γ)|2e−ϕ(γ) ≤ 1

2j+1
.

Letting
F :=

∑
j

Fj ,

we see that F converges in L2(D, e−ϕ̂ωP ), and thus locally uniformly, hence in H 2(D, e−ϕ̂ωP ). Moreover,

F |Γ = f.

The proof is finished. �

THEOREM 3.20. Let Γ ⊂ D∗ be uniformly separated and supported near the puncture. Choose a radial
function χ ∈ C∞(C) with 0 ≤ χ ≤ 1, χ(z) = 1 for |z| ≤ c and χ(z) = 0 for |z| ≥ (1 + c)/2, where
c ∈ (0, 1) is such that γ ∈ Γ⇒ |γ| < c. Let

ψ̂(z) = χ(z)ψ(z) + C(1− χ(z))(log 1
|z|2 )2,

with C > 0 chosen so large that ∆ψ̂ ≥ mωc in C∗. If the restriction map

RΓ : H 2(D∗, e−ϕωP )→ `2(Γ, e−ϕ)

is surjective, then the restriction map

RΓ : H 2(C∗, e−ψ̂ωc)→ `2(Γ, e−ψ)

is surjective.

Proof. Let f ∈ `2(Γ, e−ϕ) with ||f || = 1. As in the proof of Theorem 3.19, there existsF ∈H 2(D∗, e−ϕωP )
such that F |Γ = f and ||F || ≤ AΓ.

Fix a decreasing function h : (−∞,∞)→ [0, 1] such that h(x) = 1 for x < 0, h(x) = 0 for x > 2 + 2R
and |h′(x)| ≤ 1/2R. Let

ξ(z) = h

(
log

1 + |z|
1− |z|

− log
1 + c

1− c

)
.

Then

ξ|Γ ≡ 1 and
∣∣∂̄ξ∣∣2

ωP
= 4

(
h′
(

log
1 + |z|
1− |z|

− log
1 + c

1− c

))2

≤ R−2.

The function ξF , although not globally holomorphic, interpolates f , and is holomorphic on the set |z| ≤ c.
The (0, 1)-form α := ∂̄ξF satisfies∫

C∗
|α|2ωP e

−ψ̂ωc ≤ R−2

∫
D∗
|F |2e−ϕωP .

Since ∆ψ̂ ≥ mωc, Hörmander’s Theorem gives us a function u ∈ L2(C∗, e−ψ̂ωc) such that

∂̄u = α and

∫
C∗
|u|2e−ψ̂ωc ≤

A 2
Γ

R2m
.
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As in the Proof of Theorem 3.19, if R sufficiently large, then F1 := ξF − u ∈H 2(C∗, e−ψ̂ωc) satisfies∑
γ∈Γ

|F1(γ)− f(γ)|2e−ϕ(γ) ≤ 1

2
||f ||2 =

1

2
.

(Here one uses uniform separation and [V-2015, Corollary 1.6(a)],which is the Euclidean analogue of
1.10(a).) The remainder of the proof is the same as that of Theorem 3.19. �

In view of Theorems Theorem 3.19 and Theorem 3.20, Theorem 2.8, [V-2015, Theorem 3.7], and Defi-
nition 3.10(i), we obtain the following result.

COROLLARY 3.21. If Γ ⊂ D∗ is an interpolation sequence, then Db+
ϕ (Γ) < 1 and D∗+ϕ (Γ) ≤ 1.

This completes the proof of Theorem 3.18 and, therefore, Theorem 3.13. �

4. INTERPOLATION IN A GENERAL FINITE, POINCARÉ-HYPERBOLIC RIEMANN SURFACE

For the rest of this section, we fix a finite Riemann surfaceX , i.e., the complement of finitely many points
in a compact Riemann surface with (smooth) boundary.

4.1. The ends of a finite Riemann surface covered by the unit disk. There is a compact subsetK ⊂⊂ X
that is itself a Riemann surface with boundary (and in particular, has no punctures), such that the complement
X −K is a disjoint union of subset of X , called ends, each of which is biholomorphic either to an annulus
or a punctured disk. We want to describe the Poincaré metric ωP on these boundary neighborhoods in a
convenient way. Doing so amounts to choosing good coordinate charts, as we now do. For more information,
see [O-2008, D-2002, DPRS-1985].

We fix a universal covering π : D→ X and denote by G the associated group of deck transformations.
Let us start with the annuli, i.e., those ends whose outer boundaries are border curves of X . If γ̃ denotes

one such border curve, then there is a unique closed geodesic γ in the homotopy class of γ̃. Let hγ ∈ G
denote the deck transformation corresponding to [γ] ∈ π1(X). The quotient space

D/ 〈hγ〉
is biholomorphic to the annulus

AR = {z ∈ C ; e−R < |z| < eR}, where R = π2/length(γ).

Notice that, in AR, the unit circle is a geodesic of length π2/R = length(γ) for the Poincaré metric. There
is a covering map πγ : AR → X , which sends the unit circle in AR to the geodesic γ, and maps the set

Aouter
R := AR − D = {1 ≤ |z| < eR}

isometrically onto the topological annulus in X bounded by γ and γ̃. The map πγ can be defined as follows:
a point z in the annulus corresponds to an orbit 〈hγ〉 (ζ) of some ζ ∈ D, and

πγ(z) = { orbit under G of the point ζ}.
This map is clearly well-defined, since the entire orbit {hmγ (ζ) ; m ∈ Z} is contained in the orbit G(ζ).
Moreover, it is clear that πγ is a local isometry. Since πγ |Aouter

R
is a bijection, we get a very precise descrip-

tion of the Poincaré metric of X near the boundary γ̃.
Let us now turn to punctured disk ends, whose punctures are the punctures of X . There is a compact

Riemann surface X̃ with smooth boundary of real codimension 1 such that X ⊂ X̃ and X̃ − X consists
precisely of N points p1, ..., pN . Let us fix one such p = pi, and a neighborhood Ũ of p in X̃ that is
homeomorphic to a disk. We write U∗ = Ũ ∩ X , and note that U∗ is homeomorphic to a punctured disk.
There is a unique homotopy class [γ] of a co-oriented loop γ ⊂ U∗ that generates the fundamental group of
U∗. Let g[γ] ∈ G denote the corresponding deck transformation of π : D → X . Then we have a covering
map

σ : D→ D/
〈
g[γ]

〉 ∼=O D∗,
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and a second covering map πp : D∗ → X defined by

πp(z) = π(σ−1(z)).

As in the case of the annulus, this map is well-defined, and is a local isometry. Therefore, some neighbor-
hood of the origin in D∗ (say {0 < |z| < c}) is biholomorphic and isometric to a neighborhood of p in U∗

(which we may take to be all of U∗, after shrinking the original U∗).
Let A1, ..., Ak ⊂ X be neighborhoods of the 1-dimensional boundary components, and P1, ..., PN ⊂ X

neighborhoods of the punctures. We also fix biholomorphic maps

πAi : Ai → ARi and πPj : Pj → D∗

as described above. Finally we define the core of X as

Xcore := X −

⋃
i

Ai ∪
⋃
j

Pj

 ⊂⊂ X.
When we want to refer to an end without referring to its outer boundary dimension, we shall write Ui for
such an end, instead of Ai or Pi.

As a corollary of these local descriptions, we get the following result on the local structure of the Poincaré
metric near the boundary of a finite Riemann surface.

PROPOSITION 4.1. Let X be a finite Riemann surface. Then there is a compact set K ⊂⊂ X whose
complement is a union of ends Ui as just described, and subsets Vi ⊂ Ui whose closure contains ∂X ∩ Ui
but does not meet ∂K, such that the Poincaré metric ωP of X and the Poincaré metric ωP,i of Ui satisfy

ωP,i|Vi = ωP |Vi .
4.2. Ortega Cerdà’s Theorem. As we mentioned in the introduction, Ortega Cerdà [O-2008] proved The-
orem 1 in the case whereX has no punctures, and at least one border curve. Though he never explicitly says
it, Ortega Cerdà normalizes the Poincaré metric to have constant curvature −2.

In fact, Ortega Cerdà’s main theorem is proved for L∞, and he then sketches how the same methods can
be used to establish the Lp case. The crucial result he needs to carry out his proof in the Lp case is the
following theorem, which he proves.

THEOREM 4.2. [O-2008, Theorem 17] Let X be a finite open Riemann surface with no punctures, and with
Poincaré metric ωP (of constant curvature −4), let φ be a function satisfying (2 + ε)ωP ≤ ∆φ ≤ MωP
for some positive constants M and ε, and let p ∈ [1,∞). Then there is a constant C > 0 such that for any
locally integrable (0, 1)-form α on X there exists a function u ∈ Lp`oc(X) such that

∂̄u = α and
∫
X
|u|pe−φωP ≤ C

∫
X
|α|pωP e

−φωP ,

provided the right hand side is finite.

At least for L2, it is possible to prove a somewhat stronger statement using the technique of Donnelly-
Fefferman-Ohsawa. The result we prove is stronger in two senses. Firstly, we don’t need to assume that X
has no punctures, and secondly, we do not assume an upper bound on the Laplacian of the weight. (The
bounded Laplacian condition implies that the weight function is C 1,α for any α < 1, but, as the next result
shows, when p = 2 the Theorem 4.2 holds for weights that are much more general.)

THEOREM 4.3. Let X be a finite open Riemann surface with Poincaré metric ωP (again of constant cur-
vature −4), and let ξ be a weight function satisfying ∆ξ ≥ 2(1 + ε)ωP for some positive constant ε. Then
there is a constant C > 0, depending only on X and ε, such that for any locally integrable (0, 1)-form α on
X there exists a function u ∈ L1

`oc(X) such that

∂̄u = α and
∫
X
|u|2e−ξωP ≤ C

∫
X
|α|2ωP e

−ξωP ,
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provided the right hand side is finite.

REMARK 4.4. As with Theorems 1.5 and 1.6, Theorem 4.3 follows from Hörmander’s Theorem if we
assume ∆ξ ≥ 4(1 + ε)ωP , but not in general. �

In the proof of Theorem 4.3, as well as elsewhere, we will need the following lemma.

LEMMA 4.5. Let X be a finite open Riemann surface and let Ω be a continuous (1, 1)-form with compact
support in X . Then for any ε > 0 there exists a constant C > 0 and a smooth function τ : X → (0, C)
such that

∆τ ≥ −Ω− εωP .

Proof. Observe thatX is an open subset of a compact Riemann surface Y . Thus there exists a smooth metric
of strictly positive curvature for some holomorphic line bundle, say L → Y . By Kodaira’s Embedding
Theorem, if k ∈ N is sufficiently large then the sections of L⊗k → Y , embed Y in some projective space.
If we take a basis of sections σ(k)

0 , ..., σ
(k)
Nk
∈ H0(Y,L⊗k), we can form the metric

ψk := log

Nk∑
j=0

|σ(k)
j |

2.

The curvature of this metric is as large as we like on any compact subset of X , and in particular, for
sufficiently large k we have

∆ψk ≥ −Ω

on the support of Ω.
We can choose the first section σ

(k)
0 to have no zeros in X . Then we can define functions f (k)

j :=

σ
(k)
j /σ

(k)
0 , 0 ≤ j ≤ Nk for some constant c. The function

Ψk = log(1 + |f (k)
1 |

2 + ...+ |f (k)
Nk
|2)

is the local trivialization of the metric ψk with respect to the frame σ(k)
0 . It is a smooth function on the set

Y − {σ(k)
0 = 0}, and in particular, on X . Thus if the zeros of σ(k)

0 are not on the boundary of X , this
function is bounded. In particular, if X has at least one border curve, then we are done (and even better: we
can take ε = 0).

However, if (and only if) X has only punctures , it is impossible to avoid placing the zeros of σ(k)
0 on

the boundary of X . Let us assume that Y − X consists of finitely many points p1, ..., pm. We choose
our section σ(k)

0 to have its only zero at p1 (evidently with high multiplicity). Let us choose coordinates
z on the punctured neighborhood U1 of p1, as defined in Subsection 4.1, and fix c > 0 such that {|z| ≤
c} ∩ Support(Ω) = ∅. Now let h : (−∞,∞)→ [0, 1] be a smooth increasing function such that h(x) = 1
for x ≥ 0, h(x) = 0 for x ≤ −R− 1, h′(x) ≤ R−1 and |h′′(x)| ≤ CR−2. Let

κ(z) := χ(log log 1
|z|2 − log log 1

c2
)

for |z| ≤ c, and κ(p) = 1 for p ∈ X − {|z| ≤ c}. Note that, for R large,

|∂κ(z)|2ωP . R
−2,

and that

∆κ = −4χ′(log log 1
|z|2 − log log 1

c2
)ωP + χ′′(log log 1

|z|2 − log log 1
c2

)ωP ∼ −4R−1ωP .

Consider the function smooth, compactly supported (and hence, bounded) function

τ = κ ·Ψk.

Then
∆τ = ∆κΨk +

√
−1(∂κ ∧ ∂̄Ψk + ∂Ψk ∧ ∂̄κ) + κ∆Ψk ≥ −Ω +O(R−1)(−ωP ).
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The result follows as soon as R is sufficiently large. �

Proof of Theorem 4.3. In each end Uj with coordinates coming from the universal cover as described in the
previous section, we have a function ηj , which we take to be log log 1

|z|2 or log 1
1−|z|2 , depending on whether

Uj is a punctured disk or an annulus respectively. Fix cutoff functions χj that are identically 1 in Vj , take
values in [0, 1], and are supported in Uj . Define the function

η :=
∑
j

χjηj .

Since ∆ηj − (1 + ν)
√
−1∂ηj ∧ ∂̄ηj ≥ −2νωP ,

∆η −
√
−1∂η ∧ ∂̄η ≥ −2νωP + Ξ

for some smooth (1, 1)-form Ξ with compact support inX . (If fact, Ξ is supported in the union of the annuli
Uj − Vj .) We shall now apply Theorem 1.4 with ψ = ξ + η + τ where τ is as in Lemma 4.5 with Ω = Ξ,
and ω = ωP . We calculate that for ν sufficiently small and τ appropriately chosen,

∆(ψ + R(ω) + ∆η − (1 + ν)∂η ∧ ∂̄η ≥ ∆ξ − 2ωP + ∆τ + Ξ− 2νωP ≥ εωP .

Thus we may take Θ = εωP in Theorem 1.4. Since 0 ≤ τ ≤ C for some constant C that depends only on
X and ε, we find that if∫

X
e−ξ|α|2ωPωP ≤

∫
X
e−τ−ξ|α|2ωPωP = ε

∫
X
eη−ψ|α|2Θe−ψωP < +∞

there exists a locally integrable function u such that ∂̄u = α, and∫
X
e−ξ|u|2ωP ≤ eC

∫
X
e−τ−ξ|u|2ωP

≤ ν + 1

ν
eC
∫
X
e−τ−ξ|α|2Θ

=
ν + 1

ν
eCε−1

∫
X
e−τ−ξ|α|2ωPωP

≤ ν + 1

ν
eCε−1

∫
X
e−ξ|α|2ωPωP .

This completes the proof. �

REMARK 4.6. The technique of the proof, in particular the use of Lemma 4.5, works perfectly well if we
require ∆ξ ≥ 2(1 + ε)ωP to hold only outside a given compact subset of X , and allow ∆ξ to be negative
in the interior of X , so long as ξ is quasi-subharmonic, i.e., ∆ξ is bounded below by a smooth negative
(1, 1)-form. �

REMARK 4.7. Note also that although Theorem 4.3 to some extent generalizes Theorems 1.5 and 1.6, the
constants in the latter are sharper. The reason is that the function η constructed in the proof only satisfies
∆η ≥

√
−1∂η ∧ ∂̄η in the ends of X , but in general it is negative in the interior. We do not know if it is

possible to find a real-valued function η ∈W 1,2
`oc (X) such that

∆η ≥
√
−1∂η ∧ ∂̄η and ∆η = 2ωP ,

except when X = D or X = D∗. Real-valued functions satisfying the inequality

C∆η ≥
√
−1∂η ∧ ∂̄η

for some constant C > 0 were first introduced by McNeal [Mc-2002, Definition 1] in his work on the
∂̄-Neumann problem. McNeal called them ”functions with self-bounded complex gradient”. �
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4.3. Uniform separation and asymptotic density. Since all the ends of our finite Riemann surface X are
either bordered or punctured ends, we can import the notions of uniform separation and of density from the
work we did on the punctured disk in the previous section.

In each end Uj , we have an open set Vj which is biholomorphic either to an annulus or a punctured disk
under the map πUj . We shall think of πUj (Vj) as a subset of D∗, which is either supported near the border
or near the puncture.

For each j, the weight function ϕj := ((πUj |Vj )∗ϕ satisfies the hypotheses of Interpolation Theorem 3.13
on the image of πUj . We define the sequences Γj := πUj (Γ ∩ Vj). Based on Definition 3.10, we are now
ready to define uniform separation and asymptotic density of Γ.

DEFINITION 4.8. Let Γ ⊂ X be a closed discrete subset.
(i) We say Γ is uniformly separated if each Γj ⊂ D∗ is uniformly separated according to Definition

3.10.
(ii) The number

D+
ϕ (Γ) := max

j
Ḋ+
ϕj (Γj)

is called the asymptotic (upper) density of Γ with respect to ϕ. �

4.4. Necessity. Conveniently, necessity of the conditions of Theorem 1 follow rather easily from the special
case of the punctured disk. We therefore begin with necessity.

4.4.1. Uniform separation of interpolation sequences.

PROPOSITION 4.9. If Γ is an interpolation sequence then Γ is uniformly separated.

Proof. Clearly, for each j, Γ ∩ Uj is then an interpolation sequence in D∗ that is supported either near the
border or near the puncture. It follows that each Γ ∩ Uj is uniformly separated. Since Γ is a closed discrete
subset, Γ−

⋃
j Γ ∩ Uj is finite. Therefore Γ is uniformly separated. �

4.4.2. Density bound for interpolation sequences.

PROPOSITION 4.10. If Γ is an interpolation sequence then D+
ϕ (Γ) ≤ 1.

Proof. Again, for each j, Γ ∩ Uj is an interpolation sequence in D∗ that is supported either near the border
or near the puncture. Thus Ḋ+

ϕj (Γ ∩ Uj) ≤ 1 for all j. That is to say, D+
ϕ (Γ) ≤ 1. Of course, if there are

only border-type boundary components, then D+
ϕ (Γ) < 1. �

4.5. Sufficiency. We shall follow the approach used to prove Theorem 3.15, which is the case of the punc-
tured disk.

4.5.1. Raw densities. Our definitions of the upper density placed a condition on the Laplacian of some
average of the weight. If we use ϕ without averaging, the definition can still make sense. In [V-2015] we
called the resulting density the raw density. The precise definition is

Ďb+
ϕ (Γ) := inf

{
1

α
> 0 ; ∆ϕ− 2ωP ≥ αΥb,Γ

r

}
if Γ is supported near a border curve, and

Ď∗+ϕ (Γ) := inf

{
1

α
> 0 ; ∆ϕ− 4ωP ≥ αΥ∗,Γr

}
if Γ is supported near a puncture. (See Paragraph 3.3.1 for the definition of Υb,Γ

r , and Paragraph 3.4.1 for
the definition of Υ∗,Γr .) In the general case, the raw density

Ď+
ϕ (Γ)

is the maximum of the (finitely many) raw densities of the sequences Γ ∩ Uj
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4.5.2. Singularities along Γ. Let T̃ ∈ O(X) be any holomorphic function such that

Ord(T̃ ) = Γ.

Now, in an annular neighborhood Aj of a border curve, using our isometric coordinates, we can define a
function λj on Uj , which agrees, on Vj (the outer part of the annulus) with the function λT̃rj defined in
Paragraph 3.3.1.

In a punctured neighborhood Pj , we have another such function, λj , which agrees with the function λ̃T̃rj
in Paragraph 3.4.1.

We then define a function λ by cutting off the λj and summing:

λ :=
n+m∑
i=1

χjλj .

Here χj is smooth, takes values in [0, 1], is supported in Uj , and is identically 1 on Vj .
Let

L := X −
⋃
j

Vj .

Then L is compact, and therefore there is a positive constant M such that

log |T̃ |2 − λ ≤M on L.

On the other hand, the sub-mean value property for subharmonic functions implies that

log |T̃ |2 − λ ≤ 0 on each Vj .

Therefore
log |T̃ |2 − λ ≤M on X.

Letting T := e−M T̃ (but keeping T̃ in the definition of λ), we have found functions T and λ such that

Ord(T ) = Γ and σ := |T |2e−λ ≤ 1.

4.5.3. Strong sufficiency. We shall now prove the following theorem.

THEOREM 4.11 (Stong sufficiency: general case). Let X be a finite Riemann surface covered by the disk,
and let ϕ ∈ L1

`oc(X) be a weight satisfying the curvature hypotheses
(o) ∆ϕ ≥ −Θ for some smooth, nonnegative (1, 1)-form Θ,
(i) ∆ϕ− 2ωP ≥ mωP in some annular neighborhood of each border curve, and

(ii) ∆ϕ− 4ωP ≥ mωc in some punctured neighborhood of each puncture of X ,
for some constant m > 0. Assume Γ ⊂ X is uniformly separated, and that

Ď+
ϕ (Γ) < 1.

Then the restriction map RΓ : H 2(X, e−ϕω)→ `2(Γ, e−ϕ) is surjective.

Proof. Let f ∈ `2(Γ, e−ϕ) be the datum to be extended.
As in the proof of the special case of the punctured disk, the density condition implies that there are

holomorphic functions Fj ∈ O(Uj) such that

Fj(γ) = f(γ), γ ∈ Vj
and ∫

Uj

|Fj |2e−ϕjωP < +∞.
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Next, let L̃ ⊂⊂ X be a compact set with L ⊂⊂ interior(L̃) and Γ∩(L̃−L) = ∅. Using the L2 extension
theorem locally, and then Hörmander’s Theorem, it is straightforward to construct a holomorphic function
Fo ∈ O(X) such that

Fo|Γ∩L = f |Γ∩L and
∫
L̃
|Fo|2e−ϕωP < +∞.

Now we wish to glue together all the extensions Fo, F1, ..., FN to produce an extension F of f . We can
choose cut-off functions χo, χ1, ..., χN with χo|L ≡ 1 and χj |Vj ≡ 1, such that the function

F̃ := χoFo + χ1F1 + ...χNFN

is
(a) smooth,
(b) holomorphic everywhere except possibly along collars connecting the ends Vj to L (which therefore

do not meet Γ), and
(c) satisfies F̃ |Γ = f .

The smooth form α := ∂̄F̃ is compactly supported, and satisfies∫
X
|α|2ωP e

−ϕωP < +∞.

We wish to find u ∈ L2(X, e−ϕω) such that ∂̄u = α and u|Γ = 0. To do so, we shall use the singular weight

ξ := ϕ+ log |T |2 − λ+ τ,

where τ is chosen as in Lemma 4.5 with respect to a form Ω, with Ω to be chosen momentarily. We know
that ξ ≤ ϕ+ max τ . Next we calculate, as in the proof of Theorem 3.15, that for sufficiently large rj (used
in the definition of λ above),

∆ξ − 2ωP ≥ ∆ϕ− 2ωP −∆λ+ ∆τ ≥ mωP + Ω + ∆τ,

where Ω is a continuous form with compact support in the interior of L̃. Theorem 4.3 therefore implies the
existence of a function u ∈ L1

`oc(X) such that

∂̄u = α and
∫
X
|u|2e−ϕωP ≤

∫
X
|u|2e−ψωP < +∞.

Again ∂̄u = α implies that u is smooth, and the finiteness of the second integral means that u must vanish
on Γ. Therefore

F := F̃ − u
solves the interpolation problem for f , and our proof is complete. �

4.5.4. Conclusion of the proof of Theorem 1. To obtain the sufficiency part of Theorem 1, we need to replace
ϕ by some sort of average ϕr of ϕ such that

(i) ϕr still satisfies the curvature conditions (B) and (?) of Theorem 1, and
(ii) H 2(X, e−ϕrω) ∼= H 2(X, e−ϕω) and `2(Γ, e−ϕr) ∼= `2(Γ, e−ϕ) as topological vector spaces, i.e.,

the isomorphisms are bounded linear maps.
We already know how to do this in the ends, since we have done so in the punctured disk. In the interior

it doesn’t matter how we do it, since densities are determined at the ends. For the sake of deciding on one
method, we can cover our compact set L̃ by a finite number of open coordinate charts biholomorphic to
disks, and simply replace ϕ by its average over a disk of some fixed radius.

After averaging ϕ in this way, we multiply the ϕi,r of the end by the cutoff functions χi, and multiply the
interior averages by any smooth cutoff functions that give a partition of unity on L̃. (Again, what we do in
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the interior is not so important.) If we now sum up all of the cut off averages to form ϕ̃r :=
∑

i ϕi,r, then
clearly

D+
ϕ (Γ) = Ď+

ϕ̃r
(Γ).

The proof of Theorem 1 is complete. �

5. REMARK ON SHAPIRO-SHIELDS INTERPOLATION

In [V-2015] we mentioned that there is another, more classical, theory on interpolation, which is well-
defined in the category of Hilbert spaces of holomorphic functions over a Riemann surface (or more general
complex manifold). We refer the reader to [V-2015] for the definition of Shapiro-Shields Interpolation. We
showed there that in the asymptotically flat case, our notion of interpolation coincides with Shapiro-Shields
interpolation.

As it turns out, the same is true for the more general interpolation of the present paper, i.e., it is equivalent
to Shapiro-Shields Interpolation. Following the ideas of [V-2015], it suffices to establish the following
proposition.

PROPOSITION 5.1. Let (X,ωP ) be a finite Hyperbolic Riemann surface, and suppose the weight function ϕ
satisfies the curvature hypotheses (?) and (B) of Theorem 1. Then there is a constant C such that

C−1 ≤ K(z, z)e−ϕ(z)AωP (z) ≤ C,
where K is the Kernel of the Bergman projection P : L2(X, e−ϕω)→H 2(X, e−ϕω).

As we mentioned in [V-2015], the equivalence of our notion of interpolation with the Shapiro-Shields
notion, though interesting, is not strictly necessary for the present article. For this reason, and since the proof
of Proposition 5.1 is almost directly analogous to its asymptotically flat analog, we will content ourselves
here with just a sketch, and leave details to the interested reader.

As in [V-2015], it suffices to establish the estimates at the ends. In a bordered end, the upper bound is
obtained as in the flat case, but using Ohsawa’s Theorem in place of Hörmander’s Theorem. The use of
Ohsawa’s Theorem is possible because of Condition (B). The lower bound is softer, and obtained from the
work in Paragraph 1.5 in a manner analogous to the flat case.

In a punctured end, one uses the fact that AωP (z) ∼ (log |z|2)−2. This transforms the punctured end to a
cylindrical end, and the results of [V-2015] apply directly.
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