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ABSTRACT. We present results on L2 estimates for solutions of ∂̄-equations
on a Stein manifold with a divisor. The structure of the divisor allows us to
introduce weights with certain types of singularities, and the geometry of the
manifold near the divisor allows us, by exploiting twisted techniques, to weaken
the usual curvature hypotheses that guarantee a solution. We investigate two
situations; one in which the weights are not locally integrable, and another in
which they can be.

Dedicated to John D’Angelo, who really enjoys life in a suspended fourth.

1. INTRODUCTION

The present paper concerns the problem of solving the ∂̄-equation with L2-
estimates, under curvature conditions that are less restrictive than those required
to obtain the usual L2 estimate commonly known as Hörmander’s Theorem. The
subject matter takes its place in a long tradition of research started by J. J. Kohn,
where John D’Angelo has made, and continues to make, creative, fundamental and
lasting contributions to the area. I have learned a lot from John in the time I spent
in Champaign-Urbana and since then, and the friendship that John and I have de-
veloped goes well beyond anything I could say with mathematics or other forms of
prose. Nevertheless it is with pleasure and humility that this paper is dedicated to
John, on the occasion of his 60th birthday.

Let (X,ω) be a Stein Kähler manifold and L → X a holomorphic line bundle
equipped with a possibly singular Hermitian metric e−ϕ. Let D ⊂ X be a smooth
complex hypersurface, which we identify with a smooth divisor. Fix a smooth
Hermitian metric e−η for the line bundle LD associated to D, and a holomorphic
section w ∈ H0(X,LD) such that

(i) D is exactly the zero divisor of w, and
(ii) supX |w|2e−η = 1.

For a pair of real numbers s ∈ (0, 1) and µ ≥ 1, define the metric

e−℘s,µ =
1

|w|2
(

log
(

eµ

|w|2e−η

))1−s
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for LD. The above data define Hilbert spaces of L2 sections of L+ LD, and more
generally (L + LD)-valued (p, q)-forms, on X . As usual, there is an extension
of the ∂̄ operator , initially defined on smooth (L + LD)-valued (p, q)-forms, to a
densely-defined operator. We can now state our first main result.

THEOREM 1. Assume there exists a Kähler form Θ on X such that

ddcϕ+ Ric(ω) ≥ Θ and ddcϕ+ Ric(ω)− µ−1ddcη ≥ Θ

for some positive number µ. Then for any (L+LD)-valued (0, 1)-form θ with L2
`oc

coefficients such that ∂̄θ = 0 there exists an L2
`oc section u of L+ LD such that

∂̄u = θ and
∫
X−D

|u|2e−ϕe−℘s,µdVω ≤
µ1−s

s2(1− s)

∫
X−D

|θ|2Θe−ϕe−℘s,µdVω,

provided the right-hand side is finite.

REMARK 1.1. We emphasize that the form ddc℘s,µ, which is smooth on X −D,
becomes negative and infinite as one approaches D. Thus, for many interesting
singular Hermitian metrics e−ϕ, the (1, 1)-current

ddcϕ+ Ric(ω) + ddc℘s,µ

is never positive on all of X . In particular, Theorem 1 does not follow from
Hörmander’s Theorem, as the hypotheses of the former may hold when those of
the latter do not. This is the case, for example, if e−ϕ is any everywhere-smooth
Hermitian metric for L → X with sufficiently positive curvature form. There
are many other interesting and useful examples in which Theorem 1 holds while
Hörmander’s Theorem does not. �

We illustrate Theorem 1 with the following example.

EXAMPLE 1.2. Let X := B × D where D ⊂ C is the unit disk with euclidean
coordinate w and B ⊂ Cn−1 the unit ball with coordinates ζ, D = {0} ×B, η ≡ 0
(and µ = 1), ω = ddc|z|2 the Euclidean metric, where z = (ζ, w), and Θ = cω.
Let ϕ = ψ + c|z|2, where ψ is any plurisubharmonic function. Then Theorem 1
implies that for any (0, 1)-current f on B × D with measurable components, such
that ∫

B×D

|f(z)|2e−ψ(z)dV (z)
|w|2(log e

|w|2 )1−s < +∞

there exists a locally integrable function u such that ∂̄u = f (in the sense of distri-
butions) and∫

B×D

|u(z)|2e−ψ(z)dV (z)
|w|2(log e

|w|2 )1−s ≤
ec

cs2(1− s)

∫
B×D

|f(z)|2e−ψ(z)dV (z)
|w|2(log e

|w|2 )1−s .
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The special case n = 1 (so that X = D) may be rephrased equivalently in the
setting of hyperbolic geometry as follows. Let κs(w) := ϕ(w)−(1+s) log log e

|w|2
and denote by ωP the Poincaré metric

ωP (w) =
√
−1dw ∧ dw̄
|w|2(log e

|w|2 )2
.

If for some s ∈ (0, 1) one has

ddcκs + Ric(ωP ) ≥ −(1− s)ωP + cddc|w|2,

then by saying that one can solve ∂u
∂w̄ = f with the estimate∫

D
|u(w)|2e−κs(w)ωP (w) ≤ Cs

∫
D
|f(w)|2e−κs(w)ωP (w)

as soon as the right-hand side is finite. (Note that the metric ωP is normalized so
that

Ric(ωP ) = −2ωP ,

which is different from the usual normalization for Kähler-einstein metrics.) This
shows again that the result is stronger than Hörmander’s Theorem, as the latter
requires that ddcκ + Ric(ωP ) ≥ cddc|w|2. Thus we have lowered the curvature
lower bounds by “anything bigger than 1

2Ric(ωP )”. �

REMARK 1.3. As we will see, Theorem 1 holds because there is a nice function
on a Stein (or essentially stein) manifold in the complement of a smooth divisor.
The sort of function to which we are referring has been named function with self-
bounded gradient by McNeal: f is such a function if it is plurisubharmonic and
satisfies

|∂f |2ddcf ∈ L∞.
The existence of such a function in a given smoothly bounded pseudoconvex do-
main is linked to the geometry of the boundary of that domain. It would be very
interesting to link the existence of such a function to the geometry of a Stein Kähler
manifolds with a holomorphic line bundle having non-trivial Bergman structure,
for instance, or other analytic geometric properties. Such geometric results have
been obtained by McNeal in the case of domains, as well as other authors in some
different situations, (see the survey [M-2005] for an excellent discussion and many
references) but there is as yet, to the best of the author’s knowledge, no systematic
understanding of the phenomenon from the point of view of the modern theory
of complex analytic geometry of Hermitian holomorphic line bundles on Kähler
manifolds. �
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Theorem 1 has numerous uses in problems of analytic geometry, since it forces
the solution u to vanish along the divisor D as soon as u is continuous. The reason
for such vanishing is basically that the volume of a neighborhood of any point of
D in X is infinite.

There are situations when one wants the volume to be finite. So far as we can tell,
the finite volume case is not as symmetric as the infinite volume case of Theorem
1. To state our second main theorem, we will need two metrics. The first is locally
integrable, but the second is not (c.f. Proposition 4.3).

For a pair of real numbers s > 1 and µ > 0, define the metrics

e−γs,µ =
1

|w|2
(

log
(

eµ

|w|2e−ψ

))1+s and e−σs,µ =
1

|w|2Hs

(
log
(

eµ

|w|2e−ψ

))
for LD, where

Hs(x) := x+
∫ x

1

dt

(1 +
√
s)ts − 1

.

One can compute Hs more explicitly for integer values of s; for example H1(x) =
x+ 1

2 log(2x− 1). (Of course, we assumed s > 1.)
We can now state our second main theorem.

THEOREM 2. Assume there exists a Kähler form Θ on X such that

ddcϕ ≥ Θ and ddcϕ+ Ric(ω)− 1 + s−1/2

µ
ddcη ≥ Θ

for some positive number µ. Then for any (L+LD)-valued (0, 1)-form θ with L2
`oc

coefficients such that ∂̄θ = 0 there exists an L2
`oc section u of L + LD such that

∂̄u = θ and∫
X−D

|u|2e−ϕe−γs,µdVω ≤ µ1+s(1 +
√
s)2

∫
X−D

|θ|2Θe−ϕe−σs,µdVω,

provided the right-hand side is finite.

As we have already mentioned, the metric e−σs,µ is singular. However, it is
sometimes possible to choose the (1, 1)-form Θ in a way that improves things.

EXAMPLE 1.4. As in Example 1.2, letX be the unit disk with euclidean coordinate
w, D = {0}, η ≡ 0 (and µ = 1), and let ω be the Euclidean metric. However this
time let

ϕ = ψ − log log
e

|w|2
and Θ =

√
−1dw ∧ dw̄

|w|2
(

log e
|w|2

)2 ,
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where ψ is any subharmonic function. Then ddcϕ−Θ ≥ ddcψ, so since Hs(x) ≥
x, Theorem 2 implies that for any (0, 1)-form f with measurable coefficients such
that ∫

D
|f(w)|2e−ψ(w)

(
log

e

|w|2

)s
dA(w) < +∞

there exists a locally integrable function u such that ∂̄u = f (in the weak sense of
distributions) and∫

D

|u(w)|2e−ψ(w)dA(w)
|w|2(log e

|w|2 )1+s
≤ (1 +

√
s)2

∫
D
|f(w)|2e−ψ(w)

(
log

e

|w|2

)s
dA(w).

The weight on the right hand side is locally integrable. �

REMARK 1.5. It would be very interesting to find an analog of Example 1.4 in
higher dimensions, especially in the setting of for Example 1.2. Such a result, if
the volume forms on both sides of the estimate were locally integrable, could be
used to prove the coherence of so-called analytic adjoint ideals in general. These
analytic analogs of (algebraic) adjoint ideals (see [L-04] for more on the algebraic
ideals) were introduced by Guenancia [G-2012], who proved their coherence for an
important class of weights, namely weights e−ϕ such that eϕ is Hölder continuous.
�

REMARK 1.6. It is straight-forward to extend Theorems 1 and 2 to so-called es-
sentially Stein manifolds, namely, manifolds that have a complex subvariety whose
complement is Stein. (One needs to assume, in addition, that there is such a sub-
variety that does not contain D.) In that case, the L2 estimates are obtained on the
Stein subset, and extend across the omitted subvariety when the data is appropri-
ate. Thus, for example, Theorems 1 and 2 hold ifX is a projective manifold. There
are other versions as well: for example, one can take X to be weakly pseudocon-
vex if one assumes the metric e−ϕ has only analytic singularities; the proof in this
case has to be slightly modified, but it is well-known how to modify it. (See, for
example, [D-2001] or references therein.) �

ACKNOWLEDGMENT. I’m indebted to Seb Boucksom, Henri Guenancia, Jeff Mc-
Neal and Alex Schuster for discussions that lead to the present work. This work
was done during my sabbatical visit to Paris, where Seb Boucksom was my gra-
cious host at Universitè Pierre et Marie Curie (aka Jussieu or Paris VI), and I am
grateful to Seb and to the Complex Analysis and the Algebraic Geometry depart-
ments, as well as the Fondacion Sciences Mathématiques de Paris, for their support.
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2. TWISTING

2.1. The basic identity. Let E → X be a holomorphic line bundle with smooth
Hermitian metric e−φ. Let Ω ⊂⊂ X be a smoothly bounded domain whose (pos-
sibly empty) boundary has real codimension 1, and fix a smooth defining function
ρ for Ω, i.e., a function such that Ω = {ρ < 0}. One can choose such a function
ρ so that |dρ|ω ≡ 1 on ∂Ω. Then for any smooth E-valued (0, 1)-form β in the
domain of ∂̄∗φ— the adjoint of ∂̄ over Ω, which depends on both φ and dVω, though
we have suppressed the latter in our notation— one has the following well-known
basic identity.∫

Ω
|∂̄∗φβ|2e−φdVω +

∫
Ω
|∂̄β|2ωe−φdVω =

∫
Ω

(ddcφ+ Ric(ω))ω(β ∧ β̄)e−φdVω(1)

+
∫

Ω
|∇β|2e−φdVω +

∫
∂Ω

(ddcρ)ω(β ∧ β̄)dSω,Ω.

The superscript ω means that we raise the appropriate indices using the Kähler
metric ω. The exact definition of the last two terms on the right-hand side of (1) is
not particularly important. It is only important that the first term is non-negative,
while the second term is non-negative when Ω has pseudoconvex boundary, which
we assume from now on.

2.2. The twist. Let τ : Ω→ (0,∞) be smooth, and define the metric e−ψ forE|Ω
by the relation

e−φ = τe−ψ.

Then one computes that

∂̄∗φβ = ∂̄∗ψβ −
1
τ

(∂τ)ω(β) and ddcφ = ddcψ − ddcτ

τ
+
√
−1∂τ ∧ ∂̄τ

τ2
.

Substituting these two terms into (1) then yields the following identity.∫
Ω
τ |∂̄∗ψβ|2e−ψdVω +

∫
Ω
τ |∂̄β|2ωe−ψdVω

=
∫

Ω
(τddcψ + τRic(ω)− ddcτ)ω(β ∧ β̄)e−ψdVω(2)

+2Re
∫

Ω
∂̄∗ψβ(∂τ)ω(β)e−ψdVω

+
∫

Ω
τ |∇β|2e−ψe−℘s,µdVω +

∫
∂Ω
τ(ddcρ)ω(β ∧ β̄)dSω,Ω.
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2.3. A twisted estimate. Applying the Cauchy-Schwartz Inequality to the term
on the second line of (2) yields the following lemma, which is only a slight variant
of a result in [M-2005] and [MV-2007].

LEMMA 2.1. Let A > 0 be any continuous function. Then for any smooth (0, 1)-
form β in the domain of ∂̄∗ψ∫

Ω
(τ +A)

∣∣∂̄∗ψβ∣∣2 e−ψdVω +
∫

Ω
τ
∣∣∂̄β∣∣2 e−ψdVω

≥
∫

Ω

(
τ(ddcψ + Ric(ω))− ddcτ −A−1

√
−1∂τ ∧ ∂̄τ

)ω
(β ∧ β̄)e−ψdVω

+
∫

Ω
τ |∇β|2e−ψe−℘s,µdVω +

∫
∂Ω
τ(ddcρ)ω(β ∧ β̄)dSω,Ω.

3. THE PROOF OF THEOREM 1

3.1. The auxiliary functions τ and A, and the metric e−ψ. Fix three real num-
bers γ > 1, ε > 0 and µ ≥ 1. Eventually we will let ε→ 0 and γ → 1. Let

v := log |w|2e−η and a := γ − 1
µ

log(ev + ε2).

If ε > 0 is given, we choose γ so that

a > 1.

Let
h(x) := xα

for some number α ∈ (0, 1) to be specified later. We define

τ := h(a) and A =
τ

δ
,

where δ > 0 is a positive number to be chosen below. While it is straightforward to
compute the quantities ∂τ ∧ ∂̄τ and ∂∂̄τ , the resulting formula must be organized
correctly in order to be useful to us.

In the next few computations, it is sometimes helpful to think of ev as the square
length of the section w, so that ev = (ev/2)2. With this in mind, we compute that

∂a = −2ev/2∂ev/2

µ(ev + ε2)
and ∂̄a = −2ev/2∂̄ev/2

µ(ev + ε2)
= − ev

µ(ev + ε2)
∂̄v,

and therefore that

∂a ∧ ∂̄a =
4ev∂(ev/2) ∧ ∂̄(ev/2)

µ2(ev + ε2)2
.
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To compute ∂∂̄a we use the second formula for −∂̄a. Then

−∂∂̄a =
ev

µ(ev + ε2)
∂∂̄v +

∂(ev) ∧ ∂̄v
µ(ev + ε2)

− ev∂(ev) ∧ ∂̄v
µ(ev + ε2)2

=
ev

µ(ev + ε2)
∂∂̄v +

ε2∂(ev) ∧ ∂̄v
µ(ev + ε2)2

=
ev

µ(ev + ε2)

(
2π√
−1

[D]− ∂∂̄η
)

+
4ε2∂(ev/2) ∧ ∂̄(ev/2)

µ(ev + ε2)2

= − ev

µ(ev + ε2)
∂∂̄η +

4ε2∂(ev/2) ∧ ∂̄(ev/2)
µ(ev + ε2)2

,

where [D] denotes the current of integration over D, and we have use the facts that

ev|D ≡ 0 and ∂(ev) ∧ ∂̄v = 4∂(ev/2) ∧ ∂̄(ev/2).

Now, since

h′(x) =
α

x1−α and h′′(x) =
−α(1− α)
x2−α ,

we see that

−ddcτ = h′(a)(−ddca)− h′′(a)∂a ∧ ∂̄a

=
α

µa1−α

[
ev

ev + ε2
(−ddcη) +

4ε2∂(ev/2) ∧ ∂̄(ev/2)
(ev + ε2)2

]

+
α(1− α)
a2−α

4ev∂(ev/2) ∧ ∂̄(ev/2)
µ2(ev + ε2)2

while

(3)
√
−1∂τ ∧ ∂̄τ

A
= δ

(h′(a))2

h(a)
∂a ∧ ∂̄a =

δα2

a2−α
4ev∂(ev/2) ∧ ∂̄(ev/2)

µ2(ev + ε2)2

Consequently,

−ddcτ −
√
−1∂τ ∧ ∂̄τ

A
=

−αev

µa1−α(ev + ε2)
ddcη +

α

a1−α
4ε2∂(ev/2) ∧ ∂̄(ev/2)

µ(ev + ε2)2

+
α(1− (1 + δ)α)

µ2a1−α
4ev∂(ev/2) ∧ ∂̄(ev/2)

(ev + ε2)2
.

At this point, to shrink the formulas a bit, we set

δ =
1− α
α

,

so that the last term of (3) vanishes.
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Finally, we define the metric e−ψ for L+ LD by the formula

ψ = ϕ+ log |w|2.

3.2. A priori estimate. One computes that τddcψ = aα(ddcϕ+ 2π[D]), and we
find that

τddcψ + τRic(ω)− ddcτ −
√
−1∂τ ∧ ∂̄τ

A

= 2πaα[D] + aα(ddcϕ+ Ric(ω))− αev

µa1−α(ev + ε2)
ddcη

+
α

a1−α
4ε2∂(ev/2) ∧ ∂̄(ev/2)

µ(ev + ε2)2

= 2πaα[D] +
aαε2

ev + ε2
(ddcϕ+ Ric(ω))

+
αaαev

ev + ε2
(ddcϕ+ Ric(ω)− µ−1ddcη)

+
α

a1−α
4ε2∂(ev/2) ∧ ∂̄(ev/2)

µ(ev + ε2)2

≥ ατΘ.

Define the operator T , mapping sections of L + LD to L + LD-valued (0, 1)-
forms, and S, mapping L+LD-valued (0, 1)-forms to L+LD-valued (0, 2)-forms,
by the formulas

Tf =
1

1− α
∂̄(
√
τf) and Sβ :=

√
τ ∂̄β,

Then Lemma 2.1 gives us the following lemma.

LEMMA 3.1. Let Ω ⊂ X be a pseudoconvex domain with smooth boundary of real
codimension 1. Then for any (0, 1)-form β in the domain of ∂̄∗ψ

(4)
∫

Ω

∣∣T ∗ψβ∣∣2 e−ψdVω +
∫

Ω
|Sβ|2 e−ψdVω ≥ α

∫
Ω

〈
Θω, β ∧ β̄

〉
τe−ψdVω.

Proof. For smooth forms β, the result follows from Lemma 2.1 and the work of
the previous paragraph. For general forms (4) holds by the well-known density of
smooth forms in the domain of ∂̄∗ in the graph norm. �

3.3. Conclusion of the proof of Theorem 1. Let θ be any ∂̄-closed (0, 1)-form
with L2

`oc coefficients and such that∫
X−D

|θ|2Θe−ϕe−℘s,µdVω < +∞.
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Then for any β in the domain of ∂̄∗, one has∣∣∣∣∫
X−D

〈
(1− α)−1θ, β

〉
ω
e−ϕ|w|−2dVω

∣∣∣∣2
≤
(∫

X−D
|(1− α)−1θ|2τΘe

−ϕ|w|−2dVω

)(∫
X−D

〈
Θω, β ∧ β̄

〉
τe−ψdVω

)
≤ 1
α

(∫
X−D

|(1− α)−1θ|2Θe−ϕ
dVω
τ |w|−2

)(
||T ∗ψβ||2 + ||Sβ||2

)
.

The last inequality follows from Lemma 4. As an application of standard functional
analysis shows, there exists an L2

`oc section U of L+ LD, such that

TU = 1
1−αθ

and ∫
Ω
|U |2e−ϕ|w|−2dVω ≤

1
α

(∫
X−D

|(1− α)−1θ|2Θe−ϕ
dVω
τ |w|−2

)
.

But since TU = 1
1−α ∂̄(

√
τU), the section u :=

√
τU satisfies

∂̄u = θ and
∫

Ω
|u|2e−ϕ dVω

τ |w|2
≤ 1
α(1− α)2

(∫
X−D

|θ|2Θe−ϕ
dVω
τ |w|2

)
.

Finally, let α = 1− s. Then we have the estimate∫
Ω

|u|2e−ϕdVω
|w|2(µγ − log(|w|2e−ψ + ε2))1−s

≤ µ1−s

s2(1− s)

(∫
X−D

|θ|2Θe−ϕdVω
|w|2(µγ − log(|w|2e−ψ + ε2))1−s

)
.

Since the volume form on the right-hand side is less singular than e−℘s,µdVω, our
hypothesis about θ bounds the right-hand side by

µ1−s

s2(1− s)

∫
X−D

|θ|2Θe−ϕe−℘s,µdVω,

Now, the solutions u obtained above depend on the parameters γ and ε. However,
since the right-hand side is uniformly bounded, the weak∗-compactness of balls
in Hilbert space allows us to extract a weakly convergent subsequence, which we
also call u. But by construction, u also lies in the ball in question, which means
that u satisfies the estimate claimed in the statement of Theorem 1. The proof of
Theorem 1 is finally complete. �
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4. THE PROOF OF THEOREM 2

4.1. The key difference between the proofs of Theorem 1 and Theorem 2. To
get some perspective, we make the some observations about what happened in the
proof of Theorem 1. In that proof, as in the proof of Theorem 2 which we will
present shortly, one uses the twisted technique. This technique requires one to
choose two functions, τ and A, and a metric, e−ψ. We had decided to choose A to
be proportional to τ . Given this initial choice, the next goal is to make the twisted
sub-curvature

−ddcτ −
√
−1∂τ ∧ ∂̄τ

A
= −ddcτ − δ

√
−1∂τ ∧ ∂̄τ

τ
as large as possible. To reduce the complexity of the problem (for better or worse)
we took τ to be a composition H(a) of a function function H of one real variable
and a function a whose main property is that −ddca is an approximation to the
current of integration over D. In terms of these functions, we computed that

(5) ddcτ −
√
−1∂τ ∧ ∂̄τ

cτ
= H ′(a)(−ddca)−

(
H ′′(a) + δ

(H ′(a))2

H(a)

)
∂a∧ ∂̄a.

One way to treat the problem is to make the second term on the right-hand side is
vanish. If nothing else, making the second term vanish does simplify the problem;
the condition is a nonlinear ODE for the function H , that, it turns out, is easy to
solve. Indeed, we have

0 =
H ′′

H ′
+ δ

H ′

H
= (log(H ′) + log(Hδ))′ = (log(H ′Hδ))′,

and therefore, for some constants co and c1,

(H(x))δ+1 = (δ + 1)ecox+ c1.

This shows why we chose δ = (1− α)/α.

REMARK 4.1. It is still not clear to the author if the strategy of writing τ = H(a)
is optimal in any sense other than perhaps simplicity, or if requiring the vanishing
of the second term on the right-hand side of (5) maximizes the quadratic form
in question. However, the heuristic reasoning we used is the following: one is
asking for an increasing function H that blows up, but such a condition is likely to
encourage the convexity of Hδ+1, which controls the second term on the right; the
more convex Hδ+1, the more negative the second term becomes. �

In the proof of Theorem 2, we will take the function A to be different from
a multiple of τ . Since the volume form in question is locally integrable at each
point of X , one can use an idea first introduced in our joint paper with McNeal
[MV-2007]. While we will take an ad hoc approach, a more elaborate version of
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the idea can be found in the aforementioned paper. Even so, the choice of functions
in the twisted estimate of Lemma 2.1 remains mostly ad-hoc, and it would be better
to understand it more thoroughly.

4.2. The auxiliary functions τ and A, and the metric e−ψ. From the outset we
take our metric e−ψ as in the proof of Theorem 1:

ψ = ϕ+ log |w|2.
We also adopt the notation

v := log |w|2 − η and a := γ − 1
µ

log(ev + ε2)

from the previous section; once again ε > 0 is small and γ > 1 is chosen so that
a ≥ 1.

For the functions τ and A, we exploit the ideas in [MV-2007, Section 3.3].
Indeed, we take

τ = a+ h(a) and A =
(1 + h′(a))2

−h′′(a)
,

which immediately implies that

(6) − ddcτ −
√
−1∂τ ∧ ∂̄τ

A
= (1 + h′(a))(−ddca).

We choose the function h according to the formula

h(x) = hδ(x) :=
∫ x

1

δdt

(1 + δ)ts − δ
,

for δ > 0 to be chosen shortly. We chose this particular function h to satisfy the
ODE

h′′(x) +
sδ

(1 + δ)x1+s
(1 + h′(x))2 = 0,

and therefore

A =
1 + δ

δ

a1+s

s
.

We made this choice because one expects that A is generally larger than τ , as is
the case in our situation. Indeed, for x ≥ 1 we have

(7) h(x) ≤
∫ x

1
δdt ≤ δ(x− 1),

and therefore τ ≤ (1 + δ)a− δ ≤ (1 + δ)as+1. In particular, we find that

(8) τ +A ≤ (1 + δ)(1 + δs)a1+s

δs
,
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an estimate we will use later. We note also that, as a function of δ, the term
(1+δ)(1+δs)

δs has the minimum value (1 +
√
s)2, which is achieved at δ = 1/

√
s;

this is our choice for δ.
We will make use of the following lemma below.

LEMMA 4.2. For all x ≥ 1 one has the estimate 1 + h′(x) ≤ (1 + δ)(x + h(x)).
In particular,

(1 + δ)τ ≥ 1 + h′(a).

Proof. Consider the function F (x) = (1 + δ)(x+h(x))− (1 +h′(x)). Then with
Y = xs,

F ′(x) = (1 + δ)(1 + h′(x))− h′′(x)

= (1 + δ)
(

1 +
δ

(1 + δ)Y − δ

)
+

sδ(1 + δ)Y/x
((1 + δ)Y − δ)2

≥ 1 +
δ

(1 + δ)Y − δ
+

sδ(1 + δ)Y/x
((1 + δ)Y − δ)2

=

(
((1 + δ)Y − δ)2 + δ((1 + δ)Y − δ) + sδ(1 + δ)Y/x

)
((1 + δ)Y − δ)2

=

(
(1 + δ)2Y 2 − δ(1 + δ)Y + sδ

x (1 + δ)Y
)

((1 + δ)Y − δ)2

= (1 + δ)Y

(
(1 + δ)Y − δ + sδ

x

)
((1 + δ)Y − δ)2

> 0.

Therefore F is increasing, i.e., for all x ≥ 1, F (x) ≥ F (1) = 0. The proof is
finished. �

We end with the following proposition.

PROPOSITION 4.3. The metric e−σµ,s is not locally integrable for any s > 0.

Proof. By (7) we see that the function Hs defined just prior to the statement of
Theorem 2 satisfies

Hs(x) ≤ (1 + δ)x− δ ≤ (1 + δ)x,

where δ = 1√
s
. But then

e−σs,µ ≥ 1
1 + δ

1

|w|2 log
(

eµ

|w|2e−η

) ,
and the right-hand side is not locally integrable in any neighborhood of any point
of D. �
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4.3. A priori estimate. From Section 3 we have

−ddca = − ev

µ(ev + ε2)
ddcη +

4ε2
√
−1∂(ev/2) ∧ ∂̄(ev/2)
µ(ev + ε2)2

,

and therefore

τ(ddcψ + Ric(ω))− ddcτ −
√
−1∂τ ∧ ∂̄τ

A
= 2πτ [D] + τ(ddcϕ+ Ric(ω)) + (1 + h′(a))(−ddca)

= 2πτ [D] +
(
τ − (1 + h′(a))

1 + δ

)
(ddcϕ+ Ric(ω))

+
(1 + h′(a))

1 + δ

(
ε2

ev + ε2
(ddcϕ+ Ric(ω))

)
+

(1 + h′(a))
1 + δ

ev

ev + ε2

(
ddcϕ+ Ric(ω)− 1 + δ

µ
ddcη

)
+(1 + h′(a))

(
4ε2
√
−1∂(ev/2) ∧ ∂̄(ev/2)
µ(ev + ε2)2

)
.

By Lemma 4.2 and the hypotheses of Theorem 2, namely

ddcϕ+ Ric(ω) ≥ Θ and ddcϕ+ Ric(ω)− 1 + δ

µ
ddcη ≥ Θ,

together with the obvious non-negativity of certain terms, we conclude that

τ(ddcψ + Ric(ω))− ddcτ −
√
−1∂τ ∧ ∂̄τ

A
≥ τΘ.

From here on, things proceed even more similarly to the proof of Theorem 1.
Define the operator T , mapping sections of L+LD to L+LD-valued (0, 1)-forms,
and S, mapping L + LD-valued (0, 1)-forms to L + LD-valued (0, 2)-forms, by
the formulas

Tf = ∂̄(
√
τ +Af) and Sβ :=

√
τ ∂̄β,

Then we have the following lemma.

LEMMA 4.4. Let Ω ⊂ X be a pseudoconvex domain with smooth boundary of real
codimension 1. Then for any (0, 1)-form β in the domain of ∂̄∗ψ

(9)
∫

Ω

∣∣T ∗ψβ∣∣2 e−ψdVω +
∫

Ω
|Sβ|2 e−ψdVω ≥

∫
Ω

〈
Θω, β ∧ β̄

〉
τe−ψdVω.

The proof is directly analogous to that of Lemma 3.1, so we omit it.
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4.4. Conclusion of the proof of Theorem 2. Let θ be a (0, 1)-forms with L2
`oc

coefficients such that ∫
X−D

|θ|2Θe−ϕe−℘s,µdVω < +∞.

Then for any β in the domain of ∂̄∗, one has∣∣∣∣∫
X−D

〈θ, β〉ω e
−ϕ|w|−2dVω

∣∣∣∣2
≤
(∫

X−D
|θ|2τΘe

−ϕ|w|−2dVω

)(∫
X−D

〈
Θω, β ∧ β̄

〉
τe−ψdVω

)
≤
(∫

X−D
|θ|2Θe−ϕ

dVω
τ |w|−2

)(
||T ∗ψβ||2 + ||Sβ||2

)
.

The last inequality follows from Lemma 9. Again by the usual method, there exists
an L2

`oc section U of L+ LD, such that TU = θ and∫
Ω
|U |2e−ϕ|w|−2dVω ≤

1
α(1− α)

(∫
X−D

|(1− α)−1θ|2Θe−ϕ
dVω
τ |w|−2

)
.

But since TU = ∂̄(
√
τ +AU), the section u :=

√
τ +AU satisfies

∂̄u = θ and
∫

Ω

|u|2e−ϕdVω
|w|2(τ +A)

≤
(∫

X−D
|θ|2Θe−ϕ

dVω
τ |w|2

)
.

But by (8) we have the estimate∫
Ω

|u|2e−ϕdVω
|w|2(µγ − log(|w|2e−ψ + ε2))1+s

≤ µ1+s(1 +
√
s)2

(∫
X−D

|θ|2Θe−ϕdVω
|w|2τ

)
.

Since the volume form on the right-hand side increases to the more singular mea-
sure e−σs,µdVω as ε→ 0 and then γ → 1, the right-hand side is bounded by

µ1+s(1 +
√
s)2

∫
X−D

|θ|2Θe−ϕe−σs,µdVω,

As in the proof of Theorem 1, the solutions u obtained above depend on the pa-
rameters γ and ε, but by weak∗-compactness we can extract a weakly convergent
subsequence, which we also call u. But by construction, u also lies in the ball
in question, which means that u satisfies the estimate claimed in the statement of
Theorem 2. The proof of Theorem 2 is complete. �
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