SUFFICIENT CONDITIONS FOR INTERPOLATION AND SAMPLING HYPERSURFACES IN
THE BERGMAN BALL

TAMAS FORGACS AND DROR VAROLIN

1. INTRODUCTION

Recall that the Bergman metric on the unit ball B = {z € C"; |z| < 1} is the Kahler metric whose

associated (1, 1)-form is wp = —(n + 1)dd°)\, where
n
A =log(l —|z[?) — 1 1
og(1 = |#[?) = = log(n+ 1)
and in our convention d° = @ (0 — ). The weighted Bergman spaces on the Bergman ball are

H?(B,K) = {F € 0(B); / |F|2e " wh < —i—oo},
B

where 0(X) denotes the space of holomorphic functions on a complex manifold X. In this paper we
assume that x is 2. The case k = —(n + 1) log(1 — |z|?) corresponds to the classical Bergman space of
holomorphic functions that are square integrable with respect to Lebesgue measure.

Given a nonsingular closed complex hypersurface W C B, we let

92(W, k) = {f eoOW); / |flPe Wl < -l—oo}.
w

DEFINITION 1.1. (a) We say that W is an interpolation hypersurface if for each f € $%(W, k) there
exists F' € #?(B, k) such that F|W = f.
(b) We say that W is a sampling hypersurface if there is a constant A such that for every F' € J#?(B, k),

1
(1) / |F|Qe—*’~wg§/ |F|?e Fwipt gA/ |F|2e™ " wh.
A B w B

Let F, denote a holomorphic involution of B sending 0 to a (see Section 2).

REMARK. We will often use, without explicit indication, the fact that F), is an involution. Thus the reader
should not be confused if F is seen when F! is expected.

We define the fotal density tensor of W in the ball of radius r to be the (1, 1)-form

Wy L ( / azlogT(Fz(C)Nzw%) JTTds A ds
B(0,r)

02107z
Here T is any holomorphic function such that W = {T" = 0} with dT'|W nowhere zero, and

Vi(r) = /B b

is the volume of the Euclidean ball of radius r and center 0, with respect to (our normalization of) the volume
induced by the Bergman metric. The total density tensor is a Bergman ball analog of the total density tensor
introduced in [OSV] in the case of C". In the case of the Bergman ball, some of the more basic properties
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of the total density tensor do not follow as readily as their analogs in the C™ case. For example, at the end
of Section 2 we will show that the definition of YV is independent of the choice of 7.
We define
1

_ c o 2wn )
(W]-(2) = dd <Vn(e) L eEITO) B<<>>

If we denote by [WW] the current of integration along W, then [W]. is in some sense the average of [W] over
the Bergman-Green ball of radius ¢. Note that [IW]. = Y and thus [W]. is independent of the choice of T".
Moreover, though not necessarily smooth, the current [W]. is locally bounded, as can be seen by changing
variables in the intergral and then differentiating under the integral. Finally, it is also clear that, in the sense
of currents, [W]. — [W]ase — 0.

DEFINITION 1.2.
(I) Let Py (B) denote the set of (n — 1,n — 1)-forms 6 on B with the following properties.
(@) 0 Awp > ce”’\w% for some constant ¢ > 0.
(b) For each ¢ > 0 there exists C' > 0 such that [W]. A 6 < C[W]. Awly L.
(c) dd6 =0.
(1) For @ € Zw(B), let

(X8 4 25) 0
2+ (W, k)[6] = lim sup sup e
r—1 z2€B V—100k N0

and

B o (TTW—&-RLHMB)/\H
(III) The upper and lower densities of W are
L W,k) = sup D5 (W, k)]
QE@W(B)
and
Ip(W,k) = sup D (W, x)[0]
0c Py (B)

From here on out we assume that W is uniformly flat (see Section 3 for the definition) and that
éwB < =100k < Cwp

for some constant C' > 1. Our main results are the following two theorems.

THEOREM 1.3. If @g(VV, k) < 1, then W is an interpolation hypersurface.

THEOREM 1.4. If 5 (W, k) > 1, then W is a sampling hypersurface.

Theorems 1.3 and 1.4 give generalizations to higher dimensions of results of Seip [Seip-93] and of
Berndtsson-Ortega Cerda [BO-95]. By now Theorems 1.3 and 1.4 carry with them a rich history. Most
recently, results analogous to Theorems 1.3 and 1.4 have been established for the case of C" in the paper
[OSV], which we refer to for further historical remarks regarding interpolation and sampling problems for
Bergman spaces.

Though there is a strong similarity between the results of [OSV] and the present paper, the methods of
proof are completely different. In fact, the present approach and the approach of [OSV] could be used
interchangeably for the case of C" and the Bergman ball.

In the case of interpolation, we employ the Ohsawa-Takegoshi technique to extend functions from the

submanifold W to the ball in one shot, rather than using the L? Cousin I-type approach to extend the
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function locally and then patch together the resulting local extensions. (We should perhaps remark that if
one wants to apply the Cousin I-type method in the case of the ball, then the negativity of the curvature of
wp requires the use of a sharper version of Hormander’s 0 Theorem, due to Ohsawa. The need for Ohsawa’s
Theorem was already noticed in the 1-dimensional case [BO-95].)

By contrast with [OSV], our approach to sampling is closer in spirit to the technique that has been used in
the one-variable case in [BO-95]. Our densities, laid out in Definition 1.2 above, do not directly correspond
to those in [OSV] (though we prove in Section 4 that they are actually the same). We feel that the methods
of the present paper fit in more naturally with the Hilbert Space approach. The proofs also seem more
elementary than the Beurling-inspired approach used in [OSV].

The paper is organized as follows.
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2. RAPID REVIEW OF BERGMAN GEOMETRY

Bergman geometry is one of the oldest and most studied areas of complex geometry. Therefore we content
ourselves with stating facts, and provide few proofs.

Bergman metric. As already mentioned, the Bergman metric is wp = —(n + 1)dd°\. It is easy to see that,
with wg = dd°|z|? denoting the Euclidean metric,

wplisy = (n+ ) wpl._y and wj=e HR

and in particular,

Ricci(wp) = —wp.

Basics of Aut(B). For the reader’s convenience, we recall that Aut(B) contains the involutions

a— Pyz— 5,Q42
1—{(z,a)

F.(z) = , a€B—-{0}, Fyz)=-—z
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where P, = |a|"2aa’, Q, = I — P, and s, = /1 — |a|2. Moreover, the Schwarz Lemma shows that any
automorphism of B is of the form U Fy, for some unitary U. Note that F,(0) = a and

oy A DA )
HIREE= T T e

Thus Aut(B) acts transitively on the ball and wp is Aut(B)-invariant. (For much more detail on this and
the next paragraph, the reader is referred to [R-80] or [St-94].)

Basic potential theory of the Bergman metric. Recall that the Bergman Laplacian Ap associated to wp is
the wp-trace of dd°:
(Apg)wh = dd°g AWt
DEFINITION 2.1. The Green'’s function with pole at a € B is the function Gg(z, a) satisfying
Ap(Gg(,a))wh =064 and Gp(-,a)|l0B = 0.
Using Aut(B)-invariance, it is easily seen that G(z,a) = G(Fy(#),0) and that
n(n + 1) (Apg) (a) = trace (DFQ(O)TDng(a)DFa(O)) .

Here DV1g is the matrix of the (1,1)-form v/—10dg in Euclidean coordinates. Setting y3 = Gp(-,0),
we see from unitary invariance that yg(z) = f(|2|?) for some function f. Substitution into the Bergman-
Laplace equation and solving the resulting ODE shows that

o= [

where C,, = (27) " (n +1)~(»=1),
Note that f'(t) > 0. It follows that for each a € B the sublevel sets G(z, a) are also the sublevel sets of
|Fo(z)|. We use the latter to define distances.

DEFINITION 2.2. (i) The Bergman-Green distance between two points ¢ and b in B is
|[Fa(D)].
(ii) The Bergman-Green balls with center a and radius r are
E(a,r) = F,(B(0,7)) ={z € B; |F,(2)| <r}.
By using the Green-Stokes identity

) /6 (g1d°ga — god°g1) AWt = / (g1dd°ga — godd®gr) Aw™ 1,
D D

where (D, w) is an n dimensional Kihler manifold with boundary and g1, g2 : D — C are functions, we
obtain the following Lemma.

LEMMA 2.3. Let h be a function such that Agh > 0. Then

1
3) h(0) (2T)" th(rz)dc|z|2/\w%71(z).

Moreover, equality holds when Agph = 0.

IN

Proof. Apply (2) with D = B(0,7),r < 1, g1 = h and g2 = ~,, where

1 l_tnfl
w@) = e+ [ S

observing that v,,|0B(0,7) = 0 and dd®y, Aw's ' = &. The result now follows by direct computation. [
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COROLLARY 2.4. Let h be a function such that Agh > 0. Then for allr < 1,

1
4 h(0) < hw's.
X 0= Vau(r) /B(Om) B

Moreover, equality holds in (4) when Agh = 0.

Let us end this section by justifying our claim that TW is independent of the choice of holomorphic
function 7" defining W. Suppose T is another function such that W = {7 = 0} and dT'|W is free of zeros.
Then the function T /T is holomorphic and free of zeros in the ball. Since the ball is simply connected, any
zero-free holomorphic function is the exponential of some holomorphic function. Thus T = T for some
holomorphic function h. It follows that

/B o, BT Ol = /B o o (RO +2 / o, B MO,

Since Re h is (pluri)harmonic, its ball average, with respect to a radially symmetric probability measure, is
equal to its central value. Since F;(0) = z, we have

| 1oglB(RO)Pe = [ loglT(FO)Pu + 2ValrIRe h(z).
B(0,r) B(0,r)
The pluriharmonicity of Re h thus completes the justification of our claim.

3. UNIFORM FLATNESS

In [OSV] a notion of uniform flatness was developed for closed smooth hypersurfaces in C". Here we
define the analogous notion for the ball with its Bergman geometry.
Let

NB(wW) = {z €B| Jdnf P (w)] < s}

DEFINITION 3.1. We define a smooth divisor W in B to be uniformly flat if there exists an €9 > 0 such
that Nfé(W) has the following property: for each z € N, (W) there is a unique w, € W minimizing the
“distance to z” function w — |F,(w)| along .

REMARK. Recall that a pseudohyperbolic disk of radius € is the image under F' € Aut(B) of the disk
{(0,...,0,2) € B; |z| < e}. The unifrom flatness hypothesis implies that in fact NZ(W) is foliated
by pseudohyperbolic disks. Indeed, since our condition is invariant under Aut(B), it suffices to see this
for the case where W > 0 and Ty = {z, = 0}. In this case, it is clear that the boundary of the disk
{(0,...,0,2) € B; |z] < &,} has distance exactly ¢, to the origin.

These observations imply the existence of a diffeomorphism

P : W xD(0,e,) — NE(W)

that is holomorphic in the disk variable, and sends each disk {w} x (0, ¢,) to the disk with center at w,
which minimizes the pseudo-hyperbolic distance and whose tangent vector is orthogonal to Ty, in the
Bergman metric.

The following consequence of uniform flatness is useful.

LEMMA 3.2. If a closed non-singular complex hypersurface W C B is uniformly flat, then there exist
eo > 0and C > 0 such that for each z € W the set F,(W) N B(0,¢0) is a graph, over the Euclidean
go-neighborhood of the origin in the tangent space T, (w) o = dF (Tw,2), of some function f such that

If(z)| < Clz|?,  |z| < 0.
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Sketch of proof. Since the notion of uniform flatness is invariant with respect to Aut(B), it suffices to as-
sume that z = 0 € W. Moreover, since we are working in a small neighborhood, we may replace the
Bergman metric by the Euclidean metric, and the pseudo-hyperbolic distance |F,(w)| by Euclidean dis-
tance. In this setting, the result follows from Proposition 2.2 in [OSV]. We leave the details to the interested
reader. ([l

4. THE DENSITY CONDITIONS AGAIN

4.1. Reformulation of the density conditions. It will be useful to rewrite the hypotheses on the upper and
lower densities in terms of the positivity properties of certain associated differential forms.

LEMMA 4.1. 1. If .@g(W, k) < 1, then there is a positive constant c such that

V—190k — j_le — YW > ¢v/~100k.

n

2. If 25 (W, k) > 1, then there exists 0 € Py (B) and ¢ > 0 such that

<TZV + j_ B~ \/—188&) AO > ce™Wl,
n

Proof. After using condition (a) in the definition of 2y (B), assertion 2 is trivially true from the definition
of the lower density.

To see assertion 1, choose any v € Tg 4, having norm 1, say with respect to the Bergman metric. After a
unitary change of coordinates in C" (where the ball lies) we may assume that that v = ca%l, where 2!, ..., 2"
are coordinates in C". Consider the (n — 1,7 — 1)-form

0=0,:=(/—0)"Yde®? NdT* A --- A dz™ A dT".

We claim that § € 2y, (B). Indeed, /=109 = 0 so condition (c) in the definition of 2y, (B) holds.
Condition (b) is clear in view of the local boundedness of [I¥].. Condition (a) can be seen as follows:

wE V—10|z|? A 0|z |?
0 = 0
nan = 0on (5 +
> Ce Mt
Ce™ Wi,

By the density condition there exists § > 0 and r, >> 0 such that for all » > r,,

(Y + ws) A0
V—100k N 6
(TZV(U, ) + HLHUJB(%@))

V—100k(v, )

1-60 >

Observe that the density condition says this inequality holds uniformly on B. Clearly if we rotate our

original v a little, this bound will still hold. Since the unit sphere is compact, we can choose r, and J so that

the result holds for all v in the unit sphere in T’z ;,. (Here, for the sake of simplifying the argument, we are

exploiting the triviality of the tangent bundle T’z.) This completes the proof. (Il
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4.2. A seemingly better notion of density. In the paper [OSV], a different notion of density was used.
The purpose of this section is to demonstrate the equivalence of the density notions of the present paper and
those in [OSV].

Let us define the Bergman ball analogues of the densities used in [OSV]. One first sets

YW (v,0) + 2wp(v,v
D, (W,K) := sup (v.9) + wigws(v,9)

v#£0 V—100k (v, D)

Then one takes
D (W, k) := limsupsup D, (W, k)
r—1 zeB
and

D™ (W, k) := liminf ing D, (W, k).
ze

r—1
Note that D, (W, k) is the maximum eigenvalue of the (1,1)-form T}V + irws with respect to the
positive (1, 1)-form /=100 at the point z.

LEMMA 4.2. Let (M,w) be a Hermitian manifold of complex dimension n, and let o be a non-negative
(n—1,n—1) form on M. Then for each p there exists a vector v € ijp such that for any real (1,1)-form
0, one has

a By = Bp(v,v)w".

The Lemma says that the mapping «/—1v A © +— 6,,, with 8,, as in the proof of Lemma 4.1, is a pointwise
isomorphism.

Proof. We shall use multi-linear algebra on T}y ,. To this end, choose a unitary basis e, ..., e" for (T}, p)lvo

and e1, ..., e, its dual basis. Let &/ be a basis for A"~ 111 (T3 ) such that

= =z ™
V—1eF A&t Aot = 5”“53"—'.
n.

Let A (resp. B) be the Hermitian matrix with entries ag; (resp. bﬁ) such that at the point p,

ij (resp. B = bﬁ\/—lei A éj) .

a=aza%

Then
wn
n!

a A B, = Trace(ABT) - and f,(v,7) = v Bu.

After a unitary rotation, we may assume that the basis e!

there exist non-negative numbers Ap, ..., A, such that

, ..., € diagonalizes A. Thus, since « is positive,

Trace(ABT) = Z Aebrk.
k=1

Taking
n
V=3 Ve
k=1

completes the proof. g
We can now obtain the following proposition.

PROPOSITION 4.3.
(@ 7% (W, k) = DT (W, k).
(b) 7= (W, k) < D~ (W, k).



Proof. (a) Fix z € B and r € [0, 1). By definition of D (W, ), we have that for any 6 € 2y, (B),
DY (W.k) > Dep(Wir)
- TV A6(2) +_nL+1"JB N6(z)
- V—100k N 0(2)
(In the second inequality we have used Lemma 4.2.) Taking the supremum over z and then the lim sup as
r — 1, we see that

DY (W, k) = 7 (W, n)[6].
Finally, taking the supremum of the right hand side over all § € Py, (B) shows that DT (W, k) >
Dt (W, k).
To obtain the reverse inequality, fix € > 0. Then for each r < 1 sufficiently close to 1 there exist z € B
and v € C" such that
TXV(’U, 17) +_nL+1QJB (Uv 77)
V—100k(v, V)
_ TXV A 0y(z) 4: niﬂwB ABy(2) e
V—100k N 0,(2)
T W k)0, < 7 (W, k) +e,
where 6, is defined as in the proof of Lemma 4.1. The second-to-last inequality follows since 0 << r < 1.
Since ¢ is arbitrary, 1 is proved.

(b) Fix € > 0. By definition of 2~ (W, k), there exists § € Py (B) such that
9= (W, k) < 9~ (W,5)[0] + %

DY (W,k) —¢

IN

Moreover, by the definition of 2~ (W, k)[0] we have that for all z € B and all r € [0, 1) sufficiently large,
YW AO(2) + aws A 0(z)

€
9= (W,k)|0] < - + =,

(W, x)16] < 100k A 6(z) 2
But by Lemma 4.2 and the definition of D, ,.(W, k),

TV AO(2) + 2cwp AO(2

r NO(2) + Fiws A O )SDH(W,K).
V—100k A 0(z) ’

This proves (b). ]

THEOREM 4.4. (W, k) > D~ (W, k).
Proof. We introduce the notation

mn
Qg ::T7W+n+

198 (D~ (W, k) — 6) V—100k.
Let 6 > 0 be given. For r >> 0 we are going to construct a form 6 € Py (B) such that
Qs NO > 0.

If this is done, the proof is complete.
By definition of D~ (W, ), there exists a locally finite open cover U; of B and constant (n — 1,n — 1)-
forms (i.e., forms of the type 0, defined in the proof of Lemma 4.1) 6; on U; such that

95/2 A 9j >0 on Uj.
By the uniform flatness of 1/ we may choose the cover {U;} such that any point of B is contained in some
finite number of neighborhoods, this number depending only on the dimension. Moreover, by the continuity

of the forms €25 we may choose the forms 6; so that if U; N Uy, # 0 then 6; — 6, is as small as we like.
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In fact, by elementary anti-differentiation we may take forms y; depending quadratically on the (global)
coordinates in B such that ; = /=199 and if U; N Uy # 0 then ||11j — purell42(u,nv,) is as small as we
like, where || - || denotes €?-norm.

The argument we present here requires a little more precision. Later we will have to control the size of the
neighborhoods U; in order to make the 6; — ¢, small enough. To this end, we choose the U; to be balls (or
polydisks) of diameter €, measured with respect to the Bergman-Green distance. We momentarily indicate
this dependence on ¢ by writing Uj., ;. and 0;.. Observe that if we take j1;. to be bihomogeneous
quadratic in the Euclidean coordinates with origin that of Uj ., then the uniform estimates for ;. scale by
€2, those for Dpj . by €, and those from 0; . are invariant with respect to €.

Let {1); . } be a partition of unity subordinate to the cover {U; . }. We may choose this partition so that

D Mjenjelle < C
i

for some constant C' independent of . Indeed, as the neighborhoods Uj . scale by ¢, the estimates for D),
scale by e ! while those for Dzwjﬁ scale by £ 72. Thus the desired estimate follows from the product rule

D2(¢j,€ﬂj76) = ,U«j,sDQ'(/}j,a + (Dﬂj,a)(ijye) + wj,eDQMj,a-
Thus is is clear that we have scale invariant estimates. To simplify the notation, we can now drop the
notational dependence on €.
We would like to correct the local forms 6; so that they can be pieced together to give us an element of
Pw(B) with the desired density. We shall use cocycles to do this. To this end, the obstruction to the 6;
piecing together to give a global form is carried by the 1-cocycle

aji = 0; — O = V=100 (1j — )

supported on U; N Uy,. By our choice of the 6;, the o, are small in ¢’ Y-norm. We now define
nj = v—100 (Z Vi (g — pe)|Uj N Uk:) :
k

By modifying our choices of the 1; we may make the 7); as small as we like. Moreover, v/ —18517j = 0and
ni—me = V=100 (s — p + i — o)
k

= V=100 yu(p; — pue)
k

= Qjy.

It follows that
0= 9j —n; on U j
is well defined and belongs to Zyy (B). Moreover, by choosing the j1; — £, even smaller if necessary, we
see that
Qs NO >0,

as desired. 0

5. INTERPOLATION

5.1. A negative function singular along a hypersurface. Recall that

Va(r) := /B(O )w%.

As the Bergman metric is invariant under automorphisms, one sees that for each a € B, V,,(r) is also the
Bergman volume of Bergman-Green balls E(a,r) = F,(B(0,r)).
9



Let
1

FT(Z7C) = GB(Z,C) - Vn(T)

/ G, Q) (2).
E(z,r)

Since ApG(-,¢) = 0 on B — {(}, we see from Corollary 2.4 that I, is non-negative and is supported on
the set

{(z:Q) e BxB [|F(O] <7},

which contains a neighborhood of the diagonal in B x B.
We define the function

5e(2) = /B Ty (2, Ol 1(¢) A dde log [T(C)

_ / Ty (2, Qw1 (C) A dde log |TI2(C).
{¢ 5 |F=(O)<r}

By the Lelong-Poincaré identity,

(5) sr(z) = 27T/
W

Z,7

(GB(z,C) - VE?“)/EW) GB(%C)W%(JU)) wi (),

where
W =WnH{(; [F(Q)] <7}

PROPOSITION 5.1. Let T € O(B) be a holomorphic function so that W = T~1(0) and dT is nowhere zero
on W. Then

=lo z 2_ L 0 2on
se(2) = 10g 1) — gy [ loa TPl

In patricular,
1

P2
Proof. Let ¢ € 65°(B) be a function whose total integral with respect to Euclidean volume is 1, and let x.
be the characteristic function of the set {z € B ; |2| < 1 — 2¢}. Let . (x) = e ?"¢(¢ 1), and set

dd®s,(z) = [W] — TV (2).

fe= (Xs log ‘T|2) * Qe

Then f. is smooth with compact support in B, and

sp(2) = lim | Ty (2, Qwp ' (¢) A dd f-(Q).

e—0 B

But by definition of Green’s function,

[ 660 @ e 0) = [ GleOdd (et Q) = .(2).
B B
The proof is completed by letting £ — 0. O

LEMMA 5.2. The function s,(z) has the following properties:

1. It is non-positive.
2. For each r,e > 0 there exist a constant Cy. ¢ such that if 5g(z, W) > € then s,(z) > —C,. ..
3. The function e™*" is not locally integrable at any point of W.

Here 0p(z, W) = inf{|F,(w)| ; w € W}.
10



Proof. By Corollary 2.4 and the fact that AgG(-,¢) = 0on B — {¢}, I, < 0 and 1 follows. Moreover, 3
is an immediate consequence of Proposition 5.1.
To see 2, we first note that since dp(z, W) > €, Gp(z,() > A.. Thus it suffices to obtain an estimate

[ Ga@up@ =~ [ Guleywhe) <D,
E(z,r) B(0,r)
for some D, > 0 and all y = F(¢) € B(0,r). To do this, it is enough to estimate the integral
I(r) = — / Gp(z,y)wp(z).
B(0,(r+1)/2)

Fix y € B(0,r). Let p > 0 be the largest number such that
B(y,p) C B(0,(r +1)/2).

One has
r+1
ng < p< B)
for some n, > 0 depending on r but not on y.
Write
I(r) = Ii(r) + Ia(r),
where
h)i=- [ Gyl
E(y,p)
and
Iy(r) == —/ Gp(z, y)wp(z).
B(0,(r+1)/2)—E(y.p)
Now

L) = - /B o ()

is clearly bounded by a constant independent of .
Next, note that for
z € B(0,(r+1)/2) — E(y,p)
one has the estimate
IFy(@)] > p >y
It follows that for such x,
G(z,y) > —N,

for some IV, € R independent of y. Thus

I(r) < wi ()

N [
B(0,(r+1)/2)=E(y,p)

< f (@),
B(0,(r+1)/2)

and the latter is independent of y. Thus 2 follows. (|

REMARK. There is a direct proof of Lemma 5.2.3 that does not use the formula of Proposition 5.1. Since
we will make use of the calculation needed, we present this proof now.
We may assume that W is the coordinate hyperplane z, = 0 and z = z"¢,, for |2"| < ¢ with ¢ sufficiently
small. (Though we do not use it here, later we will exploit the fact that, by the uniform flatness of W, e > 0
11



may be taken independent of the point on W which has been translated to the origin.) Let U be a sufficiently
small neighborhood of the origin. Using the formula (5), we estimate that

5,(2) = 2 /U DO +0()

The same method used in the proof of Lemma 5.2.2 allows us to estimate the part of I, involving the integral,
so we may replace I, be the Green’s function. Letting w%‘l = 2r2"=3drdos,_3 be the decomposition into
polar coordinates and setting

Ap1 = / dogy—3 = (2m)" 1,
S2n73

we obtain from the form of the Green’s function that

G+ 1) Ay [ =2 o) — log |72 4 0(1
sp(2) = 27Cph(n + 1) n—1 ; —W +0(1) = log|2"]" + O(1)
where e > 0 is a sufficiently small number depending on €. O

5.2. The proof of Theorem 1.3. We fix a compact subset {2 CC B. This set will be fixed until the last part
of the argument, when we let Q) — B.
Let

or = Sy — A —sup(—A).
Q
Note that o, < 0.

Tubular limits. For each ) CC B, let
Q. = QN {o, <loge?l.

LEMMA 5.3. Let W C B be uniformly flat. Then there exists a positive constant C > 0 such that for all
Q CC B and all f holomorphic in a neighborhood of 1,

lim sup 12/ |f|Pe " wl < C/ |flPe Fwiy L.
e—=0 €7 Jq. Qnw
Sketch of proof. We may assume the right hand side is finite. Moreover, we can take 2 = F/(a, ) for some
a € W, with § so small that W N €2 is the graph of a quadratic hypersurface. By uniform flatness, J can be
taken independent of a.

Consider first the case a = 0. Then 2 = B(0, ), and the result follows after an elementary analysis of
the properties of s, as in the proof of Lemma 5.2, and the remark following that proof.

If we now apply the automorphism F, to B(0,¢), then Lemma 3.2 and the Aut(B)-invariance of wp
show that the same estimates hold on E(a, d). O

The twisted Bochner-Kodaira Technique. We fix a smoothly bounded pseudoconvex domain {2 CC B. Let
us denote by 0 the formal adjoint of O in the Hilbert space of (0, 1)-forms on €, square integrable with
respect to a weight e “w?. For a (0, 1)-form u = usdz®, one has

ézu _ _eu+(n+1)>\8a (e—(V+(n+1)A)ua> _

Recall that for (0, 1)-forms u in the domains of 9 and 9, Bochner-Kodaira Identity is
/ ‘afu}Qe_”w% +/ |5u}26_”w%
Q Q
(6) = / ((8a65(y + (n+1)N)) uaﬁ) e Ywh + / }ﬁu}z e ‘wh
Q Q

+/ (0a0p) uuPe " d(—(n+ 1)A) Awh !,
o0
12



where p is a defining function for 2 such that |dp| = 1 on 99Q. (See, for example, [Siu-82].) The term
(n + 1)\ in the first integral on the right hand side of (6) comes from the Ricci curvature of wp. Writing

et 4

T

e
eV =

we obtain

(OqT) u®

8a657' B (OuT) (8@7) .

k%, Ok
Oyu = Oyu — -

and 8a85w = 8a5'51/ +
Substitution into (6), followed by some simple manipulation, gives the

TWISTED BOCHNER-KODAIRA IDENTITY for (0, 1)-forms: If u is a (0, 1)-form in the domain of 9*, then

7 / ‘@bu‘ wB—i-/T‘éu‘Qe_ww”
0

= /Q (T (0a05(¥ + (n+ 1)N)) uuf — (Wﬁaaa[;f)
+ 2Re ((&ﬂ) Ua@)) e VWl + /Q T ‘ﬁuf eV

—i—/ T ((%Z“)Bp) uCule™Vd(—(n+1)A) A Wit

o0

We now use positivity of the last two integrals on the right hand side, together with the Cauchy-Schwarz
inequality applied to the first term in the third line, to obtain the so-called

TWISTED BASIC ESTIMATE: If u is a (0, 1)-form in the domain of 9*, then
(8) / (t+A) ‘qu} wB—l—/ T‘éu‘ze_%)”
Q
> / (T (0a05(¢ + (n+ 1)) uuP
Q
— 1
—0a0pTuul — 1 1(@7) ua2> e VWi,

Choice of 1, T and A. From the very beginning, we choose
VY =K+ op.
By the density hypothesis (via Lemma 4.1.1) and the fact that /—190s,. = [W] — YV, one has
V=100() + (n+1)A) = V—=199(k + nA + s,)
> c/—100k.
Next, fix v > 1. We define

¢ =log (e(’" + 52) ,
with € > 0 so small that v — £ > 1. One has

V—100¢
- Fa(em+ 00,

2
= o 1 82 VvV — 860’7~ ﬁ "V — 807« A 8O'T

e’r

S R e CO R CO]

13



where the last equality follows since v/—1890, = [W] 4 2qwp — T}V and 7" |[W = 0.
Let 0 < oo << 1 and set
a=y—af.
Observe that ¢ > 1. Moreover, we have
—v/—=18da
= a/—100¢

oe’r - =( 1
— ] (n}rle - TW) + (ear +62) v—10 <€2 T> AO <€2 T> .

T=a+loga and A= (1+a)%

Now let

Then 7 > 1 and we have
1 ~ 1 ~ 1 _
or = (1 + a> Jda and +—100T = <1 + a) v —100a — ﬁ\/—lc'?a A Oa,

and thus

v Togy - YILOTAOT <1 n i) (—v"100a) > —v~10da.

It follows that
2
Tw—umwwwn+1)) V=10 - 1071
> ov/=100k + 5 (s - 1)
+<em+gz> V=10 (ebor) nd ()

F@ (62 ) /\5(6%”’"),

>

- <ef~ @ P
provided we take « sufficiently small. (For example, by the density hypothesis as rephrased in Lemma 4.1.1
we may take o = c.) Substituting into the twisted basic estimate (8), we obtain the following lemma.

LEMMA 5.4. Ifuis a (0, 1)-form in the domain of 0¥, then
/ (t+A) ’5;2“}2 e YWl + / T ’5u’2 e YWl
Q Q

2
o e () of
An a priori estimate. We write {}; = B (0, 1]?) Suppose we are given f € $?(W, k). Since W is a
closed submanifold of B, there exists a holomorphic extension f of f to B. We write
W, =WnQ, fi=fIW, and f;= fQ;.
Observe that

/ ‘ij —K 1</ |f’2 —f@w% 1<—|—OO.

Let x € C3°([0,1)) be such that

0<x<1 x[0,1/3]=1 and suplx|<2.
0,1)
14



We set

J— egr
Xe = X 2
aa’j = 6)(6];]'.
We note that for ¢ sufficiently small, o ; is supported on the tubular neighborhood

Qej:=Q;N {e%"’“ < z—:}

and define the 1-forms a. ; on {2; by

of Wj in Q;. Thus, for a (0, 1)-form « with compact support on €2, we have
_ 2
e\ 0(e?) - _
[ (0(5) 52y
j
2 / e’ 1o Fl —tor —K, n ’
2L e (%)l i) @i
j
16 :o(er+e%)?
54<A¥Jﬁr@ﬂe“w%

462 1 2
i, —1
X4Aw+ap@@2)wﬂe‘%

16 X
< 20 (ITull + 1Sul)

(acj,u)]? =

IN

IN

where
Tu=20 (\/T+ Au) and  Su = /7 (Ou),
and .
Coj= [ 1iPe .
€,j

Thus the last inequality follows from Lemma 5.4 and the fact that e’ < 2 on Q. ;.

By standard Hilbert space methods, we have the following L? twisted-0 theorem.

THEOREM 5.5. There exists a function h; . on §); such that

16
The; = ae; and / |h57j|2e_wwj§ < —C; .
. c
J

In particular, he ;|W = 0.

Proof. Consider the linear functional
LT u— (u, 0 ),
where u € KernelS N Domain(7™). The estimate

(00 )? < 2272 2
(Su = 0) means .Z is continuous on the image of 7™, hence on the closure of that image. Extend £ to
be 0 in Image(7*)*. Then & is a continuous linear functional in our Hilbert space, and thus, by the Riesz
Representation Theorem, is represented by some element /. ; having the same norm as . in the orthogonal
direction. Elliptic regularity implies that h. ; is smooth.
It remains only to prove the assertion about the vanishing of /. ;. But by Lemma 5.2.3, e~ is not locally
integrable at any point of W, and thus the vanishing of h. ;|TV follows. U

15



Conclusion of the proof of Theorem 1.3. Observe first that by Lemma 5.3 there exists a constant C' > 0 such
that, for all j,

hmsupC'gj<C/ |flPeFwi L.

F&j = Xsfj - (7' + A) h&j on Qj.

By Theorem 5.5, F; ; is holomorphic on €2; and F; ;|W; — f; = 0. Moreover there exists a constant //

such that
[ Fspera <ar (o + [ 1Pyt evo,
Q; w

J
/ e 2e
Q;

is negligible for small ¢, since the integrand is locally integrable and supported on a set of arbitrarily small
measure. On the other hand,

/ (r 4+ A)he Pl = / e (7 + A Pe Vs

J J

(supe"r(T—i-A))/ |he j)2e VWl
Q Q;

J

We set

Indeed, the integral

IN

IN

J

Cgvje% (sup eféa(a +log(a) + (1 + a)2)>

< KC&J

for some universal constant K depending only on the density of WW. The last estimate holds since a > 1.
By Corollary 2.4 and the Lebesgue Dominated Convergence Theorem,

F; =lim F, ;
3= e

exists, uniformly for each fixed j. Moreover, since F; ; = f on W; and F; ; — F; pointwise, we have
= f on W; for all j. We thus have a sequence of functions F);, holomorphic by Montel’s Theorem, such

that F;|W = f and
/ |Fj|2e—<pwn < C/ ‘f|2€—gown—1.
Q; w

J
Moreover, the constant C' does not depend on j. Letting j — oo, we obtain (again by corollary 2.4, the

Dominated Convergence Theorem and Montel’s Theorem) a holomorphic function F' that also agrees with

f on W, and furthermore satisfies
[1rperag <c [ e
B W

This completes the proof of Theorem 1.3

6. SAMPLING
6.1. A construction of Berndtsson-Ortega Cerda.

LEMMA 6.1. Let @ be a subharmonic function on the unit disk . Then there exist a positive constant K
and a holomorphic function on G € O(D(0,1/2)) such that G(0) = 0 and

sup |¢ —¢(0) —2Re G| < K.
D(0,1/2)
16



Moreover, if p depends smoothly on a parameter, then so does G.
The proof of this lemma, which uses Riesz Potentials, can be found in [BO-95].
6.2. Restriction from tubes and the upper inequality.

PROPOSITION 6.2. Let W be a uniformly flat smooth hypersurface. Then there exists a constant C > (
such that for all & > 0 sufficiently small and all F € 7#*(NB (W), k) one has

Ce? /W|F|2e—mg1 < /N o I8

D(0,e) ={(#,2") e C" I x C; || <e, |2"] < e}

Via Lemma 3.2, the uniform flatness of W implies that NY¥ (W) is a union of open sets Uj such that for
each j there is some F, € Aut(B) for which

F,,(Uy) ~ D(0,¢).

Moreover, this approximation may be taken uniform in j. Thus it suffices to prove that for some ¢ > 0 and

alla e W,
Ce? / e < / el
D(0,6)NFo (W) D(0e)

After a change of variables provided by Lemma 3.2, we may assume that F,(W) c C"~! x {0}.
Now, by Lemma 6.1 there exists a function G, holomorphic in z", such that

G(Z/,O)‘ =0 and efn(z’,0)+2Re G(#',z") < ce*l{(z’,z")

for some ¢ > 0. We then have

Proof. Let

‘F’267mw%—1 _ ‘FeG‘Qefnw%—l

/B(O,s)ﬂ(l"—l x{0} /B(o,g)m:n—l x{0}

C,
< G pepeetoy
€ D(0,e)
C, -
_ 720 |F|2€ k(z',0)+2Re Gw%
& JD(0e)
1
<

s F 2€fn(z’,z")wn )
e [, 3

The first inequality follows from the sub-mean value property for radial measures in the disk (see also
Corollary 2.4). This completes the proof. O

COROLLARY 6.3. If W is a uniformly flat hypersurface then there exists a constant M such that for all
F € H*(B, k),

/ et < M/ F2e*u.
w B
6.3. Regularization of the singular function s,. Consider the function

Sre(z) = ! / Srwh.
’ Va(€) JEC.e)

In this section we prove the following result.

LEMMA 6.4. The function s, . enjoys the following properties.
17



(1)
lim dd°sy. = [W] - TV,
E—>
(2) For each r there exists a constant C,. such that if 0 < ¢ < 1 << 1 and dist(z, W) < ¢, then
log e2 -0, < Sre < 0.

Proof. Property 1 is seen as follows: let f be a test (n — 1,n — 1)-form. Then

lim [ (dd°s;c) AN f = lim [ s,.dd°f

e—0 B e—0 B

- / spdde f
B

- /([W]—Y%Af.
B

Property 2 may be established locally, and using group invariance and uniform flatness, we need only
consider the case z = 0. But then by the calculation in the remark following the proof of Lemma 5.2 we
may assume that s, = log |¢"|?, and thus 2 follows by integration. O

6.4. The proof of Theorem 1.4.

A positivity lemma. A key idea behind the proof of the lower sampling inequality is a certain positivity
lemma, which we now state and prove.

LEMMA 6.5. Let 0 be a positive (n — 1,n — 1)-form in B such that for some weight 1 and each h &€
(B, 1),

/ |h|2e™¥/=1006 < +oc.
B
Then

/ |h|2e¥/=100 A 6 > —/ |h|2e=¥/=1006.
B B

Proof. Letting S = |h|?e¥, one calculates that

V—=190S /—=19S A OS
3 = 5 ++/-10

dlog |h|* — /—109,
and thus B B
V—100S NO > —Sv—100¢ A 0.

Let f : R — [0, 1] be a smooth function supported on (—oo, 3/4] such that f|(—oo, 0] = 1. Consider the

function
1—|2?

Xa(z)zf( +1>, a> 0.

Then
/ V=190S A0 = lim [ xa(2)V—1090S A0
B

a—>0+ B

a—0+

~ lim ( /B Xa(z)Sﬁ@éQ—l—O(a))

a—0+
= / Sv/—1008,
B

where the second equality follows from the Green-Stokes identity (2). (Il
18

= lim [ SV—100 (xa(2) A 0)
B



Conclusion of the proof of Theorem 1.4. Let
Y =K+ nA+ as,..
In view of Lemmas 6.4 and 4.1.2, for some 0 << o < 1, ¢ > 0 and § € Py (B) we have
V=180 A O < —ce™ Wi + C[W]e Awipt,

where [WW]. denotes the regularization of the current [W] in the manner of Lemma 6.4. Let F' € J#2(B, k).

Then
[rperay < [ ppevay
B B
< C/ |F|2e Y [W]. Awi ™t — c/ |F|2e%/=100¢ A 0
B B
< © [ PP nuy
B
where the last inequality follows from Lemma 6.5 and the definition of &y (B). Thus we have

/|F|2e—mj§ < c/ eV [I]. Aol
B B
c

= |F2eYwh
e /Ng(vm 7

C / 9 _
—_ |F|“e "wih.
e2+2a N (W) B

IN

IN

Our next task is to compare

/ |F|2e " wh with / |F|e " wi
Ne(W) w

To do this, we cover NB (W) by domains
Ap(e) = ©((E(p,ep) NW) x D(0,¢)), peW.

Here @ is the diffeomorphism defined in the remark in Section 3 following Definition 3.1, E(p, €p) is the
Bergman-Green ball of center p and radius €, and % C W is a discrete set that is uniformly separated with
respect to the Bergman-Green distance. We now employ Lemma 6.1 once more to obtain a function

Ay(&)2(W N E(p,ey)) x D(0,€) 3 (x,¢) s Hy(x,t) € C

that is holomorphic in ¢ and satisfies
H,(xz,0)=0 and |2Re (Hp(z,t)) + k(z,0) — k(z,t)| < C
where C'is an absolute constant depending only on /—190k.
Let F), = Fe~Hr_ By Taylor’s Theorem, for each = we have
2 2, .2 23 ?
|Fp(x,t)|” < C|F(x,0)|* + € sup | ——
jti<e | Ot
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‘We then obtain

/ |F|2e " wh
Ap(e)

< / |Fp’267.‘c(m,0)wn
Ap(e)
2
< 0182/ |F|?e e “wy Tye? / sup Oy |” —rlw0)
WNE(p.ep) Ape) ft<e | O
OF, |?
< C1€2/ |F\26”w%_1—|—54/ sup [—=2| e (x’o)w%
WNE(p.ep) WNE(p,ep) |t|I<e ot
<

0162/ |F|2e “RwE Ly et / \Fp\26_”(x’0)w”
WNE(p,ep) Ap(eo)

< 52/ |F|26_“wn_1+054/ |F\26_”‘w%,
WNE(p,ep) Ap(eo)

where € < £,/2 and ¢, is as in Definition 3.1. We have used the Cauchy estimates in the penultimate
inequality. Combining all of this, and summing over p € #', we obtain

C
/|F|2 —nw% / |F|2 —nwg 1+Cl 2— 2a/ |F|2 —nw%’

which establishes the left inequality in (1) as soon as we take € small enough. Here we are using the fact
that, since # is uniformly separated,

Z / |F|2e " "wh < C/ |F|2e "W,
50) B

pEW
The right inequality was already established in Corollary 6.3. The proof of Theorem 1.4 is complete. U
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