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ABSTRACT. We study those smooth complex hypersurfaces W in Cn having the property that all holomorphic
functions of finite weighted Lp norm on W extend to entire functions with finite weighted Lp norm. Such
hypersurfaces are called interpolation hypersurfaces. We also examine the dual problem of finding all sampling
hypersurfaces, i.e., smooth hypersurfaces W in Cn such that any entire function with finite weighted Lp norm
is stably determined by its restriction to W .

We provide sufficient geometric conditions on the hypersurface to be an interpolation and sampling hyper-
surface. The geometric conditions that imply the extension property and the restriction property are given in
terms of some directional densities.

INTRODUCTION

Let ω =
√
−1∂∂̄|z|2 denote the standard Euclidean form in Cn. Fix a smooth closed complex hypersur-

face W ⊂ Cn and a plurisubharmonic function ϕ such that for some contants C,C ′ > 0,

Cω ≤
√
−1∂∂̄ϕ ≤ C ′ω

in the sense of currents. For brevity, such an estimate will sometimes be denoted
√
−1∂∂̄ϕ ' ω.

For p ∈ [1,∞), let

BFpϕ(Cn) :=
{
F ∈ O(Cn) ;

∫
Cn
|F |pe−pϕωn < +∞

}
and

bfpϕ(W ) :=
{
f ∈ O(W ) ;

∫
W
|f |pe−pϕωn−1 < +∞

}
denote the generalized Bargmann-Fock spaces of weighted Lp holomorphic functions on Cn and W re-
spectively. When p = +∞ we replace the integrals by suprema. The classical Bargmann-Fock space
corresponds to the case ϕ(z) = |z|2.

Definition. Let W be a uniformly flat smooth hypersurface in Cn. (See section 2.)
(i) We say W is an interpolation hypersurface if for each f ∈ bfpϕ(W ) there exists F ∈ BFpϕ(Cn) such

that F |W = f .
(ii) We say W is a sampling hypersurface if there is a constant M = M(p,W ) such that for all F ∈

BFpϕ(Cn),

1
M

∫
Cn
|F |pe−pϕωn ≤

∫
W
|F |pe−pϕωn−1 ≤M

∫
Cn
|F |pe−pϕωn(1)

when p < +∞, or a similar estimate involving suprema in place of integrals when p =∞.

The goal of this paper is to find geometric sufficient conditions for a uniformly flat hypersurface W to be
interpolating or sampling. A key concept is given in the following definition.

The first author is supported by projects BFM2002-04072-C02-02 and 2001SGR00172
The second author is partially supported by NSF grant DMS0400909 .
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Definition. Let T ∈ O(Cn) be a holomorphic function such that W = T−1(0) and dT is nowhere zero on
W . For any z ∈ Cn and any r > 0 consider the (1,1)-form

ΥW (z, r) :=
n∑

i,j̄=1

(
1

Vol(B(z, r))

∫
B(z,r)

∂2 log |T |
∂ζi∂ζ̄j

ωn(ζ)

)
√
−1dzi ∧ dz̄j .

Remark. Clearly the definition of ΥW (z, r) is independent of the choice of the function T defining W .
Moreover, if ΘW is the current of integration associated to W then ΥW is the average of ΘW in a ball of
center z and radius r > 0:

ΥW = ΘW ∗
1B(0,r)

Vol(B(0, r))
,

where 1A denotes the characteristic function of a set A and ∗ is convolution. Thus, in particular, the trace
of ΥW (z, r) is precisely the average area of W in the ball of radius r and center z.

A useful concept in the study of interpolation and sampling for smooth hypersurfaces is the density of
these hypersurfaces. Let

ϕr :=
1B(0,r) ∗ ϕ

Vol(B(0, r))
.

Definition. The density of W in the ball of radius r and center z is

D(W, z, r) := sup
{

ΥW (z, r)(v, v)√
−1∂∂̄ϕr(v, v)

; v ∈ TCn,z − {0}
}
.

The upper density of W is
D+(W ) := lim sup

r→∞
sup
z∈Cn

D(W, z, r)

and the lower density of W is
D−(W ) := lim inf

r→∞
inf
z∈Cn

D(W, z, r).

Remark. Observe that D(W, z, r) ≤ (1− c) for some c > 0 if and only if

ΥW (z, r) ≤ (1− c)
√
−1∂∂̄ϕr(z).

On the other hand, a lower bound for D(W, z, r) tells us only that the largest eigenvalue of the form
ΥW (z, r)−

√
−1∂∂̄ϕr(z) is uniformly positive.

Our main results can be stated as follows.

Theorem 1. Let W be a uniformly flat hypersurface. If D+(W ) < 1 then W is an interpolation hypersur-
face.

Theorem 2. Let W be a uniformly flat hypersurface. If D−(W ) > 1 then W is a sampling hypersurface.

Remark. Strictly speaking, we prove Theorem 1 only for the cases 2 ≤ p ≤ ∞. We omit the range
1 ≤ p < 2 because of the absence of a suitable reference for Lp estimates for solutions of ∂̄ in this range.
However, the needed estimates are known in dimension 1 (in even greater generality) and in certain special
cases, and they must surely hold in general. We give a proof for the range 1 ≤ p < 2 modulo the required
estimates.

The hypotheses in Theorems 1 and 2 have a geometric interpretation. For simplicity, consider the classical
Fock space, which correponds to ϕ = |z|2. Then ΥW (z, r)(v, v) is the average number of intersections of
the manifold W with a complex line of direction v in the ball of center z and radius r. Thus D+(W ) < 1
means that in any point z and in any direction v the average number of intersecting points between the
manifold and a complex line in the direction of v is smaller than some critical value. On the other hand
D−(W ) > 1 means that for any point z there is a direction v (which may depend on the point p) such that
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in the ball of radius r and center z the average number of intersections between W and the complex line
with direction v is bigger than some critical value.

Intuitively speaking, the interpretation of our theorems is that if we want W to be interpolating it must be
sparse in all points and all directions, but if we want it to be sampling it must be dense in all points, but only
in one direction for any given point.

Interpolation and sampling problems in the generalized Fock space have been studied previously. In
dimension one there is a full description given in [BO-95] that corresponds to our Theorem 1 and Theorem 2.
In dimension 1 the conditions we require are also necessary. This was proved in [OS-98]. It seems plausible
that this is also the case in higher dimensions, but the question of necessity remains open.

In several complex variables, there have been many partial and related results. See for instance [BT-82],
[Ber-83] or [Dem-82]. In these works hypotheses are placed on the function T ∈ O(Cn) defining W =
Z(T ) in order that W be interpolating in the sense of Berenstein-Taylor,that is to say, any holomorphic
function h defined on W and satisfying a growth condition

|h(z)| ≤ C exp(Cϕ(z))

can be extended to an entire function satisfying similar bounds (perhaps with a different constant). For
instance a result can be found in [BT-82] stating that W is interpolating in this sense if

‖∂T‖ ≥ C exp(−Cϕ) on W.

Our results do not involve the defining function T , appealing instead directly to the current of intergration
defining W . In this sense our results are more geometric in nature.

The organization of the paper is as follows. In Section 2 we define and discuss the notion of uniform
flatness. In Section 3 we define a non-positive function that is singular along the variety W . As in [BO-95],
this function is used to modify the weight of the Bargmann-Fock space in order to apply the Hörmander-
Bombieri-Skoda technique in the proof of Theorem 1. A central point is the use of the Newton potential
in the construction. In Section 4 we prove Theorem 1. We begin with the L2 case. Our approach is to
first extend the candidate function to small neighborhoods, and then to patch together these local extensions
using the solution of a Cousin I problem with Lp bounds. To pass to Lp we use results of Berndtsson on Lp

bounds for minimal L2 solutions of ∂̄. In Section 5 we prove Theorem 2. Finally, in Section 6 we give a
simple application of our results to improve on known sufficient conditions for sequences to be interpolating
or sampling in Cn, n ≥ 2.

Acknowledgement. The authors would like to thank Tamas Forgacs, Jeff McNeal and Yum-Tong Siu for
stimulating and useful discussions. Some of this work was done while the first author was visiting the
University of Wisconsin, the second author was visiting the University of Michigan, and the third author
was visiting Harvard University and the University of Michigan. The authors wish to thank these institutions
for their generous hospitality. Finally, the authors wish to thank the referee for a very careful reading of the
paper and many helpful comments.

2. UNIFORM FLATNESS

We shall be interested in smooth hypersurfaces W satisfying the following assumption.
(F1) There is a positive constant εo such that the Euclidean neighborhood

Nεo(W ) := {z ∈ Cn ; dist(z,W ) < εo}
is a tubular neighborhood of W in Cn.

Remark. In condition (F1) we mean that Nεo(W ) is diffeomorphic to a neighborhood of the zero section
in the normal bundle to W in Cn, and that for each p ∈ ∂Nεo(W ) there is a unique point z ∈W closest to
p. (In particular, Nεo(W ) is foliated by straight disks that are orthogonal to W ; see Proposition 2.1.)

Definition. A smooth hypersurface W satisfying (F1) is said to be uniformly flat.
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If we want to extend functions to Cn, uniform flatness seems a reasonable condition; we don’t want points
that are very far apart inW to be very close to each other in the ambient space. When n = 1, W is a discrete
set, which is uniformly flat if and only if it is uniformly separated.

Proposition 2.1. Let T be a holomorphic function in Cn such that W = {z ∈ Cn ; T (z) = 0} and dT |W
is never zero. For εo sufficiently small, the map

(2) (z, t) 7→ z + t · dT (z)

gives a diffeomorphism of the set {(z, t) ∈W ×C ; |t · dT (z)| < εo} onto Nεo(W ), that is holomorphic in
the fiber variable t. In fact, for any ε ≤ εo we have

Nε(W ) = {z + t · dT (z) ; z ∈W, |t · dT (z)| < ε},

and thus Nε(W ) is foliated by linear analytic disks with Euclidean circles for boundaries, and of area πε2.

Proof. Choose po ∈ ∂Nεo(W ). Since W is a tubular neighborhood, there is a unique point zo ∈ W such
that dist(po,W ) = dist(po, zo). The line connecting po to zo is perpendicular to W . Indeed, if γ(x) is a
curve on W with γ(0) = zo, then f(x) = |γ(x)− po|2 has a minimum at x = 0. By differentiating at x = 0
we have

2 Re〈γ′(0), zo − po〉 = 0,

and the real part of the Hermitian inner product is the Euclidean inner product. By rotational invariance of
the Hermitian inner product, the whole complex line passing through po and zo is orthogonal to W . Thus
the points zo + e

√
−1θ(po − zo) all minimize the distance from ∂Nεo(W ) to zo. Now, the vector dT (z) is

orthogonal to TW,zo . Indeed, if v ∈ TW,zo , consider any curve µ(x) such that µ([−δ, δ]) ⊂ W , µ(0) = zo
and µ′(0) = v. Differentiation at x = 0 yields

0 =
d

dx

∣∣∣∣
x=0

T (µ(x)) = 〈v, dT (zo)〉.

It follows that any point on the circle

{zo + t·dT (zo) ; |t · dT (zo)| = ε}

is of minimal distance ε to zo. It is now clear that the map (z, t) 7→ z + tdT (z) is a diffeomorphism onto
Nεo(W ). �

For each w ∈ W , denote by TW,w the tangent space to W at w and by nw a unit normal to TW,w in the
Euclidean metric. Note that nw is determined uniquely up to a unimodular constant. Write

DW (w, ε) := (TW,w ∩B(w, ε))× {ζnw ; |ζ| < ε}

for the product of the ε-ball centered at the origin in TW,w, with the ε-disc centered at the origin of TCn,w
and perpendicular to TW,w.

Proposition 2.2. LetW ⊂ Cn be a uniformly flat hypersurface, and let εo be such thatNεo(W ) is a tubular
neighborhood. Then the following hold.

(A) Assume n ≥ 2. For all w ∈ W , W ∩ DW (w, εo) is given as a graph over TW,w ∩ B(w, εo) by a
function y = f(x), where f : TW,w ∩B(w, εo)→ C satisfies

|f(w + x)| ≤ |x|
2

εo
.

(B) For each R > 0 there is a constant CR > 0 such that for all z ∈ Cn,

Area(W ∩B(z,R)) ≤ CR.
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Proof. (A) We may assume that w = 0. Let us write the coordinates z in Cn as z = (x, y) where x ∈ TW,0
and y ∈ Cn0. Let Aεo = Bεo ×Dεo , where Bεo = {|x| < εo} and Dεo = {|y| < εo}. We claim first that
W ∩Aεo is a graph over Bεo . To prove this claim, write W ∩Aεo = Wo ∪ W̃ , where Wo is the component
of W ∩Aεo containing 0, and W̃ = (W ∩Aεo) \Wo. All of the points (0, e

√
−1θεo) are of distance at least

εo from W̃ , and thus W̃ is confined to the “hourglass-shaped” region

{(x, y) ∈ Aεo ; |x|2 + |y − e
√
−1θεo|2 > ε2

o for all θ ∈ R}.

It follows that W̃ cannot intersectBεo×∂Dεo , and must enter and exitAεo through ∂Bεo×Dεo . Thus there
must be a tangent to W̃ that is vertical. (Indeed, the straight line containing the entry and exit points of W̃
is a vertical secant, which we can translate towards the origin until it becomes tangent. It must eventually
become tangent because W̃ lies outside the hourglass, and thus does not meet the disk {0} × Dεo). The
normal to the point of vertical tangency is therefore horizontal, and must meet the disk {0} × Dεo . We
thus have two normals of W meeting at a distance less than εo to the points of W from which these normals
emanate. We therefore contradict the assumption thatNεo(W ) is a tubular neighborhood, unless W̃ is empty.
Similarly, if Wo is not a graph then it has a horizontal normal, and we arrive at the same contradiction.

Now suppose W ∩ Aεo is the graph of some function f : Bεo → Dεo . (The values of f are bounded by
εo since as we noted, W ∩Aεo must remain outside the hourglass). Then any point (0, εoe

√
−1θ) must be of

distance at least εo from W , so with e
√
−1θ = f(x)/|f(x)|, we have

ε2
o ≤ |x|2 +

∣∣∣εo f(x)
|f(x)| − f(x)

∣∣∣2
= |x|2 + |εo − |f(x)||2

= |x|2 + ε2
o + |f(x)|2 − 2εo|f(x)|

≤ |x|2 + ε2
o − εo|f(x)|,

and thus

|f(x)| ≤ |x|
2

εo
.

The proof of (A) is complete.

(B) Fix w ∈ W , which we identify with the origin in TW,w. Let α < 1 be a positive number to be chosen
shortly. From (A) we know that W is a graph over TW,w ∩ B(w, εo). Let us estimate the volume of a ”thin
slab” of Nαεo(W ) lying over a small neighborhood |x| < δ of the origin in TW,w, for δ << αε. To be more
precise, we are estimating the volume of the region

Sδ(εo) :=

{
(x, f(x)) + t(−df(x), 1) ; |x| < δ, |t|2 < α2ε2

o

|(−df(x), 1)|2

}
,

where f is the function given by part (A). Let Φ(x, t) = (x, f(x))+t(−df(x), 1). By the change of variables
formula, the volume we seek is ∫

|t|<αεo

∫
|x|<δ

Φ∗dV (x, t).

Now,

dV (x, t) =
(

(
√
−1)n

n!2n

)
dx1 ∧ dx̄1 ∧ . . . ∧ dxn−1 ∧ dx̄n−1 ∧ dt ∧ dt̄.
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Furthermore,

Φ∗dxi =
n−1∑
j=1

∂Φi
∂xj

dxj + ∂Φi
∂t dt+

n−1∑
k=1

∂Φi
∂x̄k

dx̄k + ∂Φi
∂t̄ dt̄

= dxi −
(
∂f
∂xi

)
dt−

n−1∑
k=1

t

(
∂2f

∂xi∂xk

)
dx̄k + 0,

and similarly

Φ∗dt =
n−1∑
j=1

∂f
∂xj

dxj + dt

Φ∗dx̄i = −t
n−1∑
j=1

∂2f
∂xi∂xj

dxj + dx̄i − ∂f
∂xi
dt̄, and

Φ∗dt̄ =
n−1∑
k=1

(
∂f
∂xk

)
dx̄k + dt̄

It follows that Φ∗dV = J(x, t)dV , where

J(x, t) = det



δij −
(
∂f
∂xi

)
−t
(

∂2f
∂xi∂xj

)
0

∂f
∂xj

1 0 0

−t ∂2f
∂xi∂xj

0 δij − ∂f
∂xi

0 0
(
∂f
∂xj

)
1


is the Jacobian determinant of Φ. In view of the estimates on f established in part (A), for δ sufficiently
small the Jacobian J is bounded away from zero by a constant that is independent of w. Indeed, as δ → 0,
J converges to

det



δij 0 −t
(

∂2f
∂xi∂xj

)
0

0 1 0 0

−t ∂2f
∂xi∂xj

0 δij 0

0 0 0 1


= det


δij −t

(
∂2f

∂xi∂xj

)

−t ∂2f
∂xi∂xj

δij

 .

Now, from (A) we have the estimate ∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2
x=0

≤ 9
ε2
o

,
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which can be obtained by simple estimates applied to

∂2f

∂xi∂xj
(0) = lim

h→0

f(hei + hej)− f(hei)− f(hej) + f(0)
h2

.

(Recall that f(0) = 0.) Thus by choosing α > 0 sufficiently small, we have the bound

J(x, t) ≥ Co

form some Co > 0 for all |x| < δ, provided δ is small enough. Note that such α > 0 can be chosen
independent of w. We have thus shown the following. Let Wδ = {(x, f(x)) ; |x| < δ}. Then for δ
sufficiently small, there exists a constant C > 0, depending only on the dimension n, such that

Vol(Sδ(εo)) ≥ Cε2
o Area(Wδ).

This inequality can now be used to estimate from below the volume of much larger pieces of Nαεo(W ) by
breaking up W into very small pieces. We thus have the estimate

Vol(B(z,R+ αεo)) ≥ Vol(Nαεo(W ) ∩B(z,R)) ≥ Cε2
o Area(W ∩B(z,R)).

The proof of (B) is complete. �

Remark. It is not hard to see that the graph of any polynomial in (n − 1)-variables is a uniformly flat
hypersurface. There are also many non-algebraic examples.

3. SINGULARIZATION OF THE WEIGHT

As is now standard in Lp interpolation problems in several complex variables, one needs to define a
strictly plurisubharmonic weight similar to ϕ with singularities along the divisor W . For the sampling
problem, one must smooth out this weight near W , while maintaining global bounds away from W .

Our scheme for singularizing the weight follows the method of [BO-95]: we add to our weight ϕ a
function sr, called the singularity, to be defined below.

To obtain good properties of the singularity, one needs to use potential theoretic aspects of the ambient
space Cn. For our purposes, the Newton potential plays a key role. Recall that the Newton potential is the
function

G(z, ζ) = −c(n)|z − ζ|2−2n,

where

c(n) =
1

πn2n(n− 1)
,

For each ζ ∈ Cn, this function is harmonic in Cn − {ζ} and has the property that∫
Cn

√
−1∂∂̄G(·, ζ) ∧ ωn−1 = 1.

The key feature making our approach possible is that this last identity involves only the trace of
√
−1∂∂̄G.

It is this fact precisely that links the fundamental solution of ∆ to holomorphic functions on hypersurfaces.

The singularity. Consider the function

Γr(z, ζ) :=

(
G(z, ζ)− 1

Vol(B(z, r))

∫
B(z,r)

G(ζ, x)ωn(x)

)
.

7



Since G(z, ζ) is harmonic in each variable separately when |z − ζ| > 0, one sees immediately that Γ is
supported on the neighborhood |z − ζ| ≤ r of the diagonal in Cn × Cn. We define the singularity

sr(z) :=
∫

Cn
Γr(z, ζ)ωn−1(ζ) ∧

(√
−1∂∂̄ log |T |

)
(ζ)

=
∫
B(z,r)

Γr(z, ζ)ωn−1(ζ) ∧
(√
−1∂∂̄ log |T |

)
(ζ).

By the Lelong-Poincaré identity, we have

sr(z) = π

∫
Wz,r

G(z, ζ)ωn−1(ζ)− π

V (r)

∫
Wz,r

(∫
B(z,r)
G(ζ, x)ωn(x)

)
ωn−1(ζ),(3)

where

Wz,r = W ∩B(z, r) and V (r) =
∫
B(z,r)

ωn.

Proposition 3.1. Let T ∈ O(Cn) be a holomorphic function such that W = {T = 0} and dT is nowhere
zero on W . Then

sr(z) = log |T (z)| − 1
V (r)

∫
B(z,r)

log |T (ζ)|ωn(ζ),

and thus
√
−1∂∂̄sr = ΘW −ΘW ∗

1B(0,r)

Vol(B(0, r))
.

Proof. Let α : [0,∞) → [0, 1] be a smooth compactly supported function which is identically 1 on [0, 1].
Then for R >> r, we have

sr(z) =
∫

Cn

√
−1∂∂̄ log |T (ζ)| ∧

(
Γ(z, ζ)ωn−1(ζ)

)
=

∫
Cn
α(R−2|ζ − z|2)

√
−1∂∂̄ log |T (ζ)| ∧

(
Γ(z, ζ)ωn−1(ζ)

)
,

where the second equality follows from the fact that Γ(·, z) is supported on B(z, r). Integrating by parts
and letting R→∞, we have

sr(z) =
∫
B(z,r)

log |T (ζ)|∧

{
(
√
−1∂∂̄)ζG(z, ζ) ∧ ωn−1(ζ)

−

(
1

V (r)

∫
B(z,r)

[
(
√
−1∂∂̄)ζG(x, ζ) ∧ ωn−1(ζ)

]
ωn(x)

)}

= log |T (z)| −

{∫
B(z,r)

log |T (ζ)|

(
1

4V (r)

∫
B(z,r)

∆ζG(x, ζ)ωn(x)

)
ωn(ζ)

}

= log |T (z)| −

{∫
B(z,r)

log |T (ζ)|

(
1

4V (r)

∫
B(z,r)

∆xG(x, ζ)ωn(x)

)
ωn(ζ)

}

= log |T (z)| − 1
V (r)

∫
B(z,r)

log |T |ωn,

as desired. �

We will make use of the following lemma.

Lemma 3.2. The function sr has the following properties.
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(a) It is non-positive.
(b) For each r, ε > 0 there is a constant Cr,ε such that if dist(z,W ) ≥ ε, then sr(z) ≥ −Cr,ε.
(c) The function e−2sr is not locally integrable at any point of W .

Proof. By the sub-mean value property for subharmonic functions, Γr ≤ 0, from which (a) follows. Prop-
erty (c) follows immediately from Proposition 3.1.

Next, we verify that there is a constant Dr such that for all ζ ∈ B(z, r),

− 1
Vol(B(z, r))

∫
B(z,r)

G(ζ, x)ωn(x) ≤ Dr.

For this, it suffices to bound the integral

Ir(z, ζ) :=
∫
B(z,r+1)

−G(ζ, x)ωn(x)

Letting ρ = r − |ζ|, we have

Ir(z, ζ) =
∫
B(ζ,ρ+1)

−G(ζ, x)ωn(x) +
∫
B(z,r)−B(ζ,ρ+1)

−G(ζ, x)ωn(x).

Now, ∫
B(ζ,ρ+1)

−G(ζ, x)ωn(x) = c(n)
∫
B(0,ρ+1)

|y|−2n+2ωn(y)

= 2c̃(n)
∫ ρ+1

0
tdt

= c̃(n)(ρ+ 1)2 ≤ c̃(n)(r + 1)2.

On the other hand, ∫
B(z,r)−B(ζ,ρ+1)
−G(ζ, x)ωn(x) ≤ c(n)

∫
B(z,r+1)
ωn,

which demonstrates the bound for Ir.
If we now look at z such that |z− ζ| ≥ ε for all ζ ∈W , (b) follows from the above bound for Ir together

with formula (3). �

4. INTERPOLATION: THE PROOF OF THEOREM 1

Since we assume that
√
−1∂∂̄ϕ ' ω, it follows that |ϕr − ϕ| ≤ Cr and therefore the spaces BFpϕ and

BFpϕr are the same space with equivalent norms. The same happens with bfpϕ and bfpϕr . Therefore the
manifold W is interpolating (or sampling) for BFpϕ iff it is interpolating for BFpϕr .

By definition of the density hypothesis, there is a sufficiently large r so that

(4)
√
−1∂∂̄

(
ϕr −

1B(0,r)

Vol(B(0, r))
∗ log |T |

)
' Id.

We fix this r for the remainder of the proof. In principle, rahter than (4) we should be using

√
−1∂∂̄

(
ϕ−

1B(0,r)

Vol(B(0, r))
∗ log |T |

)
' Id.

Thus we will actually prove that W is interpolating for BFpϕr and by the comment above W is then inter-
polating for BFpϕ.
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Local extension. Let ϕ be a plurisubharmonic function in Cn with
√
−1∂∂̄ϕ ≤Mω for some M > 0.

Proposition 4.1. Let W be uniformly flat with a tubular neighbourhood of thickness bigger than 2ε, and
choose p ∈ (0,∞]. Then there is a constant C = C(M,p, ε) such that the following holds. For any w ∈W
and any function f that is holomorphic on W ∩ B(w, 2ε) there exists a function F that is holomorphic on
B(w, ε), coincides with f on W ∩B(w, ε), and satisfies the estimate∫

B(w,ε)
|F |pe−pϕωn ≤ C

∫
W∩B(w,2ε)

|f |pe−pϕωn−1.

For any 0 < p ≤ ∞. (If p =∞, then the integrals should replaced by suprema.)

Proof. For any w ∈ W , after a rotation, we may assume that in the ball B(w, 2ε) the manifold is given
by the graph of a function y = f(x − w′) + wn, where w′ = (w1, . . . , wn−1), and f : Cn−1 → C with
estimates |f(x)| ≤ C|x|2, by Proposition 2.2(A). For any point z in the ballB(w, 2ε) we denote by π(z) the
point in W with coordinates (z′, wn + f(x− z′)). The map π is holomorphic. Let Qε be the inverse image
of B(w, 2ε) ∩W under π. Clearly B(w, ε) ⊂ Qε ⊂ B(w, 3ε). We shall now extend f from W ∩ B(w, ε)
to a function F that is holomorphic in Qε and satisfies the estimate

(5)
∫
Qε

|F |pe−pϕωn ≤ C
∫
W∩B(w,2ε)

|f |pe−pϕωn−1.

The extension is constructed as follows. In B(w, 3ε) there is a bounded plurisubharmonic function u such
that

(i) u is bounded in B(w, 3ε) by a constant depending only on M and ε, and
(ii)

√
−1∂∂̄u =

√
−1∂∂̄ϕ.

(For the proof, see [Lin-01, Lemma 6].) Define h = ϕ− u. Since h is pluriharmonic there is a holomorphic
function H on B(w, 3ε) such that Re H = h. Now, for any z ∈ Qε let F (z) := f(π(z))eH(z)−H(π(z)).
Then F is holomorphic on Qε, F |(W ∩Qε) = f , and for all z ∈ Qε we have

|F (z)|pe−pϕ(z) = |f(π(z))|p exp(ph(z)− ph(π(z)))e−pϕ(z)

= |f(π(z))|p exp(−pu(z) + pu(π(z))− pϕ(π(z)))

≤ C|f(π(z))|pe−pϕ(π(z)).

Integrating both sides over Qε gives (5), and the proof is complete. �

Local holomorphic functions with good estimates.

Lemma 4.2. Let ϕ be a function in the unit disk D such that

c ≤ ∆ϕ ≤ 1
c
.

Then there exist a constant C > 0 and a holomorphic function H ∈ O(D) such that H(0) = 0 and

|ReH − ϕ+ ϕ(0)| ≤ C.

Moreover, if ϕ depends on a parameter in such a way that the bound on ∆ϕ is independent of the parameter,
then H can be taken to depend on this parameter in such a way that C does not.

The proof of this lemma, by now well known, can be found in [BO-95].
10



Construction of the interpolating function. We fix f ∈ bfpϕ(W ) and ε < ε0/2, where ε0 is as in Condition
(F1). Take a sequence of distinct points {wj ; j = 1, 2, . . .} ⊂W such that

Nε(W ) ⊂
∞⋃
i=1

{
B
(
wi,

3
2ε
)}

wi∈W

and each point of Nε(W ) is contained in at most a fixed, finite number of the sets

B(wj , 2ε).

(We say that the cover is uniformly locally finite.) For convenience of notation we write Bi = B
(
wi,

3
2ε
)
.

We add to the cover {Bi}i≥1 another open set B0 = Cn \ N 1
2
ε(W ). Thus {Bj ; j ≥ 0} is a uniformly

locally finite open cover of Cn. Let {φi}i≥0 be a partition of unity subordinate to the cover {Bi}, i.e.,
0 ≤ φi ≤ 1, suppφi ∈ Bi and

∑
i φi ≡ 1. Moreover we can assume that

∑
i ‖dφi‖ ≤ C.

Let Fi denote the extension to Bi of f |W ∩ B(wi, 2ε) given by Lemma 4.1, and set F0 ≡ 0. Since the
covering {Bi} is uniformly locally finite, we have∫

Cn

∑
i

χi|Fi|pe−pϕωn .
∫
W
|f |pe−pϕωn−1,

where χi denotes the characteristic function of Bi and, as usual, the symbol . means that the left hand side
is bounded above by a universal constant times the right hand side. We want to patch together the extensions
Fi and construct a single holomorphic extension F of f whose norm remains under control. In the standard
language of several complex variables, we want to solve a Cousin I problem with Lp bounds. The setup of
the problem is as follows. For any pair of indices i, j ≥ 0 we define a function Gij in Bij := Bi ∩Bj by

Gij = Fi − Fj .
Observe that

Gij |W ∩Bij ≡ 0 and Gij +Gjk +Gki ≡ 0 in Bi ∩Bj ∩Bk.
Finally ∫

Cn

∑
i,j

χiχj |Gij |pe−pϕωn .
∫
W
|f |pe−pϕωn−1.

We seek Gi ∈ O(Bi) such that Gij = Gi −Gj in Bij , Gi|W ∩Bi ≡ 0 and∫
Cn

∑
i

χi|Gi|pe−pϕωn .
∫
W
|f |pe−pϕωn−1.

If we find such functions Gi, then the function F defined by

F (x) = Fi(x)−Gi(x) x ∈ Bi
is an entire function. (It is well defined because Fi − Fj = Gi −Gj on Bij .) Moreover we have

F |W = f and
∫

Cn
|F |pe−pϕωn .

∫
W
|f |pe−pϕωn−1.

We define G̃i ∈ C∞(Bi) by G̃i =
∑

j φjGij . These functions have all the properties we seek, except they
are not holomorphic. We shall now correct the functions G̃i by adding to each of them a single, globally
defined function.

To this end, note that in Bij we have ∂̄G̃i = ∂̄G̃j . Thus there is a well defined ∂̄-closed (0, 1)-form h
such that

h = ∂̄G̃i in Bi.

Moreover, observe that
‖h‖ ≤

∑
ij

∥∥∂̄φi∥∥ · |Gij |.
11



Lemma 4.3. One has the estimate∫
Cn
‖h‖pe−p(ϕ+sr)ωn ≤ C

∫
W
|f |pe−pϕωn−1.

Proof. Recall that if ψ is a weight function on the unit disk D such that ∆ψ ≤ K, then there is a constant C
such that for any f ∈ O(D), ∫

|z|<1
|f |pe−pψ ≤ K

∫
1/2<|z|<1

|f |pe−pψ.

Indeed, the inequality is elementary in the case ψ ≡ 0. Since the Laplacian of ψ is bounded, there is by
Lemma 4.2 a non-vanishing holomorphic function g, such that |g| ' eψ. Thus we obtain∫

|z|<1
|f |pe−pψ '

∫
|z|<1

|f/g|p ≤ K
∫

1/2<|z|<1
|f/g|p '

∫
1/2<|z|<1

|f |pe−pψ.

With this one variable fact it is possible to prove that∫
Bi∩Bj

|Gij |pe−p(ϕ+sr) .
∫

(Bi∩Bj)\N 1
2 ε

(W )
|Gij |pe−p(ϕ+sr)

'
∫

(Bi∩Bj)\N 1
2 ε

(W )
|Gij |pe−pϕ

.
∫

(Bi∪Bj)∩W
|f |pe−pϕ.

Only the first inequality is non-trivial. To see how it follows, let T be any entire function that vanishes
precisely on W such that dT does not vanish on W . Then by the definition of sr,

sr = log |T | −
1B(0,r)

Vol(B(0, r))
∗ log |T |.

Therefore
|Gij |pe−p(ϕ+sr) ' |Gij/T |pe−pψr ,

where

ψr = ϕ−
1B(0,r)

Vol(B(0, r))
∗ log |T |.

It follows by the density hypothesis that
√
−1∂∂̄ψr ' Id.

Since the function Gij/T is holomorphic in Bi ∩ Bj , we may apply the one dimensional result above. Let
U = Bij ∩W . Then Bij ' U ×D(0, ε). We integrate along the slices and apply the one-dimensional result
in each disk. �

By the density hypothesis, one has the inequality
√
−1∂∂̄(ϕ+ sr) ≥ cω > 0. We will deal first with the

case p = 2. It follows from Hörmander’s Theorem that there is a function u such that

∂̄u = h and
∫

Cn
|u|2e−2(ϕ+sr)ωn ≤ C

∫
W
|f |2e−2ϕωn−1.

Moreover, the local non-integrability of e−2(ϕ+sr) onW guarantees that u|W ≡ 0. Finally, sinceϕ ≥ ϕ+sr,
we have that ∫

Cn
|u|2e−2ϕωn ≤

∫
Cn
|u|2e−2(ϕ+sr)ωn.

It follows that the holomorphic functions Gi = G̃i − u have the desired properties.
12



Next we treat the case p ∈ (2,∞]. For ease of reading, let us write ξ := ϕ + sr. Assume first that
h ∈ L2(e−ξ) ∩ Lp(e−ξ). Let u be the function of minimal norm in L2(e−ξ) such that ∂̄u = h. Then a
Theorem of Berndtsson [Ber-97, Ber-01] states that u satisfies

‖ue−ϕ‖Lp ≤ Cp‖he−ξ‖Lp , p ∈ [2,∞],

provided the right hand side is finite. (We point out that the constants Cp in Berndtsson’s Theorem depend
only on p and on the upper and lower bounds for

√
−1∂∂̄ϕ.) This gives the desired bounds. Moreover, since

‖he−ξ‖L2 < +∞, Hörmander’s Theorem and the minimality of u tell us that ‖ue−ξ‖L2 < +∞. Thus again
u|W ≡ 0.

This proves the result for h ∈ L2(e−ξ) ∩ Lp(e−ξ). To pass to the general case, instead of approximating
h we modify the weight ξ. To this end, take any sequence εj → 0. Since h is identically zero on a
neighborhood of W and he−ξ ∈ Lp, we have he−ϕ ∈ Lp. Thus once again he−ϕ ∈ L∞, and by the support
of h we have he−ξ ∈ Lp. It follows that for all j, he−ξ−εj‖z‖

2 ∈ L2. As before, the solution uj to ∂̄uj = h

with minimal norm in L2(e−ξ−εj‖z‖
2
) vanishes on W and, by Berndtsson’s Theorem, satisfies

‖uje−ϕ−εj‖z‖
2‖Lp ≤ Cp‖he−ξ−εj‖z‖

2‖Lp , p ∈ [2,∞],

where the constants Cp are independent of j. It follows that uj → u ∈ Lp(e−ϕ). Thus we can construct
holomorphic functions F j that extend f and satisfy the estimates∫

|F j |pe−pϕ−pεj‖z‖2 ≤ Cp
∫
W
|f |pe−pϕ.

By a normal family argument we can take a subsequence F j converging to F ∈ Lp(e−ϕ). The convergence
is unifom over compacts and thus F extends f .

Finally we come to the case p ∈ [1, 2). Since h is supported away from the singularity of ξ, a look at
the definition of h (in particular, it is constructed from certain holomorphic data and cutoff functions) shows
that, since h ∈ Lp(e−ξ), h ∈ L∞(e−ξ). It follows that h ∈ L2(e−ξ). Let u be the function of minimal
norm in L2(e−ξ) satisfying ∂̄u = h. Unfortunately, we were unable to find a reference for the analog of
Berndtsson’s Theorem in the range 1 ≤ p < 2. Such a theorem must certainly be true. It is true in the
classical Fock space, and in dimension n = 1 is a theorem of M. Christ [Ch-91]. (See also [MMO-03].)
However, since we are unable to point to a specific reference, at the moment our proof of interpolation in
the range p ∈ [1, 2) is true only modulo this result.

Let us proceed with the proof assuming that Berndtsson’s Theorem holds for p ∈ [1, 2). Since ‖he−ξ‖Lp
is finite for p ∈ [1, 2] and

√
−1∂∂̄ϕ ' ω,

√
−1∂∂̄ξ ≥ cω and sr ≤ 0, the hypothetical case of Berndts-

son’s Theorem for p ∈ [1, 2) gives the right bounds for the solution. Moreover, since ‖he−ξ‖L2 < +∞,
Hörmander’s Theorem and the minimality of u tell us once more that ‖ue−ξ‖L2 < +∞, and thus u|W ≡ 0.

Remark. In the L2 case, it is possible to give an alternate proof of Theorem 1 using a modification of the
method of Ohsawa-Takegoshi to the case at hand. The advantage of this approach is aesthetic; as opposed
to the local approach taken in this paper, one can extend a holomorphic function from the hypersurface W
is one step. However, since in this paper we are interested in the Lp case for general p ∈ [1,∞], we will not
carry out the Ohsawa-Takegoshi type proof here. For a version on the unit ball, see [FV-05].

5. SAMPLING

In this section we prove Theorem 2. As in section 1, we replace ϕ by

ϕr :=
1B(0,r) ∗ ϕ

Vol(B(0, r))

in the definition of the density and thus in the hypothesis of Theorem 2.
13



Restrictions and the upper sampling inequality.

Proposition 5.1. If W is a uniformly flat hypersurface, then there is a constant C > 0 such that for all
F ∈ BFpϕ(Nε(W )) one has

Cε2

∫
W
|F |pe−pϕωn−1 ≤

∫
Nε(W )

|F |pe−pϕωn.

Proof. By Proposition 2.1, Nε(W ) is foliated by linear analytic disks with circular boundary, each of which
is transverse to W as well as to the boundary of Nε(W ), has area πε2 and meets W at a single point. Let T
be a holomorphic defining function for W . Making use of the diffeomorphism

W × D 3 (z, t) 7→ x+
εt · dT (z)
|dT (z)|

∈ Nε(W ),

which is holomorphic in the second variable, we work on the product W × D.
Let H(x, t) be the function, holomorphic in t, given by Lemma 4.2. That is to say,

H(x, 0) = 0 and |Re(H(x, t))− ϕ(x, 0) + ϕ(x, t)| ≤ C
for some positive constant C, since we have assumed that

√
−1∂∂̄ϕ is bounded above. We then have

ε2|F (x, 0)|pe−pϕ(x,0) = ε2
∣∣∣F (x, 0)eH(x,0)

∣∣∣p e−pϕ(x,0)

≤ 1
2π

∫
D

∣∣∣F (x, t)eH(x,t)
∣∣∣p e−pϕ(x,0)λ∗xω

≤ C

∫
D
|F (x, t)|p e−pϕ(x,t)λ∗xω

= C

∫
Lx
|F |pe−pϕω,

where Lx = {x+ t · dT (x) ; |t · dT (x)| < ε} denotes the disk through x. Integration over W yields

ε2

∫
W
|F |pe−pϕωn−1 ≤ C

∫
Nε(W )

|F |pe−pϕ ∧ ωn,

and the proof is complete. �

Corollary 5.2. If W satisfies (F1) then there is a constant M > 1 such that for every F ∈ BFpϕ(Cn),∫
W
|F |pe−pϕωn−1 ≤M

∫
Cn
|F |pe−pϕωn.

The proof of Theorem 2.
The proof will be an almost immediate application of the following sequence of definitions and lemmas.

Definition. A sequence of complex hypersurfaces Wn is said to converge weakly to another complex hyper-
surface W if the corresponding currents of integration ΘWn converge to ΘW in the sense of currents.

Lemma 5.3. If W is a uniformly flat complex hypersurface, then for any sequence of translations τn, the
sequence Wn = τn(W ) has a subsequence converging weakly to a uniformly flat complex hypersurface V .
Moreover, V has a tubular neighborhood of at least the same thickness as that of W .

Proof. We denote by |ΘWn | the trace of the current ΘWn . This is a positive measure that dominates all the
coefficients of ΘWn . By the uniform flatness of W it is clear that for any ball B, supn |ΘWn |(B) < C
for some constant C depending only on the radius of B. A standard compactness argument produces a
subsequence that converges to a positive closed current θ. It remains to show that the limit current θ is a
current of integration on a manifold V . This is proved in [B-64], again under the assumptions that for any
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fixed ball B the mass |ΘWn |(B) is bounded. Moreover, in this situation the support of ΘWn converges to V
and in any ball the tubular neighborhoods of the Wn ∩B converge to a tubular neighborhood of V ∩B. �

Definition. A sequence of plurisubharmonic functions ϕn is said to converge weakly to a plurisubharmonic
function ϕ if the corresponding currents

√
−1∂∂̄ϕn converge to

√
−1∂∂̄ϕ in the sense of currents.

Lemma 5.4. If ϕ satisfies
√
−1∂∂̄ϕ ' ω, then for any sequence of translations τn, the sequence ϕn = ϕ◦τn

has a subsequence converging weakly to a plurisubharmonic ψ and
√
−1∂∂̄ψ ' ω, with the constants in

the estimates
√
−1∂∂̄ψ ' ω controlled by the constants in the estimate

√
−1∂∂̄ϕ = ω.

Proof. This is proved in dimension 1 in [OS-98]. The same proof applies mutatis mutandi, so we content
ourselves with but a sketch. Let θn =

√
−1∂∂̄ϕn. In view of the hypothesis

√
−1∂∂̄ϕ . ω, we see that

|θn|(B(z,R)) ≤ CnR where CnR is independent of z, and there are functions ψn such that
√
−1∂∂̄ψn = θn,

ψn(0) = 0 and
√
−1∂∂̄ψn is uniformly Lipschitz. By a normal family argument we can take a subsequence,

still denoted ψn, such that ψn → ψ uniformly on compacts, and
√
−1∂∂̄ψn →

√
−1∂∂̄ψ as currents. �

Definition. Given a pair (W,ϕ) where W is a uniformly flat complex hypersurface and ϕ ∈ PSH(Cn)
with
√
−1∂∂̄ϕ ' ω, we denote by K∗(W,ϕ) the collection of all pairs (V, ψ) for which there is a sequence

of translations τn such that τn(W ) converge weakly to V and ϕ ◦ τn converge weakly to ψ.

Lemma 5.5. If the pair (W,ϕ) satisfiesD−ϕ (W ) = α then all pairs (V, ψ) ∈ K∗(W,ϕ) satisfyD−ψ (V ) ≥ α

Proof. By hypothesis, for any z ∈ Cn and ε > 0 there exists r > 0 and v ∈ Cn of unit norm such that∫
B(z,r)

ΘW (v, v) ≥ (1− ε)α
∫
B(z,r)

√
−1∂∂̄ϕ(v, v).

We fix an arbitrary z ∈ Cn. Take a sequence of translations τn such that Wn = τn(W ) and ϕn = τ∗nϕ
converge to V and ψ respectively. By definition of D−ϕ (W ) = α, for any ε > 0, there is an r > 0 and unit
vectors vn such that ∫

B(z,r)
ΘWn(vn, vn) ≥ (1− ε)α

∫
B(z,r)

√
−1∂∂̄ϕn(vn, vn).

By compactness there is a subsequence of the vn converging to v with ||v|| = 1. By Hurwitz’s theorem

lim inf
n

∫
B(z,r)

ΘWn(vn, vn) ≤
∫
B(z,r)

ΘV (v, v),

and since
√
−1∂∂̄ϕ ' ω,

lim
n

∫
B(z,r)

√
−1∂∂̄ϕn(vn, vn) =

∫
B(z,r)

√
−1∂∂̄ψ(v, v).

�

Definition. The pair (V, ψ) is said to be determining if for any f ∈ BF∞ψ (Cn), f |V = 0 implies that f ≡ 0.

Lemma 5.6. The manifold W is sampling for BF∞ϕ if all pairs (V, ψ) ∈ K∗(W,ϕ) are determining.

Lemma 5.6 was essentially proved by Beurling in [Be-89, pp. 341–365], so we omit the proof. This is a
key result because it allows us to determine that W is sampling simply by checking the more easily verified
condition that V is determining.

Lemma 5.7. If D−ψ (V ) > 1 then the pair (V, ψ) is determining.

Proof. Without loss of generality we assume that 0 /∈ V . In order to arrive at a contradiction, assume there
exists an F ∈ BF∞ϕ with F |V ≡ 0 and F (0) = 1. By hypothesis there is a direction v such that the density
of V in the direction of v is greater than 1. We will work on the line ` = Cv. Write f = F |` and φ = ϕ|`,
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and let Γ = V ∩ `. Then Γ is a uniformly separated sequence with density > 1 with respect to the weight φ.
Recall that the one-dimensional lower density is

lim inf
R→∞

inf
z∈`

#(Γ ∩D(z,R))∫
D(z,R) ∆φ

.

By hypothesis f(0) = 1. Now, if n(0, s) denotes the number of zeros of f in D(0, s), then

(6) lim inf
R→∞

n(0, R)∫
D(0,R) ∆φ

> 1.

Applying Jensen’s Formula to f , we get∫ R

1

n(0, s)
s

ds ≤ 1
2π

∫ 2π

0
log |f(Re

√
−1θ)| dθ.

Since log |f(Re
√
−1θ)| ≤ φ(Re

√
−1θ) +K, we obtain∫ R

1

n(0, s)
s

ds ≤ 1
2π

∫ 2π

0
φ(Re

√
−1θ) dθ +K.

Now, by Green’s Theorem we have∫ 2π

0
φ(Re

√
−1θ)dθ =

∫ R

0

1
s

∫ 2π

0

(
s
∂

∂s
φ(se

√
−1θ)dθ

)
ds

= 4
∫ R

0

∫
D(0,s) ∆φ

s
ds,

and thus ∫ R

1

n(0, s)
s

ds ≤ 2
π

∫ R

0

∫
D(0,s)(∆φ)

s
ds+K.

Thus since
∫
D(0,R) ∆φ ' R2, ∫ R

1
n(0,s)
s ds∫ R

0

R
D(0,s)(∆φ)

s ds
≤ 1 +K/R2.

which contradicts (6).
�

Lemma 5.8. If W is a uniformly flat sampling hypersurface for BF∞ϕ then there is a uniformly separated
sequence Σ ⊂W that is sampling for BF∞ϕ .

Remark. The definition of a sampling sequence is given in Section 6 below.

Proof. Any set F that is sampling for BF∞ϕ contains a uniformly separated sampling sequence. This is
proved in [Lin-01, Proposition 19]. (For the 1 dimensional case, see [OS-98, Proposition 2].) �

Lemma 5.9. Let 1 ≤ p ≤ ∞. If Σ is a uniformly separated sampling sequence for BF∞ϕ+ε|z|2 then it is a
sampling sequence for BFpϕ.

Proof. Denote by BF
∞,0
ϕ+ε|z|2 the closed subspace of BF∞ϕ+ε|z|2 consisting of functions f such that

lim
z→∞

|f |e−ϕ−ε|z|2 = 0.

The restriction operator
R : BF

∞,0
ϕ+ε|z|2 → `∞,0

ϕ+ε|z|2
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sending f to {f(σ)}σ∈Σ is a bounded linear operator. Since Σ is sampling, R is onto and has closed range.
Thus R defines an isomorphism between BF

∞,0
ϕ+ε|z|2 and its image. For any z ∈ Cn the weighted point

evaluation
f 7→ f(z)e−ϕ(z)−ε|z|2

is bounded on BF
∞,0
ϕ+ε|z|2 . Thus, for every z there is a sequence k(z, σ) such that

(7) f(z)e−ϕ(z)−ε|z|2 =
∑
σ∈Σ

k(z, σ)f(σ)e−ϕ(σ)−ε|σ|2 ,

for all functions f ∈ BF
∞,0
ϕ+ε|z|2 and such that

∑
|k(z, σ)| ≤ K uniformly in z. We fix p ∈ [1,∞). For an

arbitrary g ∈ BFpϕ and z ∈ Cn,

f(w) = g(w)e2εw·z̄−ε|z|2

belongs to BF
∞,0
ϕ+ε|z|2 and thus we may apply (7) to obtain

g(z)e−ϕ(z) = f(z)e−ϕ(z)−ε|z|2 =
∑
σ∈Σ

k(z, σ)f(σ)e−ϕ(σ)−ε|σ|2 .

Thus
|g(z)|e−ϕ(z) ≤

∑
σ∈Σ

|k(z, σ)||g(σ)|e−ϕ(σ)e−ε|z−σ|
2
.

This together with the inequality
∑
|k(z, σ)| ≤ K implies that∫

Cn
|g(z)|pe−pϕ(z) .

∑
σ∈Σ

|g(σ)|pe−pϕ(σ),

and that
sup |g(z)|e−ϕ(z) . sup

σ∈Σ
|g(σ)|e−ϕ(σ).

�

Lemma 5.10. Let W be a uniformly flat hypersurface. Let Σ be a uniformly separated sequence contained
in W . If Σ is a sampling sequence for BFpϕ then W is a sampling hypersurface for BFpϕ.

Proof. We only need to prove that for any z ∈W , the inequality

(8) |f(z)|pe−pϕ(z) ≤ C
∫
Dz

|f(x)|pe−pϕ(x)ωn−1(x),

holds, where Dz = W ∩ B(z, ε), and the constant C may depend on the radius ε of the ball but not on the
center z. For if (8) holds then for any function f ∈ BFpϕ,

‖fe−ϕ‖pp .
∑
|f(σ)|pe−pϕ(σ) .

∑
σ∈Σ

∫
Dσ

|f |pe−pϕωn−1 ≤
∫
W
|f |pe−pϕωn−1.

In order to prove (8) we need the hypothesis that
√
−1∂∂̄ϕ ' ω. Under this hypothesis we may again

invoke the existence of a non vanishing function h ∈ O(B(z, ε)) such that eϕ ' |h| in B(z, ε) with
constants independent of z. Thus, we may replace e−ϕ by h−1 in (8) and get the result if we prove that

|g(z)|p ≤ C
∫
Dz

|g(x)|pωn−1(x).

If Dz is a hyperplane then the latter estimate holds for all holomorphic functions g by the sub-mean value
property. In a general uniformly flat hypersurface the estimate holds because the distortion introduced in
ωn−1 upon rectifying Dz by a change of variables is uniformly bounded due to property (A) in Lemma 2.2
for uniformly flat hypersurfaces. �
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Finally, we are ready to prove Theorem 2. To this end, let ε > 0 be such that D−ϕ (W ) > 1 + ε. We
start by proving that W is a sampling manifold for BF∞ϕε , where ϕε = ϕ + ε|z|2. In order to do so, we
use Lemma 5.6. We need to check that for any pair (V, ψ) ∈ K∗(W,ϕε) the pair (V, ψ) is determining.
This is true in view of Lemmas 5.5 and 5.7. Now we take the sequence Σ ⊂ W given by Lemma 5.8. This
sequence Σ is a sampling sequence for BF∞ϕε and thus it is also sampling for BFpϕ by Lemma 5.9. Finally
by Lemma 5.10 we conclude that W is a sampling manifold for BFpϕ. �

6. AN APPLICATION TO SEQUENCES IN HIGHER DIMENSIONS

Let ϕ be a plurisubharmonic function in Cn such that for some c > 0

cω ≤
√
−1∂∂̄ϕ ≤ 1

c
ω.

Let Γ be a uniformly separated sequence of points in Cn. We consider the space

`pϕ(Γ) :=

{
{aγ}γ∈Γ ⊂ C ;

∑
Γ

|aγ |pe−pϕ(γ) < +∞

}
.

Recall that Γ is an interpolation sequence if for each {aγ} ∈ `pϕ(Γ) there exists F ∈ BFpϕ(Cn) such that

F (γ) = aγ , γ ∈ Γ,

and that Γ is a sampling sequence if there is a constant M > 1 such that for all F ∈ BFpϕ(Cn)

1
M

∫
Cn
|F |pe−pϕωn ≤

∑
Γ

|F (γ)|pe−pϕ(γ) ≤M
∫

Cn
|F |pe−pϕωn.

Sufficient conditions are known for a sequence to be interpolating, and also sampling. There are also
(different) necessary conditions. However, all the known conditions involve only the number of points of
the sequence contained in a large ball. It has been known for some time that such a condition could not
possibly characterize interpolation and sampling sequences, since it does not take into account how points
are distributed relative to one another. For example, consider the situation of interpolation. If all the points
of a sequence lie on a line, then to be interpolating there must be at most O(r2) points in any ball of radius
r. On the other hand, the number of points of a lattice in Cn lying inside a ball of radius r is O(r2n). Thus
any condition for interpolation that takes into account only the number of points of the sequence lying in
a ball of radius r would not suffice to conclude that any lattice, no matter how sparse, is an interpolation
sequence. Similar reasoning shows that analogous problems arise in the case of sampling conditions.

The present paper and the paper [SV-03] suggest an approach to studying interpolation and sampling
sequences by induction on dimension. In [SV-03] two of us tackled the 1-dimensional case. The present
paper tackles the problem from the other end. In this section, we show that the results of the present paper
already improve what is known for sequences in higher dimension.

6.1. Applications to interpolation. For simplicity, we restrict to the case of sequences in C2. As men-
tioned, at present rather poor density conditions are known in the general higher dimensional case. How-
ever, in a very symmetric situation there is a characterization of interpolation and sampling sequences in C2.
Suppose the sequence Γ is of the form

Γ = Γ1 × Γ2,

where Γ1,Γ2 are sequences in C. Suppose, moreover, that the weight ϕ splits:

ϕ(z, w) = ϕ1(z) + ϕ2(w),

where ∆ϕj ' 1, j = 1, 2. Then the following is true:

Claim. Γ is interpolating (resp. sampling) with respect to the weight ϕ if and only if for both j = 1 and 2,
Γj is interpolating (resp. sampling) for the weight ϕj .
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This result can be recovered from the 1-dimensional characterization of interpolation and sampling estab-
lished in [BO-95] and [OS-98].

We shall now generalize this result to the case of arbitrary sequences lying on a family of parallel lines in
C2. To this end, let Γ = {γj},Λ1 = {λ1,j},Λ2 = {λ2j}, . . . be sequences in C. Define

Σ = {(γj , λjk) ; j, k = 1, 2, . . .} .

As a corollary of our main results, we have the following theorem.

Theorem 3. Suppose that for some fixed ε > 0, each Λj has density ≤ 1 − ε, with respect to the weight
ϕ(γj , ·), and that

#Γ ∩ D(z, r)
r2∆zϕ(z, w)

<
det(
√
−1∂∂̄ϕ(z, w))

∆zϕ(z, w)∆wϕ(z, w)
(9)

for all z, w ∈ C. Then Σ is interpolating for BFpϕ(C2).

Proof. Let W = Γ × C. We first calculate the density of W . To this end, let T (z, w) = σ(z), where σ is
a holomorphic function whose zero set, counting multiplicity, is Γ. Then the zero set of T in C2 is W , and
one sees easily that

D(W,x, r) = sup
t∈C

∑
j Area (({γj} × C) ∩B(x, r))

Vol(B(x, r))(∆zϕ(x) + ∆wϕ(x)|t|2 + 2 Re(ϕzw̄ t̄))

=

∑
j Area (({γj} × C) ∩B(x, r))

Vol(B(x, r))
(

∆zϕ(x)− |ϕzw̄(x)|2
∆wϕ(x)

)
=

∑
j Area ({γj} × C ∩B(x, r))

Vol(B(x, r))∆zϕ(x)
∆zϕ(x)∆wϕ(x)

det
(√
−1∂∂̄ϕ(x)

) .
Since we are going to take lim sup as r →∞, condition (9) implies thatW is an interpolation hypersurface.

Now suppose given a sequence of values {ajk} such that∑
j

∑
k

|ajk|pepϕ(γj ,λjk) < +∞.

Fix j. Since Λj is interpolating, there is a function gj(w) such that

gj(λjk) = ajk and
∫

C
|gj(w)|pe−pϕ(γj ,w)dA(w) ≤ C

∑
k

|ajk|pepϕ(γj ,λjk)

for some absolute constant C. (This is not immediate; one has to use the fact that an interpolation operator
can be constructed with norm depending only on the density of the sequence. The uniformity of C now
follows because the density of Λj is bounded away from 1 uniformly in j.)

Define the function f ∈ O(W ) by
f(γj , w) = gj(w).

Then the estimates on theLp norms of gj imply that f ∈ bfpϕ(W ).By Theorem 1, there exists F ∈ BFpϕ(C2)
such that F |W = f . Thus

F (γj , λjk) = f(γj , λjk) = {ajk},
and the proof is complete. �

We note that, unlike the case of lattices mentioned above, the condition (9) is not necessary in general,
even for sequences that lie on parallel lines. To see this, consider the weight ϕ(z, w) = |z|2 + |z +w|2. Let
Σ = {0}×Γ, where Γ is a sequence with density between 1

2 and 1. Then Γ is interpolating inW = {0}×C
and W is interpolating in C2. (In fact, the density of W is zero.) But the reader can check that condition

19



(9) does not hold. This observation suggests that perhaps the previously mentioned inductive approach is
lacking another, possibly deep ingredient.

6.2. Application to sampling sequences. Let Σ be a sequence of the form described before the statement
of Theorem 3. By analogy with Theorem 3, we have the following application of Theorem 2 to sequences.

Theorem 4. Suppose that for some fixed ε > 0, each Λj has density ≥ 1 + ε with respect to the weight
ϕ(γj , ·) and that, for some r > 0,

#Γ ∩ D(z, r)
r2∆zϕ(z, w)

>
det(
√
−1∂∂̄ϕ(z, w))

∆zϕ(z, w)∆wϕ(z, w)
(10)

for all z, w ∈ C. Then Σ is sampling for BFpϕ(C2).

Proof. Let W = Γ × C. The upper sampling inequality holds since W is uniformly flat and Σ ⊂ W is
uniformly separated on each line of W .

Next, let F ∈ BFpϕ(C2). Condition (10) implies that W is sampling, and thus∫
C2

|F |pe−pϕω2 ≤ C1

∫
W
|F |pe−pϕω.

Now, since each Λj is sampling with density bounded away from 1 uniformly in j, we see that there is
C > 0 such that for each j,∫

{γj}×C
|F (γj , w)|pe−pϕ(γj ,w)dA(w) ≤ C

∑
k

|F (γj , λjk)|pe−pϕ(γj ,λjk).

Summing over j, we have ∫
W
|F |pe−pϕω ≤ C2

∑
j,k

|F (γj , λjk)|pe−pϕ(γj ,λjk).

This completes the proof. �
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[B-64] Bishop, E., Conditions for the analyticity of certian sets. Michigan Math. J. 11 (1964), 289–304.
[Ch-91] Christ, M., On the ∂ equation in weighted L2 norms in C1 J. Geom. Anal. 1 (1991), 193–230.
[Dem-82] Demailly, J.P., Scindage holomorhpe d’un morphisme de fibrs vectoriels semi-positifs avec estimation L2. Sem. Lelong-

Skoda 1980–81. Lecture Notes in Mathematics 919. Berlin, Heidelberg, New York: Springer 1982.
[FV-05] Forgacs, T., Varolin, D., Interpolating and Sampling for Weighted Bergman Spaces in the Unit Ball. Preprint 2005.
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