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1. INTRODUCTION

Recall that the Bergman metric on the unit ball B = {z ∈ Cn ; |z| < 1} is the Kähler metric whose
associated (1, 1)-form is ωB = −(n+ 1)ddcλ, where

λ = log(1− |z|2)− n

n+ 1
log(n+ 1)

and in our convention dc =
√
−1
2 (∂̄ − ∂). The weighted Bergman spaces on the Bergman ball are

H 2(B, κ) :=
{
F ∈ O(B) ;

∫
B
|F |2e−κωnB < +∞

}
,

where O(X) denotes the space of holomorphic functions on a complex manifold X . In this paper we
assume that κ is C 2. The case κ = −(n + 1) log(1 − |z|2) corresponds to the classical Bergman space of
holomorphic functions that are square integrable with respect to Lebesgue measure.

Given a nonsingular closed complex hypersurface W ⊂ B, we let

H2(W,κ) :=
{
f ∈ O(W ) ;

∫
W
|f |2e−κωn−1

B < +∞
}
.

DEFINITION 1.1. (a) We say that W is an interpolation hypersurface if for each f ∈ H2(W,κ) there
exists F ∈ H 2(B, κ) such that F |W = f .

(b) We say thatW is a sampling hypersurface if there is a constantA such that for every F ∈ H 2(B, κ),
1
A

∫
B
|F |2e−κωnB ≤

∫
W
|F |2e−κωn−1

B ≤ A

∫
B
|F |2e−κωnB.(1)

Let Fa denote a holomorphic involution of B sending 0 to a (see Section 2).

REMARK. We will often use, without explicit indication, the fact that Fz is an involution. Thus the reader
should not be confused if Fz is seen when F−1

z is expected.

We define the total density tensor of W in the ball of radius r to be the (1, 1)-form

ΥW
r (z) =

1
Vn(r)

(∫
B(0,r)

∂2 log |T (Fz(ζ))|2

∂zi∂z̄j
ωnB

)
√
−1dzi ∧ dz̄j .

Here T is any holomorphic function such that W = {T = 0} with dT |W nowhere zero, and

Vn(r) =
∫
B(0,r)

ωnB

is the volume of the Euclidean ball of radius r and center 0, with respect to (our normalization of) the volume
induced by the Bergman metric. The total density tensor is a Bergman ball analog of the total density tensor
introduced in [OSV] in the case of Cn. In the case of the Bergman ball, some of the more basic properties
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of the total density tensor do not follow as readily as their analogs in the Cn case. For example, at the end
of Section 2 we will show that the definition of ΥW

r is independent of the choice of T .
We define

[W ]ε(z) = ddc

(
1

Vn(ε)

∫
|Fz(ζ)|<ε

log |T (ζ)|2ωnB(ζ)

)
.

If we denote by [W ] the current of integration along W , then [W ]ε is in some sense the average of [W ] over
the Bergman-Green ball of radius ε. Note that [W ]ε = ΥW

ε and thus [W ]ε is independent of the choice of T .
Moreover, though not necessarily smooth, the current [W ]ε is locally bounded, as can be seen by changing
variables in the intergral and then differentiating under the integral. Finally, it is also clear that, in the sense
of currents, [W ]ε → [W ] as ε→ 0.

DEFINITION 1.2.
(I) Let PW (B) denote the set of (n− 1, n− 1)-forms θ on B with the following properties.

(a) θ ∧ ωB ≥ cenλωnB for some constant c > 0.
(b) For each ε > 0 there exists C > 0 such that [W ]ε ∧ θ ≤ C[W ]ε ∧ ωn−1

B .
(c) ddcθ = 0.

(II) For θ ∈ PW (B), let

D+
B (W,κ)[θ] = lim sup

r→1
sup
z∈B

(
ΥW
r + n

n+1ωB

)
∧ θ

√
−1∂∂̄κ ∧ θ

and

D−
B (W,κ)[θ] = lim inf

r→1
inf
z∈B

(
ΥW
r + n

n+1ωB

)
∧ θ

√
−1∂∂̄κ ∧ θ

(III) The upper and lower densities of W are

D+
B (W,κ) = sup

θ∈PW (B)
D+
B (W,κ)[θ]

and
D−
B (W,κ) = sup

θ∈PW (B)
D−
B (W,κ)[θ]

From here on out we assume that W is uniformly flat (see Section 3 for the definition) and that
1
C
ωB ≤

√
−1∂∂̄κ ≤ CωB

for some constant C > 1. Our main results are the following two theorems.

THEOREM 1.3. If D+
B (W,κ) < 1, then W is an interpolation hypersurface.

THEOREM 1.4. If D−
B (W,κ) > 1, then W is a sampling hypersurface.

Theorems 1.3 and 1.4 give generalizations to higher dimensions of results of Seip [Seip-93] and of
Berndtsson-Ortega Cerdà [BO-95]. By now Theorems 1.3 and 1.4 carry with them a rich history. Most
recently, results analogous to Theorems 1.3 and 1.4 have been established for the case of Cn in the paper
[OSV], which we refer to for further historical remarks regarding interpolation and sampling problems for
Bergman spaces.

Though there is a strong similarity between the results of [OSV] and the present paper, the methods of
proof are completely different. In fact, the present approach and the approach of [OSV] could be used
interchangeably for the case of Cn and the Bergman ball.

In the case of interpolation, we employ the Ohsawa-Takegoshi technique to extend functions from the
submanifold W to the ball in one shot, rather than using the L2 Cousin I-type approach to extend the
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function locally and then patch together the resulting local extensions. (We should perhaps remark that if
one wants to apply the Cousin I-type method in the case of the ball, then the negativity of the curvature of
ωB requires the use of a sharper version of Hörmander’s ∂̄ Theorem, due to Ohsawa. The need for Ohsawa’s
Theorem was already noticed in the 1-dimensional case [BO-95].)

By contrast with [OSV], our approach to sampling is closer in spirit to the technique that has been used in
the one-variable case in [BO-95]. Our densities, laid out in Definition 1.2 above, do not directly correspond
to those in [OSV] (though we prove in Section 4 that they are actually the same). We feel that the methods
of the present paper fit in more naturally with the Hilbert Space approach. The proofs also seem more
elementary than the Beurling-inspired approach used in [OSV].

The paper is organized as follows.
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2. RAPID REVIEW OF BERGMAN GEOMETRY

Bergman geometry is one of the oldest and most studied areas of complex geometry. Therefore we content
ourselves with stating facts, and provide few proofs.

Bergman metric. As already mentioned, the Bergman metric is ωB = −(n+ 1)ddcλ. It is easy to see that,
with ωE = ddc|z|2 denoting the Euclidean metric,

ωB|z=0 = (n+ 1) ωE |z=0 and ωnB = e−(n+1)λωnE ,

and in particular,
Ricci(ωB) = −ωB.

Basics of Aut(B). For the reader’s convenience, we recall that Aut(B) contains the involutions

Fa(z) =
a− Paz − saQaz

1− 〈z, a〉
, a ∈ B − {0}, F0(z) = −z,

3



where Pa = |a|−2aa†, Qa = I − Pa and sa =
√

1− |a|2. Moreover, the Schwarz Lemma shows that any
automorphism of B is of the form UFa for some unitary U . Note that Fa(0) = a and

1− |Fa(z)|2 =
(1− |z|2)(1− |a|2)

|1− 〈z, a〉 |2
.

Thus Aut(B) acts transitively on the ball and ωB is Aut(B)-invariant. (For much more detail on this and
the next paragraph, the reader is referred to [R-80] or [St-94].)

Basic potential theory of the Bergman metric. Recall that the Bergman Laplacian ∆B associated to ωB is
the ωB-trace of ddc:

(∆Bg)ωnB = ddcg ∧ ωn−1
B .

DEFINITION 2.1. The Green’s function with pole at a ∈ B is the function GB(z, a) satisfying

∆B(GB(·, a))ωnB = δa and GB(·, a)|∂B = 0.

Using Aut(B)-invariance, it is easily seen that G(z, a) = G(Fa(z), 0) and that

n(n+ 1) (∆Bg) (a) = trace
(
DFa(0)†D1,1g(a)DFa(0)

)
.

Here D1,1g is the matrix of the (1, 1)-form
√
−1∂∂̄g in Euclidean coordinates. Setting γB = GB(·, 0),

we see from unitary invariance that γB(z) = f(|z|2) for some function f . Substitution into the Bergman-
Laplace equation and solving the resulting ODE shows that

f(t) = −Cn
∫ 1

t

(1− u)n−1

un
du,

where Cn = (2π)−n(n+ 1)−(n−1).
Note that f ′(t) > 0. It follows that for each a ∈ B the sublevel sets G(z, a) are also the sublevel sets of

|Fa(z)|. We use the latter to define distances.

DEFINITION 2.2. (i) The Bergman-Green distance between two points a and b in B is

|Fa(b)|.
(ii) The Bergman-Green balls with center a and radius r are

E(a, r) = Fa(B(0, r)) = {z ∈ B ; |Fa(z)| < r}.

By using the Green-Stokes identity∫
∂D

(g1dcg2 − g2d
cg1) ∧ ωn−1 =

∫
D

(g1ddcg2 − g2dd
cg1) ∧ ωn−1,(2)

where (D,ω) is an n dimensional Kähler manifold with boundary and g1, g2 : D → C are functions, we
obtain the following Lemma.

LEMMA 2.3. Let h be a function such that ∆Bh ≥ 0. Then

h(0) ≤ 1
(2π)n

∫
∂B
h(rz)dc|z|2 ∧ ωn−1

E (z).(3)

Moreover, equality holds when ∆Bh ≡ 0.

Proof. Apply (2) with D = B(0, r), r < 1, g1 = h and g2 = γr, where

γr(z) := γB(z) + Cn

∫ 1

r2

(1− t)n−1

tn
dt,

observing that γr|∂B(0, r) ≡ 0 and ddcγr ∧ωn−1
B = δ0. The result now follows by direct computation. �
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COROLLARY 2.4. Let h be a function such that ∆Bh ≥ 0. Then for all r < 1,

h(0) ≤ 1
Vn(r)

∫
B(0,r)

hωnB.(4)

Moreover, equality holds in (4) when ∆Bh ≡ 0.

Let us end this section by justifying our claim that ΥW
r is independent of the choice of holomorphic

function T defining W . Suppose T̃ is another function such that W = {T̃ = 0} and dT̃ |W is free of zeros.
Then the function T̃ /T is holomorphic and free of zeros in the ball. Since the ball is simply connected, any
zero-free holomorphic function is the exponential of some holomorphic function. Thus T̃ = ehT for some
holomorphic function h. It follows that∫

B(0,r)
log |T̃ (Fz(ζ))|2ωnB =

∫
B(0,r)

log |T (Fz(ζ))|2ωnB + 2
∫
B(0,r)

Re h(Fz(ζ))ωnB.

Since Re h is (pluri)harmonic, its ball average, with respect to a radially symmetric probability measure, is
equal to its central value. Since Fz(0) = z, we have∫

B(0,r)
log |T̃ (Fz(ζ))|2ωnB =

∫
B(0,r)

log |T (Fz(ζ))|2ωnB + 2Vn(r)Re h(z).

The pluriharmonicity of Re h thus completes the justification of our claim.

3. UNIFORM FLATNESS

In [OSV] a notion of uniform flatness was developed for closed smooth hypersurfaces in Cn. Here we
define the analogous notion for the ball with its Bergman geometry.

Let

NB
ε (W ) =

{
z ∈ B

∣∣ inf
w∈W

|Fz(w)| < ε

}
DEFINITION 3.1. We define a smooth divisor W in B to be uniformly flat if there exists an ε0 > 0 such
that NB

ε0(W ) has the following property: for each z ∈ Nε0(W ) there is a unique wz ∈ W minimizing the
”distance to z” function w 7→ |Fz(w)| along W .

REMARK. Recall that a pseudohyperbolic disk of radius ε is the image under F ∈ Aut(B) of the disk
{(0, ..., 0, z) ∈ B ; |z| < ε}. The unifrom flatness hypothesis implies that in fact NB

εo
(W ) is foliated

by pseudohyperbolic disks. Indeed, since our condition is invariant under Aut(B), it suffices to see this
for the case where W 3 0 and TW,0 = {zn = 0}. In this case, it is clear that the boundary of the disk
{(0, ..., 0, z) ∈ B ; |z| < εo} has distance exactly εo to the origin.

These observations imply the existence of a diffeomorphism

Φ : W × D(0, εo) → NB
εo

(W )

that is holomorphic in the disk variable, and sends each disk {w} × D(0, εo) to the disk with center at w,
which minimizes the pseudo-hyperbolic distance and whose tangent vector is orthogonal to TW,w in the
Bergman metric.

The following consequence of uniform flatness is useful.

LEMMA 3.2. If a closed non-singular complex hypersurface W ⊂ B is uniformly flat, then there exist
ε0 > 0 and C > 0 such that for each z ∈ W the set Fz(W ) ∩ B(0, ε0) is a graph, over the Euclidean
ε0-neighborhood of the origin in the tangent space TFz(W ),0 = dFz(TW,z), of some function f such that

|f(x)| ≤ C|x|2, |x| < ε0.
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Sketch of proof. Since the notion of uniform flatness is invariant with respect to Aut(B), it suffices to as-
sume that z = 0 ∈ W . Moreover, since we are working in a small neighborhood, we may replace the
Bergman metric by the Euclidean metric, and the pseudo-hyperbolic distance |Fz(w)| by Euclidean dis-
tance. In this setting, the result follows from Proposition 2.2 in [OSV]. We leave the details to the interested
reader. �

4. THE DENSITY CONDITIONS AGAIN

4.1. Reformulation of the density conditions. It will be useful to rewrite the hypotheses on the upper and
lower densities in terms of the positivity properties of certain associated differential forms.

LEMMA 4.1. 1. If D+
B (W,κ) < 1, then there is a positive constant c such that

√
−1∂∂̄κ− n

n+ 1
ωB −ΥW

r ≥ c
√
−1∂∂̄κ.

2. If D−
B (W,κ) > 1, then there exists θ ∈ PW (B) and c > 0 such that(

ΥW
r +

n

n+ 1
ωB −

√
−1∂∂̄κ

)
∧ θ ≥ cenλωnB.

Proof. After using condition (a) in the definition of PW (B), assertion 2 is trivially true from the definition
of the lower density.

To see assertion 1, choose any v ∈ TB,p having norm 1, say with respect to the Bergman metric. After a
unitary change of coordinates in Cn (where the ball lies) we may assume that that v = c ∂

∂x1 , where x1, ..., xn

are coordinates in Cn. Consider the (n− 1, n− 1)-form

θ = θv := (
√
−1)n−1dx2 ∧ dx̄2 ∧ · · · ∧ dxn ∧ dx̄n.

We claim that θ ∈ PW (B). Indeed,
√
−1∂∂̄θ = 0 so condition (c) in the definition of PW (B) holds.

Condition (b) is clear in view of the local boundedness of [W ]ε. Condition (a) can be seen as follows:

θ ∧ ωB = Cθ ∧
(

ωE
1− |x|2

+
√
−1∂|x|2 ∧ ∂̄|x|2

(1− |x|2)2

)
≥ Ce−λωnE

= CenλωnB.

By the density condition there exists δ > 0 and ro >> 0 such that for all r > ro,

1− δ >

(
ΥW
r + n

n+1ωB

)
∧ θ

√
−1∂∂̄κ ∧ θ

=

(
ΥW
r (v, v̄) + n

n+1ωB(v, v̄)
)

√
−1∂∂̄κ(v, v̄)

.

Observe that the density condition says this inequality holds uniformly on B. Clearly if we rotate our
original v a little, this bound will still hold. Since the unit sphere is compact, we can choose ro and δ so that
the result holds for all v in the unit sphere in TB,p. (Here, for the sake of simplifying the argument, we are
exploiting the triviality of the tangent bundle TB .) This completes the proof. �
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4.2. A seemingly better notion of density. In the paper [OSV], a different notion of density was used.
The purpose of this section is to demonstrate the equivalence of the density notions of the present paper and
those in [OSV].

Let us define the Bergman ball analogues of the densities used in [OSV]. One first sets

Dz,r(W,κ) := sup
v 6=0

ΥW
r (v, v̄) + n

n+1ωB(v, v̄)
√
−1∂∂̄κ(v, v̄)

.

Then one takes
D+(W,κ) := lim sup

r→1
sup
z∈B

Dz,r(W,κ)

and
D−(W,κ) := lim inf

r→1
inf
z∈B

Dz,r(W,κ).

Note that Dz,r(W,κ) is the maximum eigenvalue of the (1, 1)-form ΥW
r + n

n+1ωB with respect to the
positive (1, 1)-form

√
−1∂∂̄κ at the point z.

LEMMA 4.2. Let (M,ω) be a Hermitian manifold of complex dimension n, and let α be a non-negative
(n− 1, n− 1) form on M . Then for each p there exists a vector v ∈ T 1,0

M,p such that for any real (1, 1)-form
β, one has

α ∧ βp = βp(v, v̄)ωn.

The Lemma says that the mapping
√
−1v ∧ v̄ 7→ θv, with θv as in the proof of Lemma 4.1, is a pointwise

isomorphism.

Proof. We shall use multi-linear algebra on TM,p. To this end, choose a unitary basis e1, ..., en for (T ∗M,p)
1,0

and e1, ..., en its dual basis. Let αij̄ be a basis for Λn−1,n−1(T ∗M,p) such that

√
−1ek ∧ ē` ∧ αij̄ = δikδj̄

¯̀ωn

n!
.

Let A (resp. B) be the Hermitian matrix with entries aij̄ (resp. bij̄) such that at the point p,

α = aij̄α
ij̄

(
resp. β = bij̄

√
−1ei ∧ ēj

)
.

Then

α ∧ βp = Trace(AB†)
ωn

n!
and βp(v, v̄) = v†Bv.

After a unitary rotation, we may assume that the basis e1, ..., en diagonalizes A. Thus, since α is positive,
there exist non-negative numbers λ1, ..., λn such that

Trace(AB†) =
n∑
k=1

λkbkk.

Taking

v =
n∑
k=1

√
λkek

completes the proof. �

We can now obtain the following proposition.

PROPOSITION 4.3.
(a) D+(W,κ) = D+(W,κ).
(b) D−(W,κ) ≤ D−(W,κ).
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Proof. (a) Fix z ∈ B and r ∈ [0, 1). By definition of D+(W,κ), we have that for any θ ∈ PW (B),

D+(W,κ) ≥ Dz,r(W,κ)

≥
ΥW
r ∧ θ(z) + n

n+1ωB ∧ θ(z)√
−1∂∂̄κ ∧ θ(z)

.

(In the second inequality we have used Lemma 4.2.) Taking the supremum over z and then the lim sup as
r → 1, we see that

D+(W,κ) ≥ D+(W,κ)[θ].
Finally, taking the supremum of the right hand side over all θ ∈ PW (B) shows that D+(W,κ) ≥
D+(W,κ).

To obtain the reverse inequality, fix ε > 0. Then for each r < 1 sufficiently close to 1 there exist z ∈ B
and v ∈ Cn such that

D+(W,κ)− ε ≤
ΥW
r (v, v̄) + n

n+1ωB(v, v̄)
√
−1∂∂̄κ(v, v̄)

=
ΥW
r ∧ θv(z) + n

n+1ωB ∧ θv(z)√
−1∂∂̄κ ∧ θv(z)

+ ε

≤ D+(W,κ)[θv] ≤ D+(W,κ) + ε,

where θv is defined as in the proof of Lemma 4.1. The second-to-last inequality follows since 0 << r < 1.
Since ε is arbitrary, 1 is proved.

(b) Fix ε > 0. By definition of D−(W,κ), there exists θ ∈ PW (B) such that

D−(W,κ) ≤ D−(W,κ)[θ] +
ε

2
.

Moreover, by the definition of D−(W,κ)[θ] we have that for all z ∈ B and all r ∈ [0, 1) sufficiently large,

D−(W,κ)[θ] ≤
ΥW
r ∧ θ(z) + n

n+1ωB ∧ θ(z)√
−1∂∂̄κ ∧ θ(z)

+
ε

2
.

But by Lemma 4.2 and the definition of Dz,r(W,κ),

ΥW
r ∧ θ(z) + n

n+1ωB ∧ θ(z)√
−1∂∂̄κ ∧ θ(z)

≤ Dz,r(W,κ).

This proves (b). �

THEOREM 4.4. D−(W,κ) ≥ D−(W,κ).

Proof. We introduce the notation

Ωδ := ΥW
r +

n

n+ 1
ωB −

(
D−(W,κ)− δ

)√
−1∂∂̄κ.

Let δ > 0 be given. For r >> 0 we are going to construct a form θ ∈ PW (B) such that

Ωδ ∧ θ ≥ 0.

If this is done, the proof is complete.
By definition of D−(W,κ), there exists a locally finite open cover Uj of B and constant (n− 1, n− 1)-

forms (i.e., forms of the type θv defined in the proof of Lemma 4.1) θj on Uj such that

Ωδ/2 ∧ θj ≥ 0 on Uj .

By the uniform flatness of W we may choose the cover {Uj} such that any point of B is contained in some
finite number of neighborhoods, this number depending only on the dimension. Moreover, by the continuity
of the forms Ωδ we may choose the forms θj so that if Uj ∩ Uk 6= ∅ then θj − θk is as small as we like.
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In fact, by elementary anti-differentiation we may take forms µj depending quadratically on the (global)
coordinates in B such that θj =

√
−1∂∂̄µj and if Uj ∩ Uk 6= ∅ then ||µj − µk||C 2(Uj∩Uk) is as small as we

like, where || · ||C 2 denotes C 2-norm.
The argument we present here requires a little more precision. Later we will have to control the size of the

neighborhoods Uj in order to make the θj − θk small enough. To this end, we choose the Uj to be balls (or
polydisks) of diameter ε, measured with respect to the Bergman-Green distance. We momentarily indicate
this dependence on ε by writing Uj,ε, µj,ε and θj,ε. Observe that if we take µj,ε to be bihomogeneous
quadratic in the Euclidean coordinates with origin that of Uj,ε, then the uniform estimates for µj,ε scale by
ε2, those for Dµj,ε by ε, and those from θj,ε are invariant with respect to ε.

Let {ψj,ε} be a partition of unity subordinate to the cover {Uj,ε}. We may choose this partition so that∑
j

||ψj,εµj,ε||C 2 ≤ C

for some constant C independent of ε. Indeed, as the neighborhoods Uj,ε scale by ε, the estimates for Dψj,ε
scale by ε−1 while those for D2ψj,ε scale by ε−2. Thus the desired estimate follows from the product rule

D2(ψj,εµj,ε) = µj,εD
2ψj,ε + (Dµj,ε)(Dψj,ε) + ψj,εD

2µj,ε.

Thus is is clear that we have scale invariant estimates. To simplify the notation, we can now drop the
notational dependence on ε.

We would like to correct the local forms θj so that they can be pieced together to give us an element of
PW (B) with the desired density. We shall use cocycles to do this. To this end, the obstruction to the θj
piecing together to give a global form is carried by the 1-cocycle

αjk = θj − θk =
√
−1∂∂̄(µj − µk)

supported on Uj ∩ Uk. By our choice of the θj , the αjk are small in C 0-norm. We now define

ηj =
√
−1∂∂̄

(∑
k

ψk(µj − µk)|Uj ∩ Uk

)
.

By modifying our choices of the µj we may make the ηj as small as we like. Moreover,
√
−1∂∂̄ηj = 0 and

ηj − η` =
√
−1∂∂̄

∑
k

ψk(µj − µk + µk − µ`)

=
√
−1∂∂̄

∑
k

ψk(µj − µ`)

= αj`.

It follows that
θ = θj − ηj on Uj

is well defined and belongs to PW (B). Moreover, by choosing the µj − µk even smaller if necessary, we
see that

Ωδ ∧ θ ≥ 0,
as desired. �

5. INTERPOLATION

5.1. A negative function singular along a hypersurface. Recall that

Vn(r) :=
∫
B(0,r)

ωnB.

As the Bergman metric is invariant under automorphisms, one sees that for each a ∈ B, Vn(r) is also the
Bergman volume of Bergman-Green balls E(a, r) = Fa(B(0, r)).
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Let

Γr(z, ζ) = GB(z, ζ)− 1
Vn(r)

∫
E(z,r)

GB(x, ζ)ωnB(x).

Since ∆BG(·, ζ) ≡ 0 on B − {ζ}, we see from Corollary 2.4 that Γr is non-negative and is supported on
the set

{(z, ζ) ∈ B ×B | |Fz(ζ)| ≤ r} ,
which contains a neighborhood of the diagonal in B ×B.

We define the function

sr(z) :=
∫
B

Γr(z, ζ)ωn−1
B (ζ) ∧ ddc log |T |2(ζ)

=
∫
{ζ ; |Fz(ζ)|<r}

Γr(z, ζ)ωn−1
B (ζ) ∧ ddc log |T |2(ζ).

By the Lelong-Poincaré identity,

(5) sr(z) = 2π
∫
Wz,r

(
GB(z, ζ)− 1

V (r)

∫
E(z,r)

GB(x, ζ)ωnB(x)

)
ωn−1
B (ζ),

where
Wz,r = W ∩ {ζ ; |Fz(ζ)| < r}

PROPOSITION 5.1. Let T ∈ O(B) be a holomorphic function so that W = T−1(0) and dT is nowhere zero
on W . Then

sr(z) = log |T (z)|2 − 1
Vn(r)

∫
E(z,r)

log |T (ζ)|2ωnB(ζ).

In patricular,
1
2π
ddcsr(z) = [W ]−ΥW

r (z).

Proof. Let ϕ ∈ C∞
0 (B) be a function whose total integral with respect to Euclidean volume is 1, and let χε

be the characteristic function of the set {z ∈ B ; |z| < 1− 2ε}. Let ϕε(x) = ε−2nϕ(ε−1x), and set

fε = (χε log |T |2) ∗ ϕε.

Then fε is smooth with compact support in B, and

sr(z) = lim
ε→0

∫
B

Γr(z, ζ)ωn−1
B (ζ) ∧ ddcfε(ζ).

But by definition of Green’s function,∫
B
G(z, ζ)ωn−1

B (ζ) ∧ ddcfε(ζ) =
∫
B
G(z, ζ)ddc(fεωn−1

B )(ζ)) = fε(z).

The proof is completed by letting ε→ 0. �

LEMMA 5.2. The function sr(z) has the following properties:

1. It is non-positive.
2. For each r, ε > 0 there exist a constant Cr,ε such that if δB(z,W ) > ε then sr(z) > −Cr,ε.
3. The function e−sr is not locally integrable at any point of W.

Here δB(z,W ) = inf{|Fz(w)| ; w ∈W}.
10



Proof. By Corollary 2.4 and the fact that ∆BG(·, ζ) ≡ 0 on B − {ζ}, Γr ≤ 0 and 1 follows. Moreover, 3
is an immediate consequence of Proposition 5.1.

To see 2, we first note that since δB(z,W ) > ε, GB(z, ζ) > Aε. Thus it suffices to obtain an estimate

−
∫
E(z,r)

GB(x, ζ)ωnB(x) = −
∫
B(0,r)

GB(x, y)ωnB(x) ≤ Dr

for some Dr > 0 and all y = Fz(ζ) ∈ B(0, r). To do this, it is enough to estimate the integral

I(r) := −
∫
B(0,(r+1)/2)

GB(x, y)ωnB(x).

Fix y ∈ B(0, r). Let ρ > 0 be the largest number such that

B(y, ρ) ⊂ B(0, (r + 1)/2).

One has

nr ≤ ρ ≤ r + 1
2

for some nr > 0 depending on r but not on y.
Write

I(r) = I1(r) + I2(r),

where

I1(r) := −
∫
E(y,ρ)

GB(x, y)ωnB(x)

and

I2(r) := −
∫
B(0,(r+1)/2)−E(y,ρ)

GB(x, y)ωnB(x).

Now

I1(r) = −
∫
B(0,ρ)

γB(x)ωnB(x)

is clearly bounded by a constant independent of y.
Next, note that for

x ∈ B(0, (r + 1)/2)− E(y, ρ)

one has the estimate
|Fy(x)| ≥ ρ ≥ nr.

It follows that for such x,
G(x, y) ≥ −Nr

for some Nr ∈ R independent of y. Thus

I2(r) ≤ Nr

∫
B(0,(r+1)/2)−E(y,ρ)

ωnB(x)

≤ Nr

∫
B(0,(r+1)/2)

ωnB(x),

and the latter is independent of y. Thus 2 follows. �

REMARK. There is a direct proof of Lemma 5.2.3 that does not use the formula of Proposition 5.1. Since
we will make use of the calculation needed, we present this proof now.

We may assume thatW is the coordinate hyperplane zn = 0 and z = znen for |zn| ≤ εwith ε sufficiently
small. (Though we do not use it here, later we will exploit the fact that, by the uniform flatness of W , ε > 0

11



may be taken independent of the point onW which has been translated to the origin.) Let U be a sufficiently
small neighborhood of the origin. Using the formula (5), we estimate that

sr(z) = 2π
∫
U∩W

Γr(z, ζ)ωn−1
B (ζ) +O(1).

The same method used in the proof of Lemma 5.2.2 allows us to estimate the part of Γr involving the integral,
so we may replace Γr be the Green’s function. Letting ωn−1

B = 2r2n−3drdσ2n−3 be the decomposition into
polar coordinates and setting

An−1 =
∫
S2n−3

dσ2n−3 = (2π)n−1,

we obtain from the form of the Green’s function that

sr(z) = 2πCn(n+ 1)n−1An−1

∫ α

0
− 2r2n−3dr

(r2 + |zn|2)n−1 +O(1) = log |zn|2 +O(1)

where α > 0 is a sufficiently small number depending on ε. �

5.2. The proof of Theorem 1.3. We fix a compact subset Ω ⊂⊂ B. This set will be fixed until the last part
of the argument, when we let Ω → B.

Let
σr = sr − λ− sup

Ω
(−λ).

Note that σr ≤ 0.

Tubular limits. For each Ω ⊂⊂ B, let

Ωε := Ω ∩ {σr < log ε2}.

LEMMA 5.3. Let W ⊂ B be uniformly flat. Then there exists a positive constant C > 0 such that for all
Ω ⊂⊂ B and all f holomorphic in a neighborhood of Ω,

lim sup
ε→0

1
ε2

∫
Ωε

|f |2e−κωnB ≤ C

∫
Ω∩W

|f |2e−κωn−1
B .

Sketch of proof. We may assume the right hand side is finite. Moreover, we can take Ω = E(a, δ) for some
a ∈ W , with δ so small that W ∩ Ω is the graph of a quadratic hypersurface. By uniform flatness, δ can be
taken independent of a.

Consider first the case a = 0. Then Ω = B(0, δ), and the result follows after an elementary analysis of
the properties of sr as in the proof of Lemma 5.2, and the remark following that proof.

If we now apply the automorphism Fa to B(0, δ), then Lemma 3.2 and the Aut(B)-invariance of ωB
show that the same estimates hold on E(a, δ). �

The twisted Bochner-Kodaira Technique. We fix a smoothly bounded pseudoconvex domain Ω ⊂⊂ B. Let
us denote by ∂̄∗ν the formal adjoint of ∂̄ in the Hilbert space of (0, 1)-forms on Ω, square integrable with
respect to a weight e−νωnB . For a (0, 1)-form u = uᾱdz̄

α, one has

∂̄∗νu = −eν+(n+1)λ∂α

(
e−(ν+(n+1)λ)uα

)
.

Recall that for (0, 1)-forms u in the domains of ∂̄ and ∂̄∗ν , Bochner-Kodaira Identity is∫
Ω

∣∣∂̄∗νu∣∣2 e−νωnB +
∫

Ω

∣∣∂̄u∣∣2 e−νωnB
=
∫

Ω

((
∂α∂β̄(ν + (n+ 1)λ)

)
uαuβ

)
e−νωnB +

∫
Ω

∣∣∇u∣∣2 e−νωnB(6)

+
∫
∂Ω

(
∂α∂β̄ρ

)
uαuβe−νdc(−(n+ 1)λ) ∧ ωn−1

B ,

12



where ρ is a defining function for Ω such that |dρ| ≡ 1 on ∂Ω. (See, for example, [Siu-82].) The term
(n+ 1)λ in the first integral on the right hand side of (6) comes from the Ricci curvature of ωB . Writing

e−ψ =
e−ν

τ

we obtain

∂̄∗νu = ∂̄∗ψu−
(∂ατ)uα

τ
and ∂α∂β̄ψ = ∂α∂β̄ν +

∂α∂β̄τ

τ
−

(∂ατ)
(
∂β̄τ

)
τ2

.

Substitution into (6), followed by some simple manipulation, gives the

TWISTED BOCHNER-KODAIRA IDENTITY for (0, 1)-forms: If u is a (0, 1)-form in the domain of ∂̄∗, then∫
Ω
τ
∣∣∂̄∗ψu∣∣2 e−ψωnB +

∫
Ω
τ
∣∣∂̄u∣∣2 e−ψωnB(7)

=
∫

Ω

(
τ
(
∂α∂β̄(ψ + (n+ 1)λ)

)
uαuβ −

(
uαuβ∂α∂β̄τ

)
+ 2Re

(
(∂ατ)uα∂̄∗ψu

))
e−ψωnB +

∫
Ω
τ
∣∣∇u∣∣2 e−ψωnB

+
∫
∂Ω
τ
(
∂α∂β̄ρ

)
uαuβe−ψdc(−(n+ 1)λ) ∧ ωn−1

B .

We now use positivity of the last two integrals on the right hand side, together with the Cauchy-Schwarz
inequality applied to the first term in the third line, to obtain the so-called

TWISTED BASIC ESTIMATE: If u is a (0, 1)-form in the domain of ∂̄∗, then∫
Ω

(τ +A)
∣∣∂̄∗ψu∣∣2 e−ψωnB +

∫
Ω
τ
∣∣∂̄u∣∣2 e−ψωnB(8)

≥
∫

Ω

(
τ
(
∂α∂β̄(ψ + (n+ 1)λ)

)
uαuβ

−∂α∂β̄τuαuβ −
1
A
|(∂ατ)uα|2

)
e−ψωnB.

Choice of ψ, τ and A. From the very beginning, we choose

ψ = κ+ σr.

By the density hypothesis (via Lemma 4.1.1) and the fact that
√
−1∂∂̄sr = [W ]−ΥW

r , one has
√
−1∂∂̄(ψ + (n+ 1)λ) =

√
−1∂∂̄(κ+ nλ+ sr)

≥ c
√
−1∂∂̄κ.

Next, fix γ > 1. We define
ξ = log

(
eσr + ε2

)
,

with ε > 0 so small that γ − ξ ≥ 1. One has
√
−1∂∂̄ξ

=
√
−1∂

(
eσr

eσr + ε2
∂̄σr

)
=

eσr

eσr + ε2
√
−1∂∂̄σr +

ε2

(eσr + ε2)2
eσr

√
−1∂σr ∧ ∂̄σr

=
eσr

eσr + ε2

(
1

n+1ωB −ΥW
r

)
+

4ε2

(eσr + ε2)2
√
−1∂

(
e

1
2
σr

)
∧ ∂̄

(
e

1
2
σr

)
,
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where the last equality follows since
√
−1∂∂̄σr = [W ] + 1

n+1ωB −ΥW
r and eσr |W ≡ 0.

Let 0 < α << 1 and set
a = γ − αξ.

Observe that a ≥ 1. Moreover, we have

−
√
−1∂∂̄a

= α
√
−1∂∂̄ξ

=
αeσr

eσr + ε2

(
1

n+1ωB −ΥW
r

)
+

4αε2

(eσr + ε2)2
√
−1∂

(
e

1
2σr

)
∧ ∂̄

(
e

1
2σr

)
.

Now let
τ = a+ log a and A = (1 + a)2.

Then τ ≥ 1 and we have

∂τ =
(

1 +
1
a

)
∂a and

√
−1∂∂̄τ =

(
1 +

1
a

)√
−1∂∂̄a− 1

a2

√
−1∂a ∧ ∂̄a,

and thus

−
√
−1∂∂̄τ −

√
−1∂τ ∧ ∂̄τ

A
=
(

1 +
1
a

)(
−
√
−1∂∂̄a

)
≥ −

√
−1∂∂̄a.

It follows that

τ
√
−1∂∂̄(ψ + (n+ 1)λ)−

√
−1∂∂̄τ − |∂τ |2

A

≥ c
√
−1∂∂̄κ+

αeσr

eσr + ε2

(
1

n+1ωB −ΥW
r

)
+

4αε2

(eσr + ε2)2
√
−1∂

(
e

1
2
σr

)
∧ ∂̄

(
e

1
2
σr

)
≥ 4αε2

(eσr + ε2)2
√
−1∂

(
e

1
2
σr

)
∧ ∂̄

(
e

1
2
σr

)
,

provided we take α sufficiently small. (For example, by the density hypothesis as rephrased in Lemma 4.1.1
we may take α = c.) Substituting into the twisted basic estimate (8), we obtain the following lemma.

LEMMA 5.4. If u is a (0, 1)-form in the domain of ∂̄∗, then∫
Ω

(τ +A)
∣∣∂̄∗ψu∣∣2 e−ψωnB +

∫
Ω
τ
∣∣∂̄u∣∣2 e−ψωnB

≥ c

∫
Ω

4ε2

(eσr + ε2)2

∣∣∣∂ (e 1
2
σr

)
(u)
∣∣∣2 e−ψωnB.

An a priori estimate. We write Ωj = B
(
0, j

1+j

)
. Suppose we are given f ∈ H2(W,κ). Since W is a

closed submanifold of B, there exists a holomorphic extension f̃ of f to B. We write

Wj = W ∩ Ωj , fj = f |Wj and f̃j = f̃ |Ωj .

Observe that ∫
Wj

|fj |2e−κωn−1
B ≤

∫
W
|f |2e−κωn−1

B < +∞.

Let χ ∈ C∞0 ([0, 1)) be such that

0 ≤ χ ≤ 1, χ|[0, 1/3] ≡ 1 and sup
[0,1)

|χ′| ≤ 2.
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We set

χε = χ

(
eσr

ε2

)
and define the 1-forms αε,j on Ωj by

αε,j = ∂̄χεf̃j .

We note that for ε sufficiently small, αε,j is supported on the tubular neighborhood

Ωε,j := Ωj ∩
{
e

1
2
σr ≤ ε

}
of Wj in Ωj . Thus, for a (0, 1)-form u with compact support on Ωj , we have

|(αε,j , u)|2 =

∣∣∣∣∣
∫

Ωj

〈
χ′
(
eσr

ε2

)
∂̄(eσr)
ε2

f̃j , u

〉
e−ψωnB

∣∣∣∣∣
2

≤

(
2
ε2

∫
Ωj

∣∣∣∣χ′(eσr

ε2

)∣∣∣∣ ∣∣∣∂ (e 1
2
σr

)
(u)
∣∣∣ |f̃j |e− 1

2
σre−κωnB

)2

≤ 16
ε4

(∫
Ωε,j

|f̃j |2
(eσr + ε2)2

4ε2
e−κωnB

)

×
∫

Ωj

4ε2

(eσr + ε2)2

∣∣∣∂ (e 1
2
σr

)
(u)
∣∣∣2 e−ψωnB

≤ 16
c
Cε,j

(
||T ∗u||2 + ||Su||2

)
,

where
Tu = ∂̄

(√
τ +Au

)
and Su =

√
τ
(
∂̄u
)
,

and
Cε,j =

1
ε2

∫
Ωε,j

|f̃j |2e−κωnB.

Thus the last inequality follows from Lemma 5.4 and the fact that eσr < ε2 on Ωε,j .

By standard Hilbert space methods, we have the following L2 twisted-∂̄ theorem.

THEOREM 5.5. There exists a function hj,ε on Ωj such that

Thε,j = αε,j and
∫

Ωj

|hε,j |2e−ψωnB ≤
16
c
Cε,j .

In particular, hε,j |W ≡ 0.

Proof. Consider the linear functional
L : T ∗u 7→ (u, αε,j),

where u ∈ KernelS ∩Domain(T ∗). The estimate

|(u, αε,j)|2 ≤
16Cε,j
c

||T ∗u||2

(Su = 0) means L is continuous on the image of T ∗, hence on the closure of that image. Extend L to
be 0 in Image(T ∗)⊥. Then L is a continuous linear functional in our Hilbert space, and thus, by the Riesz
Representation Theorem, is represented by some element hε,j having the same norm as L in the orthogonal
direction. Elliptic regularity implies that hε,j is smooth.

It remains only to prove the assertion about the vanishing of hε,j . But by Lemma 5.2.3, e−ψ is not locally
integrable at any point of W , and thus the vanishing of hε,j |W follows. �
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Conclusion of the proof of Theorem 1.3. Observe first that by Lemma 5.3 there exists a constant C > 0 such
that, for all j,

lim sup
ε→0

Cε,j ≤ C

∫
W
|f |2e−κωn−1

B .

We set
Fε,j = χεf̃j −

√
(τ +A) hε,j on Ωj .

By Theorem 5.5, Fε,j is holomorphic on Ωj and Fε,j |Wj − fj ≡ 0. Moreover there exists a constant M
such that ∫

Ωj

|Fε,j |2e−κωnB ≤M

(
o(1) +

∫
W
|f |2e−κωn−1

B

)
, ε ∼ 0.

Indeed, the integral ∫
Ωj

|χεf̃j |2e−κωnB

is negligible for small ε, since the integrand is locally integrable and supported on a set of arbitrarily small
measure. On the other hand,∫

Ωj

(τ +A)|hε,j |2e−κωnB =
∫

Ωj

eσr(τ +A)|hε,j |2e−ψωnB

≤

(
sup
Ωj

eσr(τ +A)

)∫
Ωj

|hε,j |2e−ψωnB

≤ Cε,je
γ
α

(
sup
Ωj

e−
1
α
a(a+ log(a) + (1 + a)2)

)
≤ KCε,j

for some universal constant K depending only on the density of W . The last estimate holds since a ≥ 1.
By Corollary 2.4 and the Lebesgue Dominated Convergence Theorem,

Fj = lim
ε→0

Fε,j

exists, uniformly for each fixed j. Moreover, since Fε,j = f on Wj and Fε,j → Fj pointwise, we have
Fj = f on Wj for all j. We thus have a sequence of functions Fj , holomorphic by Montel’s Theorem, such
that Fj |W = f and ∫

Ωj

|Fj |2e−ϕωn ≤ C

∫
W
|f |2e−ϕωn−1.

Moreover, the constant C does not depend on j. Letting j → ∞, we obtain (again by corollary 2.4, the
Dominated Convergence Theorem and Montel’s Theorem) a holomorphic function F that also agrees with
f on W , and furthermore satisfies ∫

B
|F |2e−κωnB ≤ C

∫
W
|f |2e−κ.

This completes the proof of Theorem 1.3

6. SAMPLING

6.1. A construction of Berndtsson-Ortega Cerdà.

LEMMA 6.1. Let ϕ be a subharmonic function on the unit disk D. Then there exist a positive constant K
and a holomorphic function on G ∈ O(D(0, 1/2)) such that G(0) = 0 and

sup
D(0,1/2)

|ϕ− ϕ(0)− 2Re G| ≤ K.

16



Moreover, if ϕ depends smoothly on a parameter, then so does G.

The proof of this lemma, which uses Riesz Potentials, can be found in [BO-95].

6.2. Restriction from tubes and the upper inequality.

PROPOSITION 6.2. Let W be a uniformly flat smooth hypersurface. Then there exists a constant C > 0
such that for all ε > 0 sufficiently small and all F ∈ H 2(NB

ε (W ), κ) one has

Cε2
∫
W
|F |2e−κωn−1

B ≤
∫
NB

ε (W )
|F |2e−κωnB.

Proof. Let
D(0, ε) = {(z′, zn) ∈ Cn−1 × C ; |z′| ≤ ε, |zn| < ε}.

Via Lemma 3.2, the uniform flatness of W implies that NW
ε (W ) is a union of open sets Uj such that for

each j there is some Fzj ∈ Aut(B) for which

Fzj (Uj) ∼ D(0, ε).

Moreover, this approximation may be taken uniform in j. Thus it suffices to prove that for some ε > 0 and
all a ∈W ,

Cε2
∫
D(0,ε)∩Fa(W )

|F |2e−κωn−1
B ≤

∫
D(0,ε)

|F |2e−κωnB.

After a change of variables provided by Lemma 3.2, we may assume that Fa(W ) ⊂ Cn−1 × {0}.
Now, by Lemma 6.1 there exists a function G, holomorphic in zn, such that

G(z′, 0)| ≡ 0 and e−κ(z
′,0)+2Re G(z′,zn) ≤ ce−κ(z

′,zn)

for some c > 0. We then have∫
B(0,ε)∩Cn−1×{0}

|F |2e−κωn−1
B =

∫
B(0,ε)∩Cn−1×{0}

|FeG|2e−κωn−1
B

≤ Co
ε2

∫
D(0,ε)

|FeG|2e−κ(z′,0)ωnB

=
Co
ε2

∫
D(0,ε)

|F |2e−κ(z′,0)+2Re GωnB

≤ 1
Cε2

∫
D(0,ε)

|F |2e−κ(z′,zn)ωnB.

The first inequality follows from the sub-mean value property for radial measures in the disk (see also
Corollary 2.4). This completes the proof. �

COROLLARY 6.3. If W is a uniformly flat hypersurface then there exists a constant M such that for all
F ∈ H2(B, κ), ∫

W
|F |2e−κωn−1

B ≤M

∫
B
|F |2e−κωnB.

6.3. Regularization of the singular function sr. Consider the function

sr,ε(z) :=
1

Vn(ε)

∫
E(z,ε)

srω
n
B.

In this section we prove the following result.

LEMMA 6.4. The function sr,ε enjoys the following properties.
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(1)
lim
ε→0

ddcsr,ε = [W ]−ΥW
r .

(2) For each r there exists a constant Cr such that if 0 < ε ≤ ε1 << 1 and dist(z,W ) < ε, then

log ε2 − Cr ≤ sr,ε ≤ 0.

Proof. Property 1 is seen as follows: let f be a test (n− 1, n− 1)-form. Then

lim
ε→0

∫
B

(ddcsr,ε) ∧ f = lim
ε→0

∫
B
sr,εdd

cf

=
∫
B
srdd

cf

=
∫
B

([W ]−ΥW
r ) ∧ f.

Property 2 may be established locally, and using group invariance and uniform flatness, we need only
consider the case z = 0. But then by the calculation in the remark following the proof of Lemma 5.2 we
may assume that sr = log |ζn|2, and thus 2 follows by integration. �

6.4. The proof of Theorem 1.4.

A positivity lemma. A key idea behind the proof of the lower sampling inequality is a certain positivity
lemma, which we now state and prove.

LEMMA 6.5. Let θ be a positive (n − 1, n − 1)-form in B such that for some weight ψ and each h ∈
H 2(B,ψ), ∫

B
|h|2e−ψ

√
−1∂∂̄θ < +∞.

Then ∫
B
|h|2e−ψ

√
−1∂∂̄ψ ∧ θ ≥ −

∫
B
|h|2e−ψ

√
−1∂∂̄θ.

Proof. Letting S = |h|2e−ψ, one calculates that
√
−1∂∂̄S
S

=
√
−1∂S ∧ ∂̄S

S2
+
√
−1∂∂̄ log |h|2 −

√
−1∂∂̄ψ,

and thus √
−1∂∂̄S ∧ θ ≥ −S

√
−1∂∂̄ψ ∧ θ.

Let f : R → [0, 1] be a smooth function supported on (−∞, 3/4] such that f |(−∞, 0] ≡ 1. Consider the
function

χa(z) = f

(
1− |z|2

−a
+ 1
)
, a > 0.

Then ∫
B

√
−1∂∂̄S ∧ θ = lim

a→0+

∫
B
χa(z)

√
−1∂∂̄S ∧ θ

= lim
a→0+

∫
B
S
√
−1∂∂̄ (χa(z) ∧ θ)

= lim
a→0+

(∫
B
χa(z)S

√
−1∂∂̄θ +O(a)

)
=

∫
B
S
√
−1∂∂̄θ,

where the second equality follows from the Green-Stokes identity (2). �
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Conclusion of the proof of Theorem 1.4. Let

ψ = κ+ nλ+ αsr,ε.

In view of Lemmas 6.4 and 4.1.2, for some 0 << α < 1, c > 0 and θ ∈ PW (B) we have
√
−1∂∂̄ψ ∧ θ ≤ −cenλωnB + C[W ]ε ∧ ωn−1

B ,

where [W ]ε denotes the regularization of the current [W ] in the manner of Lemma 6.4. Let F ∈ H 2(B, κ).
Then ∫

B
|F |2e−κωnB ≤

∫
B
|F |2e−ψωnB

≤ C

∫
B
|F |2e−ψ[W ]ε ∧ ωn−1

B − C

∫
B
|F |2e−ψ

√
−1∂∂̄ψ ∧ θ

≤ C

∫
B
|F |2e−ψ[W ]ε ∧ ωn−1

B ,

where the last inequality follows from Lemma 6.5 and the definition of PW (B). Thus we have∫
B
|F |2e−κωnB ≤ C

∫
B
|F |2e−ψ[W ]ε ∧ ωn−1

B

≤ C

ε2

∫
Nε(W )

|F |2e−ψωnB

≤ C

ε2+2α

∫
Nε(W )

|F |2e−κωnB.

Our next task is to compare∫
Nε(W )

|F |2e−κωnB with
∫
W
|F |2e−κωn−1

B .

To do this, we cover NB
ε (W ) by domains

∆p(ε) = Φ((E(p, εp) ∩W )× D(0, ε)), p ∈ W .

Here Φ is the diffeomorphism defined in the remark in Section 3 following Definition 3.1, E(p, εp) is the
Bergman-Green ball of center p and radius εp, and W ⊂W is a discrete set that is uniformly separated with
respect to the Bergman-Green distance. We now employ Lemma 6.1 once more to obtain a function

∆p(ε)
Φ∼=(W ∩ E(p, εp))× D(0, ε) 3 (x, t) 7→ Hp(x, t) ∈ C

that is holomorphic in t and satisfies

Hp(x, 0) = 0 and |2Re (Hp(x, t)) + κ(x, 0)− κ(x, t)| ≤ C

where C is an absolute constant depending only on
√
−1∂∂̄κ.

Let Fp = Fe−Hp . By Taylor’s Theorem, for each x we have

|Fp(x, t)|2 ≤ C|F (x, 0)|2 + ε2 sup
|t|≤ε

∣∣∣∣∂Fp∂t
∣∣∣∣2 .

19



We then obtain ∫
∆p(ε)

|F |2e−κωnB

≤
∫

∆p(ε)
|Fp|2e−κ(x,0)ωnB

≤ C1ε
2

∫
W∩E(p,εp)

|F |2e−κωn−1
B + ε2

∫
∆p(ε)

sup
|t|≤ε

∣∣∣∣∂Fp∂t
∣∣∣∣2 e−κ(x,0)ωnB

≤ C1ε
2

∫
W∩E(p,εp)

|F |2e−κωn−1
B + ε4

∫
W∩E(p,εp)

sup
|t|≤ε

∣∣∣∣∂Fp∂t
∣∣∣∣2 e−κ(x,0)ωn−1

B

≤ C1ε
2

∫
W∩E(p,εp)

|F |2e−κωn−1
B + Cε4

∫
∆p(εo)

|Fp|2e−κ(x,0)ωnB

≤ ε2
∫
W∩E(p,εp)

|F |2e−κωn−1 + Cε4
∫

∆p(εo)
|F |2e−κωnB,

where ε < εo/2 and εo is as in Definition 3.1. We have used the Cauchy estimates in the penultimate
inequality. Combining all of this, and summing over p ∈ W , we obtain∫

B
|F |2e−κωnB ≤

C

ε2α

∫
W
|F |2e−κωn−1

B + C ′ε2−2α

∫
B
|F |2e−κωnB,

which establishes the left inequality in (1) as soon as we take ε small enough. Here we are using the fact
that, since W is uniformly separated,∑

p∈W

∫
∆p(εo)

|F |2e−κωnB ≤ C

∫
B
|F |2e−κωnB.

The right inequality was already established in Corollary 6.3. The proof of Theorem 1.4 is complete. �
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