Math 550 - Spring 2025 Practice Midterm Examination

1. Let $S := \{x = (x_1, ..., x_n) \in \mathbb{R}^n; ||x|| = 1\}$ denote the unit sphere in \mathbb{R}^n and let $\mathscr{A} \subset \mathscr{C}(X, \mathbb{R})$ be the algebra generated by the functions

 $f_i(x) := e^{-|x_i|^2} x_i + e^{-|x_{i+1}|^2} x_{i+1}, \ 1 \le i \le n-1, \ f_n(x) := e^{-|x_n|^2} x_n + e^{-|x_1|^2} x_1 - e^{-1}.$

a. Show that for any $\varepsilon > 0$ there exists a polynomial $P_{\varepsilon} : \mathbb{R}^n \to \mathbb{R}$ such that $P_{\varepsilon}(0) = 0$ and if $x \in S$ then

$$|\sin(x_1 \cdot x_2 \cdot \ldots \cdot x_n) - P_{\varepsilon}(f_1(x), f_2(x), \ldots, f_n(x))| < \varepsilon.$$

b. Show that there is no polynomial P such that P(0) = 0 and

$$\sup_{x \in S} \left| e^{\sin(x_1 \cdot x_2 \cdot \dots \cdot x_n)} - P(f_1(x), f_2(x), \dots, f_n(x)) \right| < \frac{3}{4}.$$

2. Consider the set of functions $f_n : [0,1] \to [0,\infty]$ defined by

$$f_n(x) := x^{-\frac{1}{2}} e^{\sin(nx)}; \quad n \in \mathbb{N}.$$

Show that there exist a function $g \in L^{3/2}([0,1])$ and an increasing map $\phi : \mathbb{N} \to \mathbb{N}$ such that for all $h \in L^3([0,1])$

$$\lim_{n \to \infty} \int_0^1 f_{\phi(n)}(x) h(x) dx = \int_0^1 g(x) h(x) dx.$$

3. Let $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ be a smooth vector field such that

$$|\mathbf{F}(\mathbf{x})| \le A(1+|\mathbf{x}|)$$

for some constant A > 0. Show that **F** is a complete vector field.

4. Let $\mathscr{Y} = \ell^2(\mathbb{Z})$, equipped with the usual ℓ^2 -norm

$$||f|| := \left(\sum_{n \in \mathbb{Z}} |f(n)|^2\right)^{1/2},$$

and let $\mathscr{X} = \{ f \in \mathscr{Y} ; \sum_{\substack{n \in \mathbb{Z} \\ m \in \mathbb{Z}}} n^4 |f(n)|^2 < +\infty \}.$

Consider the map
$$\Phi : \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}^{\mathbb{Z}}$$
 defined by $\Phi(f)(n) := 4nf(n), \quad n \in \mathbb{Z}.$

- **a.** Show that \mathscr{X} is a subspace of \mathscr{Y} .
- **b.** Show that Φ is linear and that $\Phi(\mathscr{X}) \subset \mathscr{Y}$.
- **c.** Show that the graph of $\Phi|_{\mathscr{X}} : \mathscr{X} \to \mathscr{Y}$ is a closed subspace of $\mathscr{X} \times \mathscr{Y}$.
- **d.** Show that $\Phi|_{\mathscr{X}} : \mathscr{X} \to \mathscr{Y}$ not continuous.
- e. Use the Closed Graph Theorem to prove that \mathscr{X} is not a closed subspace of \mathscr{Y} .
- **f.** Show that \mathscr{X} is dense in \mathscr{Y} .
- **g.** Find an explicit $f \in \mathscr{Y} \setminus \mathscr{X}$.
- **h.** Define $|| \cdot ||_{\sigma} : \mathscr{X} \to [0, \infty]$ by $||f||_{\sigma} = \sqrt{|f(0)|^2 + \sum_{n \in \mathbb{Z}} |n^2 f(n)|^2}$. Show that $|| \cdot ||_{\sigma}$ is a norm and that $\mathscr{X}_{\sigma} := (\mathscr{X}, || \cdot ||_{\sigma})$ is a Hilbert space.
- i. Does the Closed Graph Theorem imply that $\Phi : \mathscr{X}_{\sigma} \to \mathscr{Y}$ is continuous?
- **j.** Compute the norm of the linear map $\Phi : \mathscr{X}_{\sigma} \to \mathscr{Y}$.