MAT 533 S25 PROBLEM SET 9

- 1. (Folland, Exercise 7.17) Let X be a locally compact Hausdorff space and let μ be a positive Radon measure on X such that $\mu(X) = \infty$.
 - **a.** Show that there exists $f \in \mathscr{C}_0(X)$ such that $\int_X f d\mu = \infty$.
 - **b.** Show that every positive linear functional on $C_0(X)$ is bounded.
- **2.** (Folland, Exercise 7.21) Let X be a locally compact Hausdorff space, let $\{f_{\alpha}\}_{\alpha \in A} \subset \mathscr{C}_{0}(X)$ and let $\{c_{\alpha}\}_{\alpha \in A} \subset \mathbb{C}$. Suppose that for every finite subset $B \subset A$ there exists a finite complex Radon measure $\mu_{B} \in \mathscr{M}(X)$ such that

$$||\mu_B|| \le 1$$
 and $\int_X f_\alpha d\mu_B = c_\alpha$ for all $\alpha \in B$.

Show that there exists a measure $\mu \in \mathcal{M}(X)$ such that

$$||\mu|| \le 1$$
 and $\int_X f_\alpha d\mu = c_\alpha$ for all $\alpha \in A$.

- **3.** (Folland, Exercise 7.22) Let X be a locally compact Hausdorff space. Show that a sequence $\{f_n\} \subset \mathscr{C}_0(X)$ converges weakly to $f \in \mathscr{C}_0(X)$ if and only if $\sup_n ||f_n|| < +\infty$ and $f_n \to f$ pointwise.
- 4. (Folland, Exercise 7.27) Let k be a positive integer and let $\mathscr{C}^k([0,1])$ denote the space of ktimes continuously differentiable functions on [0,1], with one-sided derivatives at the endpoints. Define

$$||f|| := ||f||_u + \sum_{j=1}^k ||f^{(j)}||_u,$$

where $f^{(j)}$ denotes the *j*-th derivative of *f* (one-sided at the endpoints). Show that if $I \in \mathscr{C}^k([0,1])^*$ then there exist a unique measure $\mu \in \mathscr{M}([0,1])$ and constants $c_0, ..., c_{k-1} \in \mathbb{C}$ such that

$$I(f) = \int_X f^{(k)} d\mu + \sum_{j=0}^{k=1} c_j f^{(j)}(0).$$